summaryrefslogtreecommitdiffstats
path: root/drivers/cpuidle/governors/teo.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/cpuidle/governors/teo.c
parentInitial commit. (diff)
downloadlinux-430c2fc249ea5c0536abd21c23382884005c9093.tar.xz
linux-430c2fc249ea5c0536abd21c23382884005c9093.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/cpuidle/governors/teo.c')
-rw-r--r--drivers/cpuidle/governors/teo.c494
1 files changed, 494 insertions, 0 deletions
diff --git a/drivers/cpuidle/governors/teo.c b/drivers/cpuidle/governors/teo.c
new file mode 100644
index 000000000..6deaaf5f0
--- /dev/null
+++ b/drivers/cpuidle/governors/teo.c
@@ -0,0 +1,494 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Timer events oriented CPU idle governor
+ *
+ * Copyright (C) 2018 Intel Corporation
+ * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ *
+ * The idea of this governor is based on the observation that on many systems
+ * timer events are two or more orders of magnitude more frequent than any
+ * other interrupts, so they are likely to be the most significant source of CPU
+ * wakeups from idle states. Moreover, information about what happened in the
+ * (relatively recent) past can be used to estimate whether or not the deepest
+ * idle state with target residency within the time to the closest timer is
+ * likely to be suitable for the upcoming idle time of the CPU and, if not, then
+ * which of the shallower idle states to choose.
+ *
+ * Of course, non-timer wakeup sources are more important in some use cases and
+ * they can be covered by taking a few most recent idle time intervals of the
+ * CPU into account. However, even in that case it is not necessary to consider
+ * idle duration values greater than the time till the closest timer, as the
+ * patterns that they may belong to produce average values close enough to
+ * the time till the closest timer (sleep length) anyway.
+ *
+ * Thus this governor estimates whether or not the upcoming idle time of the CPU
+ * is likely to be significantly shorter than the sleep length and selects an
+ * idle state for it in accordance with that, as follows:
+ *
+ * - Find an idle state on the basis of the sleep length and state statistics
+ * collected over time:
+ *
+ * o Find the deepest idle state whose target residency is less than or equal
+ * to the sleep length.
+ *
+ * o Select it if it matched both the sleep length and the observed idle
+ * duration in the past more often than it matched the sleep length alone
+ * (i.e. the observed idle duration was significantly shorter than the sleep
+ * length matched by it).
+ *
+ * o Otherwise, select the shallower state with the greatest matched "early"
+ * wakeups metric.
+ *
+ * - If the majority of the most recent idle duration values are below the
+ * target residency of the idle state selected so far, use those values to
+ * compute the new expected idle duration and find an idle state matching it
+ * (which has to be shallower than the one selected so far).
+ */
+
+#include <linux/cpuidle.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/sched/clock.h>
+#include <linux/tick.h>
+
+/*
+ * The PULSE value is added to metrics when they grow and the DECAY_SHIFT value
+ * is used for decreasing metrics on a regular basis.
+ */
+#define PULSE 1024
+#define DECAY_SHIFT 3
+
+/*
+ * Number of the most recent idle duration values to take into consideration for
+ * the detection of wakeup patterns.
+ */
+#define INTERVALS 8
+
+/**
+ * struct teo_idle_state - Idle state data used by the TEO cpuidle governor.
+ * @early_hits: "Early" CPU wakeups "matching" this state.
+ * @hits: "On time" CPU wakeups "matching" this state.
+ * @misses: CPU wakeups "missing" this state.
+ *
+ * A CPU wakeup is "matched" by a given idle state if the idle duration measured
+ * after the wakeup is between the target residency of that state and the target
+ * residency of the next one (or if this is the deepest available idle state, it
+ * "matches" a CPU wakeup when the measured idle duration is at least equal to
+ * its target residency).
+ *
+ * Also, from the TEO governor perspective, a CPU wakeup from idle is "early" if
+ * it occurs significantly earlier than the closest expected timer event (that
+ * is, early enough to match an idle state shallower than the one matching the
+ * time till the closest timer event). Otherwise, the wakeup is "on time", or
+ * it is a "hit".
+ *
+ * A "miss" occurs when the given state doesn't match the wakeup, but it matches
+ * the time till the closest timer event used for idle state selection.
+ */
+struct teo_idle_state {
+ unsigned int early_hits;
+ unsigned int hits;
+ unsigned int misses;
+};
+
+/**
+ * struct teo_cpu - CPU data used by the TEO cpuidle governor.
