summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c')
-rw-r--r--drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c539
1 files changed, 539 insertions, 0 deletions
diff --git a/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c b/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
new file mode 100644
index 000000000..1dff48558
--- /dev/null
+++ b/drivers/crypto/allwinner/sun4i-ss/sun4i-ss-hash.c
@@ -0,0 +1,539 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
+ *
+ * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
+ *
+ * This file add support for MD5 and SHA1.
+ *
+ * You could find the datasheet in Documentation/arm/sunxi.rst
+ */
+#include "sun4i-ss.h"
+#include <asm/unaligned.h>
+#include <linux/scatterlist.h>
+
+/* This is a totally arbitrary value */
+#define SS_TIMEOUT 100
+
+int sun4i_hash_crainit(struct crypto_tfm *tfm)
+{
+ struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
+ struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
+ struct sun4i_ss_alg_template *algt;
+ int err;
+
+ memset(op, 0, sizeof(struct sun4i_tfm_ctx));
+
+ algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
+ op->ss = algt->ss;
+
+ err = pm_runtime_get_sync(op->ss->dev);
+ if (err < 0)
+ return err;
+
+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+ sizeof(struct sun4i_req_ctx));
+ return 0;
+}
+
+void sun4i_hash_craexit(struct crypto_tfm *tfm)
+{
+ struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
+
+ pm_runtime_put(op->ss->dev);
+}
+
+/* sun4i_hash_init: initialize request context */
+int sun4i_hash_init(struct ahash_request *areq)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
+ struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
+ struct sun4i_ss_alg_template *algt;
+
+ memset(op, 0, sizeof(struct sun4i_req_ctx));
+
+ algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
+ op->mode = algt->mode;
+
+ return 0;
+}
+
+int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+ struct md5_state *octx = out;
+ int i;
+
+ octx->byte_count = op->byte_count + op->len;
+
+ memcpy(octx->block, op->buf, op->len);
+
+ if (op->byte_count) {
+ for (i = 0; i < 4; i++)
+ octx->hash[i] = op->hash[i];
+ } else {
+ octx->hash[0] = SHA1_H0;
+ octx->hash[1] = SHA1_H1;
+ octx->hash[2] = SHA1_H2;
+ octx->hash[3] = SHA1_H3;
+ }
+
+ return 0;
+}
+
+int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+ const struct md5_state *ictx = in;
+ int i;
+
+ sun4i_hash_init(areq);
+
+ op->byte_count = ictx->byte_count & ~0x3F;
+ op->len = ictx->byte_count & 0x3F;
+
+ memcpy(op->buf, ictx->block, op->len);
+
+ for (i = 0; i < 4; i++)
+ op->hash[i] = ictx->hash[i];
+
+ return 0;
+}
+
+int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+ struct sha1_state *octx = out;
+ int i;
+
+ octx->count = op->byte_count + op->len;
+
+ memcpy(octx->buffer, op->buf, op->len);
+
+ if (op->byte_count) {
+ for (i = 0; i < 5; i++)
+ octx->state[i] = op->hash[i];
+ } else {
+ octx->state[0] = SHA1_H0;
+ octx->state[1] = SHA1_H1;
+ octx->state[2] = SHA1_H2;
+ octx->state[3] = SHA1_H3;
+ octx->state[4] = SHA1_H4;
+ }
+
+ return 0;
+}
+
+int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+ const struct sha1_state *ictx = in;
+ int i;
+
+ sun4i_hash_init(areq);
+
+ op->byte_count = ictx->count & ~0x3F;
+ op->len = ictx->count & 0x3F;
+
+ memcpy(op->buf, ictx->buffer, op->len);
+
+ for (i = 0; i < 5; i++)
+ op->hash[i] = ictx->state[i];
+
+ return 0;
+}
+
+#define SS_HASH_UPDATE 1
+#define SS_HASH_FINAL 2
+
+/*
+ * sun4i_hash_update: update hash engine
+ *
+ * Could be used for both SHA1 and MD5
+ * Write data by step of 32bits and put then in the SS.
