summaryrefslogtreecommitdiffstats
path: root/drivers/ata/libata-sff.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/ata/libata-sff.c
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/ata/libata-sff.c')
-rw-r--r--drivers/ata/libata-sff.c3293
1 files changed, 3293 insertions, 0 deletions
diff --git a/drivers/ata/libata-sff.c b/drivers/ata/libata-sff.c
new file mode 100644
index 000000000..b71ea4a68
--- /dev/null
+++ b/drivers/ata/libata-sff.c
@@ -0,0 +1,3293 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * libata-sff.c - helper library for PCI IDE BMDMA
+ *
+ * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
+ * Copyright 2003-2006 Jeff Garzik
+ *
+ * libata documentation is available via 'make {ps|pdf}docs',
+ * as Documentation/driver-api/libata.rst
+ *
+ * Hardware documentation available from http://www.t13.org/ and
+ * http://www.sata-io.org/
+ */
+
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/pci.h>
+#include <linux/module.h>
+#include <linux/libata.h>
+#include <linux/highmem.h>
+
+#include "libata.h"
+
+static struct workqueue_struct *ata_sff_wq;
+
+const struct ata_port_operations ata_sff_port_ops = {
+ .inherits = &ata_base_port_ops,
+
+ .qc_prep = ata_noop_qc_prep,
+ .qc_issue = ata_sff_qc_issue,
+ .qc_fill_rtf = ata_sff_qc_fill_rtf,
+
+ .freeze = ata_sff_freeze,
+ .thaw = ata_sff_thaw,
+ .prereset = ata_sff_prereset,
+ .softreset = ata_sff_softreset,
+ .hardreset = sata_sff_hardreset,
+ .postreset = ata_sff_postreset,
+ .error_handler = ata_sff_error_handler,
+
+ .sff_dev_select = ata_sff_dev_select,
+ .sff_check_status = ata_sff_check_status,
+ .sff_tf_load = ata_sff_tf_load,
+ .sff_tf_read = ata_sff_tf_read,
+ .sff_exec_command = ata_sff_exec_command,
+ .sff_data_xfer = ata_sff_data_xfer,
+ .sff_drain_fifo = ata_sff_drain_fifo,
+
+ .lost_interrupt = ata_sff_lost_interrupt,
+};
+EXPORT_SYMBOL_GPL(ata_sff_port_ops);
+
+/**
+ * ata_sff_check_status - Read device status reg & clear interrupt
+ * @ap: port where the device is
+ *
+ * Reads ATA taskfile status register for currently-selected device
+ * and return its value. This also clears pending interrupts
+ * from this device
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+u8 ata_sff_check_status(struct ata_port *ap)
+{
+ return ioread8(ap->ioaddr.status_addr);
+}
+EXPORT_SYMBOL_GPL(ata_sff_check_status);
+
+/**
+ * ata_sff_altstatus - Read device alternate status reg
+ * @ap: port where the device is
+ *
+ * Reads ATA taskfile alternate status register for
+ * currently-selected device and return its value.
+ *
+ * Note: may NOT be used as the check_altstatus() entry in
+ * ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static u8 ata_sff_altstatus(struct ata_port *ap)
+{
+ if (ap->ops->sff_check_altstatus)
+ return ap->ops->sff_check_altstatus(ap);
+
+ return ioread8(ap->ioaddr.altstatus_addr);
+}
+
+/**
+ * ata_sff_irq_status - Check if the device is busy
+ * @ap: port where the device is
+ *
+ * Determine if the port is currently busy. Uses altstatus
+ * if available in order to avoid clearing shared IRQ status
+ * when finding an IRQ source. Non ctl capable devices don't
+ * share interrupt lines fortunately for us.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static u8 ata_sff_irq_status(struct ata_port *ap)
+{
+ u8 status;
+
+ if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
+ status = ata_sff_altstatus(ap);
+ /* Not us: We are busy */
+ if (status & ATA_BUSY)
+ return status;
+ }
+ /* Clear INTRQ latch */
+ status = ap->ops->sff_check_status(ap);
+ return status;
+}
+
+/**
+ * ata_sff_sync - Flush writes
+ * @ap: Port to wait for.
+ *
+ * CAUTION:
+ * If we have an mmio device with no ctl and no altstatus
+ * method this will fail. No such devices are known to exist.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+static void ata_sff_sync(struct ata_port *ap)
+{
+ if (ap->ops->sff_check_altstatus)
+ ap->ops->sff_check_altstatus(ap);
+ else if (ap->ioaddr.altstatus_addr)
+ ioread8(ap->ioaddr.altstatus_addr);
+}
+
+/**
+ * ata_sff_pause - Flush writes and wait 400nS
+ * @ap: Port to pause for.
+ *
+ * CAUTION:
+ * If we have an mmio device with no ctl and no altstatus
+ * method this will fail. No such devices are known to exist.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_sff_pause(struct ata_port *ap)
+{
+ ata_sff_sync(ap);
+ ndelay(400);
+}
+EXPORT_SYMBOL_GPL(ata_sff_pause);
+
+/**
+ * ata_sff_dma_pause - Pause before commencing DMA
+ * @ap: Port to pause for.
+ *
+ * Perform I/O fencing and ensure sufficient cycle delays occur
+ * for the HDMA1:0 transition
+ */
+
+void ata_sff_dma_pause(struct ata_port *ap)
+{
+ if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
+ /* An altstatus read will cause the needed delay without
+ messing up the IRQ status */
+ ata_sff_altstatus(ap);
+ return;
+ }
+ /* There are no DMA controllers without ctl. BUG here to ensure
+ we never violate the HDMA1:0 transition timing and risk
+ corruption. */
+ BUG();
+}
+EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
+
+/**
+ * ata_sff_busy_sleep - sleep until BSY clears, or timeout
+ * @ap: port containing status register to be polled
+ * @tmout_pat: impatience timeout in msecs
+ * @tmout: overall timeout in msecs
+ *
+ * Sleep until ATA Status register bit BSY clears,
+ * or a timeout occurs.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_busy_sleep(struct ata_port *ap,
+ unsigned long tmout_pat, unsigned long tmout)
+{
+ unsigned long timer_start, timeout;
+ u8 status;
+
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
+ timer_start = jiffies;
+ timeout = ata_deadline(timer_start, tmout_pat);
+ while (status != 0xff && (status & ATA_BUSY) &&
+ time_before(jiffies, timeout)) {
+ ata_msleep(ap, 50);
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
+ }
+
+ if (status != 0xff && (status & ATA_BUSY))
+ ata_port_warn(ap,
+ "port is slow to respond, please be patient (Status 0x%x)\n",
+ status);
+
+ timeout = ata_deadline(timer_start, tmout);
+ while (status != 0xff && (status & ATA_BUSY) &&
+ time_before(jiffies, timeout)) {
+ ata_msleep(ap, 50);
+ status = ap->ops->sff_check_status(ap);
+ }
+
+ if (status == 0xff)
+ return -ENODEV;
+
+ if (status & ATA_BUSY) {
+ ata_port_err(ap,
+ "port failed to respond (%lu secs, Status 0x%x)\n",
+ DIV_ROUND_UP(tmout, 1000), status);
+ return -EBUSY;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
+
+static int ata_sff_check_ready(struct ata_link *link)
+{
+ u8 status = link->ap->ops->sff_check_status(link->ap);
+
+ return ata_check_ready(status);
+}
+
+/**
+ * ata_sff_wait_ready - sleep until BSY clears, or timeout
+ * @link: SFF link to wait ready status for
+ * @deadline: deadline jiffies for the operation
+ *
+ * Sleep until ATA Status register bit BSY clears, or timeout
+ * occurs.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
+{
+ return ata_wait_ready(link, deadline, ata_sff_check_ready);
+}
+EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
+
+/**
+ * ata_sff_set_devctl - Write device control reg
+ * @ap: port where the device is
+ * @ctl: value to write
+ *
+ * Writes ATA taskfile device control register.
+ *
+ * Note: may NOT be used as the sff_set_devctl() entry in
+ * ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
+{
+ if (ap->ops->sff_set_devctl)
+ ap->ops->sff_set_devctl(ap, ctl);
+ else
+ iowrite8(ctl, ap->ioaddr.ctl_addr);
+}
+
+/**
+ * ata_sff_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ *
+ * Use the method defined in the ATA specification to
+ * make either device 0, or device 1, active on the
+ * ATA channel. Works with both PIO and MMIO.
+ *
+ * May be used as the dev_select() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * caller.
+ */
+void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
+{
+ u8 tmp;
+
+ if (device == 0)
+ tmp = ATA_DEVICE_OBS;
+ else
+ tmp = ATA_DEVICE_OBS | ATA_DEV1;
+
+ iowrite8(tmp, ap->ioaddr.device_addr);
+ ata_sff_pause(ap); /* needed; also flushes, for mmio */
+}
+EXPORT_SYMBOL_GPL(ata_sff_dev_select);
+
+/**
+ * ata_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ * @wait: non-zero to wait for Status register BSY bit to clear
+ * @can_sleep: non-zero if context allows sleeping
+ *
+ * Use the method defined in the ATA specification to
+ * make either device 0, or device 1, active on the
+ * ATA channel.
+ *
+ * This is a high-level version of ata_sff_dev_select(), which
+ * additionally provides the services of inserting the proper
+ * pauses and status polling, where needed.
+ *
+ * LOCKING:
+ * caller.
+ */
+static void ata_dev_select(struct ata_port *ap, unsigned int device,
+ unsigned int wait, unsigned int can_sleep)
+{
+ if (ata_msg_probe(ap))
+ ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
+ device, wait);
+
+ if (wait)
+ ata_wait_idle(ap);
+
+ ap->ops->sff_dev_select(ap, device);
+
+ if (wait) {
+ if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
+ ata_msleep(ap, 150);
+ ata_wait_idle(ap);
+ }
+}
+
+/**
+ * ata_sff_irq_on - Enable interrupts on a port.
+ * @ap: Port on which interrupts are enabled.
+ *
+ * Enable interrupts on a legacy IDE device using MMIO or PIO,
+ * wait for idle, clear any pending interrupts.
