diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /arch/x86/mm/mem_encrypt_identity.c | |
parent | Initial commit. (diff) | |
download | linux-430c2fc249ea5c0536abd21c23382884005c9093.tar.xz linux-430c2fc249ea5c0536abd21c23382884005c9093.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/mm/mem_encrypt_identity.c')
-rw-r--r-- | arch/x86/mm/mem_encrypt_identity.c | 600 |
1 files changed, 600 insertions, 0 deletions
diff --git a/arch/x86/mm/mem_encrypt_identity.c b/arch/x86/mm/mem_encrypt_identity.c new file mode 100644 index 000000000..5ec47af78 --- /dev/null +++ b/arch/x86/mm/mem_encrypt_identity.c @@ -0,0 +1,600 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * AMD Memory Encryption Support + * + * Copyright (C) 2016 Advanced Micro Devices, Inc. + * + * Author: Tom Lendacky <thomas.lendacky@amd.com> + */ + +#define DISABLE_BRANCH_PROFILING + +/* + * Since we're dealing with identity mappings, physical and virtual + * addresses are the same, so override these defines which are ultimately + * used by the headers in misc.h. + */ +#define __pa(x) ((unsigned long)(x)) +#define __va(x) ((void *)((unsigned long)(x))) + +/* + * Special hack: we have to be careful, because no indirections are + * allowed here, and paravirt_ops is a kind of one. As it will only run in + * baremetal anyway, we just keep it from happening. (This list needs to + * be extended when new paravirt and debugging variants are added.) + */ +#undef CONFIG_PARAVIRT +#undef CONFIG_PARAVIRT_XXL +#undef CONFIG_PARAVIRT_SPINLOCKS + +/* + * This code runs before CPU feature bits are set. By default, the + * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if + * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 + * is provided to handle this situation and, instead, use a variable that + * has been set by the early boot code. + */ +#define USE_EARLY_PGTABLE_L5 + +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/mem_encrypt.h> + +#include <asm/setup.h> +#include <asm/sections.h> +#include <asm/cmdline.h> + +#include "mm_internal.h" + +#define PGD_FLAGS _KERNPG_TABLE_NOENC +#define P4D_FLAGS _KERNPG_TABLE_NOENC +#define PUD_FLAGS _KERNPG_TABLE_NOENC +#define PMD_FLAGS _KERNPG_TABLE_NOENC + +#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) + +#define PMD_FLAGS_DEC PMD_FLAGS_LARGE +#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ + (_PAGE_PAT_LARGE | _PAGE_PWT)) + +#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) + +#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) + +#define PTE_FLAGS_DEC PTE_FLAGS +#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ + (_PAGE_PAT | _PAGE_PWT)) + +#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) + +struct sme_populate_pgd_data { + void *pgtable_area; + pgd_t *pgd; + + pmdval_t pmd_flags; + pteval_t pte_flags; + unsigned long paddr; + + unsigned long vaddr; + unsigned long vaddr_end; +}; + +/* + * This work area lives in the .init.scratch section, which lives outside of + * the kernel proper. It is sized to hold the intermediate copy buffer and + * more than enough pagetable pages. + * + * By using this section, the kernel can be encrypted in place and it + * avoids any possibility of boot parameters or initramfs images being + * placed such that the in-place encryption logic overwrites them. This + * section is 2MB aligned to allow for simple pagetable setup using only + * PMD entries (see vmlinux.lds.S). + */ +static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch"); + +static char sme_cmdline_arg[] __initdata = "mem_encrypt"; +static char sme_cmdline_on[] __initdata = "on"; +static char sme_cmdline_off[] __initdata = "off"; + +static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) +{ + unsigned long pgd_start, pgd_end, pgd_size; + pgd_t *pgd_p; + + pgd_start = ppd->vaddr & PGDIR_MASK; + pgd_end = ppd->vaddr_end & PGDIR_MASK; + + pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); + + pgd_p = ppd->pgd + pgd_index(ppd->vaddr); + + memset(pgd_p, 0, pgd_size); +} + +static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + pgd = ppd->pgd + pgd_index(ppd->vaddr); + if (pgd_none(*pgd)) { + p4d = ppd->pgtable_area; + memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); + ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; + set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); + } + + p4d = p4d_offset(pgd, ppd->vaddr); + if (p4d_none(*p4d)) { + pud = ppd->pgtable_area; + memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); + ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; + set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); + } + + pud = pud_offset(p4d, ppd->vaddr); + if (pud_none(*pud)) { + pmd = ppd->pgtable_area; + memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); + ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; + set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); + } + + if (pud_large(*pud)) + return NULL; + + return pud; +} + +static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) +{ + pud_t *pud; + pmd_t *pmd; + + pud = sme_prepare_pgd(ppd); + if (!pud) + return; + + pmd = pmd_offset(pud, ppd->vaddr); + if (pmd_large(*pmd)) + return; + + set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); +} + +static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) +{ + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + pud = sme_prepare_pgd(ppd); + if (!pud) + return; + + pmd = pmd_offset(pud, ppd->vaddr); + if (pmd_none(*pmd)) { + pte = ppd->pgtable_area; + memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); + ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; + set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); + } + + if (pmd_large(*pmd)) + return; + + pte = pte_offset_map(pmd, ppd->vaddr); + if (pte_none(*pte)) + set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); +} + +static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) +{ + while (ppd->vaddr < ppd->vaddr_end) { + sme_populate_pgd_large(ppd); + + ppd->vaddr += PMD_PAGE_SIZE; + ppd->paddr += PMD_PAGE_SIZE; + } +} + +static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) +{ + while (ppd->vaddr < ppd->vaddr_end) { + sme_populate_pgd(ppd); + + ppd->vaddr += PAGE_SIZE; + ppd->paddr += PAGE_SIZE; + } +} + +static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, + pmdval_t pmd_flags, pteval_t pte_flags) +{ + unsigned long vaddr_end; + + ppd->pmd_flags = pmd_flags; + ppd->pte_flags = pte_flags; + + /* Save original end value since we modify the struct value */ + vaddr_end = ppd->vaddr_end; + + /* If start is not 2MB aligned, create PTE entries */ + ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); + __sme_map_range_pte(ppd); + + /* Create PMD entries */ + ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; + __sme_map_range_pmd(ppd); + + /* If end is not 2MB aligned, create PTE entries */ + ppd->vaddr_end = vaddr_end; + __sme_map_range_pte(ppd); +} + +static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) +{ + __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); +} + +static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) +{ + __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); +} + +static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) +{ + __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); +} + +static unsigned long __init sme_pgtable_calc(unsigned long len) +{ + unsigned long entries = 0, tables = 0; + + /* + * Perform a relatively simplistic calculation of the pagetable + * entries that are needed. Those mappings will be covered mostly + * by 2MB PMD entries so we can conservatively calculate the required + * number of P4D, PUD and PMD structures needed to perform the + * mappings. For mappings that are not 2MB aligned, PTE mappings + * would be needed for the start and end portion of the address range + * that fall outside of the 2MB alignment. This results in, at most, + * two extra pages to hold PTE entries for each range that is mapped. + * Incrementing the count for each covers the case where the addresses + * cross entries. + */ + + /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ + if (PTRS_PER_P4D > 1) + entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; + entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; + entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; + entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; + + /* + * Now calculate the added pagetable structures needed to populate + * the new pagetables. + */ + + if (PTRS_PER_P4D > 1) + tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; + tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; + tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; + + return entries + tables; +} + +void __init sme_encrypt_kernel(struct boot_params *bp) +{ + unsigned long workarea_start, workarea_end, workarea_len; + unsigned long execute_start, execute_end, execute_len; + unsigned long kernel_start, kernel_end, kernel_len; + unsigned long initrd_start, initrd_end, initrd_len; + struct sme_populate_pgd_data ppd; + unsigned long pgtable_area_len; + unsigned long decrypted_base; + + if (!sme_active()) + return; + + /* + * Prepare for encrypting the kernel and initrd by building new + * pagetables with the necessary attributes needed to encrypt the + * kernel in place. + * + * One range of virtual