+ *
+ * Since we cannot leave partial data and hash state in the engine,
+ * we need to get the hash state at the end of this function.
+ * We can get the hash state every 64 bytes
+ *
+ * So the first work is to get the number of bytes to write to SS modulo 64
+ * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
+ *
+ * So at the begin of update()
+ * if op->len + areq->nbytes < 64
+ * => all data will be written to wait buffer (op->buf) and end=0
+ * if not, write all data from op->buf to the device and position end to
+ * complete to 64bytes
+ *
+ * example 1:
+ * update1 60o => op->len=60
+ * update2 60o => need one more word to have 64 bytes
+ * end=4
+ * so write all data from op->buf and one word of SGs
+ * write remaining data in op->buf
+ * final state op->len=56
+ */
+static int sun4i_hash(struct ahash_request *areq)
+{
+ /*
+ * i is the total bytes read from SGs, to be compared to areq->nbytes
+ * i is important because we cannot rely on SG length since the sum of
+ * SG->length could be greater than areq->nbytes
+ *
+ * end is the position when we need to stop writing to the device,
+ * to be compared to i
+ *
+ * in_i: advancement in the current SG
+ */
+ unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
+ unsigned int in_i = 0;
+ u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
+ struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
+ struct sun4i_ss_ctx *ss = tfmctx->ss;
+ struct scatterlist *in_sg = areq->src;
+ struct sg_mapping_iter mi;
+ int in_r, err = 0;
+ size_t copied = 0;
+ u32 wb = 0;
+
+ dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
+ __func__, crypto_tfm_alg_name(areq->base.tfm),
+ op->byte_count, areq->nbytes, op->mode,
+ op->len, op->hash[0]);
+
+ if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
+ return 0;
+
+ /* protect against overflow */
+ if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
+ dev_err(ss->dev, "Cannot process too large request\n");
+ return -EINVAL;
+ }
+
+ if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
+ /* linearize data to op->buf */
+ copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
+ op->buf + op->len, areq->nbytes, 0);
+ op->len += copied;
+ return 0;
+ }
+
+ spin_lock_bh(&ss->slock);
+
+ /*
+ * if some data have been processed before,
+ * we need to restore the partial hash state
+ */
+ if (op->byte_count) {
+ ivmode = SS_IV_ARBITRARY;
+ for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
+ writel(op->hash[i], ss->base + SS_IV0 + i * 4);
+ }
+ /* Enable the device */
+ writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
+
+ if (!(op->flags & SS_HASH_UPDATE))
+ goto hash_final;
+
+ /* start of handling data */
+ if (!(op->flags & SS_HASH_FINAL)) {
+ end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
+
+ if (end > areq->nbytes || areq->nbytes - end > 63) {
+ dev_err(ss->dev, "ERROR: Bound error %u %u\n",
+ end, areq->nbytes);
+ err = -EINVAL;
+ goto release_ss;
+ }
+ } else {
+ /* Since we have the flag final, we can go up to modulo 4 */
+ if (areq->nbytes < 4)
+ end = 0;
+ else
+ end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
+ }
+
+ /* TODO if SGlen % 4 and !op->len then DMA */
+ i = 1;
+ while (in_sg && i == 1) {
+ if (in_sg->length % 4)
+ i = 0;
+ in_sg = sg_next(in_sg);
+ }
+ if (i == 1 && !op->len && areq->nbytes)
+ dev_dbg(ss->dev, "We can DMA\n");
+
+ i = 0;
+ sg_miter_start(&mi, areq->src, sg_nents(areq->src),
+ SG_MITER_FROM_SG | SG_MITER_ATOMIC);
+ sg_miter_next(&mi);
