diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/cpuidle/governors/teo.c | |
parent | Initial commit. (diff) | |
download | linux-430c2fc249ea5c0536abd21c23382884005c9093.tar.xz linux-430c2fc249ea5c0536abd21c23382884005c9093.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/cpuidle/governors/teo.c')
-rw-r--r-- | drivers/cpuidle/governors/teo.c | 494 |
1 files changed, 494 insertions, 0 deletions
diff --git a/drivers/cpuidle/governors/teo.c b/drivers/cpuidle/governors/teo.c new file mode 100644 index 000000000..6deaaf5f0 --- /dev/null +++ b/drivers/cpuidle/governors/teo.c @@ -0,0 +1,494 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Timer events oriented CPU idle governor + * + * Copyright (C) 2018 Intel Corporation + * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> + * + * The idea of this governor is based on the observation that on many systems + * timer events are two or more orders of magnitude more frequent than any + * other interrupts, so they are likely to be the most significant source of CPU + * wakeups from idle states. Moreover, information about what happened in the + * (relatively recent) past can be used to estimate whether or not the deepest + * idle state with target residency within the time to the closest timer is + * likely to be suitable for the upcoming idle time of the CPU and, if not, then + * which of the shallower idle states to choose. + * + * Of course, non-timer wakeup sources are more important in some use cases and + * they can be covered by taking a few most recent idle time intervals of the + * CPU into account. However, even in that case it is not necessary to consider + * idle duration values greater than the time till the closest timer, as the + * patterns that they may belong to produce average values close enough to + * the time till the closest timer (sleep length) anyway. + * + * Thus this governor estimates whether or not the upcoming idle time of the CPU + * is likely to be significantly shorter than the sleep length and selects an + * idle state for it in accordance with that, as follows: + * + * - Find an idle state on the basis of the sleep length and state statistics + * collected over time: + * + * o Find the deepest idle state whose target residency is less than or equal + * to the sleep length. + * + * o Select it if it matched both the sleep length and the observed idle + * duration in the past more often than it matched the sleep length alone + * (i.e. the observed idle duration was significantly shorter than the sleep + * length matched by it). + * + * o Otherwise, select the shallower state with the greatest matched "early" + * wakeups metric. + * + * - If the majority of the most recent idle duration values are below the + * target residency of the idle state selected so far, use those values to + * compute the new expected idle duration and find an idle state matching it + * (which has to be shallower than the one selected so far). + */ + +#include <linux/cpuidle.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/sched/clock.h> +#include <linux/tick.h> + +/* + * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value + * is used for decreasing metrics on a regular basis. + */ +#define PULSE 1024 +#define DECAY_SHIFT 3 + +/* + * Number of the most recent idle duration values to take into consideration for + * the detection of wakeup patterns. + */ +#define INTERVALS 8 + +/** + * struct teo_idle_state - Idle state data used by the TEO cpuidle governor. + * @early_hits: "Early" CPU wakeups "matching" this state. + * @hits: "On time" CPU wakeups "matching" this state. + * @misses: CPU wakeups "missing" this state. + * + * A CPU wakeup is "matched" by a given idle state if the idle duration measured + * after the wakeup is between the target residency of that state and the target + * residency of the next one (or if this is the deepest available idle state, it + * "matches" a CPU wakeup when the measured idle duration is at least equal to + * its target residency). + * + * Also, from the TEO governor perspective, a CPU wakeup from idle is "early" if + * it occurs significantly earlier than the closest expected timer event (that + * is, early enough to match an idle state shallower than the one matching the + * time till the closest timer event). Otherwise, the wakeup is "on time", or + * it is a "hit". + * + * A "miss" occurs when the given state doesn't match the wakeup, but it matches + * the time till the closest timer event used for idle state selection. + */ +struct teo_idle_state { + unsigned int early_hits; + unsigned int hits; + unsigned int misses; +}; + +/** + * struct teo_cpu - CPU data used by the TEO cpuidle governor. + * @time_span_ns: Time between idle state selection and post-wakeup update. + * @sleep_length_ns: Time till the closest timer event (at the selection time). + * @states: Idle states data corresponding to this CPU. + * @interval_idx: Index of the most recent saved idle interval. + * @intervals: Saved idle duration values. + */ +struct teo_cpu { + u64 time_span_ns; + u64 sleep_length_ns; + struct teo_idle_state states[CPUIDLE_STATE_MAX]; + int interval_idx; + u64 intervals[INTERVALS]; +}; + +static DEFINE_PER_CPU(struct teo_cpu, teo_cpus); + +/** + * teo_update - Update CPU data after wakeup. + * @drv: cpuidle