diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /Documentation/x86/topology.rst | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/x86/topology.rst')
-rw-r--r-- | Documentation/x86/topology.rst | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/Documentation/x86/topology.rst b/Documentation/x86/topology.rst new file mode 100644 index 000000000..7f58010ea --- /dev/null +++ b/Documentation/x86/topology.rst @@ -0,0 +1,234 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============ +x86 Topology +============ + +This documents and clarifies the main aspects of x86 topology modelling and +representation in the kernel. Update/change when doing changes to the +respective code. + +The architecture-agnostic topology definitions are in +Documentation/admin-guide/cputopology.rst. This file holds x86-specific +differences/specialities which must not necessarily apply to the generic +definitions. Thus, the way to read up on Linux topology on x86 is to start +with the generic one and look at this one in parallel for the x86 specifics. + +Needless to say, code should use the generic functions - this file is *only* +here to *document* the inner workings of x86 topology. + +Started by Thomas Gleixner <tglx@linutronix.de> and Borislav Petkov <bp@alien8.de>. + +The main aim of the topology facilities is to present adequate interfaces to +code which needs to know/query/use the structure of the running system wrt +threads, cores, packages, etc. + +The kernel does not care about the concept of physical sockets because a +socket has no relevance to software. It's an electromechanical component. In +the past a socket always contained a single package (see below), but with the +advent of Multi Chip Modules (MCM) a socket can hold more than one package. So +there might be still references to sockets in the code, but they are of +historical nature and should be cleaned up. + +The topology of a system is described in the units of: + + - packages + - cores + - threads + +Package +======= +Packages contain a number of cores plus shared resources, e.g. DRAM +controller, shared caches etc. + +Modern systems may also use the term 'Die' for package. + +AMD nomenclature for package is 'Node'. + +Package-related topology information in the kernel: + + - cpuinfo_x86.x86_max_cores: + + The number of cores in a package. This information is retrieved via CPUID. + + - cpuinfo_x86.x86_max_dies: + + The number of dies in a package. This information is retrieved via CPUID. + + - cpuinfo_x86.cpu_die_id: + + The physical ID of the die. This information is retrieved via CPUID. + + - cpuinfo_x86.phys_proc_id: + + The physical ID of the package. This information is retrieved via CPUID + and deduced from the APIC IDs of the cores in the package. + + Modern systems use this value for the socket. There may be multiple + packages within a socket. This value may differ from cpu_die_id. + + - cpuinfo_x86.logical_proc_id: + + The logical ID of the package. As we do not trust BIOSes to enumerate the + packages in a consistent way, we introduced the concept of logical package + ID so we can sanely calculate the number of maximum possible packages in + the system and have the packages enumerated linearly. + + - topology_max_packages(): + + The maximum possible number of packages in the system. Helpful for per + package facilities to preallocate per package information. + + - cpu_llc_id: + + A per-CPU variable containing: + + - On Intel, the first APIC ID of the list of CPUs sharing the Last Level + Cache + + - On AMD, the Node ID or Core Complex ID containing the Last Level + Cache. In general, it is a number identifying an LLC uniquely on the + system. + +Cores +===== +A core consists of 1 or more threads. It does not matter whether the threads +are SMT- or CMT-type threads. + +AMDs nomenclature for a CMT core is "Compute Unit". The kernel always uses +"core". + +Core-related topology information in the kernel: + + - smp_num_siblings: + + The number of threads in a core. The number of threads in a package can be + calculated by:: + + threads_per_package = cpuinfo_x86.x86_max_cores * smp_num_siblings + + +Threads +======= +A thread is a single scheduling unit. It's the equivalent to a logical Linux +CPU. + +AMDs nomenclature for CMT threads is "Compute Unit Core". The kernel always +uses "thread". + +Thread-related topology information in the kernel: + + - topology_core_cpumask(): + + The cpumask contains all online threads in the package to which a thread + belongs. + + The number of online threads is also printed in /proc/cpuinfo "siblings." + + - topology_sibling_cpumask(): + + The cpumask contains all online threads in the core to which a thread + belongs. + + - topology_logical_package_id(): + + The logical package ID to which a thread belongs. + + - topology_physical_package_id(): + + The physical package ID to which a thread belongs. + + - topology_core_id(); + + The ID of the core to which a thread belongs. It is also printed in /proc/cpuinfo + "core_id." + + + +System topology examples +======================== + +.. note:: + The alternative Linux CPU enumeration depends on how the BIOS enumerates the + threads. Many BIOSes enumerate all threads 0 first and then all threads 1. + That has the "advantage" that the logical Linux CPU numbers of threads 0 stay + the same whether threads are enabled or not. That's merely an implementation + detail and has no practical impact. + +1) Single Package, Single Core:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + +2) Single Package, Dual Core + + a) One thread per core:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + -> [core 1] -> [thread 0] -> Linux CPU 1 + + b) Two threads per core:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + -> [thread 1] -> Linux CPU 1 + -> [core 1] -> [thread 0] -> Linux CPU 2 + -> [thread 1] -> Linux CPU 3 + + Alternative enumeration:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + -> [thread 1] -> Linux CPU 2 + -> [core 1] -> [thread 0] -> Linux CPU 1 + -> [thread 1] -> Linux CPU 3 + + AMD nomenclature for CMT systems:: + + [node 0] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 0 + -> [Compute Unit Core 1] -> Linux CPU 1 + -> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 2 + -> [Compute Unit Core 1] -> Linux CPU 3 + +4) Dual Package, Dual Core + + a) One thread per core:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + -> [core 1] -> [thread 0] -> Linux CPU 1 + + [package 1] -> [core 0] -> [thread 0] -> Linux CPU 2 + -> [core 1] -> [thread 0] -> Linux CPU 3 + + b) Two threads per core:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + -> [thread 1] -> Linux CPU 1 + -> [core 1] -> [thread 0] -> Linux CPU 2 + -> [thread 1] -> Linux CPU 3 + + [package 1] -> [core 0] -> [thread 0] -> Linux CPU 4 + -> [thread 1] -> Linux CPU 5 + -> [core 1] -> [thread 0] -> Linux CPU 6 + -> [thread 1] -> Linux CPU 7 + + Alternative enumeration:: + + [package 0] -> [core 0] -> [thread 0] -> Linux CPU 0 + -> [thread 1] -> Linux CPU 4 + -> [core 1] -> [thread 0] -> Linux CPU 1 + -> [thread 1] -> Linux CPU 5 + + [package 1] -> [core 0] -> [thread 0] -> Linux CPU 2 + -> [thread 1] -> Linux CPU 6 + -> [core 1] -> [thread 0] -> Linux CPU 3 + -> [thread 1] -> Linux CPU 7 + + AMD nomenclature for CMT systems:: + + [node 0] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 0 + -> [Compute Unit Core 1] -> Linux CPU 1 + -> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 2 + -> [Compute Unit Core 1] -> Linux CPU 3 + + [node 1] -> [Compute Unit 0] -> [Compute Unit Core 0] -> Linux CPU 4 + -> [Compute Unit Core 1] -> Linux CPU 5 + -> [Compute Unit 1] -> [Compute Unit Core 0] -> Linux CPU 6 + -> [Compute Unit Core 1] -> Linux CPU 7 |