+ in_i = 0;
+
+ do {
+ /*
+ * we need to linearize in two case:
+ * - the buffer is already used
+ * - the SG does not have enough byte remaining ( < 4)
+ */
+ if (op->len || (mi.length - in_i) < 4) {
+ /*
+ * if we have entered here we have two reason to stop
+ * - the buffer is full
+ * - reach the end
+ */
+ while (op->len < 64 && i < end) {
+ /* how many bytes we can read from current SG */
+ in_r = min(end - i, 64 - op->len);
+ in_r = min_t(size_t, mi.length - in_i, in_r);
+ memcpy(op->buf + op->len, mi.addr + in_i, in_r);
+ op->len += in_r;
+ i += in_r;
+ in_i += in_r;
+ if (in_i == mi.length) {
+ sg_miter_next(&mi);
+ in_i = 0;
+ }
+ }
+ if (op->len > 3 && !(op->len % 4)) {
+ /* write buf to the device */
+ writesl(ss->base + SS_RXFIFO, op->buf,
+ op->len / 4);
+ op->byte_count += op->len;
+ op->len = 0;
+ }
+ }
+ if (mi.length - in_i > 3 && i < end) {
+ /* how many bytes we can read from current SG */
+ in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
+ in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
+ /* how many bytes we can write in the device*/
+ todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
+ writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
+ op->byte_count += todo * 4;
+ i += todo * 4;
+ in_i += todo * 4;
+ rx_cnt -= todo;
+ if (!rx_cnt) {
+ spaces = readl(ss->base + SS_FCSR);
+ rx_cnt = SS_RXFIFO_SPACES(spaces);
+ }
+ if (in_i == mi.length) {
+ sg_miter_next(&mi);
+ in_i = 0;
+ }
+ }
+ } while (i < end);
+
+ /*
+ * Now we have written to the device all that we can,
+ * store the remaining bytes in op->buf
+ */
+ if ((areq->nbytes - i) < 64) {
+ while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
+ /* how many bytes we can read from current SG */
+ in_r = min(areq->nbytes - i, 64 - op->len);
+ in_r = min_t(size_t, mi.length - in_i, in_r);
+ memcpy(op->buf + op->len, mi.addr + in_i, in_r);
+ op->len += in_r;
+ i += in_r;
+ in_i += in_r;
+ if (in_i == mi.length) {
+ sg_miter_next(&mi);
+ in_i = 0;
+ }
+ }
+ }
+
+ sg_miter_stop(&mi);
+
+ /*
+ * End of data process
+ * Now if we have the flag final go to finalize part
+ * If not, store the partial hash
+ */
+ if (op->flags & SS_HASH_FINAL)
+ goto hash_final;
+
+ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
+ i = 0;
+ do {
+ v = readl(ss->base + SS_CTL);
+ i++;
+ } while (i < SS_TIMEOUT && (v & SS_DATA_END));
+ if (unlikely(i >= SS_TIMEOUT)) {
+ dev_err_ratelimited(ss->dev,
+ "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
+ i, SS_TIMEOUT, v, areq->nbytes);
+ err = -EIO;
+ goto release_ss;
+ }
+
+ /*
+ * The datasheet isn't very clear about when to retrieve the digest. The
+ * bit SS_DATA_END is cleared when the engine has processed the data and
+ * when the digest is computed *but* it doesn't mean the digest is
+ * available in the digest registers. Hence the delay to be sure we can
+ * read it.
+ */
+ ndelay(1);
+
+ for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
+ op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
+
+ goto release_ss;
+
+/*
+ * hash_final: finalize hashing operation
+ *
+ * If we have some remaining bytes, we write them.
+ * Then ask the SS for finalizing the hashing operation
+ *
+ * I do not check RX FIFO size in this function since the size is 32
+ * after each enabling and this function neither write more than 32 words.
+ * If we come from the update part, we cannot have more than
+ * 3 remaining bytes to write and SS is fast enough to not care about it.