+ *
+ * Note: may NOT be used as the sff_irq_on() entry in
+ * ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_sff_irq_on(struct ata_port *ap)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+
+ if (ap->ops->sff_irq_on) {
+ ap->ops->sff_irq_on(ap);
+ return;
+ }
+
+ ap->ctl &= ~ATA_NIEN;
+ ap->last_ctl = ap->ctl;
+
+ if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
+ ata_sff_set_devctl(ap, ap->ctl);
+ ata_wait_idle(ap);
+
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_irq_on);
+
+/**
+ * ata_sff_tf_load - send taskfile registers to host controller
+ * @ap: Port to which output is sent
+ * @tf: ATA taskfile register set
+ *
+ * Outputs ATA taskfile to standard ATA host controller.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
+
+ if (tf->ctl != ap->last_ctl) {
+ if (ioaddr->ctl_addr)
+ iowrite8(tf->ctl, ioaddr->ctl_addr);
+ ap->last_ctl = tf->ctl;
+ ata_wait_idle(ap);
+ }
+
+ if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
+ WARN_ON_ONCE(!ioaddr->ctl_addr);
+ iowrite8(tf->hob_feature, ioaddr->feature_addr);
+ iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
+ iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
+ iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
+ iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
+ VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
+ tf->hob_feature,
+ tf->hob_nsect,
+ tf->hob_lbal,
+ tf->hob_lbam,
+ tf->hob_lbah);
+ }
+
+ if (is_addr) {
+ iowrite8(tf->feature, ioaddr->feature_addr);
+ iowrite8(tf->nsect, ioaddr->nsect_addr);
+ iowrite8(tf->lbal, ioaddr->lbal_addr);
+ iowrite8(tf->lbam, ioaddr->lbam_addr);
+ iowrite8(tf->lbah, ioaddr->lbah_addr);
+ VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
+ tf->feature,
+ tf->nsect,
+ tf->lbal,
+ tf->lbam,
+ tf->lbah);
+ }
+
+ if (tf->flags & ATA_TFLAG_DEVICE) {
+ iowrite8(tf->device, ioaddr->device_addr);
+ VPRINTK("device 0x%X\n", tf->device);
+ }
+
+ ata_wait_idle(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_tf_load);
+
+/**
+ * ata_sff_tf_read - input device's ATA taskfile shadow registers
+ * @ap: Port from which input is read
+ * @tf: ATA taskfile register set for storing input
+ *
+ * Reads ATA taskfile registers for currently-selected device
+ * into @tf. Assumes the device has a fully SFF compliant task file
+ * layout and behaviour. If you device does not (eg has a different
+ * status method) then you will need to provide a replacement tf_read
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+
+ tf->command = ata_sff_check_status(ap);
+ tf->feature = ioread8(ioaddr->error_addr);
+ tf->nsect = ioread8(ioaddr->nsect_addr);
+ tf->lbal = ioread8(ioaddr->lbal_addr);
+ tf->lbam = ioread8(ioaddr->lbam_addr);
+ tf->lbah = ioread8(ioaddr->lbah_addr);
+ tf->device = ioread8(ioaddr->device_addr);
+
+ if (tf->flags & ATA_TFLAG_LBA48) {
+ if (likely(ioaddr->ctl_addr)) {
+ iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
+ tf->hob_feature = ioread8(ioaddr->error_addr);
+ tf->hob_nsect = ioread8(ioaddr->nsect_addr);
+ tf->hob_lbal = ioread8(ioaddr->lbal_addr);
+ tf->hob_lbam = ioread8(ioaddr->lbam_addr);
+ tf->hob_lbah = ioread8(ioaddr->lbah_addr);
+ iowrite8(tf->ctl, ioaddr->ctl_addr);
+ ap->last_ctl = tf->ctl;
+ } else
+ WARN_ON_ONCE(1);
+ }
+}
+EXPORT_SYMBOL_GPL(ata_sff_tf_read);
+
+/**
+ * ata_sff_exec_command - issue ATA command to host controller
+ * @ap: port to which command is being issued
+ * @tf: ATA taskfile register set
+ *
+ * Issues ATA command, with proper synchronization with interrupt
+ * handler / other threads.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
+{
+ DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
+
+ iowrite8(tf->command, ap->ioaddr.command_addr);
+ ata_sff_pause(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_exec_command);
+
+/**
+ * ata_tf_to_host - issue ATA taskfile to host controller
+ * @ap: port to which command is being issued
+ * @tf: ATA taskfile register set
+ *
+ * Issues ATA taskfile register set to ATA host controller,
+ * with proper synchronization with interrupt handler and
+ * other threads.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+static inline void ata_tf_to_host(struct ata_port *ap,
+ const struct ata_taskfile *tf)
+{
+ ap->ops->sff_tf_load(ap, tf);
+ ap->ops->sff_exec_command(ap, tf);
+}
+
+/**
+ * ata_sff_data_xfer - Transfer data by PIO
+ * @qc: queued command
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @rw: read/write
+ *
+ * Transfer data from/to the device data register by PIO.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * Bytes consumed.
+ */
+unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
+ unsigned int buflen, int rw)
+{
+ struct ata_port *ap = qc->dev->link->ap;
+ void __iomem *data_addr = ap->ioaddr.data_addr;
+ unsigned int words = buflen >> 1;
+
+ /* Transfer multiple of 2 bytes */
+ if (rw == READ)
+ ioread16_rep(data_addr, buf, words);
+ else
+ iowrite16_rep(data_addr, buf, words);
+
+ /* Transfer trailing byte, if any. */
+ if (unlikely(buflen & 0x01)) {
+ unsigned char pad[2] = { };
+
+ /* Point buf to the tail of buffer */
+ buf += buflen - 1;
+
+ /*
+ * Use io*16_rep() accessors here as well to avoid pointlessly
+ * swapping bytes to and from on the big endian machines...
+ */
+ if (rw == READ) {
+ ioread16_rep(data_addr, pad, 1);
+ *buf = pad[0];
+ } else {
+ pad[0] = *buf;
+ iowrite16_rep(data_addr, pad, 1);
+ }
+ words++;
+ }
+
+ return words << 1;
+}
+EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
+
+/**
+ * ata_sff_data_xfer32 - Transfer data by PIO
+ * @qc: queued command
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @rw: read/write
+ *
+ * Transfer data from/to the device data register by PIO using 32bit
+ * I/O operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * Bytes consumed.
+ */
+
+unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
+ unsigned int buflen, int rw)
+{
+ struct ata_device *dev = qc->dev;
+ struct ata_port *ap = dev->link->ap;
+ void __iomem *data_addr = ap->ioaddr.data_addr;
+ unsigned int words = buflen >> 2;
+ int slop = buflen & 3;
+
+ if (!(ap->pflags & ATA_PFLAG_PIO32))
+ return ata_sff_data_xfer(qc, buf, buflen, rw);
+
+ /* Transfer multiple of 4 bytes */
+ if (rw == READ)
+ ioread32_rep(data_addr, buf, words);
+ else
+ iowrite32_rep(data_addr, buf, words);
+
+ /* Transfer trailing bytes, if any */
+ if (unlikely(slop)) {
+ unsigned char pad[4] = { };
+
+ /* Point buf to the tail of buffer */
+ buf += buflen - slop;
+
+ /*
+ * Use io*_rep() accessors here as well to avoid pointlessly
+ * swapping bytes to and from on the big endian machines...
+ */
+ if (rw == READ) {
+ if (slop < 3)
+ ioread16_rep(data_addr, pad, 1);
+ else
+ ioread32_rep(data_addr, pad, 1);
+ memcpy(buf, pad, slop);
+ } else {
+ memcpy(pad, buf, slop);
+ if (slop < 3)
+ iowrite16_rep(data_addr, pad, 1);
+ else
+ iowrite32_rep(data_addr, pad, 1);
+ }
+ }
+ return (buflen + 1) & ~1;
+}
+EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
+
+static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
+ unsigned int offset, size_t xfer_size)
+{
+ bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
+ unsigned char *buf;
+
+ buf = kmap_atomic(page);
+ qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
+ kunmap_atomic(buf);
+
+ if (!do_write && !PageSlab(page))
+ flush_dcache_page(page);
+}
+
+/**
+ * ata_pio_sector - Transfer a sector of data.
+ * @qc: Command on going
+ *
+ * Transfer qc->sect_size bytes of data from/to the ATA device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void ata_pio_sector(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct page *page;
+ unsigned int offset;
+
+ if (!qc->cursg) {
+ qc->curbytes = qc->nbytes;
+ return;
+ }
+ if (qc->curbytes == qc->nbytes - qc->sect_size)
+ ap->hsm_task_state = HSM_ST_LAST;
+
+ page = sg_page(qc->cursg);
+ offset = qc->cursg->offset + qc->cursg_ofs;
+
+ /* get the current page and offset */
+ page = nth_page(page, (offset >> PAGE_SHIFT));
+ offset %= PAGE_SIZE;
+
+ DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ /*
+ * Split the transfer when it splits a page boundary. Note that the
+ * split still has to be dword aligned like all ATA data transfers.
+ */
+ WARN_ON_ONCE(offset % 4);
+ if (offset + qc->sect_size > PAGE_SIZE) {
+ unsigned int split_len = PAGE_SIZE - offset;
+
+ ata_pio_xfer(qc, page, offset, split_len);
+ ata_pio_xfer(qc, nth_page(page, 1), 0,
+ qc->sect_size - split_len);
+ } else {
+ ata_pio_xfer(qc, page, offset, qc->sect_size);
+ }
+
+ qc->curbytes += qc->sect_size;
+ qc->cursg_ofs += qc->sect_size;
+
+ if (qc->cursg_ofs == qc->cursg->length) {
+ qc->cursg = sg_next(qc->cursg);
+ if (!qc->cursg)
+ ap->hsm_task_state = HSM_ST_LAST;
+ qc->cursg_ofs = 0;
+ }
+}
+
+/**
+ * ata_pio_sectors - Transfer one or many sectors.
+ * @qc: Command on going
+ *
+ * Transfer one or many sectors of data from/to the
+ * ATA device for the DRQ request.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void ata_pio_sectors(struct ata_queued_cmd *qc)
+{
+ if (is_multi_taskfile(&qc->tf)) {
+ /* READ/WRITE MULTIPLE */
+ unsigned int nsect;
+
+ WARN_ON_ONCE(qc->dev->multi_count == 0);
+
+ nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
+ qc->dev->multi_count);
+ while (nsect--)
+ ata_pio_sector(qc);
+ } else
+ ata_pio_sector(qc);
+
+ ata_sff_sync(qc->ap); /* flush */
+}
+
+/**
+ * atapi_send_cdb - Write CDB bytes to hardware
+ * @ap: Port to which ATAPI device is attached.
+ * @qc: Taskfile currently active
+ *
+ * When device has indicated its readiness to accept
+ * a CDB, this function is called. Send the CDB.
+ *
+ * LOCKING:
+ * caller.
