diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/infiniband/hw/mlx5/odp.c | |
parent | Initial commit. (diff) | |
download | linux-430c2fc249ea5c0536abd21c23382884005c9093.tar.xz linux-430c2fc249ea5c0536abd21c23382884005c9093.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/infiniband/hw/mlx5/odp.c')
-rw-r--r-- | drivers/infiniband/hw/mlx5/odp.c | 1894 |
1 files changed, 1894 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/mlx5/odp.c b/drivers/infiniband/hw/mlx5/odp.c new file mode 100644 index 000000000..5c853ec1b --- /dev/null +++ b/drivers/infiniband/hw/mlx5/odp.c @@ -0,0 +1,1894 @@ +/* + * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <rdma/ib_umem.h> +#include <rdma/ib_umem_odp.h> +#include <linux/kernel.h> + +#include "mlx5_ib.h" +#include "cmd.h" +#include "qp.h" + +#include <linux/mlx5/eq.h> + +/* Contains the details of a pagefault. */ +struct mlx5_pagefault { + u32 bytes_committed; + u32 token; + u8 event_subtype; + u8 type; + union { + /* Initiator or send message responder pagefault details. */ + struct { + /* Received packet size, only valid for responders. */ + u32 packet_size; + /* + * Number of resource holding WQE, depends on type. + */ + u32 wq_num; + /* + * WQE index. Refers to either the send queue or + * receive queue, according to event_subtype. + */ + u16 wqe_index; + } wqe; + /* RDMA responder pagefault details */ + struct { + u32 r_key; + /* + * Received packet size, minimal size page fault + * resolution required for forward progress. + */ + u32 packet_size; + u32 rdma_op_len; + u64 rdma_va; + } rdma; + }; + + struct mlx5_ib_pf_eq *eq; + struct work_struct work; +}; + +#define MAX_PREFETCH_LEN (4*1024*1024U) + +/* Timeout in ms to wait for an active mmu notifier to complete when handling + * a pagefault. */ +#define MMU_NOTIFIER_TIMEOUT 1000 + +#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) +#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) +#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) +#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) +#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) + +#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT + +static u64 mlx5_imr_ksm_entries; + +static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries, + struct mlx5_ib_mr *imr, int flags) +{ + struct mlx5_klm *end = pklm + nentries; + + if (flags & MLX5_IB_UPD_XLT_ZAP) { + for (; pklm != end; pklm++, idx++) { + pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); + pklm->key = cpu_to_be32(imr->dev->null_mkey); + pklm->va = 0; + } + return; + } + + /* + * The locking here is pretty subtle. Ideally the implicit_children + * xarray would be protected by the umem_mutex, however that is not + * possible. Instead this uses a weaker update-then-lock pattern: + * + * srcu_read_lock() + * xa_store() + * mutex_lock(umem_mutex) + * mlx5_ib_update_xlt() + * mutex_unlock(umem_mutex) + * destroy lkey + * + * ie any change the xarray must be followed by the locked update_xlt + * before destroying. + * + * The umem_mutex provides the acquire/release semantic needed to make + * the xa_store() visible to a racing thread. While SRCU is not + * technically required, using it gives consistent use of the SRCU + * locking around the xarray. + */ + lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex); + lockdep_assert_held(&imr->dev->odp_srcu); + + for (; pklm != end; pklm++, idx++) { + struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx); + + pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); + if (mtt) { + pklm->key = cpu_to_be32(mtt->ibmr.lkey); + pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE); + } else { + pklm->key = cpu_to_be32(imr->dev->null_mkey); + pklm->va = 0; + } + } +} + +static u64 umem_dma_to_mtt(dma_addr_t umem_dma) +{ + u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK; + + if (umem_dma & ODP_READ_ALLOWED_BIT) + mtt_entry |= MLX5_IB_MTT_READ; + if (umem_dma & ODP_WRITE_ALLOWED_BIT) + mtt_entry |= MLX5_IB_MTT_WRITE; + + return mtt_entry; +} + +static void populate_mtt(__be64 *pas, size_t idx, size_t nentries, + struct mlx5_ib_mr *mr, int flags) +{ + struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); + dma_addr_t pa; + size_t i; + + if (flags & MLX5_IB_UPD_XLT_ZAP) + return; + + for (i = 0; i < nentries; i++) { + pa = odp->dma_list[idx + i]; + pas[i] = cpu_to_be64(umem_dma_to_mtt(pa)); + } +} + +void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries, + struct mlx5_ib_mr *mr, int flags) +{ + if (flags & MLX5_IB_UPD_XLT_INDIRECT) { + populate_klm(xlt, idx, nentries, mr, flags); + } else { + populate_mtt(xlt, idx, nentries, mr, flags); + } +} + +static void dma_fence_odp_mr(struct mlx5_ib_mr *mr) +{ + struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); + + /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */ + mutex_lock(&odp->umem_mutex); + if (odp->npages) { + mlx5_mr_cache_invalidate(mr); + ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp), + ib_umem_end(odp)); + WARN_ON(odp->npages); + } + odp->private = NULL; + mutex_unlock(&odp->umem_mutex); + + if (!mr->cache_ent) { + mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey); + WARN_ON(mr->descs); + } +} + +/* + * This must be called after the mr has been removed from implicit_children + * and the SRCU synchronized. NOTE: The MR does not necessarily have to be + * empty here, parallel page faults could have raced with the free process and + * added pages to it. + */ +static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt) +{ + struct mlx5_ib_mr *imr = mr->parent; + struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); + struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); + unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; + int srcu_key; + + /* implicit_child_mr's are not allowed to have deferred work */ + WARN_ON(atomic_read(&mr->num_deferred_work)); + + if (need_imr_xlt) { + srcu_key = srcu_read_lock(&mr->dev->odp_srcu); + mutex_lock(&odp_imr->umem_mutex); + mlx5_ib_update_xlt(mr->parent, idx, 1, 0, + MLX5_IB_UPD_XLT_INDIRECT | + MLX5_IB_UPD_XLT_ATOMIC); + mutex_unlock(&odp_imr->umem_mutex); + srcu_read_unlock(&mr->dev->odp_srcu, srcu_key); + } + + dma_fence_odp_mr(mr); + + mr->parent = NULL; + mlx5_mr_cache_free(mr->dev, mr); + ib_umem_odp_release(odp); + if (atomic_dec_and_test(&imr->num_deferred_work)) + wake_up(&imr->q_deferred_work); +} + +static void free_implicit_child_mr_work(struct work_struct *work) +{ + struct mlx5_ib_mr *mr = + container_of(work, struct mlx5_ib_mr, odp_destroy.work); + + free_implicit_child_mr(mr, true); +} + +static void free_implicit_child_mr_rcu(struct rcu_head *head) +{ + struct mlx5_ib_mr *mr = + container_of(head, struct mlx5_ib_mr, odp_destroy.rcu); + + /* Freeing a MR is a sleeping operation, so bounce to a work queue */ + INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work); + queue_work(system_unbound_wq, &mr->odp_destroy.work); +} + +static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr) +{ + struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); + unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT; + struct mlx5_ib_mr *imr = mr->parent; + + xa_lock(&imr->implicit_children); + /* + * This can race with mlx5_ib_free_implicit_mr(), the first one to + * reach the xa lock wins the race and destroys the MR. + */ + if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) != + mr) + goto out_unlock; + + atomic_inc(&imr->num_deferred_work); + call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu, + free_implicit_child_mr_rcu); + +out_unlock: + xa_unlock(&imr->implicit_children); +} + +static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni, + const struct mmu_notifier_range *range, + unsigned long cur_seq) +{ + struct ib_umem_odp *umem_odp = + container_of(mni, struct ib_umem_odp, notifier); + struct mlx5_ib_mr *mr; + const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / + sizeof(struct mlx5_mtt)) - 1; + u64 idx = 0, blk_start_idx = 0; + u64 invalidations = 0; + unsigned long start; + unsigned long end; + int in_block = 0; + u64 addr; + + if (!mmu_notifier_range_blockable(range)) + return false; + + mutex_lock(&umem_odp->umem_mutex); + mmu_interval_set_seq(mni, cur_seq); + /* + * If npages is zero then umem_odp->private may not be setup yet. This + * does not complete until after the first page is mapped for DMA. + */ + if (!umem_odp->npages) + goto out; + mr = umem_odp->private; + + start = max_t(u64, ib_umem_start(umem_odp), range->start); + end = min_t(u64, ib_umem_end(umem_odp), range->end); + + /* + * Iteration one - zap the HW's MTTs. The notifiers_count ensures that + * while we are doing the invalidation, no page fault will attempt to + * overwrite the same MTTs. Concurent invalidations might race us, + * but they will write 0s as well, so no difference in the end result. + */ + for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) { + idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; + /* + * Strive to write the MTTs in chunks, but avoid overwriting + * non-existing MTTs. The huristic here can be improved to + * estimate the cost of another UMR vs. the cost of bigger + * UMR. + */ + if (umem_odp->dma_list[idx] & + (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { + if (!in_block) { + blk_start_idx = idx; + in_block = 1; + } + + /* Count page invalidations */ + invalidations += idx - blk_start_idx + 1; + } else { + u64 umr_offset = idx & umr_block_mask; + + if (in_block && umr_offset == 0) { + mlx5_ib_update_xlt(mr, blk_start_idx, + idx - blk_start_idx, 0, + MLX5_IB_UPD_XLT_ZAP | + MLX5_IB_UPD_XLT_ATOMIC); + in_block = 0; + } + } + } + if (in_block) + mlx5_ib_update_xlt(mr, blk_start_idx, + idx - blk_start_idx + 1, 0, + MLX5_IB_UPD_XLT_ZAP | + MLX5_IB_UPD_XLT_ATOMIC); + + mlx5_update_odp_stats(mr, invalidations, invalidations); + + /* + * We are now sure that the device will not access the + * memory. We can safely unmap it, and mark it as dirty if + * needed. + */ + + ib_umem_odp_unmap_dma_pages(umem_odp, start, end); + + if (unlikely(!umem_odp->npages && mr->parent)) + destroy_unused_implicit_child_mr(mr); +out: + mutex_unlock(&umem_odp->umem_mutex); + return true; +} + +const struct mmu_interval_notifier_ops mlx5_mn_ops = { + .invalidate = mlx5_ib_invalidate_range, +}; + +void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) +{ + struct ib_odp_caps *caps = &dev->odp_caps; + + memset(caps, 0, sizeof(*caps)); + + if (!MLX5_CAP_GEN(dev->mdev, pg) || + !mlx5_ib_can_load_pas_with_umr(dev, 0)) + return; + + caps->general_caps = IB_ODP_SUPPORT; + + if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) + dev->odp_max_size = U64_MAX; + else + dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); + + if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) + caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; + + if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive)) + caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; + + if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) + caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; + + if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) + caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; + + if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) + caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; + + if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) + caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; + + if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) + caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; + + if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive)) + caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; + + if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send)) + caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND; + + if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive)) + caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV; + + if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write)) + caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE; + + if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read)) + caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ; + + if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic)) + caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; + + if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive)) + caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV; + + if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && + MLX5_CAP_GEN(dev->mdev, null_mkey) && + MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) && + !