diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/macintosh/windfarm_rm31.c | |
parent | Initial commit. (diff) | |
download | linux-upstream/5.10.209.tar.xz linux-upstream/5.10.209.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | drivers/macintosh/windfarm_rm31.c | 738 |
1 files changed, 738 insertions, 0 deletions
diff --git a/drivers/macintosh/windfarm_rm31.c b/drivers/macintosh/windfarm_rm31.c new file mode 100644 index 000000000..7acd1684c --- /dev/null +++ b/drivers/macintosh/windfarm_rm31.c @@ -0,0 +1,738 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Windfarm PowerMac thermal control. + * Control loops for RackMack3,1 (Xserve G5) + * + * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp. + */ +#include <linux/types.h> +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/reboot.h> +#include <asm/prom.h> +#include <asm/smu.h> + +#include "windfarm.h" +#include "windfarm_pid.h" +#include "windfarm_mpu.h" + +#define VERSION "1.0" + +#undef DEBUG +#undef LOTSA_DEBUG + +#ifdef DEBUG +#define DBG(args...) printk(args) +#else +#define DBG(args...) do { } while(0) +#endif + +#ifdef LOTSA_DEBUG +#define DBG_LOTS(args...) printk(args) +#else +#define DBG_LOTS(args...) do { } while(0) +#endif + +/* define this to force CPU overtemp to 60 degree, useful for testing + * the overtemp code + */ +#undef HACKED_OVERTEMP + +/* We currently only handle 2 chips */ +#define NR_CHIPS 2 +#define NR_CPU_FANS 3 * NR_CHIPS + +/* Controls and sensors */ +static struct wf_sensor *sens_cpu_temp[NR_CHIPS]; +static struct wf_sensor *sens_cpu_volts[NR_CHIPS]; +static struct wf_sensor *sens_cpu_amps[NR_CHIPS]; +static struct wf_sensor *backside_temp; +static struct wf_sensor *slots_temp; +static struct wf_sensor *dimms_temp; + +static struct wf_control *cpu_fans[NR_CHIPS][3]; +static struct wf_control *backside_fan; +static struct wf_control *slots_fan; +static struct wf_control *cpufreq_clamp; + +/* We keep a temperature history for average calculation of 180s */ +#define CPU_TEMP_HIST_SIZE 180 + +/* PID loop state */ +static const struct mpu_data *cpu_mpu_data[NR_CHIPS]; +static struct wf_cpu_pid_state cpu_pid[NR_CHIPS]; +static u32 cpu_thist[CPU_TEMP_HIST_SIZE]; +static int cpu_thist_pt; +static s64 cpu_thist_total; +static s32 cpu_all_tmax = 100 << 16; +static struct wf_pid_state backside_pid; +static int backside_tick; +static struct wf_pid_state slots_pid; +static int slots_tick; +static int slots_speed; +static struct wf_pid_state dimms_pid; +static int dimms_output_clamp; + +static int nr_chips; +static bool have_all_controls; +static bool have_all_sensors; +static bool started; + +static int failure_state; +#define FAILURE_SENSOR 1 +#define FAILURE_FAN 2 +#define FAILURE_PERM 4 +#define FAILURE_LOW_OVERTEMP 8 +#define FAILURE_HIGH_OVERTEMP 16 + +/* Overtemp values */ +#define LOW_OVER_AVERAGE 0 +#define LOW_OVER_IMMEDIATE (10 << 16) +#define LOW_OVER_CLEAR ((-10) << 16) +#define HIGH_OVER_IMMEDIATE (14 << 16) +#define HIGH_OVER_AVERAGE (10 << 16) +#define HIGH_OVER_IMMEDIATE (14 << 16) + + +static void cpu_max_all_fans(void) +{ + int i; + + /* We max all CPU fans in case of a sensor error. We also do the + * cpufreq clamping now, even if it's supposedly done later by the + * generic code anyway, we do it earlier here to react faster + */ + if (cpufreq_clamp) + wf_control_set_max(cpufreq_clamp); + for (i = 0; i < nr_chips; i++) { + if (cpu_fans[i][0]) + wf_control_set_max(cpu_fans[i][0]); + if (cpu_fans[i][1]) + wf_control_set_max(cpu_fans[i][1]); + if (cpu_fans[i][2]) + wf_control_set_max(cpu_fans[i][2]); + } +} + +static int cpu_check_overtemp(s32 temp) +{ + int new_state = 0; + s32 t_avg, t_old; + static bool first = true; + + /* First check for immediate overtemps */ + if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) { + new_state |= FAILURE_LOW_OVERTEMP; + if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) + printk(KERN_ERR "windfarm: Overtemp due to immediate CPU" + " temperature !