+ */
+static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ /* send SCSI cdb */
+ DPRINTK("send cdb\n");
+ WARN_ON_ONCE(qc->dev->cdb_len < 12);
+
+ ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
+ ata_sff_sync(ap);
+ /* FIXME: If the CDB is for DMA do we need to do the transition delay
+ or is bmdma_start guaranteed to do it ? */
+ switch (qc->tf.protocol) {
+ case ATAPI_PROT_PIO:
+ ap->hsm_task_state = HSM_ST;
+ break;
+ case ATAPI_PROT_NODATA:
+ ap->hsm_task_state = HSM_ST_LAST;
+ break;
+#ifdef CONFIG_ATA_BMDMA
+ case ATAPI_PROT_DMA:
+ ap->hsm_task_state = HSM_ST_LAST;
+ /* initiate bmdma */
+ ap->ops->bmdma_start(qc);
+ break;
+#endif /* CONFIG_ATA_BMDMA */
+ default:
+ BUG();
+ }
+}
+
+/**
+ * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ * @qc: Command on going
+ * @bytes: number of bytes
+ *
+ * Transfer Transfer data from/to the ATAPI device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ */
+static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
+{
+ int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
+ struct ata_port *ap = qc->ap;
+ struct ata_device *dev = qc->dev;
+ struct ata_eh_info *ehi = &dev->link->eh_info;
+ struct scatterlist *sg;
+ struct page *page;
+ unsigned char *buf;
+ unsigned int offset, count, consumed;
+
+next_sg:
+ sg = qc->cursg;
+ if (unlikely(!sg)) {
+ ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
+ "buf=%u cur=%u bytes=%u",
+ qc->nbytes, qc->curbytes, bytes);
+ return -1;
+ }
+
+ page = sg_page(sg);
+ offset = sg->offset + qc->cursg_ofs;
+
+ /* get the current page and offset */
+ page = nth_page(page, (offset >> PAGE_SHIFT));
+ offset %= PAGE_SIZE;
+
+ /* don't overrun current sg */
+ count = min(sg->length - qc->cursg_ofs, bytes);
+
+ /* don't cross page boundaries */
+ count = min(count, (unsigned int)PAGE_SIZE - offset);
+
+ DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ /* do the actual data transfer */
+ buf = kmap_atomic(page);
+ consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
+ kunmap_atomic(buf);
+
+ bytes -= min(bytes, consumed);
+ qc->curbytes += count;
+ qc->cursg_ofs += count;
+
+ if (qc->cursg_ofs == sg->length) {
+ qc->cursg = sg_next(qc->cursg);
+ qc->cursg_ofs = 0;
+ }
+
+ /*
+ * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
+ * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
+ * check correctly as it doesn't know if it is the last request being
+ * made. Somebody should implement a proper sanity check.
+ */
+ if (bytes)
+ goto next_sg;
+ return 0;
+}
+
+/**
+ * atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ * @qc: Command on going
+ *
+ * Transfer Transfer data from/to the ATAPI device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void atapi_pio_bytes(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_device *dev = qc->dev;
+ struct ata_eh_info *ehi = &dev->link->eh_info;
+ unsigned int ireason, bc_lo, bc_hi, bytes;
+ int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
+
+ /* Abuse qc->result_tf for temp storage of intermediate TF
+ * here to save some kernel stack usage.
+ * For normal completion, qc->result_tf is not relevant. For
+ * error, qc->result_tf is later overwritten by ata_qc_complete().
+ * So, the correctness of qc->result_tf is not affected.
+ */
+ ap->ops->sff_tf_read(ap, &qc->result_tf);
+ ireason = qc->result_tf.nsect;
+ bc_lo = qc->result_tf.lbam;
+ bc_hi = qc->result_tf.lbah;
+ bytes = (bc_hi << 8) | bc_lo;
+
+ /* shall be cleared to zero, indicating xfer of data */
+ if (unlikely(ireason & ATAPI_COD))
+ goto atapi_check;
+
+ /* make sure transfer direction matches expected */
+ i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
+ if (unlikely(do_write != i_write))
+ goto atapi_check;
+
+ if (unlikely(!bytes))
+ goto atapi_check;
+
+ VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
+
+ if (unlikely(__atapi_pio_bytes(qc, bytes)))
+ goto err_out;
+ ata_sff_sync(ap); /* flush */
+
+ return;
+
+ atapi_check:
+ ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
+ ireason, bytes);
+ err_out:
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+}
+
+/**
+ * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
+ * @ap: the target ata_port
+ * @qc: qc on going
+ *
+ * RETURNS:
+ * 1 if ok in workqueue, 0 otherwise.
+ */
+static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
+ struct ata_queued_cmd *qc)
+{
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ return 1;
+
+ if (ap->hsm_task_state == HSM_ST_FIRST) {
+ if (qc->tf.protocol == ATA_PROT_PIO &&
+ (qc->tf.flags & ATA_TFLAG_WRITE))
+ return 1;
+
+ if (ata_is_atapi(qc->tf.protocol) &&
+ !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ return 1;
+ }
+
+ return 0;
+}
+
+/**
+ * ata_hsm_qc_complete - finish a qc running on standard HSM
+ * @qc: Command to complete
+ * @in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ * Finish @qc which is running on standard HSM.
+ *
+ * LOCKING:
+ * If @in_wq is zero, spin_lock_irqsave(host lock).
+ * Otherwise, none on entry and grabs host lock.
+ */
+static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
+{
+ struct ata_port *ap = qc->ap;
+
+ if (ap->ops->error_handler) {
+ if (in_wq) {
+ /* EH might have kicked in while host lock is
+ * released.
+ */
+ qc = ata_qc_from_tag(ap, qc->tag);
+ if (qc) {
+ if (likely(!(qc->err_mask & AC_ERR_HSM))) {
+ ata_sff_irq_on(ap);
+ ata_qc_complete(qc);
+ } else
+ ata_port_freeze(ap);
+ }
+ } else {
+ if (likely(!(qc->err_mask & AC_ERR_HSM)))
+ ata_qc_complete(qc);
+ else
+ ata_port_freeze(ap);
+ }
+ } else {
+ if (in_wq) {
+ ata_sff_irq_on(ap);
+ ata_qc_complete(qc);
+ } else
+ ata_qc_complete(qc);
+ }
+}
+
+/**
+ * ata_sff_hsm_move - move the HSM to the next state.
+ * @ap: the target ata_port
+ * @qc: qc on going
+ * @status: current device status
+ * @in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ * RETURNS:
+ * 1 when poll next status needed, 0 otherwise.
+ */
+int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
+ u8 status, int in_wq)
+{
+ struct ata_link *link = qc->dev->link;
+ struct ata_eh_info *ehi = &link->eh_info;
+ int poll_next;
+
+ lockdep_assert_held(ap->lock);
+
+ WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
+
+ /* Make sure ata_sff_qc_issue() does not throw things
+ * like DMA polling into the workqueue. Notice that
+ * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
+ */
+ WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
+
+fsm_start:
+ DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
+ ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
+
+ switch (ap->hsm_task_state) {
+ case HSM_ST_FIRST:
+ /* Send first data block or PACKET CDB */
+
+ /* If polling, we will stay in the work queue after
+ * sending the data. Otherwise, interrupt handler
+ * takes over after sending the data.
+ */
+ poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
+
+ /* check device status */
+ if (unlikely((status & ATA_DRQ) == 0)) {
+ /* handle BSY=0, DRQ=0 as error */
+ if (likely(status & (ATA_ERR | ATA_DF)))
+ /* device stops HSM for abort/error */
+ qc->err_mask |= AC_ERR_DEV;
+ else {
+ /* HSM violation. Let EH handle this */
+ ata_ehi_push_desc(ehi,
+ "ST_FIRST: !(DRQ|ERR|DF)");
+ qc->err_mask |= AC_ERR_HSM;
+ }
+
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* Device should not ask for data transfer (DRQ=1)
+ * when it finds something wrong.
+ * We ignore DRQ here and stop the HSM by
+ * changing hsm_task_state to HSM_ST_ERR and
+ * let the EH abort the command or reset the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ /* Some ATAPI tape drives forget to clear the ERR bit
+ * when doing the next command (mostly request sense).
+ * We ignore ERR here to workaround and proceed sending
+ * the CDB.
+ */
+ if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
+ ata_ehi_push_desc(ehi, "ST_FIRST: "
+ "DRQ=1 with device error, "
+ "dev_stat 0x%X", status);
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+ }
+
+ if (qc->tf.protocol == ATA_PROT_PIO) {
+ /* PIO data out protocol.
+ * send first data block.
+ */
+
+ /* ata_pio_sectors() might change the state
+ * to HSM_ST_LAST. so, the state is changed here
+ * before ata_pio_sectors().
+ */
+ ap->hsm_task_state = HSM_ST;
+ ata_pio_sectors(qc);
+ } else
+ /* send CDB */
+ atapi_send_cdb(ap, qc);
+
+ /* if polling, ata_sff_pio_task() handles the rest.
+ * otherwise, interrupt handler takes over from here.
+ */
+ break;
+
+ case HSM_ST:
+ /* complete command or read/write the data register */
+ if (qc->tf.protocol == ATAPI_PROT_PIO) {
+ /* ATAPI PIO protocol */
+ if ((status & ATA_DRQ) == 0) {
+ /* No more data to transfer or device error.
+ * Device error will be tagged in HSM_ST_LAST.
+ */
+ ap->hsm_task_state = HSM_ST_LAST;
+ goto fsm_start;
+ }
+
+ /* Device should not ask for data transfer (DRQ=1)
+ * when it finds something wrong.
+ * We ignore DRQ here and stop the HSM by
+ * changing hsm_task_state to HSM_ST_ERR and
+ * let the EH abort the command or reset the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ ata_ehi_push_desc(ehi, "ST-ATAPI: "
+ "DRQ=1 with device error, "
+ "dev_stat 0x%X", status);
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ atapi_pio_bytes(qc);
+
+ if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
+ /* bad ireason reported by device */
+ goto fsm_start;
+
+ } else {
+ /* ATA PIO protocol */
+ if (unlikely((status & ATA_DRQ) == 0)) {
+ /* handle BSY=0, DRQ=0 as error */
+ if (likely(status & (ATA_ERR | ATA_DF))) {
+ /* device stops HSM for abort/error */
+ qc->err_mask |= AC_ERR_DEV;
+
+ /* If diagnostic failed and this is
+ * IDENTIFY, it's likely a phantom
+ * device. Mark hint.
+ */
+ if (qc->dev->horkage &
+ ATA_HORKAGE_DIAGNOSTIC)
+ qc->err_mask |=
+ AC_ERR_NODEV_HINT;
+ } else {
+ /* HSM violation. Let EH handle this.
+ * Phantom devices also trigger this
+ * condition. Mark hint.
+ */
+ ata_ehi_push_desc(ehi, "ST-ATA: "
+ "DRQ=0 without device error, "
+ "dev_stat 0x%X", status);
+ qc->err_mask |= AC_ERR_HSM |
+ AC_ERR_NODEV_HINT;
+ }
+
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* For PIO reads, some devices may ask for
+ * data transfer (DRQ=1) alone with ERR=1.
+ * We respect DRQ here and transfer one
+ * block of junk data before changing the
+ * hsm_task_state to HSM_ST_ERR.
+ *
+ * For PIO writes, ERR=1 DRQ=1 doesn't make
+ * sense since the data block has been
+ * transferred to the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ /* data might be corrputed */
+ qc->err_mask |= AC_ERR_DEV;
+
+ if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
+ ata_pio_sectors(qc);
+ status = ata_wait_idle(ap);
+ }
+
+ if (status & (ATA_BUSY | ATA_DRQ)) {
+ ata_ehi_push_desc(ehi, "ST-ATA: "
+ "BUSY|DRQ persists on ERR|DF, "
+ "dev_stat 0x%X", status);
+ qc->err_mask |= AC_ERR_HSM;
+ }
+
+ /* There are oddball controllers with
+ * status register stuck at 0x7f and
+ * lbal/m/h at zero which makes it
+ * pass all other presence detection
+ * mechanisms we have. Set NODEV_HINT
+ * for it. Kernel bz#7241.