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled)) + caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; +} + +static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, + struct mlx5_pagefault *pfault, + int error) +{ + int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? + pfault->wqe.wq_num : pfault->token; + u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {}; + int err; + + MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME); + MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type); + MLX5_SET(page_fault_resume_in, in, token, pfault->token); + MLX5_SET(page_fault_resume_in, in, wq_number, wq_num); + MLX5_SET(page_fault_resume_in, in, error, !!error); + + err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in); + if (err) + mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n", + wq_num, err); +} + +static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr, + unsigned long idx) +{ + struct ib_umem_odp *odp; + struct mlx5_ib_mr *mr; + struct mlx5_ib_mr *ret; + int err; + + odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem), + idx * MLX5_IMR_MTT_SIZE, + MLX5_IMR_MTT_SIZE, &mlx5_mn_ops); + if (IS_ERR(odp)) + return ERR_CAST(odp); + + ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY, + imr->access_flags); + if (IS_ERR(mr)) + goto out_umem; + + mr->ibmr.pd = imr->ibmr.pd; + mr->umem = &odp->umem; + mr->ibmr.lkey = mr->mmkey.key; + mr->ibmr.rkey = mr->mmkey.key; + mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE; + mr->parent = imr; + odp->private = mr; + + err = mlx5_ib_update_xlt(mr, 0, + MLX5_IMR_MTT_ENTRIES, + PAGE_SHIFT, + MLX5_IB_UPD_XLT_ZAP | + MLX5_IB_UPD_XLT_ENABLE); + if (err) { + ret = ERR_PTR(err); + goto out_mr; + } + + /* + * Once the store to either xarray completes any error unwind has to + * use synchronize_srcu(). Avoid this with xa_reserve() + */ + ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr, + GFP_KERNEL); + if (unlikely(ret)) { + if (xa_is_err(ret)) { + ret = ERR_PTR(xa_err(ret)); + goto out_mr; + } + /* + * Another thread beat us to creating the child mr, use + * theirs. + */ + goto out_mr; + } + + mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr); + return mr; + +out_mr: + mlx5_mr_cache_free(imr->dev, mr); +out_umem: + ib_umem_odp_release(odp); + return ret; +} + +struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, + struct ib_udata *udata, + int access_flags) +{ + struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device); + struct ib_umem_odp *umem_odp; + struct mlx5_ib_mr *imr; + int err; + + umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags); + if (IS_ERR(umem_odp)) + return ERR_CAST(umem_odp); + + imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags); + if (IS_ERR(imr)) { + err = PTR_ERR(imr); + goto out_umem; + } + + imr->ibmr.pd = &pd->ibpd; + imr->mmkey.iova = 0; + imr->umem = &umem_odp->umem; + imr->ibmr.lkey = imr->mmkey.key; + imr->ibmr.rkey = imr->mmkey.key; + imr->umem = &umem_odp->umem; + imr->is_odp_implicit = true; + atomic_set(&imr->num_deferred_work, 0); + init_waitqueue_head(&imr->q_deferred_work); + xa_init(&imr->implicit_children); + + err = mlx5_ib_update_xlt(imr, 0, + mlx5_imr_ksm_entries, + MLX5_KSM_PAGE_SHIFT, + MLX5_IB_UPD_XLT_INDIRECT | + MLX5_IB_UPD_XLT_ZAP | + MLX5_IB_UPD_XLT_ENABLE); + if (err) + goto out_mr; + + err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key), + &imr->mmkey, GFP_KERNEL)); + if (err) + goto out_mr; + + mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr); + return imr; +out_mr: + mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); + mlx5_mr_cache_free(dev, imr); +out_umem: + ib_umem_odp_release(umem_odp); + return ERR_PTR(err); +} + +void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) +{ + struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem); + struct mlx5_ib_dev *dev = imr->dev; + struct list_head destroy_list; + struct mlx5_ib_mr *mtt; + struct mlx5_ib_mr *tmp; + unsigned long idx; + + INIT_LIST_HEAD(&destroy_list); + + xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key)); + /* + * This stops the SRCU protected page fault path from touching either + * the imr or any children. The page fault path can only reach the + * children xarray via the imr. + */ + synchronize_srcu(&dev->odp_srcu); + + /* + * All work on the prefetch list must be completed, xa_erase() prevented + * new work from being created. + */ + wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work)); + + /* + * At this point it is forbidden for any other thread to enter + * pagefault_mr() on this imr. It is already forbidden to call + * pagefault_mr() on an implicit child. Due to this additions to + * implicit_children are prevented. + */ + + /* + * Block destroy_unused_implicit_child_mr() from incrementing + * num_deferred_work. + */ + xa_lock(&imr->implicit_children); + xa_for_each (&imr->implicit_children, idx, mtt) { + __xa_erase(&imr->implicit_children, idx); + list_add(&mtt->odp_destroy.elm, &destroy_list); + } + xa_unlock(&imr->implicit_children); + + /* + * Wait for any concurrent destroy_unused_implicit_child_mr() to + * complete. + */ + wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work)); + + /* + * Fence the imr before we destroy the children. This allows us to + * skip updating the XLT of the imr during destroy of the child mkey + * the imr points to. + */ + mlx5_mr_cache_invalidate(imr); + + list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm) + free_implicit_child_mr(mtt, false); + + mlx5_mr_cache_free(dev, imr); + ib_umem_odp_release(odp_imr); +} + +/** + * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR + * @mr: to fence + * + * On return no parallel threads will be touching this MR and no DMA will be + * active. + */ +void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr) +{ + /* Prevent new page faults and prefetch requests from succeeding */ + xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)); + + /* Wait for all running page-fault handlers to finish. */ + synchronize_srcu(&mr->dev->odp_srcu); + + wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work)); + + dma_fence_odp_mr(mr); +} + +#define MLX5_PF_FLAGS_DOWNGRADE BIT(1) +#define MLX5_PF_FLAGS_SNAPSHOT BIT(2) +#define MLX5_PF_FLAGS_ENABLE BIT(3) +static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp, + u64 