+ */
+
+hash_final:
+
+ /* write the remaining words of the wait buffer */
+ if (op->len) {
+ nwait = op->len / 4;
+ if (nwait) {
+ writesl(ss->base + SS_RXFIFO, op->buf, nwait);
+ op->byte_count += 4 * nwait;
+ }
+
+ nbw = op->len - 4 * nwait;
+ if (nbw) {
+ wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
+ wb &= GENMASK((nbw * 8) - 1, 0);
+
+ op->byte_count += nbw;
+ }
+ }
+
+ /* write the remaining bytes of the nbw buffer */
+ wb |= ((1 << 7) << (nbw * 8));
+ ((__le32 *)bf)[j++] = cpu_to_le32(wb);
+
+ /*
+ * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
+ * I take the operations from other MD5/SHA1 implementations
+ */
+
+ /* last block size */
+ fill = 64 - (op->byte_count % 64);
+ min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
+
+ /* if we can't fill all data, jump to the next 64 block */
+ if (fill < min_fill)
+ fill += 64;
+
+ j += (fill - min_fill) / sizeof(u32);
+
+ /* write the length of data */
+ if (op->mode == SS_OP_SHA1) {
+ __be64 *bits = (__be64 *)&bf[j];
+ *bits = cpu_to_be64(op->byte_count << 3);
+ j += 2;
+ } else {
+ __le64 *bits = (__le64 *)&bf[j];
+ *bits = cpu_to_le64(op->byte_count << 3);
+ j += 2;
+ }
+ writesl(ss->base + SS_RXFIFO, bf, j);
+
+ /* Tell the SS to stop the hashing */
+ writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
+
+ /*
+ * Wait for SS to finish the hash.
+ * The timeout could happen only in case of bad overclocking
+ * or driver bug.
+ */
+ i = 0;
+ do {
+ v = readl(ss->base + SS_CTL);
+ i++;
+ } while (i < SS_TIMEOUT && (v & SS_DATA_END));
+ if (unlikely(i >= SS_TIMEOUT)) {
+ dev_err_ratelimited(ss->dev,
+ "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
+ i, SS_TIMEOUT, v, areq->nbytes);
+ err = -EIO;
+ goto release_ss;
+ }
+
+ /*
+ * The datasheet isn't very clear about when to retrieve the digest. The
+ * bit SS_DATA_END is cleared when the engine has processed the data and
+ * when the digest is computed *but* it doesn't mean the digest is
+ * available in the digest registers. Hence the delay to be sure we can
+ * read it.
+ */
+ ndelay(1);
+
+ /* Get the hash from the device */
+ if (op->mode == SS_OP_SHA1) {
+ for (i = 0; i < 5; i++) {
+ v = readl(ss->base + SS_MD0 + i * 4);
+ if (ss->variant->sha1_in_be)
+ put_unaligned_le32(v, areq->result + i * 4);
+ else
+ put_unaligned_be32(v, areq->result + i * 4);
+ }
+ } else {
+ for (i = 0; i < 4; i++) {
+ v = readl(ss->base + SS_MD0 + i * 4);
+ put_unaligned_le32(v, areq->result + i * 4);
+ }
+ }
+
+release_ss:
+ writel(0, ss->base + SS_CTL);
+ spin_unlock_bh(&ss->slock);
+ return err;
+}
+
+int sun4i_hash_final(struct ahash_request *areq)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+
+ op->flags = SS_HASH_FINAL;
+ return sun4i_hash(areq);
+}
+
+int sun4i_hash_update(struct ahash_request *areq)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+
+ op->flags = SS_HASH_UPDATE;
+ return sun4i_hash(areq);
+}
+
+/* sun4i_hash_finup: finalize hashing operation after an update */
+int sun4i_hash_finup(struct ahash_request *areq)
+{
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+
+ op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
+ return sun4i_hash(areq);
+}
+
+/* combo of init/update/final functions */
+int sun4i_hash_digest(struct ahash_request *areq)
+{
+ int err;
+ struct sun4i_req_ctx *op = ahash_request_ctx(areq);
+
+ err = sun4i_hash_init(areq);
+ if (err)
+ return err;
+
+ op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
+ return sun4i_hash(areq);
+}