+ */
+ if (status == 0x7f)
+ qc->err_mask |= AC_ERR_NODEV_HINT;
+
+ /* ata_pio_sectors() might change the
+ * state to HSM_ST_LAST. so, the state
+ * is changed after ata_pio_sectors().
+ */
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ ata_pio_sectors(qc);
+
+ if (ap->hsm_task_state == HSM_ST_LAST &&
+ (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
+ /* all data read */
+ status = ata_wait_idle(ap);
+ goto fsm_start;
+ }
+ }
+
+ poll_next = 1;
+ break;
+
+ case HSM_ST_LAST:
+ if (unlikely(!ata_ok(status))) {
+ qc->err_mask |= __ac_err_mask(status);
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* no more data to transfer */
+ DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
+ ap->print_id, qc->dev->devno, status);
+
+ WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
+
+ ap->hsm_task_state = HSM_ST_IDLE;
+
+ /* complete taskfile transaction */
+ ata_hsm_qc_complete(qc, in_wq);
+
+ poll_next = 0;
+ break;
+
+ case HSM_ST_ERR:
+ ap->hsm_task_state = HSM_ST_IDLE;
+
+ /* complete taskfile transaction */
+ ata_hsm_qc_complete(qc, in_wq);
+
+ poll_next = 0;
+ break;
+ default:
+ poll_next = 0;
+ WARN(true, "ata%d: SFF host state machine in invalid state %d",
+ ap->print_id, ap->hsm_task_state);
+ }
+
+ return poll_next;
+}
+EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
+
+void ata_sff_queue_work(struct work_struct *work)
+{
+ queue_work(ata_sff_wq, work);
+}
+EXPORT_SYMBOL_GPL(ata_sff_queue_work);
+
+void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
+{
+ queue_delayed_work(ata_sff_wq, dwork, delay);
+}
+EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
+
+void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
+{
+ struct ata_port *ap = link->ap;
+
+ WARN_ON((ap->sff_pio_task_link != NULL) &&
+ (ap->sff_pio_task_link != link));
+ ap->sff_pio_task_link = link;
+
+ /* may fail if ata_sff_flush_pio_task() in progress */
+ ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
+}
+EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
+
+void ata_sff_flush_pio_task(struct ata_port *ap)
+{
+ DPRINTK("ENTER\n");
+
+ cancel_delayed_work_sync(&ap->sff_pio_task);
+
+ /*
+ * We wanna reset the HSM state to IDLE. If we do so without
+ * grabbing the port lock, critical sections protected by it which
+ * expect the HSM state to stay stable may get surprised. For
+ * example, we may set IDLE in between the time
+ * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
+ * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
+ */
+ spin_lock_irq(ap->lock);
+ ap->hsm_task_state = HSM_ST_IDLE;
+ spin_unlock_irq(ap->lock);
+
+ ap->sff_pio_task_link = NULL;
+
+ if (ata_msg_ctl(ap))
+ ata_port_dbg(ap, "%s: EXIT\n", __func__);
+}
+
+static void ata_sff_pio_task(struct work_struct *work)
+{
+ struct ata_port *ap =
+ container_of(work, struct ata_port, sff_pio_task.work);
+ struct ata_link *link = ap->sff_pio_task_link;
+ struct ata_queued_cmd *qc;
+ u8 status;
+ int poll_next;
+
+ spin_lock_irq(ap->lock);
+
+ BUG_ON(ap->sff_pio_task_link == NULL);
+ /* qc can be NULL if timeout occurred */
+ qc = ata_qc_from_tag(ap, link->active_tag);
+ if (!qc) {
+ ap->sff_pio_task_link = NULL;
+ goto out_unlock;
+ }
+
+fsm_start:
+ WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
+
+ /*
+ * This is purely heuristic. This is a fast path.
+ * Sometimes when we enter, BSY will be cleared in
+ * a chk-status or two. If not, the drive is probably seeking
+ * or something. Snooze for a couple msecs, then
+ * chk-status again. If still busy, queue delayed work.
+ */
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
+ if (status & ATA_BUSY) {
+ spin_unlock_irq(ap->lock);
+ ata_msleep(ap, 2);
+ spin_lock_irq(ap->lock);
+
+ status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
+ if (status & ATA_BUSY) {
+ ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
+ goto out_unlock;
+ }
+ }
+
+ /*
+ * hsm_move() may trigger another command to be processed.
+ * clean the link beforehand.
+ */
+ ap->sff_pio_task_link = NULL;
+ /* move the HSM */
+ poll_next = ata_sff_hsm_move(ap, qc, status, 1);
+
+ /* another command or interrupt handler
+ * may be running at this point.
+ */
+ if (poll_next)
+ goto fsm_start;
+out_unlock:
+ spin_unlock_irq(ap->lock);
+}
+
+/**
+ * ata_sff_qc_issue - issue taskfile to a SFF controller
+ * @qc: command to issue to device
+ *
+ * This function issues a PIO or NODATA command to a SFF
+ * controller.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * Zero on success, AC_ERR_* mask on failure
+ */
+unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_link *link = qc->dev->link;
+
+ /* Use polling pio if the LLD doesn't handle
+ * interrupt driven pio and atapi CDB interrupt.
+ */
+ if (ap->flags & ATA_FLAG_PIO_POLLING)
+ qc->tf.flags |= ATA_TFLAG_POLLING;
+
+ /* select the device */
+ ata_dev_select(ap, qc->dev->devno, 1, 0);
+
+ /* start the command */
+ switch (qc->tf.protocol) {
+ case ATA_PROT_NODATA:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+ ap->hsm_task_state = HSM_ST_LAST;
+
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_sff_queue_pio_task(link, 0);
+
+ break;
+
+ case ATA_PROT_PIO:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+
+ if (qc->tf.flags & ATA_TFLAG_WRITE) {
+ /* PIO data out protocol */
+ ap->hsm_task_state = HSM_ST_FIRST;
+ ata_sff_queue_pio_task(link, 0);
+
+ /* always send first data block using the
+ * ata_sff_pio_task() codepath.
+ */
+ } else {
+ /* PIO data in protocol */
+ ap->hsm_task_state = HSM_ST;
+
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_sff_queue_pio_task(link, 0);
+
+ /* if polling, ata_sff_pio_task() handles the
+ * rest. otherwise, interrupt handler takes
+ * over from here.
+ */
+ }
+
+ break;
+
+ case ATAPI_PROT_PIO:
+ case ATAPI_PROT_NODATA:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+
+ ap->hsm_task_state = HSM_ST_FIRST;
+
+ /* send cdb by polling if no cdb interrupt */
+ if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
+ (qc->tf.flags & ATA_TFLAG_POLLING))
+ ata_sff_queue_pio_task(link, 0);
+ break;
+
+ default:
+ return AC_ERR_SYSTEM;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
+
+/**
+ * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
+ * @qc: qc to fill result TF for
+ *
+ * @qc is finished and result TF needs to be filled. Fill it
+ * using ->sff_tf_read.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * true indicating that result TF is successfully filled.
+ */
+bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
+{
+ qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
+ return true;
+}
+EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
+
+static unsigned int ata_sff_idle_irq(struct ata_port *ap)
+{
+ ap->stats.idle_irq++;
+
+#ifdef ATA_IRQ_TRAP
+ if ((ap->stats.idle_irq % 1000) == 0) {
+ ap->ops->sff_check_status(ap);
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+ ata_port_warn(ap, "irq trap\n");
+ return 1;
+ }
+#endif
+ return 0; /* irq not handled */
+}
+
+static unsigned int __ata_sff_port_intr(struct ata_port *ap,
+ struct ata_queued_cmd *qc,
+ bool hsmv_on_idle)
+{
+ u8 status;
+
+ VPRINTK("ata%u: protocol %d task_state %d\n",
+ ap->print_id, qc->tf.protocol, ap->hsm_task_state);
+
+ /* Check whether we are expecting interrupt in this state */
+ switch (ap->hsm_task_state) {
+ case HSM_ST_FIRST:
+ /* Some pre-ATAPI-4 devices assert INTRQ
+ * at this state when ready to receive CDB.
+ */
+
+ /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
+ * The flag was turned on only for atapi devices. No
+ * need to check ata_is_atapi(qc->tf.protocol) again.
+ */
+ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ return ata_sff_idle_irq(ap);
+ break;
+ case HSM_ST_IDLE:
+ return ata_sff_idle_irq(ap);
+ default:
+ break;
+ }
+
+ /* check main status, clearing INTRQ if needed */
+ status = ata_sff_irq_status(ap);
+ if (status & ATA_BUSY) {
+ if (hsmv_on_idle) {
+ /* BMDMA engine is already stopped, we're screwed */
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ } else
+ return ata_sff_idle_irq(ap);
+ }
+
+ /* clear irq events */
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+
+ ata_sff_hsm_move(ap, qc, status, 0);
+
+ return 1; /* irq handled */
+}
+
+/**
+ * ata_sff_port_intr - Handle SFF port interrupt
+ * @ap: Port on which interrupt arrived (possibly...)
+ * @qc: Taskfile currently active in engine
+ *
+ * Handle port interrupt for given queued command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * One if interrupt was handled, zero if not (shared irq).
+ */
+unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ return __ata_sff_port_intr(ap, qc, false);
+}
+EXPORT_SYMBOL_GPL(ata_sff_port_intr);
+
+static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
+ unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
+{
+ struct ata_host *host = dev_instance;
+ bool retried = false;
+ unsigned int i;
+ unsigned int handled, idle, polling;
+ unsigned long flags;
+
+ /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
+ spin_lock_irqsave(&host->lock, flags);
+
+retry:
+ handled = idle = polling = 0;
+ for (i = 0; i < host->n_ports; i++) {
+ struct ata_port *ap = host->ports[i];
+ struct ata_queued_cmd *qc;
+
+ qc = ata_qc_from_tag(ap, ap->link.active_tag);
+ if (qc) {
+ if (!(qc->tf.flags & ATA_TFLAG_POLLING))
+ handled |= port_intr(ap, qc);
+ else
+ polling |= 1 << i;
+ } else
+ idle |= 1 << i;
+ }
+
+ /*
+ * If no port was expecting IRQ but the controller is actually
+ * asserting IRQ line, nobody cared will ensue. Check IRQ
+ * pending status if available and clear spurious IRQ.
+ */
+ if (!handled && !retried) {
+ bool retry = false;
+
+ for (i = 0; i < host->n_ports; i++) {
+ struct ata_port *ap = host->ports[i];
+
+ if (polling & (1 << i))
+ continue;
+
+ if (!ap->ops->sff_irq_check ||
+ !ap->ops->sff_irq_check(ap))
+ continue;
+
+ if (idle & (1 << i)) {
+ ap->ops->sff_check_status(ap);
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+ } else {
+ /* clear INTRQ and check if BUSY cleared */
+ if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
+ retry |= true;
+ /*
+ * With command in flight, we can't do
+ * sff_irq_clear() w/o racing with completion.
