diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /arch/sparc/kernel/perf_event.c | |
parent | Initial commit. (diff) | |
download | linux-upstream/5.10.209.tar.xz linux-upstream/5.10.209.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/sparc/kernel/perf_event.c')
-rw-r--r-- | arch/sparc/kernel/perf_event.c | 1877 |
1 files changed, 1877 insertions, 0 deletions
diff --git a/arch/sparc/kernel/perf_event.c b/arch/sparc/kernel/perf_event.c new file mode 100644 index 000000000..a58ae9c42 --- /dev/null +++ b/arch/sparc/kernel/perf_event.c @@ -0,0 +1,1877 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Performance event support for sparc64. + * + * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net> + * + * This code is based almost entirely upon the x86 perf event + * code, which is: + * + * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> + * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar + * Copyright (C) 2009 Jaswinder Singh Rajput + * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter + * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra + */ + +#include <linux/perf_event.h> +#include <linux/kprobes.h> +#include <linux/ftrace.h> +#include <linux/kernel.h> +#include <linux/kdebug.h> +#include <linux/mutex.h> + +#include <asm/stacktrace.h> +#include <asm/cpudata.h> +#include <linux/uaccess.h> +#include <linux/atomic.h> +#include <linux/sched/clock.h> +#include <asm/nmi.h> +#include <asm/pcr.h> +#include <asm/cacheflush.h> + +#include "kernel.h" +#include "kstack.h" + +/* Two classes of sparc64 chips currently exist. All of which have + * 32-bit counters which can generate overflow interrupts on the + * transition from 0xffffffff to 0. + * + * All chips upto and including SPARC-T3 have two performance + * counters. The two 32-bit counters are accessed in one go using a + * single 64-bit register. + * + * On these older chips both counters are controlled using a single + * control register. The only way to stop all sampling is to clear + * all of the context (user, supervisor, hypervisor) sampling enable + * bits. But these bits apply to both counters, thus the two counters + * can't be enabled/disabled individually. + * + * Furthermore, the control register on these older chips have two + * event fields, one for each of the two counters. It's thus nearly + * impossible to have one counter going while keeping the other one + * stopped. Therefore it is possible to get overflow interrupts for + * counters not currently "in use" and that condition must be checked + * in the overflow interrupt handler. + * + * So we use a hack, in that we program inactive counters with the + * "sw_count0" and "sw_count1" events. These count how many times + * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an + * unusual way to encode a NOP and therefore will not trigger in + * normal code. + * + * Starting with SPARC-T4 we have one control register per counter. + * And the counters are stored in individual registers. The registers + * for the counters are 64-bit but only a 32-bit counter is + * implemented. The event selections on SPARC-T4 lack any + * restrictions, therefore we can elide all of the complicated + * conflict resolution code we have for SPARC-T3 and earlier chips. + */ + +#define MAX_HWEVENTS 4 +#define MAX_PCRS 4 +#define MAX_PERIOD ((1UL << 32) - 1) + +#define PIC_UPPER_INDEX 0 +#define PIC_LOWER_INDEX 1 +#define PIC_NO_INDEX -1 + +struct cpu_hw_events { + /* Number of events currently scheduled onto this cpu. + * This tells how many entries in the arrays below + * are valid. + */ + int n_events; + + /* Number of new events added since the last hw_perf_disable(). + * This works because the perf event layer always adds new + * events inside of a perf_{disable,enable}() sequence. + */ + int n_added; + + /* Array of events current scheduled on this cpu. */ + struct perf_event *event[MAX_HWEVENTS]; + + /* Array of encoded longs, specifying the %pcr register + * encoding and the mask of PIC counters this even can + * be scheduled on. See perf_event_encode() et al. + */ + unsigned long events[MAX_HWEVENTS]; + + /* The current counter index assigned to an event. When the + * event hasn't been programmed into the cpu yet, this will + * hold PIC_NO_INDEX. The event->hw.idx value tells us where + * we ought to schedule the event. + */ + int current_idx[MAX_HWEVENTS]; + + /* Software copy of %pcr register(s) on this cpu. */ + u64 pcr[MAX_HWEVENTS]; + + /* Enabled/disable state. */ + int enabled; + + unsigned int txn_flags; +}; +static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, }; + +/* An event map describes the characteristics of a performance + * counter event. In particular it gives the encoding as well as + * a mask telling which counters the event can be measured on. + * + * The mask is unused on SPARC-T4 and later. + */ +struct perf_event_map { + u16 encoding; + u8 pic_mask; +#define PIC_NONE 0x00 +#define PIC_UPPER 0x01 +#define PIC_LOWER 0x02 +}; + +/* Encode a perf_event_map entry into a long. */ +static unsigned long perf_event_encode(const struct perf_event_map *pmap) +{ + return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask; +} + +static u8 perf_event_get_msk(unsigned long val) +{ + return val & 0xff; +} + +static u64 perf_event_get_enc(unsigned long val) +{ + return val >> 16; +} + +#define C(x) PERF_COUNT_HW_CACHE_##x + +#define CACHE_OP_UNSUPPORTED 0xfffe +#define CACHE_OP_NONSENSE 0xffff + +typedef struct perf_event_map cache_map_t + [PERF_COUNT_HW_CACHE_MAX] + [PERF_COUNT_HW_CACHE_OP_MAX] + [PERF_COUNT_HW_CACHE_RESULT_MAX]; + +struct sparc_pmu { + const struct perf_event_map *(*event_map)(int); + const cache_map_t *cache_map; + int max_events; + u32 (*read_pmc)(int); + void (*write_pmc)(int, u64); + int upper_shift; + int lower_shift; + int event_mask; + int user_bit; + int priv_bit; + int hv_bit; + int irq_bit; + int upper_nop; + int lower_nop; + unsigned int flags; +#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001 +#define SPARC_PMU_HAS_CONFLICTS 0x00000002 + int max_hw_events; + int num_pcrs; + int num_pic_regs; +}; + +static u32 sparc_default_read_pmc(int idx) +{ + u64 val; + + val = pcr_ops->read_pic(0); + if (idx == PIC_UPPER_INDEX) + val >>= 32; + + return val & 0xffffffff; +} + +static void sparc_default_write_pmc(int idx, u64 val) +{ + u64 shift, mask, pic; + + shift = 0; + if (idx == PIC_UPPER_INDEX) + shift = 32; + + mask = ((u64) 0xffffffff) << shift; + val <<= shift; + + pic = pcr_ops->read_pic(0); + pic &= ~mask; + pic |= val; + pcr_ops->write_pic(0, pic); +} + +static const struct perf_event_map ultra3_perfmon_event_map[] = { + [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER }, + [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER }, +}; + +static const struct perf_event_map *ultra3_event_map(int event_id) +{ + return &ultra3_perfmon_event_map[event_id]; +} + +static const cache_map_t ultra3_cache_map = { +[C(L1D)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER }, + [C(RESULT_MISS)] = { 0x0a, PIC_UPPER }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(L1I)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x09, PIC_UPPER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, + [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(LL)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER }, + [C(RESULT_MISS)] = { 0x0c, PIC_UPPER }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(DTLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x12, PIC_UPPER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(ITLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x11, PIC_UPPER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(BPU)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(NODE)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +}; + +static const struct sparc_pmu ultra3_pmu = { + .event_map = ultra3_event_map, + .cache_map = &ultra3_cache_map, + .max_events = ARRAY_SIZE(ultra3_perfmon_event_map), + .read_pmc = sparc_default_read_pmc, + .write_pmc = sparc_default_write_pmc, + .upper_shift = 11, + .lower_shift = 4, + .event_mask = 0x3f, + .user_bit = PCR_UTRACE, + .priv_bit = PCR_STRACE, + .upper_nop = 0x1c, + .lower_nop = 0x14, + .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | + SPARC_PMU_HAS_CONFLICTS), + .max_hw_events = 2, + .num_pcrs = 1, + .num_pic_regs = 1, +}; + +/* Niagara1 is very limited. The upper PIC is hard-locked to count + * only instructions, so it is free running which creates all kinds of + * problems. Some hardware designs make one wonder if the creator + * even looked at how this stuff gets used by software. + */ +static const struct perf_event_map niagara1_perfmon_event_map[] = { + [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER }, + [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER }, + [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE }, + [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER }, +}; + +static const struct perf_event_map *niagara1_event_map(int event_id) +{ + return &niagara1_perfmon_event_map[event_id]; +} + +static const cache_map_t niagara1_cache_map = { +[C(L1D)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x03, PIC_LOWER, }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(L1I)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER }, + [C(RESULT_MISS)] = { 0x02, PIC_LOWER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, + [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(LL)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x07, PIC_LOWER, }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(DTLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x05, PIC_LOWER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(ITLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x04, PIC_LOWER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(BPU)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(NODE)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +}; + +static const struct sparc_pmu niagara1_pmu = { + .event_map = niagara1_event_map, + .cache_map = &niagara1_cache_map, + .max_events = ARRAY_SIZE(niagara1_perfmon_event_map), + .read_pmc = sparc_default_read_pmc, + .write_pmc = sparc_default_write_pmc, + .upper_shift = 0, + .lower_shift = 4, + .event_mask = 0x7, + .user_bit = PCR_UTRACE, + .priv_bit = PCR_STRACE, + .upper_nop = 0x0, + .lower_nop = 0x0, + .