driver containing state data. + * @dev: Target CPU. + */ +static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev) +{ + struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); + int i, idx_hit = -1, idx_timer = -1; + u64 measured_ns; + + if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) { + /* + * One of the safety nets has triggered or the wakeup was close + * enough to the closest timer event expected at the idle state + * selection time to be discarded. + */ + measured_ns = U64_MAX; + } else { + u64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns; + + /* + * The computations below are to determine whether or not the + * (saved) time till the next timer event and the measured idle + * duration fall into the same "bin", so use last_residency_ns + * for that instead of time_span_ns which includes the cpuidle + * overhead. + */ + measured_ns = dev->last_residency_ns; + /* + * The delay between the wakeup and the first instruction + * executed by the CPU is not likely to be worst-case every + * time, so take 1/2 of the exit latency as a very rough + * approximation of the average of it. + */ + if (measured_ns >= lat_ns) + measured_ns -= lat_ns / 2; + else + measured_ns /= 2; + } + + /* + * Decay the "early hits" metric for all of the states and find the + * states matching the sleep length and the measured idle duration. + */ + for (i = 0; i < drv->state_count; i++) { + unsigned int early_hits = cpu_data->states[i].early_hits; + + cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT; + + if (drv->states[i].target_residency_ns <= cpu_data->sleep_length_ns) { + idx_timer = i; + if (drv->states[i].target_residency_ns <= measured_ns) + idx_hit = i; + } + } + + /* + * Update the "hits" and "misses" data for the state matching the sleep + * length. If it matches the measured idle duration too, this is a hit, + * so increase the "hits" metric for it then. Otherwise, this is a + * miss, so increase the "misses" metric for it. In the latter case + * also increase the "early hits" metric for the state that actually + * matches the measured idle duration. + */ + if (idx_timer >= 0) { + unsigned int hits = cpu_data->states[idx_timer].hits; + unsigned int misses = cpu_data->states[idx_timer].misses; + + hits -= hits >> DECAY_SHIFT; + misses -= misses >> DECAY_SHIFT; + + if (idx_timer > idx_hit) { + misses += PULSE; + if (idx_hit >= 0) + cpu_data->states[idx_hit].early_hits += PULSE; + } else { + hits += PULSE; + } + + cpu_data->states[idx_timer].misses = misses; + cpu_data->states[idx_timer].hits = hits; + } + + /* + * Save idle duration values corresponding to non-timer wakeups for + * pattern detection. + */ + cpu_data->intervals[cpu_data->interval_idx++] = measured_ns; + if (cpu_data->interval_idx >= INTERVALS) + cpu_data->interval_idx = 0; +} + +static bool teo_time_ok(u64 interval_ns) +{ + return !tick_nohz_tick_stopped() || interval_ns >= TICK_NSEC; +} + +/** + * teo_find_shallower_state - Find shallower idle state matching given duration. + * @drv: cpuidle driver containing state data. + * @dev: Target CPU. + * @state_idx: Index of the capping idle state. + * @duration_ns: Idle duration value to match. + */ +static int teo_find_shallower_state(struct cpuidle_driver *drv, + struct cpuidle_device *dev, int state_idx, + u64 duration_ns) +{ + int i; + + for (i = state_idx - 1; i >= 0; i--) { + if (dev->states_usage[i].disable) + continue; + + state_idx = i; + if (drv->states[i].target_residency_ns <= duration_ns) + break; + } + return state_idx; +} + +/** + * teo_select - Selects the next idle state to enter. + * @drv: cpuidle driver containing state data. + * @dev: Target CPU. + * @stop_tick: Indication on whether or not to stop the scheduler tick. + */ +static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, + bool *stop_tick) +{ + struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); + s64 latency_req = cpuidle_governor_latency_req(dev->cpu); + u64 duration_ns; + unsigned int hits, misses, early_hits; + int max_early_idx, prev_max_early_idx, constraint_idx, idx, i; + ktime_t delta_tick; + + if (dev->last_state_idx >= 0) { + teo_update(drv, dev); + dev->last_state_idx = -1; + } + + cpu_data->time_span_ns = local_clock(); + + duration_ns = tick_nohz_get_sleep_length(&delta_tick); + cpu_data->sleep_length_ns = duration_ns; + + hits = 0; + misses = 0; + early_hits = 0; + max_early_idx = -1; + prev_max_early_idx = -1; + constraint_idx = drv->state_count; + idx = -1; + + for (i = 0; i < drv->state_count; i++) { + struct cpuidle_state *s = &drv->states[i]; + + if (dev->states_usage[i].disable) { + /* + * Ignore disabled states with target residencies beyond + * the anticipated idle duration. + */ + if (s->target_residency_ns > duration_ns) + continue; + + /* + * This state is disabled, so the range of idle duration + * values corresponding to it is covered by the current + * candidate state, but still the "hits" and "misses" + * metrics of the disabled state need to be used to + * decide whether or not the state covering the range in + * question is good enough. + */ + hits = cpu_data->states[i].hits; + misses = cpu_data->states[i].misses; + + if (early_hits >= cpu_data->states[i].early_hits || + idx < 0) + continue; + + /* + * If the current candidate state has been the one with + * the maximum "early hits" metric so far, the "early + * hits" metric of the disabled state replaces the + * current "early hits" count to avoid selecting a + * deeper state with lower "early hits" metric. + */ + if (max_early_idx == idx) { + early_hits = cpu_data->states[i].early_hits; + continue; + } + + /* + * The current candidate state is closer to the disabled + * one than the current maximum "early hits" state, so + * replace the latter with it, but in case the maximum + * "early hits" state index has not been set so far, + * check if the current candidate state is not too + * shallow for that role. + */ + if (teo_time_ok(drv->states[idx].target_residency_ns)) { + prev_max_early_idx = max_early_idx; + early_hits = cpu_data->states[i].early_hits; + max_early_idx = idx; + } + + continue; + } + + if (idx < 0) { + idx = i; /* first enabled state */ + hits = cpu_data->states[i].hits; + misses = cpu_data->states[i].misses; + } + + if (s->target_residency_ns > duration_ns) + break; + + if (s->exit_latency_ns > latency_req && constraint_idx > i) + constraint_idx = i; + + idx = i; + hits = cpu_data->states[i].hits; + misses = cpu_data->states[i].misses; + + if (early_hits < cpu_data->states[i].early_hits && + teo_time_ok(drv->states[i].target_residency_ns)) { + prev_max_early_idx = max_early_idx; + early_hits = cpu_data->states[i].early_hits; + max_early_idx = i; + } + } + + /* + * If the "hits" metric of the idle state matching the sleep length is + * greater than its "misses" metric, that is the one to use. Otherwise, + * it is more likely that one of the shallower states will match the + * idle duration observed after wakeup, so take the one with the maximum + * "early hits" metric, but if that cannot be determined, just use the + * state selected so far. + */ + if (hits <= misses) { + /* + * The current candidate state is not suitable, so take the one + * whose "early hits" metric is the maximum for the range of + * shallower states. + */ + if (idx == max_early_idx) + max_early_idx = prev_max_early_idx; + + if (max_early_idx >= 0) { + idx = max_early_idx; + duration_ns = drv->states[idx].target_residency_ns; + } + } + + /* + * If there is a latency constraint, it may be necessary to use a + * shallower idle state than the one selected so far. + */ + if (constraint_idx < idx) + idx = constraint_idx; + + if (idx < 0) { + idx = 0; /* No states enabled. Must use 0. */ + } else if (idx > 0) { + unsigned int count = 0; + u64 sum = 0; + + /* + * Count and sum the most recent idle duration values less than + * the current expected idle duration value. + */ + for (i = 0; i < INTERVALS; i++) { + u64 val = cpu_data->intervals[i]; + + if (val >= duration_ns) + continue; + + count++; + sum += val; + } + + /* + * Give up unless the majority of the most recent idle duration + * values are in the interesting range. + */ + if (count > INTERVALS / 2) { + u64 avg_ns = div64_u64(sum, count); + + /* + * Avoid spending too much time in an idle state that + * would be too shallow. + */ + if (teo_time_ok(avg_ns)) { + duration_ns = avg_ns; + if (drv->states[idx].target_residency_ns > avg_ns) + idx = teo_find_shallower_state(drv, dev, + idx, avg_ns); + } + } + } + + /* + * Don't stop the tick if the selected state is a polling one or if the + * expected idle duration is shorter than the tick period length. + */ + if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) || + duration_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) { + *stop_tick = false; + + /* + * The tick is not going to be stopped, so if the target + * residency of the state to be returned is not within the time + * till the closest timer including the tick, try to correct + * that. + */ + if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick) + idx = teo_find_shallower_state(drv, dev, idx, delta_tick); + } + + return idx; +} + +/** + * teo_reflect - Note that governor data for the CPU need to be updated. + * @dev: Target CPU. + * @state: Entered state. + */ +static void teo_reflect(struct cpuidle_device *dev, int state) +{ + struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); + + dev->last_state_idx = state; + /* + * If the wakeup was not "natural", but triggered by one of the safety + * nets, assume that the CPU might have been idle for the entire sleep + * length time. + */ + if (dev->poll_time_limit || + (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) { + dev->poll_time_limit = false; + cpu_data->time_span_ns = cpu_data->sleep_length_ns; + } else { + cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns; + } +} + +/** + * teo_enable_device - Initialize the governor's data for the target CPU. + * @drv: cpuidle driver (not used). + * @dev: Target CPU. + */ +static int teo_enable_device(struct cpuidle_driver *drv, + struct cpuidle_device *dev) +{ + struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu); + int i; + + memset(cpu_data, 0, sizeof(*cpu_data)); + + for (i = 0; i < INTERVALS; i++) + cpu_data->intervals[i] = U64_MAX; + + return 0; +} + +static struct cpuidle_governor teo_governor = { + .name = "teo", + .rating = 19, + .enable = teo_enable_device, + .select = teo_select, + .reflect = teo_reflect, +}; + +static int __init teo_governor_init(void) +{ + return cpuidle_register_governor(&teo_governor); +} + +postcore_initcall(teo_governor_init); |