+ */
+ }
+ }
+
+ if (retry) {
+ retried = true;
+ goto retry;
+ }
+ }
+
+ spin_unlock_irqrestore(&host->lock, flags);
+
+ return IRQ_RETVAL(handled);
+}
+
+/**
+ * ata_sff_interrupt - Default SFF ATA host interrupt handler
+ * @irq: irq line (unused)
+ * @dev_instance: pointer to our ata_host information structure
+ *
+ * Default interrupt handler for PCI IDE devices. Calls
+ * ata_sff_port_intr() for each port that is not disabled.
+ *
+ * LOCKING:
+ * Obtains host lock during operation.
+ *
+ * RETURNS:
+ * IRQ_NONE or IRQ_HANDLED.
+ */
+irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
+{
+ return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
+}
+EXPORT_SYMBOL_GPL(ata_sff_interrupt);
+
+/**
+ * ata_sff_lost_interrupt - Check for an apparent lost interrupt
+ * @ap: port that appears to have timed out
+ *
+ * Called from the libata error handlers when the core code suspects
+ * an interrupt has been lost. If it has complete anything we can and
+ * then return. Interface must support altstatus for this faster
+ * recovery to occur.
+ *
+ * Locking:
+ * Caller holds host lock
+ */
+
+void ata_sff_lost_interrupt(struct ata_port *ap)
+{
+ u8 status;
+ struct ata_queued_cmd *qc;
+
+ /* Only one outstanding command per SFF channel */
+ qc = ata_qc_from_tag(ap, ap->link.active_tag);
+ /* We cannot lose an interrupt on a non-existent or polled command */
+ if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
+ return;
+ /* See if the controller thinks it is still busy - if so the command
+ isn't a lost IRQ but is still in progress */
+ status = ata_sff_altstatus(ap);
+ if (status & ATA_BUSY)
+ return;
+
+ /* There was a command running, we are no longer busy and we have
+ no interrupt. */
+ ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
+ status);
+ /* Run the host interrupt logic as if the interrupt had not been
+ lost */
+ ata_sff_port_intr(ap, qc);
+}
+EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
+
+/**
+ * ata_sff_freeze - Freeze SFF controller port
+ * @ap: port to freeze
+ *
+ * Freeze SFF controller port.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_sff_freeze(struct ata_port *ap)
+{
+ ap->ctl |= ATA_NIEN;
+ ap->last_ctl = ap->ctl;
+
+ if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
+ ata_sff_set_devctl(ap, ap->ctl);
+
+ /* Under certain circumstances, some controllers raise IRQ on
+ * ATA_NIEN manipulation. Also, many controllers fail to mask
+ * previously pending IRQ on ATA_NIEN assertion. Clear it.
+ */
+ ap->ops->sff_check_status(ap);
+
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_freeze);
+
+/**
+ * ata_sff_thaw - Thaw SFF controller port
+ * @ap: port to thaw
+ *
+ * Thaw SFF controller port.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_sff_thaw(struct ata_port *ap)
+{
+ /* clear & re-enable interrupts */
+ ap->ops->sff_check_status(ap);
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+ ata_sff_irq_on(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_thaw);
+
+/**
+ * ata_sff_prereset - prepare SFF link for reset
+ * @link: SFF link to be reset
+ * @deadline: deadline jiffies for the operation
+ *
+ * SFF link @link is about to be reset. Initialize it. It first
+ * calls ata_std_prereset() and wait for !BSY if the port is
+ * being softreset.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
+{
+ struct ata_eh_context *ehc = &link->eh_context;
+ int rc;
+
+ rc = ata_std_prereset(link, deadline);
+ if (rc)
+ return rc;
+
+ /* if we're about to do hardreset, nothing more to do */
+ if (ehc->i.action & ATA_EH_HARDRESET)
+ return 0;
+
+ /* wait for !BSY if we don't know that no device is attached */
+ if (!ata_link_offline(link)) {
+ rc = ata_sff_wait_ready(link, deadline);
+ if (rc && rc != -ENODEV) {
+ ata_link_warn(link,
+ "device not ready (errno=%d), forcing hardreset\n",
+ rc);
+ ehc->i.action |= ATA_EH_HARDRESET;
+ }
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_prereset);
+
+/**
+ * ata_devchk - PATA device presence detection
+ * @ap: ATA channel to examine
+ * @device: Device to examine (starting at zero)
+ *
+ * This technique was originally described in
+ * Hale Landis's ATADRVR (www.ata-atapi.com), and
+ * later found its way into the ATA/ATAPI spec.
+ *
+ * Write a pattern to the ATA shadow registers,
+ * and if a device is present, it will respond by
+ * correctly storing and echoing back the
+ * ATA shadow register contents.
+ *
+ * LOCKING:
+ * caller.
+ */
+static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ u8 nsect, lbal;
+
+ ap->ops->sff_dev_select(ap, device);
+
+ iowrite8(0x55, ioaddr->nsect_addr);
+ iowrite8(0xaa, ioaddr->lbal_addr);
+
+ iowrite8(0xaa, ioaddr->nsect_addr);
+ iowrite8(0x55, ioaddr->lbal_addr);
+
+ iowrite8(0x55, ioaddr->nsect_addr);
+ iowrite8(0xaa, ioaddr->lbal_addr);
+
+ nsect = ioread8(ioaddr->nsect_addr);
+ lbal = ioread8(ioaddr->lbal_addr);
+
+ if ((nsect == 0x55) && (lbal == 0xaa))
+ return 1; /* we found a device */
+
+ return 0; /* nothing found */
+}
+
+/**
+ * ata_sff_dev_classify - Parse returned ATA device signature
+ * @dev: ATA device to classify (starting at zero)
+ * @present: device seems present
+ * @r_err: Value of error register on completion
+ *
+ * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
+ * an ATA/ATAPI-defined set of values is placed in the ATA
+ * shadow registers, indicating the results of device detection
+ * and diagnostics.
+ *
+ * Select the ATA device, and read the values from the ATA shadow
+ * registers. Then parse according to the Error register value,
+ * and the spec-defined values examined by ata_dev_classify().
+ *
+ * LOCKING:
+ * caller.
+ *
+ * RETURNS:
+ * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
+ */
+unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
+ u8 *r_err)
+{
+ struct ata_port *ap = dev->link->ap;
+ struct ata_taskfile tf;
+ unsigned int class;
+ u8 err;
+
+ ap->ops->sff_dev_select(ap, dev->devno);
+
+ memset(&tf, 0, sizeof(tf));
+
+ ap->ops->sff_tf_read(ap, &tf);
+ err = tf.feature;
+ if (r_err)
+ *r_err = err;
+
+ /* see if device passed diags: continue and warn later */
+ if (err == 0)
+ /* diagnostic fail : do nothing _YET_ */
+ dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
+ else if (err == 1)
+ /* do nothing */ ;
+ else if ((dev->devno == 0) && (err == 0x81))
+ /* do nothing */ ;
+ else
+ return ATA_DEV_NONE;
+
+ /* determine if device is ATA or ATAPI */
+ class = ata_dev_classify(&tf);
+
+ if (class == ATA_DEV_UNKNOWN) {
+ /* If the device failed diagnostic, it's likely to
+ * have reported incorrect device signature too.
+ * Assume ATA device if the device seems present but
+ * device signature is invalid with diagnostic
+ * failure.
+ */
+ if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
+ class = ATA_DEV_ATA;
+ else
+ class = ATA_DEV_NONE;
+ } else if ((class == ATA_DEV_ATA) &&
+ (ap->ops->sff_check_status(ap) == 0))
+ class = ATA_DEV_NONE;
+
+ return class;
+}
+EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
+
+/**
+ * ata_sff_wait_after_reset - wait for devices to become ready after reset
+ * @link: SFF link which is just reset
+ * @devmask: mask of present devices
+ * @deadline: deadline jiffies for the operation
+ *
+ * Wait devices attached to SFF @link to become ready after
+ * reset. It contains preceding 150ms wait to avoid accessing TF
+ * status register too early.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -ENODEV if some or all of devices in @devmask
+ * don't seem to exist. -errno on other errors.
+ */
+int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
+ unsigned long deadline)
+{
+ struct ata_port *ap = link->ap;
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ unsigned int dev0 = devmask & (1 << 0);
+ unsigned int dev1 = devmask & (1 << 1);
+ int rc, ret = 0;
+
+ ata_msleep(ap, ATA_WAIT_AFTER_RESET);
+
+ /* always check readiness of the master device */
+ rc = ata_sff_wait_ready(link, deadline);
+ /* -ENODEV means the odd clown forgot the D7 pulldown resistor
+ * and TF status is 0xff, bail out on it too.
+ */
+ if (rc)
+ return rc;
+
+ /* if device 1 was found in ata_devchk, wait for register
+ * access briefly, then wait for BSY to clear.
+ */
+ if (dev1) {
+ int i;
+
+ ap->ops->sff_dev_select(ap, 1);
+
+ /* Wait for register access. Some ATAPI devices fail
+ * to set nsect/lbal after reset, so don't waste too
+ * much time on it. We're gonna wait for !BSY anyway.