user_va, size_t bcnt, u32 *bytes_mapped, + u32 flags) +{ + int page_shift, ret, np; + bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE; + u64 access_mask; + u64 start_idx; + bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT); + u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC; + + if (flags & MLX5_PF_FLAGS_ENABLE) + xlt_flags |= MLX5_IB_UPD_XLT_ENABLE; + + page_shift = odp->page_shift; + start_idx = (user_va - ib_umem_start(odp)) >> page_shift; + access_mask = ODP_READ_ALLOWED_BIT; + + if (odp->umem.writable && !downgrade) + access_mask |= ODP_WRITE_ALLOWED_BIT; + + np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault); + if (np < 0) + return np; + + /* + * No need to check whether the MTTs really belong to this MR, since + * ib_umem_odp_map_dma_and_lock already checks this. + */ + ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags); + mutex_unlock(&odp->umem_mutex); + + if (ret < 0) { + if (ret != -EAGAIN) + mlx5_ib_err(mr->dev, + "Failed to update mkey page tables\n"); + goto out; + } + + if (bytes_mapped) { + u32 new_mappings = (np << page_shift) - + (user_va - round_down(user_va, 1 << page_shift)); + + *bytes_mapped += min_t(u32, new_mappings, bcnt); + } + + return np << (page_shift - PAGE_SHIFT); + +out: + return ret; +} + +static int pagefault_implicit_mr(struct mlx5_ib_mr *imr, + struct ib_umem_odp *odp_imr, u64 user_va, + size_t bcnt, u32 *bytes_mapped, u32 flags) +{ + unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT; + unsigned long upd_start_idx = end_idx + 1; + unsigned long upd_len = 0; + unsigned long npages = 0; + int err; + int ret; + + if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE || + mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt)) + return -EFAULT; + + /* Fault each child mr that intersects with our interval. */ + while (bcnt) { + unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT; + struct ib_umem_odp *umem_odp; + struct mlx5_ib_mr *mtt; + u64 len; + + mtt = xa_load(&imr->implicit_children, idx); + if (unlikely(!mtt)) { + mtt = implicit_get_child_mr(imr, idx); + if (IS_ERR(mtt)) { + ret = PTR_ERR(mtt); + goto out; + } + upd_start_idx = min(upd_start_idx, idx); + upd_len = idx - upd_start_idx + 1; + } + + umem_odp = to_ib_umem_odp(mtt->umem); + len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) - + user_va; + + ret = pagefault_real_mr(mtt, umem_odp, user_va, len, + bytes_mapped, flags); + if (ret < 0) + goto out; + user_va += len; + bcnt -= len; + npages += ret; + } + + ret = npages; + + /* + * Any time the implicit_children are changed we must perform an + * update of the xlt before exiting to ensure the HW and the + * implicit_children remains synchronized. + */ +out: + if (likely(!upd_len)) + return ret; + + /* + * Notice this is not strictly ordered right, the KSM is updated after + * the implicit_children is updated, so a parallel page fault could + * see a MR that is not yet visible in the KSM. This is similar to a + * parallel page fault seeing a MR that is being concurrently removed + * from the KSM. Both of these improbable situations are resolved + * safely by resuming the HW and then taking another page fault. The + * next pagefault handler will see the new information. + */ + mutex_lock(&odp_imr->umem_mutex); + err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0, + MLX5_IB_UPD_XLT_INDIRECT | + MLX5_IB_UPD_XLT_ATOMIC); + mutex_unlock(&odp_imr->umem_mutex); + if (err) { + mlx5_ib_err(imr->dev, "Failed to update PAS\n"); + return err; + } + return ret; +} + +/* + * Returns: + * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are + * not accessible, or the MR is no longer valid. + * -EAGAIN/-ENOMEM: The operation should be retried + * + * -EINVAL/others: General internal malfunction + * >0: Number of pages mapped + */ +static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, + u32 *bytes_mapped, u32 flags) +{ + struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); + + lockdep_assert_held(&mr->dev->odp_srcu); + if (unlikely(io_virt < mr->mmkey.iova)) + return -EFAULT; + + if (!odp->is_implicit_odp) { + u64 user_va; + + if (check_add_overflow(io_virt - mr->mmkey.iova, + (u64)odp->umem.address, &user_va)) + return -EFAULT; + if (unlikely(user_va >= ib_umem_end(odp) || + ib_umem_end(odp) - user_va < bcnt)) + return -EFAULT; + return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped, + flags); + } + return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped, + flags); +} + +int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr, bool enable) +{ + u32 flags = MLX5_PF_FLAGS_SNAPSHOT; + int ret; + + if (enable) + flags |= MLX5_PF_FLAGS_ENABLE; + + ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), + mr->umem->address, mr->umem->length, NULL, + flags); + return ret >= 0 ? 0 : ret; +} + +struct pf_frame { + struct pf_frame *next; + u32 key; + u64 io_virt; + size_t bcnt; + int depth; +}; + +static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key) +{ + if (!mmkey) + return false; + if (mmkey->type == MLX5_MKEY_MW) + return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key); + return mmkey->key == key; +} + +static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey) +{ + struct mlx5_ib_mw *mw; + struct mlx5_ib_devx_mr *devx_mr; + + if (mmkey->type == MLX5_MKEY_MW) { + mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); + return mw->ndescs; + } + + devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr, + mmkey); + return devx_mr->ndescs; +} + +/* + * Handle a single data segment in a page-fault WQE or RDMA region. + * + * Returns number of OS pages retrieved on success. The caller may continue to + * the next data segment. + * Can return the following error codes: + * -EAGAIN to designate a temporary error. The caller will abort handling the + * page fault and resolve it. + * -EFAULT when there's an error mapping the requested pages. The caller will + * abort the page fault handling. + */ +static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, + struct ib_pd *pd, u32 key, + u64 io_virt, size_t bcnt, + u32 *bytes_committed, + u32 *bytes_mapped) +{ + int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; + struct pf_frame *head = NULL, *frame; + struct mlx5_core_mkey *mmkey; + struct mlx5_ib_mr *mr; + struct mlx5_klm *pklm; + u32 *out = NULL; + size_t offset; + int ndescs; + + srcu_key = srcu_read_lock(&dev->odp_srcu); + + io_virt += *bytes_committed; + bcnt -= *bytes_committed; + +next_mr: + mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key)); + if (!mmkey) { + mlx5_ib_dbg( + dev, + "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", + key); + if (bytes_mapped) + *bytes_mapped += bcnt; + /* + * The user could specify a SGL with multiple lkeys and only + * some of them are ODP. Treat the non-ODP ones as fully + * faulted. + */ + ret = 0; + goto srcu_unlock; + } + if (!mkey_is_eq(mmkey, key)) { + mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); + ret = -EFAULT; + goto srcu_unlock; + } + + switch (mmkey->type) { + case MLX5_MKEY_MR: + mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); + + ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0); + if (ret < 0) + goto srcu_unlock; + + mlx5_update_odp_stats(mr, faults, ret); + + npages += ret; + ret = 0; + break; + + case MLX5_MKEY_MW: + case MLX5_MKEY_INDIRECT_DEVX: + ndescs = get_indirect_num_descs(mmkey); + + if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { + mlx5_ib_dbg(dev, "indirection level exceeded\n"); + ret = -EFAULT; + goto srcu_unlock; + } + + outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + + sizeof(*pklm) * (ndescs - 2); + + if (outlen > cur_outlen) { + kfree(out); + out = kzalloc(outlen, GFP_KERNEL); + if (!out) { + ret = -ENOMEM; + goto srcu_unlock; + } + cur_outlen = outlen; + } + + pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, + bsf0_klm0_pas_mtt0_1); + + ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen); + if (ret) + goto srcu_unlock; + + offset = io_virt - MLX5_GET64(query_mkey_out, out, + memory_key_mkey_entry.start_addr); + + for (i = 0; bcnt && i < ndescs; i++, pklm++) { + if (offset >= be32_to_cpu(pklm->bcount)) { + offset -= be32_to_cpu(pklm->bcount); + continue; + } + + frame = kzalloc(sizeof(*frame), GFP_KERNEL); + if (!frame) { + ret = -ENOMEM; + goto srcu_unlock; + } + + frame->key = be32_to_cpu(pklm->key); + frame->io_virt = be64_to_cpu(pklm->va) + offset; + frame->bcnt = min_t(size_t, bcnt, + be32_to_cpu(pklm->bcount) - offset); + frame->depth = depth + 1; + frame->next = head; + head = frame; + + bcnt -= frame->bcnt; + offset = 0; + } + break; + + default: + mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); + ret = -EFAULT; + goto srcu_unlock; + } + + if (head) { + frame = head; + head = frame->next; + + key = frame->key; + io_virt = frame->io_virt; + bcnt = frame->bcnt; + depth = frame->depth; + kfree(frame); + + goto next_mr; + } + +srcu_unlock: + while (head) { + frame = head; + head = frame->next; + kfree(frame); + } + kfree(out); + + srcu_read_unlock(&dev->odp_srcu, srcu_key); + *bytes_committed = 0; + return ret ? ret : npages; +} + +/** + * Parse a series of data segments for page fault handling. + * + * @pfault contains page fault information. + * @wqe points at the first data segment in the WQE. + * @wqe_end points after the end of the WQE. + * @bytes_mapped receives the number of bytes that the function was able to + * map. This allows the caller to decide intelligently whether + * enough memory was mapped to resolve the page fault + * successfully (e.g. enough for the next MTU, or the entire + * WQE). + * @total_wqe_bytes receives the total data size of this WQE in bytes (minus + * the committed bytes). + * + * Returns the number of pages loaded if positive, zero for an empty WQE, or a + * negative error code. + */ +static int pagefault_data_segments(struct mlx5_ib_dev *dev, + struct mlx5_pagefault *pfault, + void *wqe, + void *wqe_end, u32 *bytes_mapped, + u32 *total_wqe_bytes, bool receive_queue) +{ + int ret = 0, npages = 0; + u64 io_virt; + u32 key; + u32 byte_count; + size_t bcnt; + int inline_segment; + + if (bytes_mapped) + *bytes_mapped = 0; + if (total_wqe_bytes) + *total_wqe_bytes = 0; + + while (wqe < wqe_end) { + struct mlx5_wqe_data_seg *dseg = wqe; + + io_virt = be64_to_cpu(dseg->addr); + key = be32_to_cpu(dseg->lkey); + byte_count = be32_to_cpu(dseg->byte_count); + inline_segment = !!(byte_count & MLX5_INLINE_SEG); + bcnt = byte_count & ~MLX5_INLINE_SEG; + + if (inline_segment) { + bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; + wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, + 16); + } else { + wqe += sizeof(*dseg); + } + + /* receive WQE end of sg list. */ + if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && + io_virt == 0) + break; + + if (!inline_segment && total_wqe_bytes) { + *total_wqe_bytes += bcnt - min_t(size_t, bcnt, + pfault->bytes_committed); + } + + /* A zero length data segment designates a length of 2GB. */ + if (bcnt == 0) + bcnt = 1U << 31; + + if (inline_segment || bcnt <= pfault->bytes_committed) { + pfault->bytes_committed -= + min_t(size_t, bcnt, + pfault->bytes_committed); + continue; + } + + ret = pagefault_single_data_segment(dev, NULL, key, + io_virt, bcnt, + &pfault->bytes_committed, + bytes_mapped); + if (ret < 0) + break; + npages += ret; + } + + return ret < 0 ? ret : npages; +} + +/* + * Parse initiator WQE. Advances the wqe pointer to point at the + * scatter-gather list, and set wqe_end to the end of the WQE. + */ +static int mlx5_ib_mr_initiator_pfault_handler( + struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, + struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) +{ + struct mlx5_wqe_ctrl_seg *ctrl = *wqe; + u16 wqe_index = pfault->wqe.wqe_index; + struct mlx5_base_av *av; + unsigned ds, opcode; + u32 qpn = qp->trans_qp.base.mqp.qpn; + + ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; + if (ds * MLX5_WQE_DS_UNITS > wqe_length) { + mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", + ds, wqe_length); + return -EFAULT; + } + + if (ds == 0) { + mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", + wqe_index, qpn); + return -EFAULT; + } + + *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; + *wqe += sizeof(*ctrl); + + opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & + MLX5_WQE_CTRL_OPCODE_MASK; + + if (qp->ibqp.qp_type == IB_QPT_XRC_INI) + *wqe += sizeof(struct mlx5_wqe_xrc_seg); + + if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) { + av = *wqe; + if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) + *wqe += sizeof(struct