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | + SPARC_PMU_HAS_CONFLICTS), + .max_hw_events = 2, + .num_pcrs = 1, + .num_pic_regs = 1, +}; + +static const struct perf_event_map niagara2_perfmon_event_map[] = { + [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER }, + [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER }, +}; + +static const struct perf_event_map *niagara2_event_map(int event_id) +{ + return &niagara2_perfmon_event_map[event_id]; +} + +static const cache_map_t niagara2_cache_map = { +[C(L1D)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(L1I)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, + [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(LL)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, }, + [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(DTLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(ITLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(BPU)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(NODE)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +}; + +static const struct sparc_pmu niagara2_pmu = { + .event_map = niagara2_event_map, + .cache_map = &niagara2_cache_map, + .max_events = ARRAY_SIZE(niagara2_perfmon_event_map), + .read_pmc = sparc_default_read_pmc, + .write_pmc = sparc_default_write_pmc, + .upper_shift = 19, + .lower_shift = 6, + .event_mask = 0xfff, + .user_bit = PCR_UTRACE, + .priv_bit = PCR_STRACE, + .hv_bit = PCR_N2_HTRACE, + .irq_bit = 0x30, + .upper_nop = 0x220, + .lower_nop = 0x220, + .flags = (SPARC_PMU_ALL_EXCLUDES_SAME | + SPARC_PMU_HAS_CONFLICTS), + .max_hw_events = 2, + .num_pcrs = 1, + .num_pic_regs = 1, +}; + +static const struct perf_event_map niagara4_perfmon_event_map[] = { + [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) }, + [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f }, + [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 }, + [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 }, + [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 }, + [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f }, +}; + +static const struct perf_event_map *niagara4_event_map(int event_id) +{ + return &niagara4_perfmon_event_map[event_id]; +} + +static const cache_map_t niagara4_cache_map = { +[C(L1D)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, + [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, + [C(RESULT_MISS)] = { (16 << 6) | 0x07 }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(L1I)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f }, + [C(RESULT_MISS)] = { (11 << 6) | 0x03 }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE }, + [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(LL)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, + [C(OP_WRITE)] = { + [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, + [C(OP_PREFETCH)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(DTLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { (17 << 6) | 0x3f }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(ITLB)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { (6 << 6) | 0x3f }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(BPU)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +[C(NODE)] = { + [C(OP_READ)] = { + [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED }, + [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_WRITE) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, + [ C(OP_PREFETCH) ] = { + [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED }, + [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED }, + }, +}, +}; + +static u32 sparc_vt_read_pmc(int idx) +{ + u64 val = pcr_ops->read_pic(idx); + + return val & 0xffffffff; +} + +static void sparc_vt_write_pmc(int idx, u64 val) +{ + u64 pcr; + + pcr = pcr_ops->read_pcr(idx); + /* ensure ov and ntc are reset */ + pcr &= ~(PCR_N4_OV | PCR_N4_NTC); + + pcr_ops->write_pic(idx, val & 0xffffffff); + + pcr_ops->write_pcr(idx, pcr); +} + +static const struct sparc_pmu niagara4_pmu = { + .event_map = niagara4_event_map, + .cache_map = &niagara4_cache_map, + .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), + .read_pmc = sparc_vt_read_pmc, + .write_pmc = sparc_vt_write_pmc, + .upper_shift = 5, + .lower_shift = 5, + .event_mask = 0x7ff, + .user_bit = PCR_N4_UTRACE, + .priv_bit = PCR_N4_STRACE, + + /* We explicitly don't support hypervisor tracing. The T4 + * generates the overflow event for precise events via a trap + * which will not be generated (ie. it's completely lost) if + * we happen to be in the hypervisor when the event triggers. + * Essentially, the overflow event reporting is completely + * unusable when you have hypervisor mode tracing enabled. + */ + .hv_bit = 0, + + .irq_bit = PCR_N4_TOE, + .upper_nop = 0, + .lower_nop = 0, + .flags = 0, + .max_hw_events = 4, + .num_pcrs = 4, + .num_pic_regs = 4, +}; + +static const struct sparc_pmu sparc_m7_pmu = { + .event_map = niagara4_event_map, + .cache_map = &niagara4_cache_map, + .max_events = ARRAY_SIZE(niagara4_perfmon_event_map), + .read_pmc = sparc_vt_read_pmc, + .write_pmc = sparc_vt_write_pmc, + .upper_shift = 5, + .lower_shift = 5, + .event_mask = 0x7ff, + .user_bit = PCR_N4_UTRACE, + .priv_bit = PCR_N4_STRACE, + + /* We explicitly don't support hypervisor tracing. */ + .hv_bit = 0, + + .irq_bit = PCR_N4_TOE, + .upper_nop = 0, + .lower_nop = 0, + .flags = 0, + .max_hw_events = 4, + .num_pcrs = 4, + .num_pic_regs = 4, +}; +static const struct sparc_pmu *sparc_pmu __read_mostly; + +static u64 event_encoding(u64 event_id, int idx) +{ + if (idx == PIC_UPPER_INDEX) + event_id <<= sparc_pmu->upper_shift; + else + event_id <<= sparc_pmu->lower_shift; + return event_id; +} + +static u64 mask_for_index(int idx) +{ + return event_encoding(sparc_pmu->event_mask, idx); +} + +static u64 nop_for_index(int idx) +{ + return event_encoding(idx == PIC_UPPER_INDEX ? + sparc_pmu->upper_nop : + sparc_pmu->lower_nop, idx); +} + +static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) +{ + u64 enc, val, mask = mask_for_index(idx); + int pcr_index = 0; + + if (sparc_pmu->num_pcrs > 1) + pcr_index = idx; + + enc = perf_event_get_enc(cpuc->events[idx]); + + val = cpuc->pcr[pcr_index]; + val &= ~mask; + val |= event_encoding(enc, idx); + cpuc->pcr[pcr_index] = val; + + pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); +} + +static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx) +{ + u64 mask = mask_for_index(idx); + u64 nop = nop_for_index(idx); + int pcr_index = 0; + u64 val; + + if (sparc_pmu->num_pcrs > 1) + pcr_index = idx; + + val = cpuc->pcr[pcr_index]; + val &= ~mask; + val |= nop; + cpuc->pcr[pcr_index] = val; + + pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]); +} + +static u64 sparc_perf_event_update(struct perf_event *event, + struct hw_perf_event *hwc, int idx) +{ + int shift = 64 - 32; + u64 prev_raw_count, new_raw_count; + s64 delta; + +again: + prev_raw_count = local64_read(&hwc->prev_count); + new_raw_count = sparc_pmu->read_pmc(idx); + + if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, + new_raw_count) != prev_raw_count) + goto again; + + delta = (new_raw_count << shift) - (prev_raw_count << shift); + delta >>= shift; + + local64_add(delta, &event->count); + local64_sub(delta, &hwc->period_left); + + return new_raw_count; +} + +static int sparc_perf_event_set_period(struct perf_event *event, + struct hw_perf_event *hwc, int idx) +{ + s64 left = local64_read(&hwc->period_left); + s64 period = hwc->sample_period; + int ret = 0; + + /* The period may have been changed by PERF_EVENT_IOC_PERIOD */ + if (unlikely(period != hwc->last_period)) + left = period - (hwc->last_period - left); + + if (unlikely(left <= -period)) { + left = period; + local64_set(&hwc->period_left, left); + hwc->last_period = period; + ret = 1; + } + + if (unlikely(left <= 0)) { + left += period; + local64_set(&hwc->period_left, left); + hwc->last_period = period; + ret = 1; + } + if (left > MAX_PERIOD) + left = MAX_PERIOD; + + local64_set(&hwc->prev_count, (u64)-left); + + sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff); + + perf_event_update_userpage(event); + + return ret; +} + +static void read_in_all_counters(struct cpu_hw_events *cpuc) +{ + int i; + + for (i = 0; i < cpuc->n_events; i++) { + struct perf_event *cp = cpuc->event[i]; + + if (cpuc->current_idx[i] != PIC_NO_INDEX && + cpuc->current_idx[i] != cp->hw.idx) { + sparc_perf_event_update(cp, &cp->hw, + cpuc->current_idx[i]); + cpuc->current_idx[i] = PIC_NO_INDEX; + if (cp->hw.state & PERF_HES_STOPPED) + cp->hw.state |= PERF_HES_ARCH; + } + } +} + +/* On this PMU all PICs are programmed using a single PCR. Calculate + * the combined control register value. + * + * For such chips we require that all of the events have the same + * configuration, so just fetch the settings from the first entry. + */ +static void calculate_single_pcr(struct cpu_hw_events *cpuc) +{ + int i; + + if (!cpuc->n_added) + goto out; + + /* Assign to counters all unassigned events. */ + for (i = 0; i < cpuc->n_events; i++) { + struct perf_event *cp = cpuc->event[i]; + struct hw_perf_event *hwc = &cp->hw; + int idx = hwc->idx; + u64 enc; + + if (cpuc->current_idx[i] != PIC_NO_INDEX) + continue; + + sparc_perf_event_set_period(cp, hwc, idx); + cpuc->current_idx[i] = idx; + + enc = perf_event_get_enc(cpuc->events[i]); + cpuc->pcr[0] &= ~mask_for_index(idx); + if (hwc->state & PERF_HES_ARCH) { + cpuc->pcr[0] |= nop_for_index(idx); + } else { + cpuc->pcr[0] |= event_encoding(enc, idx); + hwc->state = 0; + } + } +out: + cpuc->pcr[0] |= cpuc->event[0]->hw.config_base; +} + +static void sparc_pmu_start(struct perf_event *event, int flags); + +/* On this PMU each PIC has it's own PCR control register. */ +static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc) +{ + int i; + + if (!cpuc->n_added) + goto out; + + for (i = 0; i < cpuc->n_events; i++) { + struct perf_event *cp = cpuc->event[i]; + struct hw_perf_event *hwc = &cp->hw; + int idx = hwc->idx; + + if (cpuc->current_idx[i] != PIC_NO_INDEX) + continue; + + cpuc->current_idx[i] = idx; + + if (cp->hw.state & PERF_HES_ARCH) + continue; + + sparc_pmu_start(cp, PERF_EF_RELOAD); + } +out: + for (i = 0; i < cpuc->n_events; i++) { + struct perf_event *cp = cpuc->event[i]; + int idx = cp->hw.idx; + + cpuc->pcr[idx] |= cp->hw.config_base; + } +} + +/* If performance event entries have been added, move existing events + * around (if necessary) and then assign new entries to counters. + */ +static void update_pcrs_for_enable(struct cpu_hw_events *cpuc) +{ + if (cpuc->n_added) + read_in_all_counters(cpuc); + + if (sparc_pmu->num_pcrs == 1) { + calculate_single_pcr(cpuc); + } else { + calculate_multiple_pcrs(cpuc); + } +} + +static void sparc_pmu_enable(struct pmu *pmu) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int i; + + if (cpuc->enabled) + return; + + cpuc->enabled = 1; + barrier(); + + if (cpuc->n_events) + update_pcrs_for_enable(cpuc); + + for (i = 0; i < sparc_pmu->num_pcrs; i++) + pcr_ops->write_pcr(i, cpuc->pcr[i]); +} + +static void sparc_pmu_disable(struct pmu *pmu) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int i; + + if (!cpuc->enabled) + return; + + cpuc->enabled = 0; + cpuc->n_added = 0; + + for (i = 0; i < sparc_pmu->num_pcrs; i++) { + u64 val = cpuc->pcr[i]; + + val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit | + sparc_pmu->hv_bit | sparc_pmu->irq_bit); + cpuc->pcr[i] = val; + pcr_ops->write_pcr(i, cpuc->pcr[i]); + } +} + +static int active_event_index(struct cpu_hw_events *cpuc, + struct perf_event *event) +{ + int i; + + for (i = 0; i < cpuc->n_events; i++) { + if (cpuc->event[i] == event) + break; + } + BUG_ON(i == cpuc->n_events); + return cpuc->current_idx[i]; +} + +static void sparc_pmu_start(struct perf_event *event, int flags) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int idx = active_event_index(cpuc, event); + + if (flags & PERF_EF_RELOAD) { + WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); + sparc_perf_event_set_period(event, &event->hw, idx); + } + + event->hw.state = 0; + + sparc_pmu_enable_event(cpuc, &event->hw, idx); + + perf_event_update_userpage(event); +} + +static void sparc_pmu_stop(struct perf_event *event, int flags) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int idx = active_event_index(cpuc, event); + + if (!(event->hw.state & PERF_HES_STOPPED)) { + sparc_pmu_disable_event(cpuc, &event->hw, idx); + event->hw.state |= PERF_HES_STOPPED; + } + + if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) { + sparc_perf_event_update(event, &event->hw, idx); + event->hw.state |= PERF_HES_UPTODATE; + } +} + +static void sparc_pmu_del(struct perf_event *event, int _flags) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + unsigned long flags; + int i; + + local_irq_save(flags); + + for (i = 0; i < cpuc->n_events; i++) { + if (event == cpuc->event[i]) { + /* Absorb the final count and turn off the + * event. + */ + sparc_pmu_stop(event, PERF_EF_UPDATE); + + /* Shift remaining entries down into + * the existing slot. + */ + while (++i < cpuc->n_events) { + cpuc->event[i - 1] = cpuc->event[i]; + cpuc->events[i - 1] = cpuc->events[i]; + cpuc->current_idx[i - 1] = + cpuc->current_idx[i]; + } + + perf_event_update_userpage(event); + + cpuc->n_events--; + break; + } + } + + local_irq_restore(flags); +} + +static void sparc_pmu_read(struct perf_event *event) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int idx = active_event_index(cpuc, event); + struct hw_perf_event *hwc = &event->hw; + + sparc_perf_event_update(event, hwc, idx); +} + +static atomic_t active_events = ATOMIC_INIT(0); +static DEFINE_MUTEX(pmc_grab_mutex); + +static void perf_stop_nmi_watchdog(void *unused) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int i; + + stop_nmi_watchdog(NULL); + for (i = 0; i < sparc_pmu->num_pcrs; i++) + cpuc->pcr[i] = pcr_ops->read_pcr(i); +} + +static void perf_event_grab_pmc(void) +{ + if (atomic_inc_not_zero(&active_events)) + return; + + mutex_lock(&pmc_grab_mutex); + if (atomic_read(&active_events) == 0) { + if (atomic_read(&nmi_active) > 0) { + on_each_cpu(perf_stop_nmi_watchdog, NULL, 1); + BUG_ON(atomic_read(&nmi_active) != 0); + } + atomic_inc(&active_events); + } + mutex_unlock(&pmc_grab_mutex); +} + +static void perf_event_release_pmc(void) +{ + if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) { + if (atomic_read(&nmi_active) == 0) + on_each_cpu(start_nmi_watchdog, NULL, 1); + mutex_unlock(&pmc_grab_mutex); + } +} + +static const struct perf_event_map *sparc_map_cache_event(u64 config) +{ + unsigned int cache_type, cache_op, cache_result; + const struct perf_event_map *pmap; + + if (!sparc_pmu->cache_map) + return ERR_PTR(-ENOENT); + + cache_type = (config >> 0) & 0xff; + if (cache_type >= PERF_COUNT_HW_CACHE_MAX) + return ERR_PTR(-EINVAL); + + cache_op = (config >> 8) & 0xff; + if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) + return ERR_PTR(-EINVAL); + + cache_result = (config >> 16) & 0xff; + if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) + return ERR_PTR(-EINVAL); + + pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]); + + if (pmap->encoding == CACHE_OP_UNSUPPORTED) + return ERR_PTR(-ENOENT); + + if (pmap->encoding == CACHE_OP_NONSENSE) + return ERR_PTR(-EINVAL); + + return pmap; +} + +static void hw_perf_event_destroy(struct perf_event *event) +{ + perf_event_release_pmc(); +} + +/* Make sure all events can be scheduled into the hardware at + * the same time. This is simplified by the fact that we only + * need to support 2 simultaneous HW events. + * + * As a side effect, the evts[]->hw.idx values will be assigned + * on success. These are pending indexes. When the events are + * actually programmed into the chip, these values will propagate + * to the per-cpu cpuc->current_idx[] slots, see the code in + * maybe_change_configuration() for details. + */ +static int sparc_check_constraints(struct perf_event **evts, + unsigned long *events, int n_ev) +{ + u8 msk0 = 0, msk1 = 0; + int idx0 = 0; + + /* This case is possible when we are invoked from + * hw_perf_group_sched_in(). + */ + if (!n_ev) + return 0; + + if (n_ev > sparc_pmu->max_hw_events) + return -1; + + if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) { + int i; + + for (i = 0; i < n_ev; i++) + evts[i]->hw.idx = i; + return 0; + } + + msk0 = perf_event_get_msk(events[0]); + if (n_ev == 1) { + if (msk0 & PIC_LOWER) + idx0 = 1; + goto success; + } + BUG_ON(n_ev != 2); + msk1 = perf_event_get_msk(events[1]); + + /* If both events can go on any counter, OK. */ + if (msk0 == (PIC_UPPER | PIC_LOWER) && + msk1 == (PIC_UPPER | PIC_LOWER)) + goto success; + + /* If one event is limited to a specific counter, + * and the other can go on both, OK. + */ + if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) && + msk1 == (PIC_UPPER | PIC_LOWER)) { + if (msk0 & PIC_LOWER) + idx0 = 1; + goto success; + } + + if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) && + msk0 == (PIC_UPPER | PIC_LOWER)) { + if (msk1 & PIC_UPPER) + idx0 = 1; + goto success; + } + + /* If the events are fixed to different counters, OK. */ + if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) || + (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) { + if (msk0 & PIC_LOWER) + idx0 = 1; + goto success; + } + + /* Otherwise, there is a conflict. */ + return -1; + +success: + evts[0]->hw.idx = idx0; + if (n_ev == 2) + evts[1]->hw.idx = idx0 ^ 1; + return 0; +} + +static int check_excludes(struct perf_event **evts, int n_prev, int n_new) +{ + int eu = 0, ek = 0, eh = 0; + struct perf_event *event; + int i, n, first; + + if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME)) + return 0; + + n = n_prev + n_new; + if (n <= 1) + return 0; + + first = 1; + for (i = 0; i < n; i++) { + event = evts[i]; + if (first) { + eu = event->attr.exclude_user; + ek = event->attr.exclude_kernel; + eh = event->attr.exclude_hv; + first = 0; + } else if (event->attr.exclude_user != eu || + event->attr.exclude_kernel != ek || + event->attr.exclude_hv != eh) { + return -EAGAIN; + } + } + + return 0; +} + +static int collect_events(struct perf_event *group, int max_count, + struct perf_event *evts[], unsigned long *events, + int *current_idx) +{ + struct perf_event *event; + int n = 0; + + if (!is_software_event(group)) { + if (n >= max_count) + return -1; + evts[n] = group; + events[n] = group->hw.event_base; + current_idx[n++] = PIC_NO_INDEX; + } + for_each_sibling_event(event, group) { + if (!is_software_event(event) && + event->state != PERF_EVENT_STATE_OFF) { + if (n >= max_count) + return -1; + evts[n] = event; + events[n] = event->hw.event_base; + current_idx[n++] = PIC_NO_INDEX; + } + } + return n; +} + +static int sparc_pmu_add(struct perf_event *event, int ef_flags) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int n0, ret = -EAGAIN; + unsigned long flags; + + local_irq_save(flags); + + n0 = cpuc->n_events; + if (n0 >= sparc_pmu->max_hw_events) + goto out; + + cpuc->event[n0] = event; + cpuc->events[n0] = event->hw.event_base; + cpuc->current_idx[n0] = PIC_NO_INDEX; + + event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; + if (!(ef_flags & PERF_EF_START)) + event->hw.state |= PERF_HES_ARCH; + + /* + * If group events scheduling transaction was started, + * skip the schedulability test here, it will be performed + * at commit time(->commit_txn) as a whole + */ + if (cpuc->txn_flags & PERF_PMU_TXN_ADD) + goto nocheck; + + if (check_excludes(cpuc->event, n0, 1)) + goto out; + if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1)) + goto out; + +nocheck: + cpuc->n_events++; + cpuc->n_added++; + + ret = 0; +out: + local_irq_restore(flags); + return ret; +} + +static int sparc_pmu_event_init(struct perf_event *event) +{ + struct perf_event_attr *attr = &event->attr; + struct perf_event *evts[MAX_HWEVENTS]; + struct hw_perf_event *hwc = &event->hw; + unsigned long events[MAX_HWEVENTS]; + int current_idx_dmy[MAX_HWEVENTS]; + const struct perf_event_map *pmap; + int n; + + if (atomic_read(&nmi_active) < 0) + return -ENODEV; + + /* does not support taken branch sampling */ + if (has_branch_stack(event)) + return -EOPNOTSUPP; + + switch (attr->type) { + case PERF_TYPE_HARDWARE: + if (attr->config >= sparc_pmu->max_events) + return -EINVAL; + pmap = sparc_pmu->event_map(attr->config); + break; + + case PERF_TYPE_HW_CACHE: + pmap = sparc_map_cache_event(attr->config); + if (IS_ERR(pmap)) + return PTR_ERR(pmap); + break; + + case PERF_TYPE_RAW: + pmap = NULL; + break; + + default: + return -ENOENT; + + } + + if (pmap) { + hwc->event_base = perf_event_encode(pmap); + } else { + /* + * User gives us "(encoding << 16) | pic_mask" for + * PERF_TYPE_RAW events. + */ + hwc->event_base = attr->config; + } + + /* We save the enable bits in the config_base. */ + hwc->config_base = sparc_pmu->irq_bit; + if (!attr->exclude_user) + hwc->config_base |= sparc_pmu->user_bit; + if (!attr->exclude_kernel) + hwc->config_base |= sparc_pmu->priv_bit; + if (!attr->exclude_hv) + hwc->config_base |= sparc_pmu->hv_bit; + + n = 0; + if (event->group_leader != event) { + n = collect_events(event->group_leader, + sparc_pmu->max_hw_events - 1, + evts, events, current_idx_dmy); + if (n < 0) + return -EINVAL; + } + events[n] = hwc->event_base; + evts[n] = event; + + if (check_excludes(evts, n, 1)) + return -EINVAL; + + if (sparc_check_constraints(evts, events, n + 1)) + return -EINVAL; + + hwc->idx = PIC_NO_INDEX; + + /* Try to do all error checking before this point, as unwinding + * state after grabbing the PMC is difficult. + */ + perf_event_grab_pmc(); + event->destroy = hw_perf_event_destroy; + + if (!hwc->sample_period) { + hwc->sample_period = MAX_PERIOD; + hwc->last_period = hwc->sample_period; + local64_set(&hwc->period_left, hwc->sample_period); + } + + return 0; +} + +/* + * Start group events scheduling transaction + * Set the flag to make pmu::enable() not perform the + * schedulability test, it will be performed at commit time + */ +static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) +{ + struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); + + WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ + + cpuhw->txn_flags = txn_flags; + if (txn_flags & ~PERF_PMU_TXN_ADD) + return; + + perf_pmu_disable(pmu); +} + +/* + * Stop group events scheduling transaction + * Clear the flag and pmu::enable() will perform the + * schedulability test. + */ +static void sparc_pmu_cancel_txn(struct pmu *pmu) +{ + struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); + unsigned int txn_flags; + + WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ + + txn_flags = cpuhw->txn_flags; + cpuhw->txn_flags = 0; + if (txn_flags & ~PERF_PMU_TXN_ADD) + return; + + perf_pmu_enable(pmu); +} + +/* + * Commit group events scheduling transaction + * Perform the group schedulability test as a whole + * Return 0 if success + */ +static int sparc_pmu_commit_txn(struct pmu *pmu) +{ + struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); + int n; + + if (!sparc_pmu) + return -EINVAL; + + WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ + + if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { + cpuc->txn_flags = 0; + return 0; + } + + n = cpuc->n_events; + if (check_excludes(cpuc->event, 0, n)) + return -EINVAL; + if (sparc_check_constraints(cpuc->event, cpuc->events, n)) + return -EAGAIN; + + cpuc->txn_flags = 0; + perf_pmu_enable(pmu); + return 0; +} + +static struct pmu pmu = { + .pmu_enable = sparc_pmu_enable, + .pmu_disable = sparc_pmu_disable, + .event_init = sparc_pmu_event_init, + .add = sparc_pmu_add, + .del = sparc_pmu_del, + .start = sparc_pmu_start, + .stop = sparc_pmu_stop, + .read = sparc_pmu_read, + .start_txn = sparc_pmu_start_txn, + .cancel_txn = sparc_pmu_cancel_txn, + .commit_txn = sparc_pmu_commit_txn, +}; + +void perf_event_print_debug(void) +{ + unsigned long flags; + int cpu, i; + + if (!sparc_pmu) + return; + + local_irq_save(flags); + + cpu = smp_processor_id(); + + pr_info("\n"); + for (i = 0; i < sparc_pmu->num_pcrs; i++) + pr_info("CPU#%d: PCR%d[%016llx]\n", + cpu, i, pcr_ops->read_pcr(i)); + for (i = 0; i < sparc_pmu->num_pic_regs; i++) + pr_info("CPU#%d: PIC%d[%016llx]\n", + cpu, i, pcr_ops->read_pic(i)); + + local_irq_restore(flags); +} + +static int __kprobes perf_event_nmi_handler(struct notifier_block *self, + unsigned long cmd, void *__args) +{ + struct die_args *args = __args; + struct perf_sample_data data; + struct cpu_hw_events *cpuc; + struct pt_regs *regs; + u64 finish_clock; + u64 start_clock; + int i; + + if (!atomic_read(&active_events)) + return NOTIFY_DONE; + + switch (cmd) { + case DIE_NMI: + break; + + default: + return NOTIFY_DONE; + } + + start_clock = sched_clock(); + + regs = args->regs; + + cpuc = this_cpu_ptr(&cpu_hw_events); + + /* If the PMU has the TOE IRQ enable bits, we need to do a + * dummy write to the %pcr to clear the overflow bits and thus + * the interrupt. + * + * Do this before we peek at the counters to determine + * overflow so we don't lose any events. + */ + if (sparc_pmu->irq_bit && + sparc_pmu->num_pcrs == 1) + pcr_ops->write_pcr(0, cpuc->pcr[0]); + + for (i = 0; i < cpuc->n_events; i++) { + struct perf_event *event = cpuc->event[i]; + int idx = cpuc->current_idx[i]; + struct hw_perf_event *hwc; + u64 val; + + if (sparc_pmu->irq_bit && + sparc_pmu->num_pcrs > 1) + pcr_ops->write_pcr(idx, cpuc->pcr[idx]); + + hwc = &event->hw; + val = sparc_perf_event_update(event, hwc, idx); + if (val & (1ULL << 31)) + continue; + + perf_sample_data_init(&data, 0, hwc->last_period); + if (!sparc_perf_event_set_period(event, hwc, idx)) + continue; + + if (perf_event_overflow(event, &data, regs)) + sparc_pmu_stop(event, 0); + } + + finish_clock = sched_clock(); + + perf_sample_event_took(finish_clock - start_clock); + + return NOTIFY_STOP; +} + +static __read_mostly struct notifier_block perf_event_nmi_notifier = { + .notifier_call = perf_event_nmi_handler, +}; + +static bool __init supported_pmu(void) +{ + if (!strcmp(sparc_pmu_type, "ultra3") || + !strcmp(sparc_pmu_type, "ultra3+") || + !strcmp(sparc_pmu_type, "ultra3i") || + !strcmp(sparc_pmu_type, "ultra4+")) { + sparc_pmu = &ultra3_pmu; + return true; + } + if (!strcmp(sparc_pmu_type, "niagara")) { + sparc_pmu = &niagara1_pmu; + return true; + } + if (!strcmp(sparc_pmu_type, "niagara2") || + !strcmp(sparc_pmu_type, "niagara3")) { + sparc_pmu = &niagara2_pmu; + return true; + } + if (!strcmp(sparc_pmu_type, "niagara4") || + !strcmp(sparc_pmu_type, "niagara5")) { + sparc_pmu = &niagara4_pmu; + return true; + } + if (!strcmp(sparc_pmu_type, "sparc-m7")) { + sparc_pmu = &sparc_m7_pmu; + return true; + } + return false; +} + +static int __init init_hw_perf_events(void) +{ + int err; + + pr_info("Performance events: "); + + err = pcr_arch_init(); + if (err || !supported_pmu()) { + pr_cont("No support for PMU type '%s'\n", sparc_pmu_type); + return 0; + } + + pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type); + + perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); + register_die_notifier(&perf_event_nmi_notifier); + + return 0; +} +pure_initcall(init_hw_perf_events); + +void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, + struct pt_regs *regs) +{ + unsigned long ksp, fp; +#ifdef CONFIG_FUNCTION_GRAPH_TRACER + int graph = 0; +#endif + + stack_trace_flush(); + + perf_callchain_store(entry, regs->tpc); + + ksp = regs->u_regs[UREG_I6]; + fp = ksp + STACK_BIAS; + do { + struct sparc_stackf *sf; + struct pt_regs *regs; + unsigned long pc; + + if (!kstack_valid(current_thread_info(), fp)) + break; + + sf = (struct sparc_stackf *) fp; + regs = (struct pt_regs *) (sf + 1); + + if (kstack_is_trap_frame(current_thread_info(), regs)) { + if (user_mode(regs)) + break; + pc = regs->tpc; + fp = regs->u_regs[UREG_I6] + STACK_BIAS; + } else { + pc = sf->callers_pc; + fp = (unsigned long)sf->fp + STACK_BIAS; + } + perf_callchain_store(entry, pc); +#ifdef CONFIG_FUNCTION_GRAPH_TRACER + if ((pc + 8UL) == (unsigned long) &return_to_handler) { + struct ftrace_ret_stack *ret_stack; + ret_stack = ftrace_graph_get_ret_stack(current, + graph); + if (ret_stack) { + pc = ret_stack->ret; + perf_callchain_store(entry, pc); + graph++; + } + } +#endif + } while (entry->nr < entry->max_stack); +} + +static inline int +valid_user_frame(const void __user *fp, unsigned long size) +{ + /* addresses should be at least 4-byte aligned */ + if (((unsigned long) fp) & 3) + return 0; + + return (__range_not_ok(fp, size, TASK_SIZE) == 0); +} + +static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry, + struct pt_regs *regs) +{ + unsigned long ufp; + + ufp = regs->u_regs[UREG_FP] + STACK_BIAS; + do { + struct sparc_stackf __user *usf; + struct sparc_stackf sf; + unsigned long pc; + + usf = (struct sparc_stackf __user *)ufp; + if (!valid_user_frame(usf, sizeof(sf))) + break; + + if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) + break; + + pc = sf.callers_pc; + ufp = (unsigned long)sf.fp + STACK_BIAS; + perf_callchain_store(entry, pc); + } while (entry->nr < entry->max_stack); +} + +static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry, + struct pt_regs *regs) +{ + unsigned long ufp; + + ufp = regs->u_regs[UREG_FP] & 0xffffffffUL; + do { + unsigned long pc; + + if (thread32_stack_is_64bit(ufp)) { + struct sparc_stackf __user *usf; + struct sparc_stackf sf; + + ufp += STACK_BIAS; + usf = (struct sparc_stackf __user *)ufp; + if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) + break; + pc = sf.callers_pc & 0xffffffff; + ufp = ((unsigned long) sf.fp) & 0xffffffff; + } else { + struct sparc_stackf32 __user *usf; + struct sparc_stackf32 sf; + usf = (struct sparc_stackf32 __user *)ufp; + if (__copy_from_user_inatomic(&sf, usf, sizeof(sf))) + break; + pc = sf.callers_pc; + ufp = (unsigned long)sf.fp; + } + perf_callchain_store(entry, pc); + } while (entry->nr < entry->max_stack); +} + +void +perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) +{ + u64 saved_fault_address = current_thread_info()->fault_address; + u8 saved_fault_code = get_thread_fault_code(); + + perf_callchain_store(entry, regs->tpc); + + if (!current->mm) + return; + + flushw_user(); + + pagefault_disable(); + + if (test_thread_flag(TIF_32BIT)) + perf_callchain_user_32(entry, regs); + else + perf_callchain_user_64(entry, regs); + + pagefault_enable(); + + set_thread_fault_code(saved_fault_code); + current_thread_info()->fault_address = saved_fault_address; +} |