diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /arch/mips/kvm/emulate.c | |
parent | Initial commit. (diff) | |
download | linux-upstream/5.10.209.tar.xz linux-upstream/5.10.209.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | arch/mips/kvm/emulate.c | 3292 |
1 files changed, 3292 insertions, 0 deletions
diff --git a/arch/mips/kvm/emulate.c b/arch/mips/kvm/emulate.c new file mode 100644 index 000000000..d70c4f8e1 --- /dev/null +++ b/arch/mips/kvm/emulate.c @@ -0,0 +1,3292 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * KVM/MIPS: Instruction/Exception emulation + * + * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. + * Authors: Sanjay Lal <sanjayl@kymasys.com> + */ + +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/ktime.h> +#include <linux/kvm_host.h> +#include <linux/vmalloc.h> +#include <linux/fs.h> +#include <linux/memblock.h> +#include <linux/random.h> +#include <asm/page.h> +#include <asm/cacheflush.h> +#include <asm/cacheops.h> +#include <asm/cpu-info.h> +#include <asm/mmu_context.h> +#include <asm/tlbflush.h> +#include <asm/inst.h> + +#undef CONFIG_MIPS_MT +#include <asm/r4kcache.h> +#define CONFIG_MIPS_MT + +#include "interrupt.h" +#include "commpage.h" + +#include "trace.h" + +/* + * Compute the return address and do emulate branch simulation, if required. + * This function should be called only in branch delay slot active. + */ +static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc, + unsigned long *out) +{ + unsigned int dspcontrol; + union mips_instruction insn; + struct kvm_vcpu_arch *arch = &vcpu->arch; + long epc = instpc; + long nextpc; + int err; + + if (epc & 3) { + kvm_err("%s: unaligned epc\n", __func__); + return -EINVAL; + } + + /* Read the instruction */ + err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word); + if (err) + return err; + + switch (insn.i_format.opcode) { + /* jr and jalr are in r_format format. */ + case spec_op: + switch (insn.r_format.func) { + case jalr_op: + arch->gprs[insn.r_format.rd] = epc + 8; + fallthrough; + case jr_op: + nextpc = arch->gprs[insn.r_format.rs]; + break; + default: + return -EINVAL; + } + break; + + /* + * This group contains: + * bltz_op, bgez_op, bltzl_op, bgezl_op, + * bltzal_op, bgezal_op, bltzall_op, bgezall_op. + */ + case bcond_op: + switch (insn.i_format.rt) { + case bltz_op: + case bltzl_op: + if ((long)arch->gprs[insn.i_format.rs] < 0) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + case bgez_op: + case bgezl_op: + if ((long)arch->gprs[insn.i_format.rs] >= 0) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + case bltzal_op: + case bltzall_op: + arch->gprs[31] = epc + 8; + if ((long)arch->gprs[insn.i_format.rs] < 0) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + case bgezal_op: + case bgezall_op: + arch->gprs[31] = epc + 8; + if ((long)arch->gprs[insn.i_format.rs] >= 0) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + case bposge32_op: + if (!cpu_has_dsp) { + kvm_err("%s: DSP branch but not DSP ASE\n", + __func__); + return -EINVAL; + } + + dspcontrol = rddsp(0x01); + + if (dspcontrol >= 32) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + default: + return -EINVAL; + } + break; + + /* These are unconditional and in j_format. */ + case jal_op: + arch->gprs[31] = instpc + 8; + fallthrough; + case j_op: + epc += 4; + epc >>= 28; + epc <<= 28; + epc |= (insn.j_format.target << 2); + nextpc = epc; + break; + + /* These are conditional and in i_format. */ + case beq_op: + case beql_op: + if (arch->gprs[insn.i_format.rs] == + arch->gprs[insn.i_format.rt]) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + case bne_op: + case bnel_op: + if (arch->gprs[insn.i_format.rs] != + arch->gprs[insn.i_format.rt]) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + case blez_op: /* POP06 */ +#ifndef CONFIG_CPU_MIPSR6 + case blezl_op: /* removed in R6 */ +#endif + if (insn.i_format.rt != 0) + goto compact_branch; + if ((long)arch->gprs[insn.i_format.rs] <= 0) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + case bgtz_op: /* POP07 */ +#ifndef CONFIG_CPU_MIPSR6 + case bgtzl_op: /* removed in R6 */ +#endif + if (insn.i_format.rt != 0) + goto compact_branch; + if ((long)arch->gprs[insn.i_format.rs] > 0) + epc = epc + 4 + (insn.i_format.simmediate << 2); + else + epc += 8; + nextpc = epc; + break; + + /* And now the FPA/cp1 branch instructions. */ + case cop1_op: + kvm_err("%s: unsupported cop1_op\n", __func__); + return -EINVAL; + +#ifdef CONFIG_CPU_MIPSR6 + /* R6 added the following compact branches with forbidden slots */ + case blezl_op: /* POP26 */ + case bgtzl_op: /* POP27 */ + /* only rt == 0 isn't compact branch */ + if (insn.i_format.rt != 0) + goto compact_branch; + return -EINVAL; + case pop10_op: + case pop30_op: + /* only rs == rt == 0 is reserved, rest are compact branches */ + if (insn.i_format.rs != 0 || insn.i_format.rt != 0) + goto compact_branch; + return -EINVAL; + case pop66_op: + case pop76_op: + /* only rs == 0 isn't compact branch */ + if (insn.i_format.rs != 0) + goto compact_branch; + return -EINVAL; +compact_branch: + /* + * If we've hit an exception on the forbidden slot, then + * the branch must not have been taken. + */ + epc += 8; + nextpc = epc; + break; +#else +compact_branch: + /* Fall through - Compact branches not supported before R6 */ +#endif + default: + return -EINVAL; + } + + *out = nextpc; + return 0; +} + +enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause) +{ + int err; + + if (cause & CAUSEF_BD) { + err = kvm_compute_return_epc(vcpu, vcpu->arch.pc, + &vcpu->arch.pc); + if (err) + return EMULATE_FAIL; + } else { + vcpu->arch.pc += 4; + } + + kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc); + + return EMULATE_DONE; +} + +/** + * kvm_get_badinstr() - Get bad instruction encoding. + * @opc: Guest pointer to faulting instruction. + * @vcpu: KVM VCPU information. + * + * Gets the instruction encoding of the faulting instruction, using the saved + * BadInstr register value if it exists, otherwise falling back to reading guest + * memory at @opc. + * + * Returns: The instruction encoding of the faulting instruction. + */ +int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) +{ + if (cpu_has_badinstr) { + *out = vcpu->arch.host_cp0_badinstr; + return 0; + } else { + return kvm_get_inst(opc, vcpu, out); + } +} + +/** + * kvm_get_badinstrp() - Get bad prior instruction encoding. + * @opc: Guest pointer to prior faulting instruction. + * @vcpu: KVM VCPU information. + * + * Gets the instruction encoding of the prior faulting instruction (the branch + * containing the delay slot which faulted), using the saved BadInstrP register + * value if it exists, otherwise falling back to reading guest memory at @opc. + * + * Returns: The instruction encoding of the prior faulting instruction. + */ +int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) +{ + if (cpu_has_badinstrp) { + *out = vcpu->arch.host_cp0_badinstrp; + return 0; + } else { + return kvm_get_inst(opc, vcpu, out); + } +} + +/** + * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled. + * @vcpu: Virtual CPU. + * + * Returns: 1 if the CP0_Count timer is disabled by either the guest + * CP0_Cause.DC bit or the count_ctl.DC bit. + * 0 otherwise (in which case CP0_Count timer is running). + */ +int kvm_mips_count_disabled(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + + return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) || + (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC); +} + +/** + * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count. + * + * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias. + * + * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). + */ +static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now) +{ + s64 now_ns, periods; + u64 delta; + + now_ns = ktime_to_ns(now); + delta = now_ns + vcpu->arch.count_dyn_bias; + + if (delta >= vcpu->arch.count_period) { + /* If delta is out of safe range the bias needs adjusting */ + periods = div64_s64(now_ns, vcpu->arch.count_period); + vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period; + /* Recalculate delta with new bias */ + delta = now_ns + vcpu->arch.count_dyn_bias; + } + + /* + * We've ensured that: + * delta < count_period + * + * Therefore the intermediate delta*count_hz will never overflow since + * at the boundary condition: + * delta = count_period + * delta = NSEC_PER_SEC * 2^32 / count_hz + * delta * count_hz = NSEC_PER_SEC * 2^32 + */ + return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC); +} + +/** + * kvm_mips_count_time() - Get effective current time. + * @vcpu: Virtual CPU. + * + * Get effective monotonic ktime. This is usually a straightforward ktime_get(), + * except when the master disable bit is set in count_ctl, in which case it is + * count_resume, i.e. the time that the count was disabled. + * + * Returns: Effective monotonic ktime for CP0_Count. + */ +static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu) +{ + if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) + return vcpu->arch.count_resume; + + return ktime_get(); +} + +/** + * kvm_mips_read_count_running() - Read the current count value as if running. + * @vcpu: Virtual CPU. + * @now: Kernel time to read CP0_Count at. + * + * Returns the current guest CP0_Count register at time @now and handles if the + * timer interrupt is pending and hasn't been handled yet. + * + * Returns: The current value of the guest CP0_Count register. + */ +static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + ktime_t expires, threshold; + u32 count, compare; + int running; + + /* Calculate the biased and scaled guest