+ * @time_span_ns: Time between idle state selection and post-wakeup update.
+ * @sleep_length_ns: Time till the closest timer event (at the selection time).
+ * @states: Idle states data corresponding to this CPU.
+ * @interval_idx: Index of the most recent saved idle interval.
+ * @intervals: Saved idle duration values.
+ */
+struct teo_cpu {
+ u64 time_span_ns;
+ u64 sleep_length_ns;
+ struct teo_idle_state states[CPUIDLE_STATE_MAX];
+ int interval_idx;
+ u64 intervals[INTERVALS];
+};
+
+static DEFINE_PER_CPU(struct teo_cpu, teo_cpus);
+
+/**
+ * teo_update - Update CPU data after wakeup.
+ * @drv: cpuidle driver containing state data.
+ * @dev: Target CPU.
+ */
+static void teo_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
+{
+ struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
+ int i, idx_hit = -1, idx_timer = -1;
+ u64 measured_ns;
+
+ if (cpu_data->time_span_ns >= cpu_data->sleep_length_ns) {
+ /*
+ * One of the safety nets has triggered or the wakeup was close
+ * enough to the closest timer event expected at the idle state
+ * selection time to be discarded.
+ */
+ measured_ns = U64_MAX;
+ } else {
+ u64 lat_ns = drv->states[dev->last_state_idx].exit_latency_ns;
+
+ /*
+ * The computations below are to determine whether or not the
+ * (saved) time till the next timer event and the measured idle
+ * duration fall into the same "bin", so use last_residency_ns
+ * for that instead of time_span_ns which includes the cpuidle
+ * overhead.
+ */
+ measured_ns = dev->last_residency_ns;
+ /*
+ * The delay between the wakeup and the first instruction
+ * executed by the CPU is not likely to be worst-case every
+ * time, so take 1/2 of the exit latency as a very rough
+ * approximation of the average of it.
+ */
+ if (measured_ns >= lat_ns)
+ measured_ns -= lat_ns / 2;
+ else
+ measured_ns /= 2;
+ }
+
+ /*
+ * Decay the "early hits" metric for all of the states and find the
+ * states matching the sleep length and the measured idle duration.
+ */
+ for (i = 0; i < drv->state_count; i++) {
+ unsigned int early_hits = cpu_data->states[i].early_hits;
+
+ cpu_data->states[i].early_hits -= early_hits >> DECAY_SHIFT;
+
+ if (drv->states[i].target_residency_ns <= cpu_data->sleep_length_ns) {
+ idx_timer = i;
+ if (drv->states[i].target_residency_ns <= measured_ns)
+ idx_hit = i;
+ }
+ }
+
+ /*
+ * Update the "hits" and "misses" data for the state matching the sleep
+ * length. If it matches the measured idle duration too, this is a hit,
+ * so increase the "hits" metric for it then. Otherwise, this is a
+ * miss, so increase the "misses" metric for it. In the latter case
+ * also increase the "early hits" metric for the state that actually
+ * matches the measured idle duration.
+ */
+ if (idx_timer >= 0) {
+ unsigned int hits = cpu_data->states[idx_timer].hits;
+ unsigned int misses = cpu_data->states[idx_timer].misses;
+
+ hits -= hits >> DECAY_SHIFT;
+ misses -= misses >> DECAY_SHIFT;
+
+ if (idx_timer > idx_hit) {
+ misses += PULSE;
+ if (idx_hit >= 0)
+ cpu_data->states[idx_hit].early_hits += PULSE;
+ } else {
+ hits += PULSE;
+ }
+
+ cpu_data->states[idx_timer].misses = misses;
+ cpu_data->states[idx_timer].hits = hits;
+ }
+
+ /*
+ * Save idle duration values corresponding to non-timer wakeups for
+ * pattern detection.
+ */
+ cpu_data->intervals[cpu_data->interval_idx++] = measured_ns;
+ if (cpu_data->interval_idx >= INTERVALS)
+ cpu_data->interval_idx = 0;
+}
+
+static bool teo_time_ok(u64 interval_ns)
+{
+ return !tick_nohz_tick_stopped() || interval_ns >= TICK_NSEC;
+}
+
+/**
+ * teo_find_shallower_state - Find shallower idle state matching given duration.
+ * @drv: cpuidle driver containing state data.
+ * @dev: Target CPU.