+ */
+ for (i = 0; i < 2; i++) {
+ u8 nsect, lbal;
+
+ nsect = ioread8(ioaddr->nsect_addr);
+ lbal = ioread8(ioaddr->lbal_addr);
+ if ((nsect == 1) && (lbal == 1))
+ break;
+ ata_msleep(ap, 50); /* give drive a breather */
+ }
+
+ rc = ata_sff_wait_ready(link, deadline);
+ if (rc) {
+ if (rc != -ENODEV)
+ return rc;
+ ret = rc;
+ }
+ }
+
+ /* is all this really necessary? */
+ ap->ops->sff_dev_select(ap, 0);
+ if (dev1)
+ ap->ops->sff_dev_select(ap, 1);
+ if (dev0)
+ ap->ops->sff_dev_select(ap, 0);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
+
+static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
+ unsigned long deadline)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+
+ DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
+
+ if (ap->ioaddr.ctl_addr) {
+ /* software reset. causes dev0 to be selected */
+ iowrite8(ap->ctl, ioaddr->ctl_addr);
+ udelay(20); /* FIXME: flush */
+ iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
+ udelay(20); /* FIXME: flush */
+ iowrite8(ap->ctl, ioaddr->ctl_addr);
+ ap->last_ctl = ap->ctl;
+ }
+
+ /* wait the port to become ready */
+ return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
+}
+
+/**
+ * ata_sff_softreset - reset host port via ATA SRST
+ * @link: ATA link to reset
+ * @classes: resulting classes of attached devices
+ * @deadline: deadline jiffies for the operation
+ *
+ * Reset host port using ATA SRST.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
+ unsigned long deadline)
+{
+ struct ata_port *ap = link->ap;
+ unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
+ unsigned int devmask = 0;
+ int rc;
+ u8 err;
+
+ DPRINTK("ENTER\n");
+
+ /* determine if device 0/1 are present */
+ if (ata_devchk(ap, 0))
+ devmask |= (1 << 0);
+ if (slave_possible && ata_devchk(ap, 1))
+ devmask |= (1 << 1);
+
+ /* select device 0 again */
+ ap->ops->sff_dev_select(ap, 0);
+
+ /* issue bus reset */
+ DPRINTK("about to softreset, devmask=%x\n", devmask);
+ rc = ata_bus_softreset(ap, devmask, deadline);
+ /* if link is occupied, -ENODEV too is an error */
+ if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
+ ata_link_err(link, "SRST failed (errno=%d)\n", rc);
+ return rc;
+ }
+
+ /* determine by signature whether we have ATA or ATAPI devices */
+ classes[0] = ata_sff_dev_classify(&link->device[0],
+ devmask & (1 << 0), &err);
+ if (slave_possible && err != 0x81)
+ classes[1] = ata_sff_dev_classify(&link->device[1],
+ devmask & (1 << 1), &err);
+
+ DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_softreset);
+
+/**
+ * sata_sff_hardreset - reset host port via SATA phy reset
+ * @link: link to reset
+ * @class: resulting class of attached device
+ * @deadline: deadline jiffies for the operation
+ *
+ * SATA phy-reset host port using DET bits of SControl register,
+ * wait for !BSY and classify the attached device.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
+ unsigned long deadline)
+{
+ struct ata_eh_context *ehc = &link->eh_context;
+ const unsigned long *timing = sata_ehc_deb_timing(ehc);
+ bool online;
+ int rc;
+
+ rc = sata_link_hardreset(link, timing, deadline, &online,
+ ata_sff_check_ready);
+ if (online)
+ *class = ata_sff_dev_classify(link->device, 1, NULL);
+
+ DPRINTK("EXIT, class=%u\n", *class);
+ return rc;
+}
+EXPORT_SYMBOL_GPL(sata_sff_hardreset);
+
+/**
+ * ata_sff_postreset - SFF postreset callback
+ * @link: the target SFF ata_link
+ * @classes: classes of attached devices
+ *
+ * This function is invoked after a successful reset. It first
+ * calls ata_std_postreset() and performs SFF specific postreset
+ * processing.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
+{
+ struct ata_port *ap = link->ap;
+
+ ata_std_postreset(link, classes);
+
+ /* is double-select really necessary? */
+ if (classes[0] != ATA_DEV_NONE)
+ ap->ops->sff_dev_select(ap, 1);
+ if (classes[1] != ATA_DEV_NONE)
+ ap->ops->sff_dev_select(ap, 0);
+
+ /* bail out if no device is present */
+ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
+ DPRINTK("EXIT, no device\n");
+ return;
+ }
+
+ /* set up device control */
+ if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
+ ata_sff_set_devctl(ap, ap->ctl);
+ ap->last_ctl = ap->ctl;
+ }
+}
+EXPORT_SYMBOL_GPL(ata_sff_postreset);
+
+/**
+ * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
+ * @qc: command
+ *
+ * Drain the FIFO and device of any stuck data following a command
+ * failing to complete. In some cases this is necessary before a
+ * reset will recover the device.
+ *
+ */
+
+void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
+{
+ int count;
+ struct ata_port *ap;
+
+ /* We only need to flush incoming data when a command was running */
+ if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
+ return;
+
+ ap = qc->ap;
+ /* Drain up to 64K of data before we give up this recovery method */
+ for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
+ && count < 65536; count += 2)
+ ioread16(ap->ioaddr.data_addr);
+
+ /* Can become DEBUG later */
+ if (count)
+ ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
+
+}
+EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
+
+/**
+ * ata_sff_error_handler - Stock error handler for SFF controller
+ * @ap: port to handle error for
+ *
+ * Stock error handler for SFF controller. It can handle both
+ * PATA and SATA controllers. Many controllers should be able to
+ * use this EH as-is or with some added handling before and
+ * after.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_sff_error_handler(struct ata_port *ap)
+{
+ ata_reset_fn_t softreset = ap->ops->softreset;
+ ata_reset_fn_t hardreset = ap->ops->hardreset;
+ struct ata_queued_cmd *qc;
+ unsigned long flags;
+
+ qc = __ata_qc_from_tag(ap, ap->link.active_tag);
+ if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
+ qc = NULL;
+
+ spin_lock_irqsave(ap->lock, flags);
+
+ /*
+ * We *MUST* do FIFO draining before we issue a reset as
+ * several devices helpfully clear their internal state and
+ * will lock solid if we touch the data port post reset. Pass
+ * qc in case anyone wants to do different PIO/DMA recovery or
+ * has per command fixups
+ */
+ if (ap->ops->sff_drain_fifo)
+ ap->ops->sff_drain_fifo(qc);
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ /* ignore built-in hardresets if SCR access is not available */
+ if ((hardreset == sata_std_hardreset ||
+ hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
+ hardreset = NULL;
+
+ ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
+ ap->ops->postreset);
+}
+EXPORT_SYMBOL_GPL(ata_sff_error_handler);
+
+/**
+ * ata_sff_std_ports - initialize ioaddr with standard port offsets.
+ * @ioaddr: IO address structure to be initialized
+ *
+ * Utility function which initializes data_addr, error_addr,
+ * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
+ * device_addr, status_addr, and command_addr to standard offsets
+ * relative to cmd_addr.
+ *
+ * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
+ */
+void ata_sff_std_ports(struct ata_ioports *ioaddr)
+{
+ ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
+ ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
+ ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
+ ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
+ ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
+ ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
+ ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
+ ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
+ ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
+ ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
+}
+EXPORT_SYMBOL_GPL(ata_sff_std_ports);
+
+#ifdef CONFIG_PCI
+
+static int ata_resources_present(struct pci_dev *pdev, int port)
+{
+ int i;
+
+ /* Check the PCI resources for this channel are enabled */
+ port = port * 2;
+ for (i = 0; i < 2; i++) {
+ if (pci_resource_start(pdev, port + i) == 0 ||
+ pci_resource_len(pdev, port + i) == 0)
+ return 0;
+ }
+ return 1;
+}
+
+/**
+ * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
+ * @host: target ATA host
+ *
+ * Acquire native PCI ATA resources for @host and initialize the
+ * first two ports of @host accordingly. Ports marked dummy are
+ * skipped and allocation failure makes the port dummy.
+ *
+ * Note that native PCI resources are valid even for legacy hosts
+ * as we fix up pdev resources array early in boot, so this
+ * function can be used for both native and legacy SFF hosts.
+ *
+ * LOCKING:
+ * Inherited from calling layer (may sleep).
+ *
+ * RETURNS:
+ * 0 if at least one port is initialized, -ENODEV if no port is
+ * available.
+ */
+int ata_pci_sff_init_host(struct ata_host *host)
+{
+ struct device *gdev = host->dev;
+ struct pci_dev *pdev = to_pci_dev(gdev);
+ unsigned int mask = 0;
+ int i, rc;
+
+ /* request, iomap BARs and init port addresses accordingly */
+ for (i = 0; i < 2; i++) {
+ struct ata_port *ap = host->ports[i];
+ int base = i * 2;
+ void __iomem * const *iomap;
+
+ if (ata_port_is_dummy(ap))
+ continue;
+
+ /* Discard disabled ports. Some controllers show
+ * their unused channels this way. Disabled ports are
+ * made dummy.
+ */
+ if (!ata_resources_present(pdev, i)) {
+ ap->ops = &ata_dummy_port_ops;
+ continue;
+ }
+
+ rc = pcim_iomap_regions(pdev, 0x3 << base,
+ dev_driver_string(gdev));
+ if (rc) {
+ dev_warn(gdev,
+ "failed to request/iomap BARs for port %d (errno=%d)\n",
+ i, rc);
+ if (rc == -EBUSY)
+ pcim_pin_device(pdev);
+ ap->ops = &ata_dummy_port_ops;
+ continue;
+ }
+ host->iomap = iomap = pcim_iomap_table(pdev);
+
+ ap->ioaddr.cmd_addr = iomap[base];
+ ap->ioaddr.altstatus_addr =
+ ap->ioaddr.ctl_addr = (void __iomem *)
+ ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
+ ata_sff_std_ports(&ap->ioaddr);
+
+ ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
+ (unsigned long long)pci_resource_start(pdev, base),
+ (unsigned long long)pci_resource_start(pdev, base + 1));
+
+ mask |= 1 << i;
+ }
+
+ if (!mask) {
+ dev_err(gdev, "no available native port\n");
+ return -ENODEV;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
+
+/**
+ * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
+ * @pdev: target PCI device
+ * @ppi: array of port_info, must be enough for two ports
+ * @r_host: out argument for the initialized ATA host
+ *
+ * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
+ * all PCI resources and initialize it accordingly in one go.
+ *
+ * LOCKING:
+ * Inherited from calling layer (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_pci_sff_prepare_host(struct pci_dev *pdev,
+ const struct ata_port_info * const *ppi,
+ struct ata_host **r_host)
+{
+ struct ata_host *host;
+ int rc;
+
+ if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
+ return -ENOMEM;
+
+ host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
+ if (!host) {
+ dev_err(&pdev->dev, "failed to allocate ATA host\n");
+ rc = -ENOMEM;
+ goto err_out;
+ }
+
+ rc = ata_pci_sff_init_host(host);
+ if (rc)
+ goto err_out;
+
+ devres_remove_group(&pdev->dev, NULL);
+ *r_host = host;
+ return 0;
+
+err_out:
+ devres_release_group(&pdev->dev, NULL);
+ return rc;
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
+
+/**
+ * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
+ * @host: target SFF ATA host
+ * @irq_handler: irq_handler used when requesting IRQ(s)
+ * @sht: scsi_host_template to use when registering the host
+ *
+ * This is the counterpart of ata_host_activate() for SFF ATA
+ * hosts. This separate helper is necessary because SFF hosts
+ * use two separate interrupts in legacy mode.