CP0_Count */ + count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); + compare = kvm_read_c0_guest_compare(cop0); + + /* + * Find whether CP0_Count has reached the closest timer interrupt. If + * not, we shouldn't inject it. + */ + if ((s32)(count - compare) < 0) + return count; + + /* + * The CP0_Count we're going to return has already reached the closest + * timer interrupt. Quickly check if it really is a new interrupt by + * looking at whether the interval until the hrtimer expiry time is + * less than 1/4 of the timer period. + */ + expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer); + threshold = ktime_add_ns(now, vcpu->arch.count_period / 4); + if (ktime_before(expires, threshold)) { + /* + * Cancel it while we handle it so there's no chance of + * interference with the timeout handler. + */ + running = hrtimer_cancel(&vcpu->arch.comparecount_timer); + + /* Nothing should be waiting on the timeout */ + kvm_mips_callbacks->queue_timer_int(vcpu); + + /* + * Restart the timer if it was running based on the expiry time + * we read, so that we don't push it back 2 periods. + */ + if (running) { + expires = ktime_add_ns(expires, + vcpu->arch.count_period); + hrtimer_start(&vcpu->arch.comparecount_timer, expires, + HRTIMER_MODE_ABS); + } + } + + return count; +} + +/** + * kvm_mips_read_count() - Read the current count value. + * @vcpu: Virtual CPU. + * + * Read the current guest CP0_Count value, taking into account whether the timer + * is stopped. + * + * Returns: The current guest CP0_Count value. + */ +u32 kvm_mips_read_count(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + + /* If count disabled just read static copy of count */ + if (kvm_mips_count_disabled(vcpu)) + return kvm_read_c0_guest_count(cop0); + + return kvm_mips_read_count_running(vcpu, ktime_get()); +} + +/** + * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer. + * @vcpu: Virtual CPU. + * @count: Output pointer for CP0_Count value at point of freeze. + * + * Freeze the hrtimer safely and return both the ktime and the CP0_Count value + * at the point it was frozen. It is guaranteed that any pending interrupts at + * the point it was frozen are handled, and none after that point. + * + * This is useful where the time/CP0_Count is needed in the calculation of the + * new parameters. + * + * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). + * + * Returns: The ktime at the point of freeze. + */ +ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count) +{ + ktime_t now; + + /* stop hrtimer before finding time */ + hrtimer_cancel(&vcpu->arch.comparecount_timer); + now = ktime_get(); + + /* find count at this point and handle pending hrtimer */ + *count = kvm_mips_read_count_running(vcpu, now); + + return now; +} + +/** + * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry. + * @vcpu: Virtual CPU. + * @now: ktime at point of resume. + * @count: CP0_Count at point of resume. + * + * Resumes the timer and updates the timer expiry based on @now and @count. + * This can be used in conjunction with kvm_mips_freeze_timer() when timer + * parameters need to be changed. + * + * It is guaranteed that a timer interrupt immediately after resume will be + * handled, but not if CP_Compare is exactly at @count. That case is already + * handled by kvm_mips_freeze_timer(). + * + * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running). + */ +static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu, + ktime_t now, u32 count) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + u32 compare; + u64 delta; + ktime_t expire; + + /* Calculate timeout (wrap 0 to 2^32) */ + compare = kvm_read_c0_guest_compare(cop0); + delta = (u64)(u32)(compare - count - 1) + 1; + delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); + expire = ktime_add_ns(now, delta); + + /* Update hrtimer to use new timeout */ + hrtimer_cancel(&vcpu->arch.comparecount_timer); + hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS); +} + +/** + * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry. + * @vcpu: Virtual CPU. + * @before: Time before Count was saved, lower bound of drift calculation. + * @count: CP0_Count at point of restore. + * @min_drift: Minimum amount of drift permitted before correction. + * Must be <= 0. + * + * Restores the timer from a particular @count, accounting for drift. This can + * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is + * to be used for a period of time, but the exact ktime corresponding to the + * final Count that must be restored is not known. + * + * It is gauranteed that a timer interrupt immediately after restore will be + * handled, but not if CP0_Compare is exactly at @count. That case should + * already be handled when the hardware timer state is saved. + * + * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not + * stopped). + * + * Returns: Amount of correction to count_bias due to drift. + */ +int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before, + u32 count, int min_drift) +{ + ktime_t now, count_time; + u32 now_count, before_count; + u64 delta; + int drift, ret = 0; + + /* Calculate expected count at before */ + before_count = vcpu->arch.count_bias + + kvm_mips_ktime_to_count(vcpu, before); + + /* + * Detect significantly negative drift, where count is lower than + * expected. Some negative drift is expected when hardware counter is + * set after kvm_mips_freeze_timer(), and it is harmless to allow the + * time to jump forwards a little, within reason. If the drift is too + * significant, adjust the bias to avoid a big Guest.CP0_Count jump. + */ + drift = count - before_count; + if (drift < min_drift) { + count_time = before; + vcpu->arch.count_bias += drift; + ret = drift; + goto resume; + } + + /* Calculate expected count right now */ + now = ktime_get(); + now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now); + + /* + * Detect positive drift, where count is higher than expected, and + * adjust the bias to avoid guest time going backwards. + */ + drift = count - now_count; + if (drift > 0) { + count_time = now; + vcpu->arch.count_bias += drift; + ret = drift; + goto resume; + } + + /* Subtract nanosecond delta to find ktime when count was read */ + delta = (u64)(u32)(now_count - count); + delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz); + count_time = ktime_sub_ns(now, delta); + +resume: + /* Resume using the calculated ktime */ + kvm_mips_resume_hrtimer(vcpu, count_time, count); + return ret; +} + +/** + * kvm_mips_write_count() - Modify the count and update timer. + * @vcpu: Virtual CPU. + * @count: Guest CP0_Count value to set. + * + * Sets the CP0_Count value and updates the timer accordingly. + */ +void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + ktime_t now; + + /* Calculate bias */ + now = kvm_mips_count_time(vcpu); + vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); + + if (kvm_mips_count_disabled(vcpu)) + /* The timer's disabled, adjust the static count */ + kvm_write_c0_guest_count(cop0, count); + else + /* Update timeout */ + kvm_mips_resume_hrtimer(vcpu, now, count); +} + +/** + * kvm_mips_init_count() - Initialise timer. + * @vcpu: Virtual CPU. + * @count_hz: Frequency of timer. + * + * Initialise the timer to the specified frequency, zero it, and set it going if + * it's enabled. + */ +void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz) +{ + vcpu->arch.count_hz = count_hz; + vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); + vcpu->arch.count_dyn_bias = 0; + + /* Starting at 0 */ + kvm_mips_write_count(vcpu, 0); +} + +/** + * kvm_mips_set_count_hz() - Update the frequency of the timer. + * @vcpu: Virtual CPU. + * @count_hz: Frequency of CP0_Count timer in Hz. + * + * Change the frequency of the CP0_Count timer. This is done atomically so that + * CP0_Count is continuous and no timer interrupt is lost. + * + * Returns: -EINVAL if @count_hz is out of range. + * 0 on success. + */ +int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + int dc; + ktime_t now; + u32 count; + + /* ensure the frequency is in a sensible range... */ + if (count_hz <= 0 || count_hz > NSEC_PER_SEC) + return -EINVAL; + /* ... and has actually changed */ + if (vcpu->arch.count_hz == count_hz) + return 0; + + /* Safely freeze timer so we can keep it continuous */ + dc = kvm_mips_count_disabled(vcpu); + if (dc) { + now = kvm_mips_count_time(vcpu); + count = kvm_read_c0_guest_count(cop0); + } else { + now = kvm_mips_freeze_hrtimer(vcpu, &count); + } + + /* Update the frequency */ + vcpu->arch.count_hz = count_hz; + vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz); + vcpu->arch.count_dyn_bias = 0; + + /* Calculate adjusted bias so dynamic count is unchanged */ + vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now); + + /* Update and resume hrtimer */ + if (!dc) + kvm_mips_resume_hrtimer(vcpu, now, count); + return 0; +} + +/** + * kvm_mips_write_compare() - Modify compare and update timer. + * @vcpu: Virtual CPU. + * @compare: New CP0_Compare value. + * @ack: Whether to acknowledge timer interrupt. + * + * Update CP0_Compare to a new value and update the timeout. + * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure + * any pending timer interrupt is preserved. + */ +void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + int dc; + u32 old_compare = kvm_read_c0_guest_compare(cop0); + s32 delta = compare - old_compare; + u32 cause; + ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */ + u32 count; + + /* if unchanged, must just be an ack */ + if (old_compare == compare) { + if (!ack) + return; + kvm_mips_callbacks->dequeue_timer_int(vcpu); + kvm_write_c0_guest_compare(cop0, compare); + return; + } + + /* + * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted + * too to prevent guest CP0_Count hitting guest CP0_Compare. + * + * The new GTOffset corresponds to the new value of CP0_Compare, and is + * set prior to it being written into the guest context. We disable + * preemption until the new value is written to prevent restore of a + * GTOffset corresponding to the old CP0_Compare value. + */ + if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) { + preempt_disable(); + write_c0_gtoffset(compare - read_c0_count()); + back_to_back_c0_hazard(); + } + + /* freeze_hrtimer() takes care of timer interrupts <= count */ + dc = kvm_mips_count_disabled(vcpu); + if (!dc) + now = kvm_mips_freeze_hrtimer(vcpu, &count); + + if (ack) + kvm_mips_callbacks->dequeue_timer_int(vcpu); + else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) + /* + * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so + * preserve guest CP0_Cause.TI if we don't want to ack it. + */ + cause = kvm_read_c0_guest_cause(cop0); + + kvm_write_c0_guest_compare(cop0, compare); + + if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) { + if (delta > 0) + preempt_enable(); + + back_to_back_c0_hazard(); + + if (!ack && cause & CAUSEF_TI) + kvm_write_c0_guest_cause(cop0, cause); + } + + /* resume_hrtimer() takes care of timer interrupts > count */ + if (!dc) + kvm_mips_resume_hrtimer(vcpu, now, count); + + /* + * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change + * until after the new CP0_Compare is written, otherwise new guest + * CP0_Count could hit new guest CP0_Compare. + */ + if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0) + write_c0_gtoffset(compare - read_c0_count()); +} + +/** + * kvm_mips_count_disable() - Disable count. + * @vcpu: Virtual CPU. + * + * Disable the CP0_Count timer. A timer interrupt on or before the final stop + * time will be handled but not after. + * + * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or + * count_ctl.DC has been set (count disabled). + * + * Returns: The time that the timer was stopped. + */ +static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + u32 count; + ktime_t now; + + /* Stop hrtimer */ + hrtimer_cancel(&vcpu->arch.comparecount_timer); + + /* Set the static count from the dynamic count, handling pending TI */ + now = ktime_get(); + count = kvm_mips_read_count_running(vcpu, now); + kvm_write_c0_guest_count(cop0, count); + + return now; +} + +/** + * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC. + * @vcpu: Virtual CPU. + * + * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or + * before the final stop time will be handled if the timer isn't disabled by + * count_ctl.DC, but not after. + * + * Assumes CP0_Cause.DC is clear (count enabled). + */ +void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + + kvm_set_c0_guest_cause(cop0, CAUSEF_DC); + if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)) + kvm_mips_count_disable(vcpu); +} + +/** + * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC. + * @vcpu: Virtual CPU. + * + * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after + * the start time will be handled if the timer isn't disabled by count_ctl.DC, + * potentially before even returning, so the caller should be careful with + * ordering of CP0_Cause modifications so as not to lose it. + * + * Assumes CP0_Cause.DC is set (count disabled). + */ +void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + u32 count; + + kvm_clear_c0_guest_cause(cop0, CAUSEF_DC); + + /* + * Set the dynamic count to match the static count. + * This starts the hrtimer if count_ctl.DC allows it. + * Otherwise it conveniently updates the biases. + */ + count = kvm_read_c0_guest_count(cop0); + kvm_mips_write_count(vcpu, count); +} + +/** + * kvm_mips_set_count_ctl() - Update the count control KVM register. + * @vcpu: Virtual CPU. + * @count_ctl: Count control register new value. + * + * Set the count control KVM register. The timer is updated accordingly. + * + * Returns: -EINVAL if reserved bits are set. + * 0 on success. + */ +int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + s64 changed = count_ctl ^ vcpu->arch.count_ctl; + s64 delta; + ktime_t expire, now; + u32 count, compare; + + /* Only allow defined bits to be changed */ + if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC)) + return -EINVAL; + + /* Apply new value */ + vcpu->arch.count_ctl = count_ctl; + + /* Master CP0_Count disable */ + if (changed & KVM_REG_MIPS_COUNT_CTL_DC) { + /* Is CP0_Cause.DC already disabling CP0_Count? */ + if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) { + if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) + /* Just record the current time */ + vcpu->arch.count_resume = ktime_get(); + } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) { + /* disable timer and record current time */ + vcpu->arch.count_resume = kvm_mips_count_disable(vcpu); + } else { + /* + * Calculate timeout relative to static count at resume + * time (wrap 0 to 2^32). + */ + count = kvm_read_c0_guest_count(cop0); + compare = kvm_read_c0_guest_compare(cop0); + delta = (u64)(u32)(compare - count - 1) + 1; + delta = div_u64(delta * NSEC_PER_SEC, + vcpu->arch.count_hz); + expire = ktime_add_ns(vcpu->arch.count_resume, delta); + + /* Handle pending interrupt */ + now = ktime_get(); + if (ktime_compare(now, expire) >= 0) + /* Nothing should be waiting on the timeout */ + kvm_mips_callbacks->queue_timer_int(vcpu); + + /* Resume hrtimer without changing bias */ + count = kvm_mips_read_count_running(vcpu, now); + kvm_mips_resume_hrtimer(vcpu, now, count); + } + } + + return 0; +} + +/** + * kvm_mips_set_count_resume() - Update the count resume KVM register. + * @vcpu: Virtual CPU. + * @count_resume: Count resume register new value. + * + * Set the count resume KVM register. + * + * Returns: -EINVAL if out of valid range (0..now). + * 0 on success. + */ +int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume) +{ + /* + * It doesn't make sense for the resume time to be in the future, as it + * would be possible for the next interrupt to be more than a full + * period in the future. + */ + if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get())) + return -EINVAL; + + vcpu->arch.count_resume = ns_to_ktime(count_resume); + return 0; +} + +/** + * kvm_mips_count_timeout() - Push timer forward on timeout. + * @vcpu: Virtual CPU. + * + * Handle an hrtimer event by push the hrtimer forward a period. + * + * Returns: The hrtimer_restart value to return to the hrtimer subsystem. + */ +enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu) +{ + /* Add the Count period to the current expiry time */ + hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer, + vcpu->arch.count_period); + return HRTIMER_RESTART; +} + +enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + enum emulation_result er = EMULATE_DONE; + + if (kvm_read_c0_guest_status(cop0) & ST0_ERL) { + kvm_clear_c0_guest_status(cop0, ST0_ERL); + vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0); + } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) { + kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc, + kvm_read_c0_guest_epc(cop0)); + kvm_clear_c0_guest_status(cop0, ST0_EXL); + vcpu->arch.pc = kvm_read_c0_guest_epc(cop0); + + } else { + kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n", + vcpu->arch.pc); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu) +{ + kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc, + vcpu->arch.pending_exceptions); + + ++vcpu->stat.wait_exits; + trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT); + if (!vcpu->arch.pending_exceptions) { + kvm_vz_lose_htimer(vcpu); + vcpu->arch.wait = 1; + kvm_vcpu_block(vcpu); + + /* + * We we are runnable, then definitely go off to user space to + * check if any I/O interrupts are pending. + */ + if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { + kvm_clear_request(KVM_REQ_UNHALT, vcpu); + vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; + } + } + + return EMULATE_DONE; +} + +static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu, + unsigned long entryhi) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; + int cpu, i; + u32 nasid = entryhi & KVM_ENTRYHI_ASID; + + if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) { + trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) & + KVM_ENTRYHI_ASID, nasid); + + /* + * Flush entries from the GVA page tables. + * Guest user page table will get flushed lazily on re-entry to + * guest user if the guest ASID actually changes. + */ + kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN); + + /* + * Regenerate/invalidate kernel MMU context. + * The user MMU context will be regenerated lazily on re-entry + * to guest user if the guest ASID actually changes. + */ + preempt_disable(); + cpu = smp_processor_id(); + get_new_mmu_context(kern_mm); + for_each_possible_cpu(i) + if (i != cpu) + set_cpu_context(i, kern_mm, 0); + preempt_enable(); + } + kvm_write_c0_guest_entryhi(cop0, entryhi); +} + +enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_mips_tlb *tlb; + unsigned long pc = vcpu->arch.pc; + int index; + + index = kvm_read_c0_guest_index(cop0); + if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { + /* UNDEFINED */ + kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index); + index &= KVM_MIPS_GUEST_TLB_SIZE - 1; + } + + tlb = &vcpu->arch.guest_tlb[index]; + kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask); + kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]); + kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]); + kvm_mips_change_entryhi(vcpu, tlb->tlb_hi); + + return