\n"); + } + if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) { + new_state |= FAILURE_HIGH_OVERTEMP; + if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) + printk(KERN_ERR "windfarm: Critical overtemp due to" + " immediate CPU temperature !\n"); + } + + /* + * The first time around, initialize the array with the first + * temperature reading + */ + if (first) { + int i; + + cpu_thist_total = 0; + for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) { + cpu_thist[i] = temp; + cpu_thist_total += temp; + } + first = false; + } + + /* + * We calculate a history of max temperatures and use that for the + * overtemp management + */ + t_old = cpu_thist[cpu_thist_pt]; + cpu_thist[cpu_thist_pt] = temp; + cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE; + cpu_thist_total -= t_old; + cpu_thist_total += temp; + t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE; + + DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n", + FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp)); + + /* Now check for average overtemps */ + if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) { + new_state |= FAILURE_LOW_OVERTEMP; + if ((failure_state & FAILURE_LOW_OVERTEMP) == 0) + printk(KERN_ERR "windfarm: Overtemp due to average CPU" + " temperature !\n"); + } + if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) { + new_state |= FAILURE_HIGH_OVERTEMP; + if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0) + printk(KERN_ERR "windfarm: Critical overtemp due to" + " average CPU temperature !\n"); + } + + /* Now handle overtemp conditions. We don't currently use the windfarm + * overtemp handling core as it's not fully suited to the needs of those + * new machine. This will be fixed later. + */ + if (new_state) { + /* High overtemp -> immediate shutdown */ + if (new_state & FAILURE_HIGH_OVERTEMP) + machine_power_off(); + if ((failure_state & new_state) != new_state) + cpu_max_all_fans(); + failure_state |= new_state; + } else if ((failure_state & FAILURE_LOW_OVERTEMP) && + (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) { + printk(KERN_ERR "windfarm: Overtemp condition cleared !\n"); + failure_state &= ~FAILURE_LOW_OVERTEMP; + } + + return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP); +} + +static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power) +{ + s32 dtemp, volts, amps; + int rc; + + /* Get diode temperature */ + rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp); + if (rc) { + DBG(" CPU%d: temp reading error !\n", cpu); + return -EIO; + } + DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp))); + *temp = dtemp; + + /* Get voltage */ + rc = wf_sensor_get(sens_cpu_volts[cpu], &volts); + if (rc) { + DBG(" CPU%d, volts reading error !\n", cpu); + return -EIO; + } + DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts))); + + /* Get current */ + rc = wf_sensor_get(sens_cpu_amps[cpu], &s); + if (rc) { + DBG(" CPU%d, current reading error !\n", cpu); + return -EIO; + } + DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps))); + + /* Calculate power */ + + /* Scale voltage and current raw sensor values according to fixed scales + * obtained in Darwin and calculate power from I and V + */ + *power = (((u64)volts) * ((u64)amps)) >> 16; + + DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power))); + + return 0; + +} + +static void cpu_fans_tick(void) +{ + int err, cpu, i; + s32 speed, temp, power, t_max = 0; + + DBG_LOTS("* cpu fans_tick_split()\n"); + + for (cpu = 0; cpu < nr_chips; ++cpu) { + struct wf_cpu_pid_state *sp = &cpu_pid[cpu]; + + /* Read current speed */ + wf_control_get(cpu_fans[cpu][0], &sp->target); + + err = read_one_cpu_vals(cpu, &temp, &power); + if (err) { + failure_state |= FAILURE_SENSOR; + cpu_max_all_fans(); + return; + } + + /* Keep track of highest temp */ + t_max = max(t_max, temp); + + /* Handle possible overtemps */ + if (cpu_check_overtemp(t_max)) + return; + + /* Run PID */ + wf_cpu_pid_run(sp, power, temp); + + DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target); + + /* Apply DIMMs clamp */ + speed = max(sp->target, dimms_output_clamp); + + /* Apply result to all cpu fans */ + for (i = 0; i < 3; i++) { + err = wf_control_set(cpu_fans[cpu][i], speed); + if (err) { + pr_warn("wf_rm31: Fan %s reports error %d\n", + cpu_fans[cpu][i]->name, err); + failure_state |= FAILURE_FAN; + } + } + } +} + +/* Implementation... */ +static int cpu_setup_pid(int cpu) +{ + struct wf_cpu_pid_param pid; + const struct mpu_data *mpu = cpu_mpu_data[cpu]; + s32 tmax, ttarget, ptarget; + int fmin, fmax, hsize; + + /* Get PID params from the appropriate MPU EEPROM */ + tmax = mpu->tmax << 16; + ttarget = mpu->ttarget << 16; + ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16; + + DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n", + cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax)); + + /* We keep a global tmax for overtemp calculations */ + if (tmax < cpu_all_tmax) + cpu_all_tmax = tmax; + + /* Set PID min/max by using the rear fan min/max */ + fmin = wf_control_get_min(cpu_fans[cpu][0]); + fmax = wf_control_get_max(cpu_fans[cpu][0]); + DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax); + + /* History size */ + hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY); + DBG("wf_72: CPU%d history size = %d\n", cpu, hsize); + + /* Initialize PID loop */ + pid.interval = 1; /* seconds */ + pid.history_len = hsize; + pid.gd = mpu->pid_gd; + pid.gp = mpu->pid_gp; + pid.gr = mpu->pid_gr; + pid.tmax = tmax; + pid.ttarget = ttarget; + pid.pmaxadj = ptarget; + pid.min = fmin; + pid.max = fmax; + + wf_cpu_pid_init(&cpu_pid[cpu], &pid); + cpu_pid[cpu].target = 4000; + + return 0; +} + +/* Backside/U3 fan */ +static const struct wf_pid_param backside_param = { + .interval = 1, + .history_len = 2, + .gd = 0x00500000, + .gp = 0x0004cccc, + .gr = 0, + .itarget = 70 << 16, + .additive = 0, + .min = 20, + .max = 100, +}; + +/* DIMMs temperature (clamp the backside fan) */ +static const struct wf_pid_param dimms_param = { + .interval = 1, + .history_len = 20, + .gd = 0, + .gp = 0, + .gr = 0x06553600, + .itarget = 50 << 16, + .additive = 0, + .min = 4000, + .max = 14000, +}; + +static void backside_fan_tick(void) +{ + s32 temp, dtemp; + int speed, dspeed, fan_min; + int err; + + if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick) + return; + if (--backside_tick > 0) + return; + backside_tick = backside_pid.param.interval; + + DBG_LOTS("* backside fans tick\n"); + + /* Update fan speed from actual fans */ + err = wf_control_get(backside_fan, &speed); + if (!err) + backside_pid.target = speed; + + err = wf_sensor_get(backside_temp, &temp); + if (err) { + printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n", + err); + failure_state |= FAILURE_SENSOR; + wf_control_set_max(backside_fan); + return; + } + speed = wf_pid_run(&backside_pid, temp); + + DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n", + FIX32TOPRINT(temp), speed); + + err = wf_sensor_get(dimms_temp, &dtemp); + if (err) { + printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n", + err); + failure_state |= FAILURE_SENSOR; + wf_control_set_max(backside_fan); + return; + } + dspeed = wf_pid_run(&dimms_pid, dtemp); + dimms_output_clamp = dspeed; + + fan_min = (dspeed * 100) / 14000; + fan_min = max(fan_min, backside_param.min); + speed = max(speed, fan_min); + + err = wf_control_set(backside_fan, speed); + if (err) { + printk(KERN_WARNING "windfarm: backside fan error %d\n", err); + failure_state |= FAILURE_FAN; + } +} + +static void backside_setup_pid(void) +{ + /* first time initialize things */ + s32 fmin = wf_control_get_min(backside_fan); + s32 fmax = wf_control_get_max(backside_fan); + struct wf_pid_param param; + + param = backside_param; + param.min = max(param.min, fmin); + param.max = min(param.max, fmax); + wf_pid_init(&backside_pid, ¶m); + + param = dimms_param; + wf_pid_init(&dimms_pid, ¶m); + + backside_tick = 1; + + pr_info("wf_rm31: Backside control loop started.\n"); +} + +/* Slots fan */ +static const struct wf_pid_param slots_param = { + .interval = 1, + .history_len = 20, + .gd = 0, + .gp = 0, + .gr = 0x00100000, + .itarget = 3200000, + .additive = 0, + .min = 20, + .max = 100, +}; + +static void slots_fan_tick(void) +{ + s32 temp; + int speed; + int err; + + if (!slots_fan || !slots_temp || !slots_tick) + return; + if (--slots_tick > 0) + return; + slots_tick = slots_pid.param.interval; + + DBG_LOTS("* slots fans tick\n"); + + err = wf_sensor_get(slots_temp, &temp); + if (err) { + pr_warn("wf_rm31: slots temp sensor error %d\n", err); + failure_state |= FAILURE_SENSOR; + wf_control_set_max(slots_fan); + return; + } + speed = wf_pid_run(&slots_pid, temp); + + DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n", + FIX32TOPRINT(temp), speed); + + slots_speed = speed; + err = wf_control_set(slots_fan, speed); + if (err) { + printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err); + failure_state |= FAILURE_FAN; + } +} + +static void slots_setup_pid(void) +{ + /* first time initialize things */ + s32 fmin = wf_control_get_min(slots_fan); + s32 fmax = wf_control_get_max(slots_fan); + struct wf_pid_param param = slots_param; + + param.min = max(param.min, fmin); + param.max = min(param.max, fmax); + wf_pid_init(&slots_pid, ¶m); + slots_tick = 1; + + pr_info("wf_rm31: Slots control loop started.\n"); +} + +static void set_fail_state(void) +{ + cpu_max_all_fans(); + + if (backside_fan) + wf_control_set_max(backside_fan); + if (slots_fan) + wf_control_set_max(slots_fan); +} + +static void rm31_tick(void) +{ + int i, last_failure; + + if (!started) { + started = true; + printk(KERN_INFO "windfarm: CPUs control loops started.\n"); + for (i = 0; i < nr_chips; ++i) { + if (cpu_setup_pid(i) < 0) { + failure_state = FAILURE_PERM; + set_fail_state(); + break; + } + } + DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax)); + + backside_setup_pid(); + slots_setup_pid(); + +#ifdef HACKED_OVERTEMP + cpu_all_tmax = 60 << 16; +#endif + } + + /* Permanent failure, bail out */ + if (failure_state & FAILURE_PERM) + return; + + /* + * Clear all failure bits except low overtemp which will be eventually + * cleared by the control loop itself + */ + last_failure = failure_state; + failure_state &= FAILURE_LOW_OVERTEMP; + backside_fan_tick(); + slots_fan_tick(); + + /* We do CPUs last because they can be clamped high by + * DIMM temperature + */ + cpu_fans_tick(); + + DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n", + last_failure, failure_state); + + /* Check for failures. Any failure causes cpufreq clamping */ + if (failure_state && last_failure == 0 && cpufreq_clamp) + wf_control_set_max(cpufreq_clamp); + if (failure_state == 0 && last_failure && cpufreq_clamp) + wf_control_set_min(cpufreq_clamp); + + /* That's it for now, we might want to deal with other failures + * differently in the future though + */ +} + +static void rm31_new_control(struct wf_control *ct) +{ + bool all_controls; + + if (!strcmp(ct->name, "cpu-fan-a-0")) + cpu_fans[0][0] = ct; + else if (!strcmp(ct->name, "cpu-fan-b-0")) + cpu_fans[0][1] = ct; + else if (!strcmp(ct->name, "cpu-fan-c-0")) + cpu_fans[0][2] = ct; + else