mlx5_av); + else + *wqe += sizeof(struct mlx5_base_av); + } + + switch (opcode) { + case MLX5_OPCODE_RDMA_WRITE: + case MLX5_OPCODE_RDMA_WRITE_IMM: + case MLX5_OPCODE_RDMA_READ: + *wqe += sizeof(struct mlx5_wqe_raddr_seg); + break; + case MLX5_OPCODE_ATOMIC_CS: + case MLX5_OPCODE_ATOMIC_FA: + *wqe += sizeof(struct mlx5_wqe_raddr_seg); + *wqe += sizeof(struct mlx5_wqe_atomic_seg); + break; + } + + return 0; +} + +/* + * Parse responder WQE and set wqe_end to the end of the WQE. + */ +static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev, + struct mlx5_ib_srq *srq, + void **wqe, void **wqe_end, + int wqe_length) +{ + int wqe_size = 1 << srq->msrq.wqe_shift; + + if (wqe_size > wqe_length) { + mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); + return -EFAULT; + } + + *wqe_end = *wqe + wqe_size; + *wqe += sizeof(struct mlx5_wqe_srq_next_seg); + + return 0; +} + +static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev, + struct mlx5_ib_qp *qp, + void *wqe, void **wqe_end, + int wqe_length) +{ + struct mlx5_ib_wq *wq = &qp->rq; + int wqe_size = 1 << wq->wqe_shift; + + if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) { + mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); + return -EFAULT; + } + + if (wqe_size > wqe_length) { + mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); + return -EFAULT; + } + + *wqe_end = wqe + wqe_size; + + return 0; +} + +static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev, + u32 wq_num, int pf_type) +{ + struct mlx5_core_rsc_common *common = NULL; + struct mlx5_core_srq *srq; + + switch (pf_type) { + case MLX5_WQE_PF_TYPE_RMP: + srq = mlx5_cmd_get_srq(dev, wq_num); + if (srq) + common = &srq->common; + break; + case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE: + case MLX5_WQE_PF_TYPE_RESP: + case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC: + common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP); + break; + default: + break; + } + + return common; +} + +static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res) +{ + struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res; + + return to_mibqp(mqp); +} + +static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res) +{ + struct mlx5_core_srq *msrq = + container_of(res, struct mlx5_core_srq, common); + + return to_mibsrq(msrq); +} + +static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, + struct mlx5_pagefault *pfault) +{ + bool sq = pfault->type & MLX5_PFAULT_REQUESTOR; + u16 wqe_index = pfault->wqe.wqe_index; + void *wqe, *wqe_start = NULL, *wqe_end = NULL; + u32 bytes_mapped, total_wqe_bytes; + struct mlx5_core_rsc_common *res; + int resume_with_error = 1; + struct mlx5_ib_qp *qp; + size_t bytes_copied; + int ret = 0; + + res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type); + if (!res) { + mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num); + return; + } + + if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ && + res->res != MLX5_RES_XSRQ) { + mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n", + pfault->type); + goto resolve_page_fault; + } + + wqe_start = (void *)__get_free_page(GFP_KERNEL); + if (!wqe_start) { + mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); + goto resolve_page_fault; + } + + wqe = wqe_start; + qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL; + if (qp && sq) { + ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE, + &bytes_copied); + if (ret) + goto read_user; + ret = mlx5_ib_mr_initiator_pfault_handler( + dev, pfault, qp, &wqe, &wqe_end, bytes_copied); + } else if (qp && !sq) { + ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE, + &bytes_copied); + if (ret) + goto read_user; + ret = mlx5_ib_mr_responder_pfault_handler_rq( + dev, qp, wqe, &wqe_end, bytes_copied); + } else if (!qp) { + struct mlx5_ib_srq *srq = res_to_srq(res); + + ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE, + &bytes_copied); + if (ret) + goto read_user; + ret = mlx5_ib_mr_responder_pfault_handler_srq( + dev, srq, &wqe, &wqe_end, bytes_copied); + } + + if (ret < 0 || wqe >= wqe_end) + goto resolve_page_fault; + + ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped, + &total_wqe_bytes, !sq); + if (ret == -EAGAIN) + goto out; + + if (ret < 0 || total_wqe_bytes > bytes_mapped) + goto resolve_page_fault; + +out: + ret = 0; + resume_with_error = 0; + +read_user: + if (ret) + mlx5_ib_err( + dev, + "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n", + ret, wqe_index, pfault->token); + +resolve_page_fault: + mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); + mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", + pfault->wqe.wq_num, resume_with_error, + pfault->type); + mlx5_core_res_put(res); + free_page((unsigned long)wqe_start); +} + +static int pages_in_range(u64 address, u32 length) +{ + return (ALIGN(address + length, PAGE_SIZE) - + (address & PAGE_MASK)) >> PAGE_SHIFT; +} + +static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, + struct mlx5_pagefault *pfault) +{ + u64 address; + u32 length; + u32 prefetch_len = pfault->bytes_committed; + int prefetch_activated = 0; + u32 rkey = pfault->rdma.r_key; + int ret; + + /* The RDMA responder handler handles the page fault in two parts. + * First it brings the necessary pages for the current packet + * (and uses the pfault context), and then (after resuming the QP) + * prefetches more pages. The second operation cannot use the pfault + * context and therefore uses the dummy_pfault context allocated on + * the stack */ + pfault->rdma.rdma_va += pfault->bytes_committed; + pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, + pfault->rdma.rdma_op_len); + pfault->bytes_committed = 0; + + address = pfault->rdma.rdma_va; + length = pfault->rdma.rdma_op_len; + + /* For some operations, the hardware cannot tell the exact message + * length, and in those cases it reports zero. Use prefetch + * logic. */ + if (length == 0) { + prefetch_activated = 1; + length = pfault->rdma.packet_size; + prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); + } + + ret = pagefault_single_data_segment(dev, NULL, rkey, address, length, + &pfault->bytes_committed, NULL); + if (ret == -EAGAIN) { + /* We're racing with an invalidation, don't prefetch */ + prefetch_activated = 0; + } else if (ret < 0 || pages_in_range(address, length) > ret) { + mlx5_ib_page_fault_resume(dev, pfault, 1); + if (ret != -ENOENT) + mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", + ret, pfault->token, pfault->type); + return; + } + + mlx5_ib_page_fault_resume(dev, pfault, 0); + mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", + pfault->token, pfault->type, + prefetch_activated); + + /* At this point, there might be a new pagefault already arriving in + * the eq, switch to the dummy pagefault for the rest of the + * processing. We're still OK with the objects being alive as the + * work-queue is being fenced. */ + + if (prefetch_activated) { + u32 bytes_committed = 0; + + ret = pagefault_single_data_segment(dev, NULL, rkey, address, + prefetch_len, + &bytes_committed, NULL); + if (ret < 0 && ret != -EAGAIN) { + mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", + ret, pfault->token, address, prefetch_len); + } + } +} + +static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) +{ + u8 event_subtype = pfault->event_subtype; + + switch (event_subtype) { + case MLX5_PFAULT_SUBTYPE_WQE: + mlx5_ib_mr_wqe_pfault_handler(dev, pfault); + break; + case MLX5_PFAULT_SUBTYPE_RDMA: + mlx5_ib_mr_rdma_pfault_handler(dev, pfault); + break; + default: + mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", + event_subtype); + mlx5_ib_page_fault_resume(dev, pfault, 1); + } +} + +static void mlx5_ib_eqe_pf_action(struct work_struct *work) +{ + struct mlx5_pagefault *pfault = container_of(work, + struct mlx5_pagefault, + work); + struct mlx5_ib_pf_eq *eq = pfault->eq; + + mlx5_ib_pfault(eq->dev, pfault); + mempool_free(pfault, eq->pool); +} + +static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq) +{ + struct mlx5_eqe_page_fault *pf_eqe; + struct mlx5_pagefault *pfault; + struct mlx5_eqe *eqe; + int cc = 0; + + while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) { + pfault = mempool_alloc(eq->pool, GFP_ATOMIC); + if (!pfault) { + schedule_work(&eq->work); + break; + } + + pf_eqe = &eqe->data.page_fault; + pfault->event_subtype = eqe->sub_type; + pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed); + + mlx5_ib_dbg(eq->dev, + "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n", + eqe->sub_type, pfault->bytes_committed); + + switch (eqe->sub_type) { + case MLX5_PFAULT_SUBTYPE_RDMA: + /* RDMA based event */ + pfault->type = + be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24; + pfault->token = + be32_to_cpu(pf_eqe->rdma.pftype_token) & + MLX5_24BIT_MASK; + pfault->rdma.r_key = + be32_to_cpu(pf_eqe->rdma.r_key); + pfault->rdma.packet_size = + be16_to_cpu(pf_eqe->rdma.packet_length); + pfault->rdma.rdma_op_len = + be32_to_cpu(pf_eqe->rdma.rdma_op_len); + pfault->rdma.rdma_va = + be64_to_cpu(pf_eqe->rdma.rdma_va); + mlx5_ib_dbg(eq->dev, + "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n", + pfault->type, pfault->token, + pfault->rdma.r_key); + mlx5_ib_dbg(eq->dev, + "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n", + pfault->rdma.rdma_op_len, + pfault->rdma.rdma_va); + break; + + case MLX5_PFAULT_SUBTYPE_WQE: + /* WQE based event */ + pfault->type = + (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7; + pfault->token = + be32_to_cpu(pf_eqe->wqe.token); + pfault->wqe.wq_num = + be32_to_cpu(pf_eqe->wqe.pftype_wq) & + MLX5_24BIT_MASK; + pfault->wqe.wqe_index = + be16_to_cpu(pf_eqe->wqe.wqe_index); + pfault->wqe.packet_size = + be16_to_cpu(pf_eqe->wqe.packet_length); + mlx5_ib_dbg(eq->dev, + "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n", + pfault->type, pfault->token, + pfault->wqe.wq_num, + pfault->wqe.wqe_index); + break; + + default: + mlx5_ib_warn(eq->dev, + "Unsupported page fault event sub-type: 0x%02hhx\n", + eqe->sub_type); + /* Unsupported page faults should still be + * resolved by the page fault handler + */ + } + + pfault->eq = eq; + INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action); + queue_work(eq->wq, &pfault->work); + + cc = mlx5_eq_update_cc(eq->core, ++cc); + } + + mlx5_eq_update_ci(eq->core, cc, 1); +} + +static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type, + void *data) +{ + struct mlx5_ib_pf_eq *eq = + container_of(nb, struct mlx5_ib_pf_eq, irq_nb); + unsigned long flags; + + if (spin_trylock_irqsave(&eq->lock, flags)) { + mlx5_ib_eq_pf_process(eq); + spin_unlock_irqrestore(&eq->lock, flags); + } else { + schedule_work(&eq->work); + } + + return IRQ_HANDLED; +} + +/* mempool_refill() was proposed but unfortunately wasn't accepted + * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html + * Cheap workaround. + */ +static void mempool_refill(mempool_t *pool) +{ + while (pool->curr_nr < pool->min_nr) + mempool_free(mempool_alloc(pool, GFP_KERNEL), pool); +} + +static void mlx5_ib_eq_pf_action(struct work_struct *work) +{ + struct mlx5_ib_pf_eq *eq = + container_of(work, struct mlx5_ib_pf_eq, work); + + mempool_refill(eq->pool); + + spin_lock_irq(&eq->lock); + mlx5_ib_eq_pf_process(eq); + spin_unlock_irq(&eq->lock); +} + +enum { + MLX5_IB_NUM_PF_EQE = 0x1000, + MLX5_IB_NUM_PF_DRAIN = 64, +}; + +static int +mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) +{ + struct mlx5_eq_param param = {}; + int err; + + INIT_WORK(&eq->work, mlx5_ib_eq_pf_action); + spin_lock_init(&eq->lock); + eq->dev = dev; + + eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN, + sizeof(struct mlx5_pagefault)); + if (!eq->pool) + return -ENOMEM; + + eq->wq = alloc_workqueue("mlx5_ib_page_fault", + WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM, + MLX5_NUM_CMD_EQE); + if (!eq->wq) { + err = -ENOMEM; + goto err_mempool; + } + + eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int; + param = (struct mlx5_eq_param) { + .irq_index = 0, + .nent = MLX5_IB_NUM_PF_EQE, + }; + param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT; + eq->core = mlx5_eq_create_generic(dev->mdev, ¶m); + if (IS_ERR(eq->core)) { + err = PTR_ERR(eq->core); + goto err_wq; + } + err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb); + if (err) { + mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err); + goto err_eq; + } + + return 0; +err_eq: + mlx5_eq_destroy_generic(dev->mdev, eq->core); +err_wq: + destroy_workqueue(eq->wq); +err_mempool: + mempool_destroy(eq->pool); + return err; +} + +static int +mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq) +{ + int err; + + mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb); + err = mlx5_eq_destroy_generic(dev->mdev, eq->core); + cancel_work_sync(&eq->work); + destroy_workqueue(eq->wq); + mempool_destroy(eq->pool); + + return err; +} + +void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) +{ + if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) + return; + + switch (ent->order - 2) { + case MLX5_IMR_MTT_CACHE_ENTRY: + ent->page = PAGE_SHIFT; + ent->xlt = MLX5_IMR_MTT_ENTRIES * + sizeof(struct mlx5_mtt) / + MLX5_IB_UMR_OCTOWORD; + ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; + ent->limit = 0; + break; + + case MLX5_IMR_KSM_CACHE_ENTRY: + ent->page = MLX5_KSM_PAGE_SHIFT; + ent->xlt = mlx5_imr_ksm_entries * + sizeof(struct mlx5_klm) / + MLX5_IB_UMR_OCTOWORD; + ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; + ent->limit = 0; + break; + } +} + +static const struct ib_device_ops mlx5_ib_dev_odp_ops = { + .advise_mr = mlx5_ib_advise_mr, +}; + +int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) +{ + int ret = 0; + + if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) + return ret; + + ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops); + + if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { + ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); + if (ret) { + mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); + return ret; + } + } + + ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq); + + return ret; +} + +void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev) +{ + if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT)) + return; + + mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq); +} + +int mlx5_ib_odp_init(void) +{ + mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - + MLX5_IMR_MTT_BITS); + + return 0; +} + +struct prefetch_mr_work { + struct work_struct work; + u32 pf_flags; + u32 num_sge; + struct { + u64 io_virt; + struct mlx5_ib_mr *mr; + size_t length; + } frags[]; +}; + +static void destroy_prefetch_work(struct prefetch_mr_work *work) +{ + u32 i; + + for (i = 0; i < work->num_sge; ++i) + if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work)) + wake_up(&work->frags[i].mr->q_deferred_work); + kvfree(work); +} + +static struct mlx5_ib_mr * +get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, + u32 lkey) +{ + struct mlx5_ib_dev *dev = to_mdev(pd->device); + struct mlx5_core_mkey *mmkey; + struct ib_umem_odp *odp; + struct mlx5_ib_mr *mr; + + lockdep_assert_held(&dev->odp_srcu); + + mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey)); + if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR) + return NULL; + + mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); + + if (mr->ibmr.pd != pd) + return NULL; + + odp = to_ib_umem_odp(mr->umem); + + /* prefetch with write-access must be supported by the MR */ + if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && + !odp->umem.writable) + return NULL; + + return mr; +} + +static void mlx5_ib_prefetch_mr_work(struct work_struct *w) +{ + struct prefetch_mr_work *work = + container_of(w, struct prefetch_mr_work, work); + struct mlx5_ib_dev *dev; + u32 bytes_mapped = 0; + int srcu_key; + int ret; + u32 i; + + /* We rely on IB/core that work is executed if we have num_sge != 0 only. */ + WARN_ON(!work->num_sge); + dev = work->frags[0].mr->dev; + /* SRCU should be held when calling to mlx5_odp_populate_xlt() */ + srcu_key = srcu_read_lock(&dev->odp_srcu); + for (i = 0; i < work->num_sge; ++i) { + ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt, + work->frags[i].length, &bytes_mapped, + work->pf_flags); + if (ret <= 0) + continue; + mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret); + } + srcu_read_unlock(&dev->odp_srcu, srcu_key); + + destroy_prefetch_work(work); +} + +static bool init_prefetch_work(struct ib_pd *pd, + enum ib_uverbs_advise_mr_advice advice, + u32 pf_flags, struct prefetch_mr_work *work, + struct ib_sge *sg_list, u32 num_sge) +{ + u32 i; + + INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work); + work->pf_flags = pf_flags; + + for (i = 0; i < num_sge; ++i) { + work->frags[i].io_virt = sg_list[i].addr; + work->frags[i].length = sg_list[i].length; + work->frags[i].mr = + get_prefetchable_mr(pd, advice, sg_list[i].lkey); + if (!work->frags[i].mr) { + work->num_sge = i; + return false; + } + + /* Keep the MR pointer will valid outside the SRCU */ + atomic_inc(&work->frags[i].mr->num_deferred_work); + } + work->num_sge = num_sge; + return true; +} + +static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, + enum ib_uverbs_advise_mr_advice advice, + u32 pf_flags, struct ib_sge *sg_list, + u32 num_sge) +{ + struct mlx5_ib_dev *dev = to_mdev(pd->device); + u32 bytes_mapped = 0; + int srcu_key; + int ret = 0; + u32 i; + + srcu_key = srcu_read_lock(&dev->odp_srcu); + for (i = 0; i < num_sge; ++i) { + struct mlx5_ib_mr *mr; + + mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey); + if (!mr) { + ret = -ENOENT; + goto out; + } + ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length, + &bytes_mapped, pf_flags); + if (ret < 0) + goto out; + mlx5_update_odp_stats(mr, prefetch, ret); + } + ret = 0; + +out: + srcu_read_unlock(&dev->odp_srcu, srcu_key); + return ret; +} + +int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd, + enum ib_uverbs_advise_mr_advice advice, + u32 flags, struct ib_sge *sg_list, u32 num_sge) +{ + struct mlx5_ib_dev *dev = to_mdev(pd->device); + u32 pf_flags = 0; + struct prefetch_mr_work *work; + int srcu_key; + + if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH) + pf_flags |= MLX5_PF_FLAGS_DOWNGRADE; + + if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) + pf_flags |= MLX5_PF_FLAGS_SNAPSHOT; + + if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH) + return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list, + num_sge); + + work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL); + if (!work) + return -ENOMEM; + + srcu_key = srcu_read_lock(&dev->odp_srcu); + if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) { + srcu_read_unlock(&dev->odp_srcu, srcu_key); + destroy_prefetch_work(work); + return -EINVAL; + } + queue_work(system_unbound_wq, &work->work); + srcu_read_unlock(&dev->odp_srcu, srcu_key); + return 0; +} |