EMULATE_DONE; +} + +/** + * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map. + * @vcpu: VCPU with changed mappings. + * @tlb: TLB entry being removed. + * + * This is called to indicate a single change in guest MMU mappings, so that we + * can arrange TLB flushes on this and other CPUs. + */ +static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu, + struct kvm_mips_tlb *tlb) +{ + struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm; + struct mm_struct *user_mm = &vcpu->arch.guest_user_mm; + int cpu, i; + bool user; + + /* No need to flush for entries which are already invalid */ + if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V)) + return; + /* Don't touch host kernel page tables or TLB mappings */ + if ((unsigned long)tlb->tlb_hi > 0x7fffffff) + return; + /* User address space doesn't need flushing for KSeg2/3 changes */ + user = tlb->tlb_hi < KVM_GUEST_KSEG0; + + preempt_disable(); + + /* Invalidate page table entries */ + kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user); + + /* + * Probe the shadow host TLB for the entry being overwritten, if one + * matches, invalidate it + */ + kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true); + + /* Invalidate the whole ASID on other CPUs */ + cpu = smp_processor_id(); + for_each_possible_cpu(i) { + if (i == cpu) + continue; + if (user) + set_cpu_context(i, user_mm, 0); + set_cpu_context(i, kern_mm, 0); + } + + preempt_enable(); +} + +/* Write Guest TLB Entry @ Index */ +enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + int index = kvm_read_c0_guest_index(cop0); + struct kvm_mips_tlb *tlb = NULL; + unsigned long pc = vcpu->arch.pc; + + if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) { + kvm_debug("%s: illegal index: %d\n", __func__, index); + kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", + pc, index, kvm_read_c0_guest_entryhi(cop0), + kvm_read_c0_guest_entrylo0(cop0), + kvm_read_c0_guest_entrylo1(cop0), + kvm_read_c0_guest_pagemask(cop0)); + index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE; + } + + tlb = &vcpu->arch.guest_tlb[index]; + + kvm_mips_invalidate_guest_tlb(vcpu, tlb); + + tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); + tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); + tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); + tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); + + kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n", + pc, index, kvm_read_c0_guest_entryhi(cop0), + kvm_read_c0_guest_entrylo0(cop0), + kvm_read_c0_guest_entrylo1(cop0), + kvm_read_c0_guest_pagemask(cop0)); + + return EMULATE_DONE; +} + +/* Write Guest TLB Entry @ Random Index */ +enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_mips_tlb *tlb = NULL; + unsigned long pc = vcpu->arch.pc; + int index; + + index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE); + tlb = &vcpu->arch.guest_tlb[index]; + + kvm_mips_invalidate_guest_tlb(vcpu, tlb); + + tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0); + tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0); + tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0); + tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0); + + kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n", + pc, index, kvm_read_c0_guest_entryhi(cop0), + kvm_read_c0_guest_entrylo0(cop0), + kvm_read_c0_guest_entrylo1(cop0)); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + long entryhi = kvm_read_c0_guest_entryhi(cop0); + unsigned long pc = vcpu->arch.pc; + int index = -1; + + index = kvm_mips_guest_tlb_lookup(vcpu, entryhi); + + kvm_write_c0_guest_index(cop0, index); + + kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi, + index); + + return EMULATE_DONE; +} + +/** + * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1 + * @vcpu: Virtual CPU. + * + * Finds the mask of bits which are writable in the guest's Config1 CP0 + * register, by userland (currently read-only to the guest). + */ +unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu) +{ + unsigned int mask = 0; + + /* Permit FPU to be present if FPU is supported */ + if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) + mask |= MIPS_CONF1_FP; + + return mask; +} + +/** + * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3 + * @vcpu: Virtual CPU. + * + * Finds the mask of bits which are writable in the guest's Config3 CP0 + * register, by userland (currently read-only to the guest). + */ +unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu) +{ + /* Config4 and ULRI are optional */ + unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI; + + /* Permit MSA to be present if MSA is supported */ + if (kvm_mips_guest_can_have_msa(&vcpu->arch)) + mask |= MIPS_CONF3_MSA; + + return mask; +} + +/** + * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4 + * @vcpu: Virtual CPU. + * + * Finds the mask of bits which are writable in the guest's Config4 CP0 + * register, by userland (currently read-only to the guest). + */ +unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu) +{ + /* Config5 is optional */ + unsigned int mask = MIPS_CONF_M; + + /* KScrExist */ + mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT; + + return mask; +} + +/** + * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5 + * @vcpu: Virtual CPU. + * + * Finds the mask of bits which are writable in the guest's Config5 CP0 + * register, by the guest itself. + */ +unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu) +{ + unsigned int mask = 0; + + /* Permit MSAEn changes if MSA supported and enabled */ + if (kvm_mips_guest_has_msa(&vcpu->arch)) + mask |= MIPS_CONF5_MSAEN; + + /* + * Permit guest FPU mode changes if FPU is enabled and the relevant + * feature exists according to FIR register. + */ + if (kvm_mips_guest_has_fpu(&vcpu->arch)) { + if (cpu_has_fre) + mask |= MIPS_CONF5_FRE; + /* We don't support UFR or UFE */ + } + + return mask; +} + +enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst, + u32 *opc, u32 cause, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + enum emulation_result er = EMULATE_DONE; + u32 rt, rd, sel; + unsigned long curr_pc; + + /* + * Update PC and hold onto current PC in case there is + * an error and we want to rollback the PC + */ + curr_pc = vcpu->arch.pc; + er = update_pc(vcpu, cause); + if (er == EMULATE_FAIL) + return er; + + if (inst.co_format.co) { + switch (inst.co_format.func) { + case tlbr_op: /* Read indexed TLB entry */ + er = kvm_mips_emul_tlbr(vcpu); + break; + case tlbwi_op: /* Write indexed */ + er = kvm_mips_emul_tlbwi(vcpu); + break; + case tlbwr_op: /* Write random */ + er = kvm_mips_emul_tlbwr(vcpu); + break; + case tlbp_op: /* TLB Probe */ + er = kvm_mips_emul_tlbp(vcpu); + break; + case rfe_op: + kvm_err("!!!COP0_RFE!!!\n"); + break; + case eret_op: + er = kvm_mips_emul_eret(vcpu); + goto dont_update_pc; + case wait_op: + er = kvm_mips_emul_wait(vcpu); + break; + case hypcall_op: + er = kvm_mips_emul_hypcall(vcpu, inst); + break; + } + } else { + rt = inst.c0r_format.rt; + rd = inst.c0r_format.rd; + sel = inst.c0r_format.sel; + + switch (inst.c0r_format.rs) { + case mfc_op: +#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS + cop0->stat[rd][sel]++; +#endif + /* Get reg */ + if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { + vcpu->arch.gprs[rt] = + (s32)kvm_mips_read_count(vcpu); + } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) { + vcpu->arch.gprs[rt] = 0x0; +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + kvm_mips_trans_mfc0(inst, opc, vcpu); +#endif + } else { + vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel]; + +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + kvm_mips_trans_mfc0(inst, opc, vcpu); +#endif + } + + trace_kvm_hwr(vcpu, KVM_TRACE_MFC0, + KVM_TRACE_COP0(rd, sel), + vcpu->arch.gprs[rt]); + break; + + case dmfc_op: + vcpu->arch.gprs[rt] = cop0->reg[rd][sel]; + + trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0, + KVM_TRACE_COP0(rd, sel), + vcpu->arch.gprs[rt]); + break; + + case mtc_op: +#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS + cop0->stat[rd][sel]++; +#endif + trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, + KVM_TRACE_COP0(rd, sel), + vcpu->arch.gprs[rt]); + + if ((rd == MIPS_CP0_TLB_INDEX) + && (vcpu->arch.gprs[rt] >= + KVM_MIPS_GUEST_TLB_SIZE)) { + kvm_err("Invalid TLB Index: %ld", + vcpu->arch.gprs[rt]); + er = EMULATE_FAIL; + break; + } + if ((rd == MIPS_CP0_PRID) && (sel == 1)) { + /* + * Preserve core number, and keep the exception + * base in guest KSeg0. + */ + kvm_change_c0_guest_ebase(cop0, 0x1ffff000, + vcpu->arch.gprs[rt]); + } else if (rd == MIPS_CP0_TLB_HI && sel == 0) { + kvm_mips_change_entryhi(vcpu, + vcpu->arch.gprs[rt]); + } + /* Are we writing to COUNT */ + else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) { + kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]); + goto done; + } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) { + /* If we are writing to COMPARE */ + /* Clear pending timer interrupt, if any */ + kvm_mips_write_compare(vcpu, + vcpu->arch.gprs[rt], + true); + } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) { + unsigned int old_val, val, change; + + old_val = kvm_read_c0_guest_status(cop0); + val = vcpu->arch.gprs[rt]; + change = val ^ old_val; + + /* Make sure that the NMI bit is never set */ + val &= ~ST0_NMI; + + /* + * Don't allow CU1 or FR to be set unless FPU + * capability enabled and exists in guest + * configuration. + */ + if (!kvm_mips_guest_has_fpu(&vcpu->arch)) + val &= ~(ST0_CU1 | ST0_FR); + + /* + * Also don't allow FR to be set if host doesn't + * support it. + */ + if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64)) + val &= ~ST0_FR; + + + /* Handle changes in FPU mode */ + preempt_disable(); + + /* + * FPU and Vector register state is made + * UNPREDICTABLE by a change of FR, so don't + * even bother saving it. + */ + if (change & ST0_FR) + kvm_drop_fpu(vcpu); + + /* + * If MSA state is already live, it is undefined + * how it interacts with FR=0 FPU state, and we + * don't want to hit reserved instruction + * exceptions trying to save the MSA state later + * when CU=1 && FR=1, so play it safe and save + * it first. + */ + if (change & ST0_CU1 && !