if (!strcmp(ct->name, "cpu-fan-a-1")) + cpu_fans[1][0] = ct; + else if (!strcmp(ct->name, "cpu-fan-b-1")) + cpu_fans[1][1] = ct; + else if (!strcmp(ct->name, "cpu-fan-c-1")) + cpu_fans[1][2] = ct; + else if (!strcmp(ct->name, "backside-fan")) + backside_fan = ct; + else if (!strcmp(ct->name, "slots-fan")) + slots_fan = ct; + else if (!strcmp(ct->name, "cpufreq-clamp")) + cpufreq_clamp = ct; + + all_controls = + cpu_fans[0][0] && + cpu_fans[0][1] && + cpu_fans[0][2] && + backside_fan && + slots_fan; + if (nr_chips > 1) + all_controls &= + cpu_fans[1][0] && + cpu_fans[1][1] && + cpu_fans[1][2]; + have_all_controls = all_controls; +} + + +static void rm31_new_sensor(struct wf_sensor *sr) +{ + bool all_sensors; + + if (!strcmp(sr->name, "cpu-diode-temp-0")) + sens_cpu_temp[0] = sr; + else if (!strcmp(sr->name, "cpu-diode-temp-1")) + sens_cpu_temp[1] = sr; + else if (!strcmp(sr->name, "cpu-voltage-0")) + sens_cpu_volts[0] = sr; + else if (!strcmp(sr->name, "cpu-voltage-1")) + sens_cpu_volts[1] = sr; + else if (!strcmp(sr->name, "cpu-current-0")) + sens_cpu_amps[0] = sr; + else if (!strcmp(sr->name, "cpu-current-1")) + sens_cpu_amps[1] = sr; + else if (!strcmp(sr->name, "backside-temp")) + backside_temp = sr; + else if (!strcmp(sr->name, "slots-temp")) + slots_temp = sr; + else if (!strcmp(sr->name, "dimms-temp")) + dimms_temp = sr; + + all_sensors = + sens_cpu_temp[0] && + sens_cpu_volts[0] && + sens_cpu_amps[0] && + backside_temp && + slots_temp && + dimms_temp; + if (nr_chips > 1) + all_sensors &= + sens_cpu_temp[1] && + sens_cpu_volts[1] && + sens_cpu_amps[1]; + + have_all_sensors = all_sensors; +} + +static int rm31_wf_notify(struct notifier_block *self, + unsigned long event, void *data) +{ + switch (event) { + case WF_EVENT_NEW_SENSOR: + rm31_new_sensor(data); + break; + case WF_EVENT_NEW_CONTROL: + rm31_new_control(data); + break; + case WF_EVENT_TICK: + if (have_all_controls && have_all_sensors) + rm31_tick(); + } + return 0; +} + +static struct notifier_block rm31_events = { + .notifier_call = rm31_wf_notify, +}; + +static int wf_rm31_probe(struct platform_device *dev) +{ + wf_register_client(&rm31_events); + return 0; +} + +static int wf_rm31_remove(struct platform_device *dev) +{ + wf_unregister_client(&rm31_events); + + /* should release all sensors and controls */ + return 0; +} + +static struct platform_driver wf_rm31_driver = { + .probe = wf_rm31_probe, + .remove = wf_rm31_remove, + .driver = { + .name = "windfarm", + }, +}; + +static int __init wf_rm31_init(void) +{ + struct device_node *cpu; + int i; + + if (!of_machine_is_compatible("RackMac3,1")) + return -ENODEV; + + /* Count the number of CPU cores */ + nr_chips = 0; + for_each_node_by_type(cpu, "cpu") + ++nr_chips; + if (nr_chips > NR_CHIPS) + nr_chips = NR_CHIPS; + + pr_info("windfarm: Initializing for desktop G5 with %d chips\n", + nr_chips); + + /* Get MPU data for each CPU */ + for (i = 0; i < nr_chips; i++) { + cpu_mpu_data[i] = wf_get_mpu(i); + if (!cpu_mpu_data[i]) { + pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i); + return -ENXIO; + } + } + +#ifdef MODULE + request_module("windfarm_fcu_controls"); + request_module("windfarm_lm75_sensor"); + request_module("windfarm_lm87_sensor"); + request_module("windfarm_ad7417_sensor"); + request_module("windfarm_max6690_sensor"); + request_module("windfarm_cpufreq_clamp"); +#endif /* MODULE */ + + platform_driver_register(&wf_rm31_driver); + return 0; +} + +static void __exit wf_rm31_exit(void) +{ + platform_driver_unregister(&wf_rm31_driver); +} + +module_init(wf_rm31_init); +module_exit(wf_rm31_exit); + +MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); +MODULE_DESCRIPTION("Thermal control for Xserve G5"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:windfarm"); |