+ * @state_idx: Index of the capping idle state.
+ * @duration_ns: Idle duration value to match.
+ */
+static int teo_find_shallower_state(struct cpuidle_driver *drv,
+ struct cpuidle_device *dev, int state_idx,
+ u64 duration_ns)
+{
+ int i;
+
+ for (i = state_idx - 1; i >= 0; i--) {
+ if (dev->states_usage[i].disable)
+ continue;
+
+ state_idx = i;
+ if (drv->states[i].target_residency_ns <= duration_ns)
+ break;
+ }
+ return state_idx;
+}
+
+/**
+ * teo_select - Selects the next idle state to enter.
+ * @drv: cpuidle driver containing state data.
+ * @dev: Target CPU.
+ * @stop_tick: Indication on whether or not to stop the scheduler tick.
+ */
+static int teo_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
+ bool *stop_tick)
+{
+ struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
+ s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
+ u64 duration_ns;
+ unsigned int hits, misses, early_hits;
+ int max_early_idx, prev_max_early_idx, constraint_idx, idx, i;
+ ktime_t delta_tick;
+
+ if (dev->last_state_idx >= 0) {
+ teo_update(drv, dev);
+ dev->last_state_idx = -1;
+ }
+
+ cpu_data->time_span_ns = local_clock();
+
+ duration_ns = tick_nohz_get_sleep_length(&delta_tick);
+ cpu_data->sleep_length_ns = duration_ns;
+
+ hits = 0;
+ misses = 0;
+ early_hits = 0;
+ max_early_idx = -1;
+ prev_max_early_idx = -1;
+ constraint_idx = drv->state_count;
+ idx = -1;
+
+ for (i = 0; i < drv->state_count; i++) {
+ struct cpuidle_state *s = &drv->states[i];
+
+ if (dev->states_usage[i].disable) {
+ /*
+ * Ignore disabled states with target residencies beyond
+ * the anticipated idle duration.
+ */
+ if (s->target_residency_ns > duration_ns)
+ continue;
+
+ /*
+ * This state is disabled, so the range of idle duration
+ * values corresponding to it is covered by the current
+ * candidate state, but still the "hits" and "misses"
+ * metrics of the disabled state need to be used to
+ * decide whether or not the state covering the range in
+ * question is good enough.
+ */
+ hits = cpu_data->states[i].hits;
+ misses = cpu_data->states[i].misses;
+
+ if (early_hits >= cpu_data->states[i].early_hits ||
+ idx < 0)
+ continue;
+
+ /*
+ * If the current candidate state has been the one with
+ * the maximum "early hits" metric so far, the "early
+ * hits" metric of the disabled state replaces the
+ * current "early hits" count to avoid selecting a
+ * deeper state with lower "early hits" metric.
+ */
+ if (max_early_idx == idx) {
+ early_hits = cpu_data->states[i].early_hits;
+ continue;
+ }
+
+ /*
+ * The current candidate state is closer to the disabled
+ * one than the current maximum "early hits" state, so
+ * replace the latter with it, but in case the maximum
+ * "early hits" state index has not been set so far,
+ * check if the current candidate state is not too
+ * shallow for that role.
+ */
+ if (teo_time_ok(drv->states[idx].target_residency_ns)) {
+ prev_max_early_idx = max_early_idx;
+ early_hits = cpu_data->states[i].early_hits;
+ max_early_idx = idx;
+ }
+
+ continue;
+ }
+
+ if (idx < 0) {
+ idx = i; /* first enabled state */
+ hits = cpu_data->states[i].hits;
+ misses = cpu_data->states[i].misses;
+ }
+
+ if (s->target_residency_ns > duration_ns)
+ break;
+
+ if (s->exit_latency_ns > latency_req && constraint_idx > i)
+ constraint_idx = i;
+
+ idx = i;
+ hits = cpu_data->states[i].hits;
+ misses = cpu_data->states[i].misses;
+
+ if (early_hits < cpu_data->states[i].early_hits &&
+ teo_time_ok(drv->states[i].target_residency_ns)) {
+ prev_max_early_idx = max_early_idx;
+ early_hits = cpu_data->states[i].early_hits;
+ max_early_idx = i;
+ }
+ }
+
+ /*
+ * If the "hits" metric of the idle state matching the sleep length is
+ * greater than its "misses" metric, that is the one to use. Otherwise,
+ * it is more likely that one of the shallower states will match the
+ * idle duration observed after wakeup, so take the one with the maximum
+ * "early hits" metric, but if that cannot be determined, just use the
+ * state selected so far.