(val & ST0_FR) && + vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) + kvm_lose_fpu(vcpu); + + /* + * Propagate CU1 (FPU enable) changes + * immediately if the FPU context is already + * loaded. When disabling we leave the context + * loaded so it can be quickly enabled again in + * the near future. + */ + if (change & ST0_CU1 && + vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) + change_c0_status(ST0_CU1, val); + + preempt_enable(); + + kvm_write_c0_guest_status(cop0, val); + +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + /* + * If FPU present, we need CU1/FR bits to take + * effect fairly soon. + */ + if (!kvm_mips_guest_has_fpu(&vcpu->arch)) + kvm_mips_trans_mtc0(inst, opc, vcpu); +#endif + } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) { + unsigned int old_val, val, change, wrmask; + + old_val = kvm_read_c0_guest_config5(cop0); + val = vcpu->arch.gprs[rt]; + + /* Only a few bits are writable in Config5 */ + wrmask = kvm_mips_config5_wrmask(vcpu); + change = (val ^ old_val) & wrmask; + val = old_val ^ change; + + + /* Handle changes in FPU/MSA modes */ + preempt_disable(); + + /* + * Propagate FRE changes immediately if the FPU + * context is already loaded. + */ + if (change & MIPS_CONF5_FRE && + vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) + change_c0_config5(MIPS_CONF5_FRE, val); + + /* + * Propagate MSAEn changes immediately if the + * MSA context is already loaded. When disabling + * we leave the context loaded so it can be + * quickly enabled again in the near future. + */ + if (change & MIPS_CONF5_MSAEN && + vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) + change_c0_config5(MIPS_CONF5_MSAEN, + val); + + preempt_enable(); + + kvm_write_c0_guest_config5(cop0, val); + } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) { + u32 old_cause, new_cause; + + old_cause = kvm_read_c0_guest_cause(cop0); + new_cause = vcpu->arch.gprs[rt]; + /* Update R/W bits */ + kvm_change_c0_guest_cause(cop0, 0x08800300, + new_cause); + /* DC bit enabling/disabling timer? */ + if ((old_cause ^ new_cause) & CAUSEF_DC) { + if (new_cause & CAUSEF_DC) + kvm_mips_count_disable_cause(vcpu); + else + kvm_mips_count_enable_cause(vcpu); + } + } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) { + u32 mask = MIPS_HWRENA_CPUNUM | + MIPS_HWRENA_SYNCISTEP | + MIPS_HWRENA_CC | + MIPS_HWRENA_CCRES; + + if (kvm_read_c0_guest_config3(cop0) & + MIPS_CONF3_ULRI) + mask |= MIPS_HWRENA_ULR; + cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask; + } else { + cop0->reg[rd][sel] = vcpu->arch.gprs[rt]; +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + kvm_mips_trans_mtc0(inst, opc, vcpu); +#endif + } + break; + + case dmtc_op: + kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n", + vcpu->arch.pc, rt, rd, sel); + trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0, + KVM_TRACE_COP0(rd, sel), + vcpu->arch.gprs[rt]); + er = EMULATE_FAIL; + break; + + case mfmc0_op: +#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS + cop0->stat[MIPS_CP0_STATUS][0]++; +#endif + if (rt != 0) + vcpu->arch.gprs[rt] = + kvm_read_c0_guest_status(cop0); + /* EI */ + if (inst.mfmc0_format.sc) { + kvm_debug("[%#lx] mfmc0_op: EI\n", + vcpu->arch.pc); + kvm_set_c0_guest_status(cop0, ST0_IE); + } else { + kvm_debug("[%#lx] mfmc0_op: DI\n", + vcpu->arch.pc); + kvm_clear_c0_guest_status(cop0, ST0_IE); + } + + break; + + case wrpgpr_op: + { + u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf; + u32 pss = + (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf; + /* + * We don't support any shadow register sets, so + * SRSCtl[PSS] == SRSCtl[CSS] = 0 + */ + if (css || pss) { + er = EMULATE_FAIL; + break; + } + kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd, + vcpu->arch.gprs[rt]); + vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt]; + } + break; + default: + kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n", + vcpu->arch.pc, inst.c0r_format.rs); + er = EMULATE_FAIL; + break; + } + } + +done: + /* Rollback PC only if emulation was unsuccessful */ + if (er == EMULATE_FAIL) + vcpu->arch.pc = curr_pc; + +dont_update_pc: + /* + * This is for special instructions whose emulation + * updates the PC, so do not overwrite the PC under + * any circumstances + */ + + return er; +} + +enum emulation_result kvm_mips_emulate_store(union mips_instruction inst, + u32 cause, + struct kvm_vcpu *vcpu) +{ + int r; + enum emulation_result er; + u32 rt; + struct kvm_run *run = vcpu->run; + void *data = run->mmio.data; + unsigned int imme; + unsigned long curr_pc; + + /* + * Update PC and hold onto current PC in case there is + * an error and we want to rollback the PC + */ + curr_pc = vcpu->arch.pc; + er = update_pc(vcpu, cause); + if (er == EMULATE_FAIL) + return er; + + rt = inst.i_format.rt; + + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr); + if (run->mmio.phys_addr == KVM_INVALID_ADDR) + goto out_fail; + + switch (inst.i_format.opcode) { +#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) + case sd_op: + run->mmio.len = 8; + *(u64 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u64 *)data); + break; +#endif + + case sw_op: + run->mmio.len = 4; + *(u32 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u32 *)data); + break; + + case sh_op: + run->mmio.len = 2; + *(u16 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u16 *)data); + break; + + case sb_op: + run->mmio.len = 1; + *(u8 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u8 *)data); + break; + + case swl_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x3); + run->mmio.len = 4; + imme = vcpu->arch.host_cp0_badvaddr & 0x3; + switch (imme) { + case 0: + *(u32 *)data = ((*(u32 *)data) & 0xffffff00) | + (vcpu->arch.gprs[rt] >> 24); + break; + case 1: + *(u32 *)data = ((*(u32 *)data) & 0xffff0000) | + (vcpu->arch.gprs[rt] >> 16); + break; + case 2: + *(u32 *)data = ((*(u32 *)data) & 0xff000000) | + (vcpu->arch.gprs[rt] >> 8); + break; + case 3: + *(u32 *)data = vcpu->arch.gprs[rt]; + break; + default: + break; + } + + kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u32 *)data); + break; + + case swr_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x3); + run->mmio.len = 4; + imme = vcpu->arch.host_cp0_badvaddr & 0x3; + switch (imme) { + case 0: + *(u32 *)data = vcpu->arch.gprs[rt]; + break; + case 1: + *(u32 *)data = ((*(u32 *)data) & 0xff) | + (vcpu->arch.gprs[rt] << 8); + break; + case 2: + *(u32 *)data = ((*(u32 *)data) & 0xffff) | + (vcpu->arch.gprs[rt] << 16); + break; + case 3: + *(u32 *)data = ((*(u32 *)data) & 0xffffff) | + (vcpu->arch.gprs[rt] << 24); + break; + default: + break; + } + + kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u32 *)data); + break; + +#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) + case sdl_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x7); + + run->mmio.len = 8; + imme = vcpu->arch.host_cp0_badvaddr & 0x7; + switch (imme) { + case 0: + *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) | + ((vcpu->arch.gprs[rt] >> 56) & 0xff); + break; + case 1: + *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) | + ((vcpu->arch.gprs[rt] >> 48) & 0xffff); + break; + case 2: + *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) | + ((vcpu->arch.gprs[rt] >> 40) & 0xffffff); + break; + case 3: + *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) | + ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff); + break; + case 4: + *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) | + ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff); + break; + case 5: + *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) | + ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff); + break; + case 6: + *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) | + ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff); + break; + case 7: + *(u64 *)data = vcpu->arch.gprs[rt]; + break; + default: + break; + } + + kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u64 *)data); + break; + + case sdr_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x7); + + run->mmio.len = 8; + imme = vcpu->arch.host_cp0_badvaddr & 0x7; + switch (imme) { + case 0: + *(u64 *)data = vcpu->arch.gprs[rt]; + break; + case 1: + *(u64 *)data = ((*(u64 *)data) & 0xff) | + (vcpu->arch.gprs[rt] << 8); + break; + case 2: + *(u64 *)data = ((*(u64 *)data) & 0xffff) | + (vcpu->arch.gprs[rt] << 16); + break; + case 3: + *(u64 *)data = ((*(u64 *)data) & 0xffffff) | + (vcpu->arch.gprs[rt] << 24); + break; + case 4: + *(u64 *)data = ((*(u64 *)data) & 0xffffffff) | + (vcpu->arch.gprs[rt] << 32); + break; + case 5: + *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) | + (vcpu->arch.gprs[rt] << 40); + break; + case 6: + *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) | + (vcpu->arch.gprs[rt] << 48); + break; + case 7: + *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) | + (vcpu->arch.gprs[rt] << 56); + break; + default: + break; + } + + kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u64 *)data); + break; +#endif + +#ifdef CONFIG_CPU_LOONGSON64 + case sdc2_op: + rt = inst.loongson3_lsdc2_format.rt; + switch (inst.loongson3_lsdc2_format.opcode1) { + /* + * Loongson-3 overridden sdc2 instructions. + * opcode1 instruction + * 0x0 gssbx: store 1 bytes from GPR + * 0x1 gsshx: store 2 bytes from GPR + * 0x2 gsswx: store 4 bytes from GPR + * 0x3 gssdx: store 8 bytes from GPR + */ + case 0x0: + run->mmio.len = 1; + *(u8 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u8 *)data); + break; + case 0x1: + run->mmio.len = 2; + *(u16 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u16 *)data); + break; + case 0x2: + run->mmio.len = 4; + *(u32 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u32 *)data); + break; + case 0x3: + run->mmio.len = 8; + *(u64 *)data = vcpu->arch.gprs[rt]; + + kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n", + vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr, + vcpu->arch.gprs[rt], *(u64 *)data); + break; + default: + kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n", + inst.word); + break; + } + break; +#endif + default: + kvm_err("Store not yet supported (inst=0x%08x)\n", + inst.word); + goto out_fail; + } + + vcpu->mmio_needed = 1; + run->mmio.is_write = 1; + vcpu->mmio_is_write = 1; + + r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, + run->mmio.phys_addr, run->mmio.len, data); + + if (!r) { + vcpu->mmio_needed = 0; + return EMULATE_DONE; + } + + return EMULATE_DO_MMIO; + +out_fail: + /* Rollback PC if emulation was unsuccessful */ + vcpu->arch.pc = curr_pc; + return EMULATE_FAIL; +} + +enum emulation_result kvm_mips_emulate_load(union mips_instruction inst, + u32 cause, struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + int r; + enum emulation_result er; + unsigned long curr_pc; + u32 op, rt; + unsigned int imme; + + rt = inst.i_format.rt; + op = inst.i_format.opcode; + + /* + * Find the resume PC now while we have safe and easy access to the + * prior branch instruction, and save it for + * kvm_mips_complete_mmio_load() to restore later. + */ + curr_pc = vcpu->arch.pc; + er = update_pc(vcpu, cause); + if (er == EMULATE_FAIL) + return er; + vcpu->arch.io_pc = vcpu->arch.pc; + vcpu->arch.pc = curr_pc; + + vcpu->arch.io_gpr = rt; + + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr); + if (run->mmio.phys_addr == KVM_INVALID_ADDR) + return EMULATE_FAIL; + + vcpu->mmio_needed = 2; /* signed */ + switch (op) { +#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) + case ld_op: + run->mmio.len = 8; + break; + + case lwu_op: + vcpu->mmio_needed = 1; /* unsigned */ + fallthrough; +#endif + case lw_op: + run->mmio.len = 4; + break; + + case lhu_op: + vcpu->mmio_needed = 1; /* unsigned */ + fallthrough; + case lh_op: + run->mmio.len = 2; + break; + + case lbu_op: + vcpu->mmio_needed = 1; /* unsigned */ + fallthrough; + case lb_op: + run->mmio.len = 1; + break; + + case lwl_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x3); + + run->mmio.len = 4; + imme = vcpu->arch.host_cp0_badvaddr & 0x3; + switch (imme) { + case 0: + vcpu->mmio_needed = 3; /* 1 byte */ + break; + case 1: + vcpu->mmio_needed = 4; /* 2 bytes */ + break; + case 2: + vcpu->mmio_needed = 5; /* 3 bytes */ + break; + case 3: + vcpu->mmio_needed = 6; /* 4 bytes */ + break; + default: + break; + } + break; + + case lwr_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x3); + + run->mmio.len = 4; + imme = vcpu->arch.host_cp0_badvaddr & 0x3; + switch (imme) { + case 0: + vcpu->mmio_needed = 7; /* 4 bytes */ + break; + case 1: + vcpu->mmio_needed = 8; /* 3 bytes */ + break; + case 2: + vcpu->mmio_needed = 9; /* 2 bytes */ + break; + case 3: + vcpu->mmio_needed = 10; /* 1 byte */ + break; + default: + break; + } + break; + +#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ) + case ldl_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x7); + + run->mmio.len = 8; + imme = vcpu->arch.host_cp0_badvaddr & 0x7; + switch (imme) { + case 0: + vcpu->mmio_needed = 11; /* 1 byte */ + break; + case 1: + vcpu->mmio_needed = 12; /* 2 bytes */ + break; + case 2: + vcpu->mmio_needed = 13; /* 3 bytes */ + break; + case 3: + vcpu->mmio_needed = 14; /* 4 bytes */ + break; + case 4: + vcpu->mmio_needed = 15; /* 5 bytes */ + break; + case 5: + vcpu->mmio_needed = 16; /* 6 bytes */ + break; + case 6: + vcpu->mmio_needed = 17; /* 7 bytes */ + break; + case 7: + vcpu->mmio_needed = 18; /* 8 bytes */ + break; + default: + break; + } + break; + + case ldr_op: + run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa( + vcpu->arch.host_cp0_badvaddr) & (~0x7); + + run->mmio.len = 8; + imme = vcpu->arch.host_cp0_badvaddr & 0x7; + switch (imme) { + case 0: + vcpu->mmio_needed = 19; /* 8 bytes */ + break; + case 1: + vcpu->mmio_needed = 20; /* 7 bytes */ + break; + case 2: + vcpu->mmio_needed = 21; /* 6 bytes */ + break; + case 3: + vcpu->mmio_needed = 22; /* 5 bytes */ + break; + case 4: + vcpu->mmio_needed = 23; /* 4 bytes */ + break; + case 5: + vcpu->mmio_needed = 24; /* 3 bytes */ + break; + case 6: + vcpu->mmio_needed = 25; /* 2 bytes */ + break; + case 7: + vcpu->mmio_needed = 26; /* 1 byte */ + break; + default: + break; + } + break; +#endif + +#ifdef CONFIG_CPU_LOONGSON64 + case ldc2_op: + rt = inst.loongson3_lsdc2_format.rt; + switch (inst.loongson3_lsdc2_format.opcode1) { + /* + * Loongson-3 overridden ldc2 instructions. + * opcode1 instruction + * 0x0 gslbx: store 1 bytes from GPR + * 0x1 gslhx: store 2 bytes from GPR + * 0x2 gslwx: store 4 bytes from GPR + * 0x3 gsldx: store 8 bytes from GPR + */ + case 0x0: + run->mmio.len = 1; + vcpu->mmio_needed = 27; /* signed */ + break; + case 0x1: + run->mmio.len = 2; + vcpu->mmio_needed = 28; /* signed */ + break; + case 0x2: + run->mmio.len = 4; + vcpu->mmio_needed = 29; /* signed */ + break; + case 0x3: + run->mmio.len = 8; + vcpu->mmio_needed = 30; /* signed */ + break; + default: + kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n", + inst.word); + break; + } + break; +#endif + + default: + kvm_err("Load not yet supported (inst=0x%08x)\n", + inst.word); + vcpu->mmio_needed = 0; + return EMULATE_FAIL; + } + + run->mmio.is_write = 0; + vcpu->mmio_is_write = 0; + + r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, + run->mmio.phys_addr, run->mmio.len, run->mmio.data); + + if (!r) { + kvm_mips_complete_mmio_load(vcpu); + vcpu->mmio_needed = 0; + return EMULATE_DONE; + } + + return EMULATE_DO_MMIO; +} + +#ifndef CONFIG_KVM_MIPS_VZ +static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long), + unsigned long curr_pc, + unsigned long addr, + struct kvm_vcpu *vcpu, + u32 cause) +{ + int err; + + for (;;) { + /* Carefully attempt the cache operation */ + kvm_trap_emul_gva_lockless_begin(vcpu); + err = fn(addr); + kvm_trap_emul_gva_lockless_end(vcpu); + + if (likely(!err)) + return EMULATE_DONE; + + /* + * Try to handle the fault and retry, maybe we just raced with a + * GVA invalidation. + */ + switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) { + case KVM_MIPS_GVA: + case KVM_MIPS_GPA: + /* bad virtual or physical address */ + return EMULATE_FAIL; + case KVM_MIPS_TLB: + /* no matching guest TLB */ + vcpu->arch.host_cp0_badvaddr = addr; + vcpu->arch.pc = curr_pc; + kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu); + return EMULATE_EXCEPT; + case KVM_MIPS_TLBINV: + /* invalid matching guest TLB */ + vcpu->arch.host_cp0_badvaddr = addr; + vcpu->arch.pc = curr_pc; + kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu); + return EMULATE_EXCEPT; + default: + break; + } + } +} + +enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst, + u32 *opc, u32 cause, + struct kvm_vcpu *vcpu) +{ + enum emulation_result er = EMULATE_DONE; + u32 cache, op_inst, op, base; + s16 offset; + struct kvm_vcpu_arch *arch = &vcpu->arch; + unsigned long va; + unsigned long curr_pc; + + /* + * Update PC and hold onto current PC in case there is + * an error and we want to rollback the PC + */ + curr_pc = vcpu->arch.pc; + er = update_pc(vcpu, cause); + if (er == EMULATE_FAIL) + return er; + + base = inst.i_format.rs; + op_inst = inst.i_format.rt; + if (cpu_has_mips_r6) + offset = inst.spec3_format.simmediate; + else + offset = inst.i_format.simmediate; + cache = op_inst & CacheOp_Cache; + op = op_inst & CacheOp_Op; + + va = arch->gprs[base] + offset; + + kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", + cache, op, base, arch->gprs[base], offset); + + /* + * Treat INDEX_INV as a nop, basically issued by Linux on startup to + * invalidate the caches entirely by stepping through all the + * ways/indexes + */ + if (op == Index_Writeback_Inv) { + kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", + vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base, + arch->gprs[base], offset); + + if (cache == Cache_D) { +#ifdef CONFIG_CPU_R4K_CACHE_TLB + r4k_blast_dcache(); +#else + switch (boot_cpu_type()) { + case CPU_CAVIUM_OCTEON3: + /* locally flush icache */ + local_flush_icache_range(0, 0); + break; + default: + __flush_cache_all(); + break; + } +#endif + } else if (cache == Cache_I) { +#ifdef CONFIG_CPU_R4K_CACHE_TLB + r4k_blast_icache(); +#else + switch (boot_cpu_type()) { + case CPU_CAVIUM_OCTEON3: + /* locally flush icache */ + local_flush_icache_range(0, 0); + break; + default: + flush_icache_all(); + break; + } +#endif + } else { + kvm_err("%s: unsupported CACHE INDEX operation\n", + __func__); + return EMULATE_FAIL; + } + +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + kvm_mips_trans_cache_index(inst, opc, vcpu); +#endif + goto done; + } + + /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */ + if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) { + /* + * Perform the dcache part of icache synchronisation on the + * guest's behalf. + */ + er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, + curr_pc, va, vcpu, cause); + if (er != EMULATE_DONE) + goto done; +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + /* + * Replace the CACHE instruction, with a SYNCI, not the same, + * but avoids a trap + */ + kvm_mips_trans_cache_va(inst, opc, vcpu); +#endif + } else if (op_inst == Hit_Invalidate_I) { + /* Perform the icache synchronisation on the guest's behalf */ + er = kvm_mips_guest_cache_op(protected_writeback_dcache_line, + curr_pc, va, vcpu, cause); + if (er != EMULATE_DONE) + goto done; + er = kvm_mips_guest_cache_op(protected_flush_icache_line, + curr_pc, va, vcpu, cause); + if (er != EMULATE_DONE) + goto done; + +#ifdef CONFIG_KVM_MIPS_DYN_TRANS + /* Replace the CACHE instruction, with a SYNCI */ + kvm_mips_trans_cache_va(inst, opc, vcpu); +#endif + } else { + kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n", + cache, op, base, arch->gprs[base], offset); + er = EMULATE_FAIL; + } + +done: + /* Rollback PC only if emulation was unsuccessful */ + if (er == EMULATE_FAIL) + vcpu->arch.pc = curr_pc; + /* Guest exception needs guest to resume */ + if (er == EMULATE_EXCEPT) + er = EMULATE_DONE; + + return er; +} + +enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc, + struct kvm_vcpu *vcpu) +{ + union mips_instruction inst; + enum emulation_result er = EMULATE_DONE; + int err; + + /* Fetch the instruction. */ + if (cause & CAUSEF_BD) + opc += 1; + err = kvm_get_badinstr(opc, vcpu, &inst.word); + if (err) + return EMULATE_FAIL; + + switch (inst.r_format.opcode) { + case cop0_op: + er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu); + break; + +#ifndef CONFIG_CPU_MIPSR6 + case cache_op: + ++vcpu->stat.cache_exits; + trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); + er = kvm_mips_emulate_cache(inst, opc, cause, vcpu); + break; +#else + case spec3_op: + switch (inst.spec3_format.func) { + case cache6_op: + ++vcpu->stat.cache_exits; + trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE); + er = kvm_mips_emulate_cache(inst, opc, cause, + vcpu); + break; + default: + goto unknown; + } + break; +unknown: +#endif + + default: + kvm_err("Instruction emulation not supported (%p/%#x)\n", opc, + inst.word); + kvm_arch_vcpu_dump_regs(vcpu); + er = EMULATE_FAIL; + break; + } + + return er; +} +#endif /* CONFIG_KVM_MIPS_VZ */ + +/** + * kvm_mips_guest_exception_base() - Find guest exception vector base address. + * + * Returns: The base address of the current guest exception vector, taking + * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account. + */ +long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + + if (kvm_read_c0_guest_status(cop0) & ST0_BEV) + return KVM_GUEST_CKSEG1ADDR(0x1fc00200); + else + return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE; +} + +enum emulation_result kvm_mips_emulate_syscall(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_SYS << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver SYSCALL when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) | + (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n", + arch->pc); + + /* set pc to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; + + } else { + kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", + arch->pc); + + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + } + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_TLBL << CAUSEB_EXCCODE)); + + /* setup badvaddr, context and entryhi registers for the guest */ + kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); + /* XXXKYMA: is the context register used by linux??? */ + kvm_write_c0_guest_entryhi(cop0, entryhi); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + unsigned long entryhi = + (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | + (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n", + arch->pc); + } else { + kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n", + arch->pc); + } + + /* set pc to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_TLBL << CAUSEB_EXCCODE)); + + /* setup badvaddr, context and entryhi registers for the guest */ + kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); + /* XXXKYMA: is the context register used by linux??? */ + kvm_write_c0_guest_entryhi(cop0, entryhi); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | + (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", + arch->pc); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0; + } else { + kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", + arch->pc); + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + } + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_TLBS << CAUSEB_EXCCODE)); + + /* setup badvaddr, context and entryhi registers for the guest */ + kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); + /* XXXKYMA: is the context register used by linux??? */ + kvm_write_c0_guest_entryhi(cop0, entryhi); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | + (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n", + arch->pc); + } else { + kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n", + arch->pc); + } + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_TLBS << CAUSEB_EXCCODE)); + + /* setup badvaddr, context and entryhi registers for the guest */ + kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); + /* XXXKYMA: is the context register used by linux??? */ + kvm_write_c0_guest_entryhi(cop0, entryhi); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emulate_tlbmod(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) | + (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID); + struct kvm_vcpu_arch *arch = &vcpu->arch; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n", + arch->pc); + } else { + kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n", + arch->pc); + } + + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_MOD << CAUSEB_EXCCODE)); + + /* setup badvaddr, context and entryhi registers for the guest */ + kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); + /* XXXKYMA: is the context register used by linux??? */ + kvm_write_c0_guest_entryhi(cop0, entryhi); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + } + + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_CPU << CAUSEB_EXCCODE)); + kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE)); + + return EMULATE_DONE; +} + +enum emulation_result kvm_mips_emulate_ri_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering RI @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_RI << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver RI when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emulate_bp_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering BP @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_BP << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver BP when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emulate_trap_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_TR << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver TRAP when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_MSAFPE << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver MSAFPE when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_FPE << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver FPE when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc); + + kvm_change_c0_guest_cause(cop0, (0xff), + (EXCCODE_MSADIS << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + + } else { + kvm_err("Trying to deliver MSADIS when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc, + struct kvm_vcpu *vcpu) +{ + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + unsigned long curr_pc; + union mips_instruction inst; + int err; + + /* + * Update PC and hold onto current PC in case there is + * an error and we want to rollback the PC + */ + curr_pc = vcpu->arch.pc; + er = update_pc(vcpu, cause); + if (er == EMULATE_FAIL) + return er; + + /* Fetch the instruction. */ + if (cause & CAUSEF_BD) + opc += 1; + err = kvm_get_badinstr(opc, vcpu, &inst.word); + if (err) { + kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err); + return EMULATE_FAIL; + } + + if (inst.r_format.opcode == spec3_op && + inst.r_format.func == rdhwr_op && + inst.r_format.rs == 0 && + (inst.r_format.re >> 3) == 0) { + int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); + int rd = inst.r_format.rd; + int rt = inst.r_format.rt; + int sel = inst.r_format.re & 0x7; + + /* If usermode, check RDHWR rd is allowed by guest HWREna */ + if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) { + kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n", + rd, opc); + goto emulate_ri; + } + switch (rd) { + case MIPS_HWR_CPUNUM: /* CPU number */ + arch->gprs[rt] = vcpu->vcpu_id; + break; + case MIPS_HWR_SYNCISTEP: /* SYNCI length */ + arch->gprs[rt] = min(current_cpu_data.dcache.linesz, + current_cpu_data.icache.linesz); + break; + case MIPS_HWR_CC: /* Read count register */ + arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu); + break; + case MIPS_HWR_CCRES: /* Count register resolution */ + switch (current_cpu_data.cputype) { + case CPU_20KC: + case CPU_25KF: + arch->gprs[rt] = 1; + break; + default: + arch->gprs[rt] = 2; + } + break; + case MIPS_HWR_ULR: /* Read UserLocal register */ + arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0); + break; + + default: + kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc); + goto emulate_ri; + } + + trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel), + vcpu->arch.gprs[rt]); + } else { + kvm_debug("Emulate RI not supported @ %p: %#x\n", + opc, inst.word); + goto emulate_ri; + } + + return EMULATE_DONE; + +emulate_ri: + /* + * Rollback PC (if in branch delay slot then the PC already points to + * branch target), and pass the RI exception to the guest OS. + */ + vcpu->arch.pc = curr_pc; + return kvm_mips_emulate_ri_exc(cause, opc, vcpu); +} + +enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu) +{ + struct kvm_run *run = vcpu->run; + unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr]; + enum emulation_result er = EMULATE_DONE; + + if (run->mmio.len > sizeof(*gpr)) { + kvm_err("Bad MMIO length: %d", run->mmio.len); + er = EMULATE_FAIL; + goto done; + } + + /* Restore saved resume PC */ + vcpu->arch.pc = vcpu->arch.io_pc; + + switch (run->mmio.len) { + case 8: + switch (vcpu->mmio_needed) { + case 11: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) | + (((*(s64 *)run->mmio.data) & 0xff) << 56); + break; + case 12: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) | + (((*(s64 *)run->mmio.data) & 0xffff) << 48); + break; + case 13: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) | + (((*(s64 *)run->mmio.data) & 0xffffff) << 40); + break; + case 14: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) | + (((*(s64 *)run->mmio.data) & 0xffffffff) << 32); + break; + case 15: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | + (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24); + break; + case 16: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | + (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16); + break; + case 17: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | + (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8); + break; + case 18: + case 19: + *gpr = *(s64 *)run->mmio.data; + break; + case 20: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) | + ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff); + break; + case 21: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) | + ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff); + break; + case 22: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) | + ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff); + break; + case 23: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) | + ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff); + break; + case 24: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) | + ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff); + break; + case 25: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) | + ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff); + break; + case 26: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) | + ((((*(s64 *)run->mmio.data)) >> 56) & 0xff); + break; + default: + *gpr = *(s64 *)run->mmio.data; + } + break; + + case 4: + switch (vcpu->mmio_needed) { + case 1: + *gpr = *(u32 *)run->mmio.data; + break; + case 2: + *gpr = *(s32 *)run->mmio.data; + break; + case 3: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) | + (((*(s32 *)run->mmio.data) & 0xff) << 24); + break; + case 4: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) | + (((*(s32 *)run->mmio.data) & 0xffff) << 16); + break; + case 5: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) | + (((*(s32 *)run->mmio.data) & 0xffffff) << 8); + break; + case 6: + case 7: + *gpr = *(s32 *)run->mmio.data; + break; + case 8: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) | + ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff); + break; + case 9: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) | + ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff); + break; + case 10: + *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) | + ((((*(s32 *)run->mmio.data)) >> 24) & 0xff); + break; + default: + *gpr = *(s32 *)run->mmio.data; + } + break; + + case 2: + if (vcpu->mmio_needed == 1) + *gpr = *(u16 *)run->mmio.data; + else + *gpr = *(s16 *)run->mmio.data; + + break; + case 1: + if (vcpu->mmio_needed == 1) + *gpr = *(u8 *)run->mmio.data; + else + *gpr = *(s8 *)run->mmio.data; + break; + } + +done: + return er; +} + +static enum emulation_result kvm_mips_emulate_exc(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; + struct mips_coproc *cop0 = vcpu->arch.cop0; + struct kvm_vcpu_arch *arch = &vcpu->arch; + enum emulation_result er = EMULATE_DONE; + + if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) { + /* save old pc */ + kvm_write_c0_guest_epc(cop0, arch->pc); + kvm_set_c0_guest_status(cop0, ST0_EXL); + + if (cause & CAUSEF_BD) + kvm_set_c0_guest_cause(cop0, CAUSEF_BD); + else + kvm_clear_c0_guest_cause(cop0, CAUSEF_BD); + + kvm_change_c0_guest_cause(cop0, (0xff), + (exccode << CAUSEB_EXCCODE)); + + /* Set PC to the exception entry point */ + arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180; + kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr); + + kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n", + exccode, kvm_read_c0_guest_epc(cop0), + kvm_read_c0_guest_badvaddr(cop0)); + } else { + kvm_err("Trying to deliver EXC when EXL is already set\n"); + er = EMULATE_FAIL; + } + + return er; +} + +enum emulation_result kvm_mips_check_privilege(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu) +{ + enum emulation_result er = EMULATE_DONE; + u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; + unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; + + int usermode = !KVM_GUEST_KERNEL_MODE(vcpu); + + if (usermode) { + switch (exccode) { + case EXCCODE_INT: + case EXCCODE_SYS: + case EXCCODE_BP: + case EXCCODE_RI: + case EXCCODE_TR: + case EXCCODE_MSAFPE: + case EXCCODE_FPE: + case EXCCODE_MSADIS: + break; + + case EXCCODE_CPU: + if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0) + er = EMULATE_PRIV_FAIL; + break; + + case EXCCODE_MOD: + break; + + case EXCCODE_TLBL: + /* + * We we are accessing Guest kernel space, then send an + * address error exception to the guest + */ + if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { + kvm_debug("%s: LD MISS @ %#lx\n", __func__, + badvaddr); + cause &= ~0xff; + cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE); + er = EMULATE_PRIV_FAIL; + } + break; + + case EXCCODE_TLBS: + /* + * We we are accessing Guest kernel space, then send an + * address error exception to the guest + */ + if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) { + kvm_debug("%s: ST MISS @ %#lx\n", __func__, + badvaddr); + cause &= ~0xff; + cause |= (EXCCODE_ADES << CAUSEB_EXCCODE); + er = EMULATE_PRIV_FAIL; + } + break; + + case EXCCODE_ADES: + kvm_debug("%s: address error ST @ %#lx\n", __func__, + badvaddr); + if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { + cause &= ~0xff; + cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE); + } + er = EMULATE_PRIV_FAIL; + break; + case EXCCODE_ADEL: + kvm_debug("%s: address error LD @ %#lx\n", __func__, + badvaddr); + if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) { + cause &= ~0xff; + cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE); + } + er = EMULATE_PRIV_FAIL; + break; + default: + er = EMULATE_PRIV_FAIL; + break; + } + } + + if (er == EMULATE_PRIV_FAIL) + kvm_mips_emulate_exc(cause, opc, vcpu); + + return er; +} + +/* + * User Address (UA) fault, this could happen if + * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this + * case we pass on the fault to the guest kernel and let it handle it. + * (2) TLB entry is present in the Guest TLB but not in the shadow, in this + * case we inject the TLB from the Guest TLB into the shadow host TLB + */ +enum emulation_result kvm_mips_handle_tlbmiss(u32 cause, + u32 *opc, + struct kvm_vcpu *vcpu, + bool write_fault) +{ + enum emulation_result er = EMULATE_DONE; + u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f; + unsigned long va = vcpu->arch.host_cp0_badvaddr; + int index; + + kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n", + vcpu->arch.host_cp0_badvaddr); + + /* + * KVM would not have got the exception if this entry was valid in the + * shadow host TLB. Check the Guest TLB, if the entry is not there then + * send the guest an exception. The guest exc handler should then inject + * an entry into the guest TLB. + */ + index = kvm_mips_guest_tlb_lookup(vcpu, + (va & VPN2_MASK) | + (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & + KVM_ENTRYHI_ASID)); + if (index < 0) { + if (exccode == EXCCODE_TLBL) { + er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu); + } else if (exccode == EXCCODE_TLBS) { + er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu); + } else { + kvm_err("%s: invalid exc code: %d\n", __func__, + exccode); + er = EMULATE_FAIL; + } + } else { + struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index]; + + /* + * Check if the entry is valid, if not then setup a TLB invalid + * exception to the guest + */ + if (!TLB_IS_VALID(*tlb, va)) { + if (exccode == EXCCODE_TLBL) { + er = kvm_mips_emulate_tlbinv_ld(cause, opc, + vcpu); + } else if (exccode == EXCCODE_TLBS) { + er = kvm_mips_emulate_tlbinv_st(cause, opc, + vcpu); + } else { + kvm_err("%s: invalid exc code: %d\n", __func__, + exccode); + er = EMULATE_FAIL; + } + } else { + kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n", + tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]); + /* + * OK we have a Guest TLB entry, now inject it into the + * shadow host TLB + */ + if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va, + write_fault)) { + kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n", + __func__, va, index, vcpu, + read_c0_entryhi()); + er = EMULATE_FAIL; + } + } + } + + return er; +} |