+ *
+ * LOCKING:
+ * Inherited from calling layer (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_pci_sff_activate_host(struct ata_host *host,
+ irq_handler_t irq_handler,
+ struct scsi_host_template *sht)
+{
+ struct device *dev = host->dev;
+ struct pci_dev *pdev = to_pci_dev(dev);
+ const char *drv_name = dev_driver_string(host->dev);
+ int legacy_mode = 0, rc;
+
+ rc = ata_host_start(host);
+ if (rc)
+ return rc;
+
+ if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
+ u8 tmp8, mask = 0;
+
+ /*
+ * ATA spec says we should use legacy mode when one
+ * port is in legacy mode, but disabled ports on some
+ * PCI hosts appear as fixed legacy ports, e.g SB600/700
+ * on which the secondary port is not wired, so
+ * ignore ports that are marked as 'dummy' during
+ * this check
+ */
+ pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
+ if (!ata_port_is_dummy(host->ports[0]))
+ mask |= (1 << 0);
+ if (!ata_port_is_dummy(host->ports[1]))
+ mask |= (1 << 2);
+ if ((tmp8 & mask) != mask)
+ legacy_mode = 1;
+ }
+
+ if (!devres_open_group(dev, NULL, GFP_KERNEL))
+ return -ENOMEM;
+
+ if (!legacy_mode && pdev->irq) {
+ int i;
+
+ rc = devm_request_irq(dev, pdev->irq, irq_handler,
+ IRQF_SHARED, drv_name, host);
+ if (rc)
+ goto out;
+
+ for (i = 0; i < 2; i++) {
+ if (ata_port_is_dummy(host->ports[i]))
+ continue;
+ ata_port_desc(host->ports[i], "irq %d", pdev->irq);
+ }
+ } else if (legacy_mode) {
+ if (!ata_port_is_dummy(host->ports[0])) {
+ rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
+ irq_handler, IRQF_SHARED,
+ drv_name, host);
+ if (rc)
+ goto out;
+
+ ata_port_desc(host->ports[0], "irq %d",
+ ATA_PRIMARY_IRQ(pdev));
+ }
+
+ if (!ata_port_is_dummy(host->ports[1])) {
+ rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
+ irq_handler, IRQF_SHARED,
+ drv_name, host);
+ if (rc)
+ goto out;
+
+ ata_port_desc(host->ports[1], "irq %d",
+ ATA_SECONDARY_IRQ(pdev));
+ }
+ }
+
+ rc = ata_host_register(host, sht);
+out:
+ if (rc == 0)
+ devres_remove_group(dev, NULL);
+ else
+ devres_release_group(dev, NULL);
+
+ return rc;
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
+
+static const struct ata_port_info *ata_sff_find_valid_pi(
+ const struct ata_port_info * const *ppi)
+{
+ int i;
+
+ /* look up the first valid port_info */
+ for (i = 0; i < 2 && ppi[i]; i++)
+ if (ppi[i]->port_ops != &ata_dummy_port_ops)
+ return ppi[i];
+
+ return NULL;
+}
+
+static int ata_pci_init_one(struct pci_dev *pdev,
+ const struct ata_port_info * const *ppi,
+ struct scsi_host_template *sht, void *host_priv,
+ int hflags, bool bmdma)
+{
+ struct device *dev = &pdev->dev;
+ const struct ata_port_info *pi;
+ struct ata_host *host = NULL;
+ int rc;
+
+ DPRINTK("ENTER\n");
+
+ pi = ata_sff_find_valid_pi(ppi);
+ if (!pi) {
+ dev_err(&pdev->dev, "no valid port_info specified\n");
+ return -EINVAL;
+ }
+
+ if (!devres_open_group(dev, NULL, GFP_KERNEL))
+ return -ENOMEM;
+
+ rc = pcim_enable_device(pdev);
+ if (rc)
+ goto out;
+
+#ifdef CONFIG_ATA_BMDMA
+ if (bmdma)
+ /* prepare and activate BMDMA host */
+ rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
+ else
+#endif
+ /* prepare and activate SFF host */
+ rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
+ if (rc)
+ goto out;
+ host->private_data = host_priv;
+ host->flags |= hflags;
+
+#ifdef CONFIG_ATA_BMDMA
+ if (bmdma) {
+ pci_set_master(pdev);
+ rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
+ } else
+#endif
+ rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
+out:
+ if (rc == 0)
+ devres_remove_group(&pdev->dev, NULL);
+ else
+ devres_release_group(&pdev->dev, NULL);
+
+ return rc;
+}
+
+/**
+ * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
+ * @pdev: Controller to be initialized
+ * @ppi: array of port_info, must be enough for two ports
+ * @sht: scsi_host_template to use when registering the host
+ * @host_priv: host private_data
+ * @hflag: host flags
+ *
+ * This is a helper function which can be called from a driver's
+ * xxx_init_one() probe function if the hardware uses traditional
+ * IDE taskfile registers and is PIO only.
+ *
+ * ASSUMPTION:
+ * Nobody makes a single channel controller that appears solely as
+ * the secondary legacy port on PCI.
+ *
+ * LOCKING:
+ * Inherited from PCI layer (may sleep).
+ *
+ * RETURNS:
+ * Zero on success, negative on errno-based value on error.
+ */
+int ata_pci_sff_init_one(struct pci_dev *pdev,
+ const struct ata_port_info * const *ppi,
+ struct scsi_host_template *sht, void *host_priv, int hflag)
+{
+ return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
+
+#endif /* CONFIG_PCI */
+
+/*
+ * BMDMA support
+ */
+
+#ifdef CONFIG_ATA_BMDMA
+
+const struct ata_port_operations ata_bmdma_port_ops = {
+ .inherits = &ata_sff_port_ops,
+
+ .error_handler = ata_bmdma_error_handler,
+ .post_internal_cmd = ata_bmdma_post_internal_cmd,
+
+ .qc_prep = ata_bmdma_qc_prep,
+ .qc_issue = ata_bmdma_qc_issue,
+
+ .sff_irq_clear = ata_bmdma_irq_clear,
+ .bmdma_setup = ata_bmdma_setup,
+ .bmdma_start = ata_bmdma_start,
+ .bmdma_stop = ata_bmdma_stop,
+ .bmdma_status = ata_bmdma_status,
+
+ .port_start = ata_bmdma_port_start,
+};
+EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
+
+const struct ata_port_operations ata_bmdma32_port_ops = {
+ .inherits = &ata_bmdma_port_ops,
+
+ .sff_data_xfer = ata_sff_data_xfer32,
+ .port_start = ata_bmdma_port_start32,
+};
+EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
+
+/**
+ * ata_bmdma_fill_sg - Fill PCI IDE PRD table
+ * @qc: Metadata associated with taskfile to be transferred
+ *
+ * Fill PCI IDE PRD (scatter-gather) table with segments
+ * associated with the current disk command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ */
+static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_bmdma_prd *prd = ap->bmdma_prd;
+ struct scatterlist *sg;
+ unsigned int si, pi;
+
+ pi = 0;
+ for_each_sg(qc->sg, sg, qc->n_elem, si) {
+ u32 addr, offset;
+ u32 sg_len, len;
+
+ /* determine if physical DMA addr spans 64K boundary.
+ * Note h/w doesn't support 64-bit, so we unconditionally
+ * truncate dma_addr_t to u32.
+ */
+ addr = (u32) sg_dma_address(sg);
+ sg_len = sg_dma_len(sg);
+
+ while (sg_len) {
+ offset = addr & 0xffff;
+ len = sg_len;
+ if ((offset + sg_len) > 0x10000)
+ len = 0x10000 - offset;
+
+ prd[pi].addr = cpu_to_le32(addr);
+ prd[pi].flags_len = cpu_to_le32(len & 0xffff);
+ VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
+
+ pi++;
+ sg_len -= len;
+ addr += len;
+ }
+ }
+
+ prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+
+/**
+ * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
+ * @qc: Metadata associated with taskfile to be transferred
+ *
+ * Fill PCI IDE PRD (scatter-gather) table with segments
+ * associated with the current disk command. Perform the fill
+ * so that we avoid writing any length 64K records for
+ * controllers that don't follow the spec.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ */
+static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_bmdma_prd *prd = ap->bmdma_prd;
+ struct scatterlist *sg;
+ unsigned int si, pi;
+
+ pi = 0;
+ for_each_sg(qc->sg, sg, qc->n_elem, si) {
+ u32 addr, offset;
+ u32 sg_len, len, blen;
+
+ /* determine if physical DMA addr spans 64K boundary.
+ * Note h/w doesn't support 64-bit, so we unconditionally
+ * truncate dma_addr_t to u32.
+ */
+ addr = (u32) sg_dma_address(sg);
+ sg_len = sg_dma_len(sg);
+
+ while (sg_len) {
+ offset = addr & 0xffff;
+ len = sg_len;
+ if ((offset + sg_len) > 0x10000)
+ len = 0x10000 - offset;
+
+ blen = len & 0xffff;
+ prd[pi].addr = cpu_to_le32(addr);
+ if (blen == 0) {
+ /* Some PATA chipsets like the CS5530 can't
+ cope with 0x0000 meaning 64K as the spec
+ says */
+ prd[pi].flags_len = cpu_to_le32(0x8000);
+ blen = 0x8000;
+ prd[++pi].addr = cpu_to_le32(addr + 0x8000);
+ }
+ prd[pi].flags_len = cpu_to_le32(blen);
+ VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
+
+ pi++;
+ sg_len -= len;
+ addr += len;
+ }
+ }
+
+ prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+
+/**
+ * ata_bmdma_qc_prep - Prepare taskfile for submission
+ * @qc: Metadata associated with taskfile to be prepared
+ *
+ * Prepare ATA taskfile for submission.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
+{
+ if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+ return AC_ERR_OK;
+
+ ata_bmdma_fill_sg(qc);
+
+ return AC_ERR_OK;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
+
+/**
+ * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
+ * @qc: Metadata associated with taskfile to be prepared
+ *
+ * Prepare ATA taskfile for submission.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
+{
+ if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+ return AC_ERR_OK;
+
+ ata_bmdma_fill_sg_dumb(qc);
+
+ return AC_ERR_OK;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
+
+/**
+ * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
+ * @qc: command to issue to device
+ *
+ * This function issues a PIO, NODATA or DMA command to a
+ * SFF/BMDMA controller. PIO and NODATA are handled by
+ * ata_sff_qc_issue().
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * Zero on success, AC_ERR_* mask on failure
+ */
+unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_link *link = qc->dev->link;
+
+ /* defer PIO handling to sff_qc_issue */
+ if (!ata_is_dma(qc->tf.protocol))
+ return ata_sff_qc_issue(qc);
+
+ /* select the device */
+ ata_dev_select(ap, qc->dev->devno, 1, 0);
+
+ /* start the command */
+ switch (qc->tf.protocol) {
+ case ATA_PROT_DMA:
+ WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
+
+ ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
+ ap->ops->bmdma_setup(qc); /* set up bmdma */
+ ap->ops->bmdma_start(qc); /* initiate bmdma */
+ ap->hsm_task_state = HSM_ST_LAST;
+ break;
+
+ case ATAPI_PROT_DMA:
+ WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
+
+ ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
+ ap->ops->bmdma_setup(qc); /* set up bmdma */
+ ap->hsm_task_state = HSM_ST_FIRST;
+
+ /* send cdb by polling if no cdb interrupt */
+ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ ata_sff_queue_pio_task(link, 0);
+ break;
+
+ default:
+ WARN_ON(1);
+ return AC_ERR_SYSTEM;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
+
+/**
+ * ata_bmdma_port_intr - Handle BMDMA port interrupt
+ * @ap: Port on which interrupt arrived (possibly...)
+ * @qc: Taskfile currently active in engine
+ *
+ * Handle port interrupt for given queued command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ *
+ * RETURNS:
+ * One if interrupt was handled, zero if not (shared irq).
+ */
+unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ struct ata_eh_info *ehi = &ap->link.eh_info;
+ u8 host_stat = 0;
+ bool bmdma_stopped = false;
+ unsigned int handled;
+
+ if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
+ /* check status of DMA engine */
+ host_stat = ap->ops->bmdma_status(ap);
+ VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
+
+ /* if it's not our irq... */
+ if (!(host_stat & ATA_DMA_INTR))
+ return ata_sff_idle_irq(ap);
+
+ /* before we do anything else, clear DMA-Start bit */
+ ap->ops->bmdma_stop(qc);
+ bmdma_stopped = true;
+
+ if (unlikely(host_stat & ATA_DMA_ERR)) {
+ /* error when transferring data to/from memory */
+ qc->err_mask |= AC_ERR_HOST_BUS;
+ ap->hsm_task_state = HSM_ST_ERR;
+ }
+ }
+
+ handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
+
+ if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
+ ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
+
+ return handled;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
+
+/**
+ * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
+ * @irq: irq line (unused)
+ * @dev_instance: pointer to our ata_host information structure
+ *
+ * Default interrupt handler for PCI IDE devices. Calls
+ * ata_bmdma_port_intr() for each port that is not disabled.