addresses will map the memory occupied + * by the kernel and initrd as encrypted. + * + * Another range of virtual addresses will map the memory occupied + * by the kernel and initrd as decrypted and write-protected. + * + * The use of write-protect attribute will prevent any of the + * memory from being cached. + */ + + /* Physical addresses gives us the identity mapped virtual addresses */ + kernel_start = __pa_symbol(_text); + kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); + kernel_len = kernel_end - kernel_start; + + initrd_start = 0; + initrd_end = 0; + initrd_len = 0; +#ifdef CONFIG_BLK_DEV_INITRD + initrd_len = (unsigned long)bp->hdr.ramdisk_size | + ((unsigned long)bp->ext_ramdisk_size << 32); + if (initrd_len) { + initrd_start = (unsigned long)bp->hdr.ramdisk_image | + ((unsigned long)bp->ext_ramdisk_image << 32); + initrd_end = PAGE_ALIGN(initrd_start + initrd_len); + initrd_len = initrd_end - initrd_start; + } +#endif + + /* + * We're running identity mapped, so we must obtain the address to the + * SME encryption workarea using rip-relative addressing. + */ + asm ("lea sme_workarea(%%rip), %0" + : "=r" (workarea_start) + : "p" (sme_workarea)); + + /* + * Calculate required number of workarea bytes needed: + * executable encryption area size: + * stack page (PAGE_SIZE) + * encryption routine page (PAGE_SIZE) + * intermediate copy buffer (PMD_PAGE_SIZE) + * pagetable structures for the encryption of the kernel + * pagetable structures for workarea (in case not currently mapped) + */ + execute_start = workarea_start; + execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; + execute_len = execute_end - execute_start; + + /* + * One PGD for both encrypted and decrypted mappings and a set of + * PUDs and PMDs for each of the encrypted and decrypted mappings. + */ + pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; + pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; + if (initrd_len) + pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; + + /* PUDs and PMDs needed in the current pagetables for the workarea */ + pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); + + /* + * The total workarea includes the executable encryption area and + * the pagetable area. The start of the workarea is already 2MB + * aligned, align the end of the workarea on a 2MB boundary so that + * we don't try to create/allocate PTE entries from the workarea + * before it is mapped. + */ + workarea_len = execute_len + pgtable_area_len; + workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); + + /* + * Set the address to the start of where newly created pagetable + * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable + * structures are created when the workarea is added to the current + * pagetables and when the new encrypted and decrypted kernel + * mappings are populated. + */ + ppd.pgtable_area = (void *)execute_end; + + /* + * Make sure the current pagetable structure has entries for + * addressing the workarea. + */ + ppd.pgd = (pgd_t *)native_read_cr3_pa(); + ppd.paddr = workarea_start; + ppd.vaddr = workarea_start; + ppd.vaddr_end = workarea_end; + sme_map_range_decrypted(&ppd); + + /* Flush the TLB - no globals so cr3 is enough */ + native_write_cr3(__native_read_cr3()); + + /* + * A new pagetable structure is being built to allow for the kernel + * and initrd to be encrypted. It starts with an empty PGD that will + * then be populated with new PUDs and PMDs as the encrypted and + * decrypted kernel mappings are created. + */ + ppd.pgd = ppd.pgtable_area; + memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); + ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; + + /* + * A different PGD index/entry must be used to get different + * pagetable entries for the decrypted mapping. Choose the next + * PGD index and convert it to a virtual address to be used as + * the base of the mapping. + */ + decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); + if (initrd_len) { + unsigned long check_base; + + check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); + decrypted_base = max(decrypted_base, check_base); + } + decrypted_base <<= PGDIR_SHIFT; + + /* Add encrypted kernel (identity) mappings */ + ppd.paddr = kernel_start; + ppd.vaddr = kernel_start; + ppd.vaddr_end = kernel_end; + sme_map_range_encrypted(&ppd); + + /* Add decrypted, write-protected kernel (non-identity) mappings */ + ppd.paddr = kernel_start; + ppd.vaddr = kernel_start + decrypted_base; + ppd.vaddr_end = kernel_end + decrypted_base; + sme_map_range_decrypted_wp(&ppd); + + if (initrd_len) { + /* Add encrypted initrd (identity) mappings */ + ppd.paddr = initrd_start; + ppd.vaddr = initrd_start; + ppd.vaddr_end = initrd_end; + sme_map_range_encrypted(&ppd); + /* + * Add decrypted, write-protected initrd (non-identity) mappings + */ + ppd.paddr = initrd_start; + ppd.vaddr = initrd_start + decrypted_base; + ppd.vaddr_end = initrd_end + decrypted_base; + sme_map_range_decrypted_wp(&ppd); + } + + /* Add decrypted workarea mappings to both kernel mappings */ + ppd.paddr = workarea_start; + ppd.vaddr = workarea_start; + ppd.vaddr_end = workarea_end; + sme_map_range_decrypted(&ppd); + + ppd.paddr = workarea_start; + ppd.vaddr = workarea_start + decrypted_base; + ppd.vaddr_end = workarea_end + decrypted_base; + sme_map_range_decrypted(&ppd); + + /* Perform the encryption */ + sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, + kernel_len, workarea_start, (unsigned long)ppd.pgd); + + if (initrd_len) + sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, + initrd_len, workarea_start, + (unsigned long)ppd.pgd); + + /* + * At this point we are running encrypted. Remove the mappings for + * the decrypted areas - all that is needed for this is to remove + * the PGD entry/entries. + */ + ppd.vaddr = kernel_start + decrypted_base; + ppd.vaddr_end = kernel_end + decrypted_base; + sme_clear_pgd(&ppd); + + if (initrd_len) { + ppd.vaddr = initrd_start + decrypted_base; + ppd.vaddr_end = initrd_end + decrypted_base; + sme_clear_pgd(&ppd); + } + + ppd.vaddr = workarea_start + decrypted_base; + ppd.vaddr_end = workarea_end + decrypted_base; + sme_clear_pgd(&ppd); + + /* Flush the TLB - no globals so cr3 is enough */ + native_write_cr3(__native_read_cr3()); +} + +void __init sme_enable(struct boot_params *bp) +{ + const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; + unsigned int eax, ebx, ecx, edx; + unsigned long feature_mask; + bool active_by_default; + unsigned long me_mask; + char buffer[16]; + u64 msr; + + /* Check for the SME/SEV support leaf */ + eax = 0x80000000; + ecx = 0; + native_cpuid(&eax, &ebx, &ecx, &edx); + if (eax < 0x8000001f) + return; + +#define AMD_SME_BIT BIT(0) +#define AMD_SEV_BIT BIT(1) + + /* + * Check for the SME/SEV feature: + * CPUID Fn8000_001F[EAX] + * - Bit 0 - Secure Memory Encryption support + * - Bit 1 - Secure Encrypted Virtualization support + * CPUID Fn8000_001F[EBX] + * - Bits 5:0 - Pagetable bit position used to indicate encryption + */ + eax = 0x8000001f; + ecx = 0; + native_cpuid(&eax, &ebx, &ecx, &edx); + /* Check whether SEV or SME is supported */ + if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) + return; + + me_mask = 1UL << (ebx & 0x3f); + + /* Check the SEV MSR whether SEV or SME is enabled */ + sev_status = __rdmsr(MSR_AMD64_SEV); + feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; + + /* Check if memory encryption is enabled */ + if (feature_mask == AMD_SME_BIT) { + /* + * No SME if Hypervisor bit is set. This check is here to + * prevent a guest from trying to enable SME. For running as a + * KVM guest the MSR_K8_SYSCFG will be sufficient, but there + * might be other hypervisors which emulate that MSR as non-zero + * or even pass it through to the guest. + * A malicious hypervisor can still trick a guest into this + * path, but there is no way to protect against that. + */ + eax = 1; + ecx = 0; + native_cpuid(&eax, &ebx, &ecx, &edx); + if (ecx & BIT(31)) + return; + + /* For SME, check the SYSCFG MSR */ + msr = __rdmsr(MSR_K8_SYSCFG); + if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) + return; + } else { + /* SEV state cannot be controlled by a command line option */ + sme_me_mask = me_mask; + sev_enabled = true; + physical_mask &= ~sme_me_mask; + return; + } + + /* + * Fixups have not been applied to phys_base yet and we're running + * identity mapped, so we must obtain the address to the SME command + * line argument data using rip-relative addressing. + */ + asm ("lea sme_cmdline_arg(%%rip), %0" + : "=r" (cmdline_arg) + : "p" (sme_cmdline_arg)); + asm ("lea sme_cmdline_on(%%rip), %0" + : "=r" (cmdline_on) + : "p" (sme_cmdline_on)); + asm ("lea sme_cmdline_off(%%rip), %0" + : "=r" (cmdline_off) + : "p" (sme_cmdline_off)); + + if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) + active_by_default = true; + else + active_by_default = false; + + cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | + ((u64)bp->ext_cmd_line_ptr << 32)); + + if (cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)) < 0) + return; + + if (!strncmp(buffer, cmdline_on, sizeof(buffer))) + sme_me_mask = me_mask; + else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) + sme_me_mask = 0; + else + sme_me_mask = active_by_default ? me_mask : 0; + + physical_mask &= ~sme_me_mask; +} |