+ */
+ if (hits <= misses) {
+ /*
+ * The current candidate state is not suitable, so take the one
+ * whose "early hits" metric is the maximum for the range of
+ * shallower states.
+ */
+ if (idx == max_early_idx)
+ max_early_idx = prev_max_early_idx;
+
+ if (max_early_idx >= 0) {
+ idx = max_early_idx;
+ duration_ns = drv->states[idx].target_residency_ns;
+ }
+ }
+
+ /*
+ * If there is a latency constraint, it may be necessary to use a
+ * shallower idle state than the one selected so far.
+ */
+ if (constraint_idx < idx)
+ idx = constraint_idx;
+
+ if (idx < 0) {
+ idx = 0; /* No states enabled. Must use 0. */
+ } else if (idx > 0) {
+ unsigned int count = 0;
+ u64 sum = 0;
+
+ /*
+ * Count and sum the most recent idle duration values less than
+ * the current expected idle duration value.
+ */
+ for (i = 0; i < INTERVALS; i++) {
+ u64 val = cpu_data->intervals[i];
+
+ if (val >= duration_ns)
+ continue;
+
+ count++;
+ sum += val;
+ }
+
+ /*
+ * Give up unless the majority of the most recent idle duration
+ * values are in the interesting range.
+ */
+ if (count > INTERVALS / 2) {
+ u64 avg_ns = div64_u64(sum, count);
+
+ /*
+ * Avoid spending too much time in an idle state that
+ * would be too shallow.
+ */
+ if (teo_time_ok(avg_ns)) {
+ duration_ns = avg_ns;
+ if (drv->states[idx].target_residency_ns > avg_ns)
+ idx = teo_find_shallower_state(drv, dev,
+ idx, avg_ns);
+ }
+ }
+ }
+
+ /*
+ * Don't stop the tick if the selected state is a polling one or if the
+ * expected idle duration is shorter than the tick period length.
+ */
+ if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
+ duration_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
+ *stop_tick = false;
+
+ /*
+ * The tick is not going to be stopped, so if the target
+ * residency of the state to be returned is not within the time
+ * till the closest timer including the tick, try to correct
+ * that.
+ */
+ if (idx > 0 && drv->states[idx].target_residency_ns > delta_tick)
+ idx = teo_find_shallower_state(drv, dev, idx, delta_tick);
+ }
+
+ return idx;
+}
+
+/**
+ * teo_reflect - Note that governor data for the CPU need to be updated.
+ * @dev: Target CPU.
+ * @state: Entered state.
+ */
+static void teo_reflect(struct cpuidle_device *dev, int state)
+{
+ struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
+
+ dev->last_state_idx = state;
+ /*
+ * If the wakeup was not "natural", but triggered by one of the safety
+ * nets, assume that the CPU might have been idle for the entire sleep
+ * length time.
+ */
+ if (dev->poll_time_limit ||
+ (tick_nohz_idle_got_tick() && cpu_data->sleep_length_ns > TICK_NSEC)) {
+ dev->poll_time_limit = false;
+ cpu_data->time_span_ns = cpu_data->sleep_length_ns;
+ } else {
+ cpu_data->time_span_ns = local_clock() - cpu_data->time_span_ns;
+ }
+}
+
+/**
+ * teo_enable_device - Initialize the governor's data for the target CPU.
+ * @drv: cpuidle driver (not used).
+ * @dev: Target CPU.
+ */
+static int teo_enable_device(struct cpuidle_driver *drv,
+ struct cpuidle_device *dev)
+{
+ struct teo_cpu *cpu_data = per_cpu_ptr(&teo_cpus, dev->cpu);
+ int i;
+
+ memset(cpu_data, 0, sizeof(*cpu_data));
+
+ for (i = 0; i < INTERVALS; i++)
+ cpu_data->intervals[i] = U64_MAX;
+
+ return 0;
+}
+
+static struct cpuidle_governor teo_governor = {
+ .name = "teo",
+ .rating = 19,
+ .enable = teo_enable_device,
+ .select = teo_select,
+ .reflect = teo_reflect,
+};
+
+static int __init teo_governor_init(void)
+{
+ return cpuidle_register_governor(&teo_governor);
+}
+
+postcore_initcall(teo_governor_init);