+ *
+ * LOCKING:
+ * Obtains host lock during operation.
+ *
+ * RETURNS:
+ * IRQ_NONE or IRQ_HANDLED.
+ */
+irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
+{
+ return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
+
+/**
+ * ata_bmdma_error_handler - Stock error handler for BMDMA controller
+ * @ap: port to handle error for
+ *
+ * Stock error handler for BMDMA controller. It can handle both
+ * PATA and SATA controllers. Most BMDMA controllers should be
+ * able to use this EH as-is or with some added handling before
+ * and after.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_bmdma_error_handler(struct ata_port *ap)
+{
+ struct ata_queued_cmd *qc;
+ unsigned long flags;
+ bool thaw = false;
+
+ qc = __ata_qc_from_tag(ap, ap->link.active_tag);
+ if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
+ qc = NULL;
+
+ /* reset PIO HSM and stop DMA engine */
+ spin_lock_irqsave(ap->lock, flags);
+
+ if (qc && ata_is_dma(qc->tf.protocol)) {
+ u8 host_stat;
+
+ host_stat = ap->ops->bmdma_status(ap);
+
+ /* BMDMA controllers indicate host bus error by
+ * setting DMA_ERR bit and timing out. As it wasn't
+ * really a timeout event, adjust error mask and
+ * cancel frozen state.
+ */
+ if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
+ qc->err_mask = AC_ERR_HOST_BUS;
+ thaw = true;
+ }
+
+ ap->ops->bmdma_stop(qc);
+
+ /* if we're gonna thaw, make sure IRQ is clear */
+ if (thaw) {
+ ap->ops->sff_check_status(ap);
+ if (ap->ops->sff_irq_clear)
+ ap->ops->sff_irq_clear(ap);
+ }
+ }
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ if (thaw)
+ ata_eh_thaw_port(ap);
+
+ ata_sff_error_handler(ap);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
+
+/**
+ * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
+ * @qc: internal command to clean up
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ unsigned long flags;
+
+ if (ata_is_dma(qc->tf.protocol)) {
+ spin_lock_irqsave(ap->lock, flags);
+ ap->ops->bmdma_stop(qc);
+ spin_unlock_irqrestore(ap->lock, flags);
+ }
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
+
+/**
+ * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
+ * @ap: Port associated with this ATA transaction.
+ *
+ * Clear interrupt and error flags in DMA status register.
+ *
+ * May be used as the irq_clear() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_irq_clear(struct ata_port *ap)
+{
+ void __iomem *mmio = ap->ioaddr.bmdma_addr;
+
+ if (!mmio)
+ return;
+
+ iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
+
+/**
+ * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
+ * @qc: Info associated with this ATA transaction.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_setup(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
+ u8 dmactl;
+
+ /* load PRD table addr. */
+ mb(); /* make sure PRD table writes are visible to controller */
+ iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
+
+ /* specify data direction, triple-check start bit is clear */
+ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+ dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
+ if (!rw)
+ dmactl |= ATA_DMA_WR;
+ iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+
+ /* issue r/w command */
+ ap->ops->sff_exec_command(ap, &qc->tf);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_setup);
+
+/**
+ * ata_bmdma_start - Start a PCI IDE BMDMA transaction
+ * @qc: Info associated with this ATA transaction.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_start(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ u8 dmactl;
+
+ /* start host DMA transaction */
+ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+ iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+
+ /* Strictly, one may wish to issue an ioread8() here, to
+ * flush the mmio write. However, control also passes
+ * to the hardware at this point, and it will interrupt
+ * us when we are to resume control. So, in effect,
+ * we don't care when the mmio write flushes.
+ * Further, a read of the DMA status register _immediately_
+ * following the write may not be what certain flaky hardware
+ * is expected, so I think it is best to not add a readb()
+ * without first all the MMIO ATA cards/mobos.
+ * Or maybe I'm just being paranoid.
+ *
+ * FIXME: The posting of this write means I/O starts are
+ * unnecessarily delayed for MMIO
+ */
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_start);
+
+/**
+ * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
+ * @qc: Command we are ending DMA for
+ *
+ * Clears the ATA_DMA_START flag in the dma control register
+ *
+ * May be used as the bmdma_stop() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_stop(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ void __iomem *mmio = ap->ioaddr.bmdma_addr;
+
+ /* clear start/stop bit */
+ iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
+ mmio + ATA_DMA_CMD);
+
+ /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
+ ata_sff_dma_pause(ap);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_stop);
+
+/**
+ * ata_bmdma_status - Read PCI IDE BMDMA status
+ * @ap: Port associated with this ATA transaction.
+ *
+ * Read and return BMDMA status register.
+ *
+ * May be used as the bmdma_status() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host lock)
+ */
+u8 ata_bmdma_status(struct ata_port *ap)
+{
+ return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_status);
+
+
+/**
+ * ata_bmdma_port_start - Set port up for bmdma.
+ * @ap: Port to initialize
+ *
+ * Called just after data structures for each port are
+ * initialized. Allocates space for PRD table.
+ *
+ * May be used as the port_start() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+int ata_bmdma_port_start(struct ata_port *ap)
+{
+ if (ap->mwdma_mask || ap->udma_mask) {
+ ap->bmdma_prd =
+ dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
+ &ap->bmdma_prd_dma, GFP_KERNEL);
+ if (!ap->bmdma_prd)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
+
+/**
+ * ata_bmdma_port_start32 - Set port up for dma.
+ * @ap: Port to initialize
+ *
+ * Called just after data structures for each port are
+ * initialized. Enables 32bit PIO and allocates space for PRD
+ * table.
+ *
+ * May be used as the port_start() entry in ata_port_operations for
+ * devices that are capable of 32bit PIO.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+int ata_bmdma_port_start32(struct ata_port *ap)
+{
+ ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
+ return ata_bmdma_port_start(ap);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
+
+#ifdef CONFIG_PCI
+
+/**
+ * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
+ * @pdev: PCI device
+ *
+ * Some PCI ATA devices report simplex mode but in fact can be told to
+ * enter non simplex mode. This implements the necessary logic to
+ * perform the task on such devices. Calling it on other devices will
+ * have -undefined- behaviour.
+ */
+int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
+{
+ unsigned long bmdma = pci_resource_start(pdev, 4);
+ u8 simplex;
+
+ if (bmdma == 0)
+ return -ENOENT;
+
+ simplex = inb(bmdma + 0x02);
+ outb(simplex & 0x60, bmdma + 0x02);
+ simplex = inb(bmdma + 0x02);
+ if (simplex & 0x80)
+ return -EOPNOTSUPP;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
+
+static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
+{
+ int i;
+
+ dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
+
+ for (i = 0; i < 2; i++) {
+ host->ports[i]->mwdma_mask = 0;
+ host->ports[i]->udma_mask = 0;
+ }
+}
+
+/**
+ * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
+ * @host: target ATA host
+ *
+ * Acquire PCI BMDMA resources and initialize @host accordingly.
+ *
+ * LOCKING:
+ * Inherited from calling layer (may sleep).
+ */
+void ata_pci_bmdma_init(struct ata_host *host)
+{
+ struct device *gdev = host->dev;
+ struct pci_dev *pdev = to_pci_dev(gdev);
+ int i, rc;
+
+ /* No BAR4 allocation: No DMA */
+ if (pci_resource_start(pdev, 4) == 0) {
+ ata_bmdma_nodma(host, "BAR4 is zero");
+ return;
+ }
+
+ /*
+ * Some controllers require BMDMA region to be initialized
+ * even if DMA is not in use to clear IRQ status via
+ * ->sff_irq_clear method. Try to initialize bmdma_addr
+ * regardless of dma masks.
+ */
+ rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
+ if (rc)
+ ata_bmdma_nodma(host, "failed to set dma mask");
+
+ /* request and iomap DMA region */
+ rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
+ if (rc) {
+ ata_bmdma_nodma(host, "failed to request/iomap BAR4");
+ return;
+ }
+ host->iomap = pcim_iomap_table(pdev);
+
+ for (i = 0; i < 2; i++) {
+ struct ata_port *ap = host->ports[i];
+ void __iomem *bmdma = host->iomap[4] + 8 * i;
+
+ if (ata_port_is_dummy(ap))
+ continue;
+
+ ap->ioaddr.bmdma_addr = bmdma;
+ if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
+ (ioread8(bmdma + 2) & 0x80))
+ host->flags |= ATA_HOST_SIMPLEX;
+
+ ata_port_desc(ap, "bmdma 0x%llx",
+ (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
+ }
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
+
+/**
+ * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
+ * @pdev: target PCI device
+ * @ppi: array of port_info, must be enough for two ports
+ * @r_host: out argument for the initialized ATA host
+ *
+ * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
+ * resources and initialize it accordingly in one go.
+ *
+ * LOCKING:
+ * Inherited from calling layer (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
+ const struct ata_port_info * const * ppi,
+ struct ata_host **r_host)
+{
+ int rc;
+
+ rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
+ if (rc)
+ return rc;
+
+ ata_pci_bmdma_init(*r_host);
+ return 0;
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
+
+/**
+ * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
+ * @pdev: Controller to be initialized
+ * @ppi: array of port_info, must be enough for two ports
+ * @sht: scsi_host_template to use when registering the host
+ * @host_priv: host private_data
+ * @hflags: host flags
+ *
+ * This function is similar to ata_pci_sff_init_one() but also
+ * takes care of BMDMA initialization.
+ *
+ * LOCKING:
+ * Inherited from PCI layer (may sleep).
+ *
+ * RETURNS:
+ * Zero on success, negative on errno-based value on error.
+ */
+int ata_pci_bmdma_init_one(struct pci_dev *pdev,
+ const struct ata_port_info * const * ppi,
+ struct scsi_host_template *sht, void *host_priv,
+ int hflags)
+{
+ return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
+
+#endif /* CONFIG_PCI */
+#endif /* CONFIG_ATA_BMDMA */
+
+/**
+ * ata_sff_port_init - Initialize SFF/BMDMA ATA port
+ * @ap: Port to initialize
+ *
+ * Called on port allocation to initialize SFF/BMDMA specific
+ * fields.
+ *
+ * LOCKING:
+ * None.
+ */
+void ata_sff_port_init(struct ata_port *ap)
+{
+ INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
+ ap->ctl = ATA_DEVCTL_OBS;
+ ap->last_ctl = 0xFF;
+}
+
+int __init ata_sff_init(void)
+{
+ ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
+ if (!ata_sff_wq)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void ata_sff_exit(void)
+{
+ destroy_workqueue(ata_sff_wq);
+}