diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/misc/habanalabs/common/memory.c | |
parent | Initial commit. (diff) | |
download | linux-430c2fc249ea5c0536abd21c23382884005c9093.tar.xz linux-430c2fc249ea5c0536abd21c23382884005c9093.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/misc/habanalabs/common/memory.c')
-rw-r--r-- | drivers/misc/habanalabs/common/memory.c | 1859 |
1 files changed, 1859 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/memory.c b/drivers/misc/habanalabs/common/memory.c new file mode 100644 index 000000000..bfe223abf --- /dev/null +++ b/drivers/misc/habanalabs/common/memory.c @@ -0,0 +1,1859 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2019 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include <uapi/misc/habanalabs.h> +#include "habanalabs.h" +#include "../include/hw_ip/mmu/mmu_general.h" + +#include <linux/uaccess.h> +#include <linux/slab.h> +#include <linux/genalloc.h> + +#define HL_MMU_DEBUG 0 + +/* + * The va ranges in context object contain a list with the available chunks of + * device virtual memory. + * There is one range for host allocations and one for DRAM allocations. + * + * On initialization each range contains one chunk of all of its available + * virtual range which is a half of the total device virtual range. + * + * On each mapping of physical pages, a suitable virtual range chunk (with a + * minimum size) is selected from the list. If the chunk size equals the + * requested size, the chunk is returned. Otherwise, the chunk is split into + * two chunks - one to return as result and a remainder to stay in the list. + * + * On each Unmapping of a virtual address, the relevant virtual chunk is + * returned to the list. The chunk is added to the list and if its edges match + * the edges of the adjacent chunks (means a contiguous chunk can be created), + * the chunks are merged. + * + * On finish, the list is checked to have only one chunk of all the relevant + * virtual range (which is a half of the device total virtual range). + * If not (means not all mappings were unmapped), a warning is printed. + */ + +/* + * alloc_device_memory - allocate device memory + * + * @ctx : current context + * @args : host parameters containing the requested size + * @ret_handle : result handle + * + * This function does the following: + * - Allocate the requested size rounded up to 2MB pages + * - Return unique handle + */ +static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args, + u32 *ret_handle) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + u64 paddr = 0, total_size, num_pgs, i; + u32 num_curr_pgs, page_size, page_shift; + int handle, rc; + bool contiguous; + + num_curr_pgs = 0; + page_size = hdev->asic_prop.dram_page_size; + page_shift = __ffs(page_size); + num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift; + total_size = num_pgs << page_shift; + + if (!total_size) { + dev_err(hdev->dev, "Cannot allocate 0 bytes\n"); + return -EINVAL; + } + + contiguous = args->flags & HL_MEM_CONTIGUOUS; + + if (contiguous) { + paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size); + if (!paddr) { + dev_err(hdev->dev, + "failed to allocate %llu contiguous pages with total size of %llu\n", + num_pgs, total_size); + return -ENOMEM; + } + } + + phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); + if (!phys_pg_pack) { + rc = -ENOMEM; + goto pages_pack_err; + } + + phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK; + phys_pg_pack->asid = ctx->asid; + phys_pg_pack->npages = num_pgs; + phys_pg_pack->page_size = page_size; + phys_pg_pack->total_size = total_size; + phys_pg_pack->flags = args->flags; + phys_pg_pack->contiguous = contiguous; + + phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL); + if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { + rc = -ENOMEM; + goto pages_arr_err; + } + + if (phys_pg_pack->contiguous) { + for (i = 0 ; i < num_pgs ; i++) + phys_pg_pack->pages[i] = paddr + i * page_size; + } else { + for (i = 0 ; i < num_pgs ; i++) { + phys_pg_pack->pages[i] = (u64) gen_pool_alloc( + vm->dram_pg_pool, + page_size); + if (!phys_pg_pack->pages[i]) { + dev_err(hdev->dev, + "Failed to allocate device memory (out of memory)\n"); + rc = -ENOMEM; + goto page_err; + } + + num_curr_pgs++; + } + } + + spin_lock(&vm->idr_lock); + handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0, + GFP_ATOMIC); + spin_unlock(&vm->idr_lock); + + if (handle < 0) { + dev_err(hdev->dev, "Failed to get handle for page\n"); + rc = -EFAULT; + goto idr_err; + } + + for (i = 0 ; i < num_pgs ; i++) + kref_get(&vm->dram_pg_pool_refcount); + + phys_pg_pack->handle = handle; + + atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem); + atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem); + + *ret_handle = handle; + + return 0; + +idr_err: +page_err: + if (!phys_pg_pack->contiguous) + for (i = 0 ; i < num_curr_pgs ; i++) + gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i], + page_size); + + kvfree(phys_pg_pack->pages); +pages_arr_err: + kfree(phys_pg_pack); +pages_pack_err: + if (contiguous) + gen_pool_free(vm->dram_pg_pool, paddr, total_size); + + return rc; +} + +/* + * dma_map_host_va - DMA mapping of the given host virtual address. + * @hdev: habanalabs device structure + * @addr: the host virtual address of the memory area + * @size: the size of the memory area + * @p_userptr: pointer to result userptr structure + * + * This function does the following: + * - Allocate userptr structure + * - Pin the given host memory using the userptr structure + * - Perform DMA mapping to have the DMA addresses of the pages + */ +static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size, + struct hl_userptr **p_userptr) +{ + struct hl_userptr *userptr; + int rc; + + userptr = kzalloc(sizeof(*userptr), GFP_KERNEL); + if (!userptr) { + rc = -ENOMEM; + goto userptr_err; + } + + rc = hl_pin_host_memory(hdev, addr, size, userptr); + if (rc) { + dev_err(hdev->dev, "Failed to pin host memory\n"); + goto pin_err; + } + + rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl, + userptr->sgt->nents, DMA_BIDIRECTIONAL); + if (rc) { + dev_err(hdev->dev, "failed to map sgt with DMA region\n"); + goto dma_map_err; + } + + userptr->dma_mapped = true; + userptr->dir = DMA_BIDIRECTIONAL; + userptr->vm_type = VM_TYPE_USERPTR; + + *p_userptr = userptr; + + return 0; + +dma_map_err: + hl_unpin_host_memory(hdev, userptr); +pin_err: + kfree(userptr); +userptr_err: + + return rc; +} + +/* + * dma_unmap_host_va - DMA unmapping of the given host virtual address. + * @hdev: habanalabs device structure + * @userptr: userptr to free + * + * This function does the following: + * - Unpins the physical pages + * - Frees the userptr structure + */ +static void dma_unmap_host_va(struct hl_device *hdev, + struct hl_userptr *userptr) +{ + hl_unpin_host_memory(hdev, userptr); + kfree(userptr); +} + +/* + * dram_pg_pool_do_release - free DRAM pages pool + * + * @ref : pointer to reference object + * + * This function does the following: + * - Frees the idr structure of physical pages handles + * - Frees the generic pool of DRAM physical pages + */ +static void dram_pg_pool_do_release(struct kref *ref) +{ + struct hl_vm *vm = container_of(ref, struct hl_vm, + dram_pg_pool_refcount); + + /* + * free the idr here as only here we know for sure that there are no + * allocated physical pages and hence there are no handles in use + */ + idr_destroy(&vm->phys_pg_pack_handles); + gen_pool_destroy(vm->dram_pg_pool); +} + +/* + * free_phys_pg_pack - free physical page pack + * @hdev: habanalabs device structure + * @phys_pg_pack: physical page pack to free + * + * This function does the following: + * - For DRAM memory only, iterate over the pack and free each physical block + * structure by returning it to the general pool + * - Free the hl_vm_phys_pg_pack structure + */ +static void free_phys_pg_pack(struct hl_device *hdev, + struct hl_vm_phys_pg_pack *phys_pg_pack) +{ + struct hl_vm *vm = &hdev->vm; + u64 i; + + if (!phys_pg_pack->created_from_userptr) { + if (phys_pg_pack->contiguous) { + gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0], + phys_pg_pack->total_size); + + for (i = 0; i < phys_pg_pack->npages ; i++) + kref_put(&vm->dram_pg_pool_refcount, + dram_pg_pool_do_release); + } else { + for (i = 0 ; i < phys_pg_pack->npages ; i++) { + gen_pool_free(vm->dram_pg_pool, + phys_pg_pack->pages[i], + phys_pg_pack->page_size); + kref_put(&vm->dram_pg_pool_refcount, + dram_pg_pool_do_release); + } + } + } + + kvfree(phys_pg_pack->pages); + kfree(phys_pg_pack); +} + +/* + * free_device_memory - free device memory + * + * @ctx : current context + * @handle : handle of the memory chunk to free + * + * This function does the following: + * - Free the device memory related to the given handle + */ +static int free_device_memory(struct hl_ctx *ctx, u32 handle) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + + spin_lock(&vm->idr_lock); + phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); + if (phys_pg_pack) { + if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) { + dev_err(hdev->dev, "handle %u is mapped, cannot free\n", + handle); + spin_unlock(&vm->idr_lock); + return -EINVAL; + } + + /* + * must remove from idr before the freeing of the physical + * pages as the refcount of the pool is also the trigger of the + * idr destroy + */ + idr_remove(&vm->phys_pg_pack_handles, handle); + spin_unlock(&vm->idr_lock); + + atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem); + atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem); + + free_phys_pg_pack(hdev, phys_pg_pack); + } else { + spin_unlock(&vm->idr_lock); + dev_err(hdev->dev, + "free device memory failed, no match for handle %u\n", + handle); + return -EINVAL; + } + + return 0; +} + +/* + * clear_va_list_locked - free virtual addresses list + * + * @hdev : habanalabs device structure + * @va_list : list of virtual addresses to free + * + * This function does the following: + * - Iterate over the list and free each virtual addresses block + * + * This function should be called only when va_list lock is taken + */ +static void clear_va_list_locked(struct hl_device *hdev, + struct list_head *va_list) +{ + struct hl_vm_va_block *va_block, *tmp; + + list_for_each_entry_safe(va_block, tmp, va_list, node) { + list_del(&va_block->node); + kfree(va_block); + } +} + +/* + * print_va_list_locked - print virtual addresses list + * + * @hdev : habanalabs device structure + * @va_list : list of virtual addresses to print + * + * This function does the following: + * - Iterate over the list and print each virtual addresses block + * + * This function should be called only when va_list lock is taken + */ +static void print_va_list_locked(struct hl_device *hdev, + struct list_head *va_list) +{ +#if HL_MMU_DEBUG + struct hl_vm_va_block *va_block; + + dev_dbg(hdev->dev, "print va list:\n"); + + list_for_each_entry(va_block, va_list, node) + dev_dbg(hdev->dev, + "va block, start: 0x%llx, end: 0x%llx, size: %llu\n", + va_block->start, va_block->end, va_block->size); +#endif +} + +/* + * merge_va_blocks_locked - merge a virtual block if possible + * + * @hdev : pointer to the habanalabs device structure + * @va_list : pointer to the virtual addresses block list + * @va_block : virtual block to merge with adjacent blocks + * + * This function does the following: + * - Merge the given blocks with the adjacent blocks if their virtual ranges + * create a contiguous virtual range + * + * This Function should be called only when va_list lock is taken + */ +static void merge_va_blocks_locked(struct hl_device *hdev, + struct list_head *va_list, struct hl_vm_va_block *va_block) +{ + struct hl_vm_va_block *prev, *next; + + prev = list_prev_entry(va_block, node); + if (&prev->node != va_list && prev->end + 1 == va_block->start) { + prev->end = va_block->end; + prev->size = prev->end - prev->start; + list_del(&va_block->node); + kfree(va_block); + va_block = prev; + } + + next = list_next_entry(va_block, node); + if (&next->node != va_list && va_block->end + 1 == next->start) { + next->start = va_block->start; + next->size = next->end - next->start; + list_del(&va_block->node); + kfree(va_block); + } +} + +/* + * add_va_block_locked - add a virtual block to the virtual addresses list + * + * @hdev : pointer to the habanalabs device structure + * @va_list : pointer to the virtual addresses block list + * @start : start virtual address + * @end : end virtual address + * + * This function does the following: + * - Add the given block to the virtual blocks list and merge with other + * blocks if a contiguous virtual block can be created + * + * This Function should be called only when va_list lock is taken + */ +static int add_va_block_locked(struct hl_device *hdev, + struct list_head *va_list, u64 start, u64 end) +{ + struct hl_vm_va_block *va_block, *res = NULL; + u64 size = end - start; + + print_va_list_locked(hdev, va_list); + + list_for_each_entry(va_block, va_list, node) { + /* TODO: remove upon matureness */ + if (hl_mem_area_crosses_range(start, size, va_block->start, + va_block->end)) { + dev_err(hdev->dev, + "block crossing ranges at start 0x%llx, end 0x%llx\n", + va_block->start, va_block->end); + return -EINVAL; + } + + if (va_block->end < start) + res = va_block; + } + + va_block = kmalloc(sizeof(*va_block), GFP_KERNEL); + if (!va_block) + return -ENOMEM; + + va_block->start = start; + va_block->end = end; + va_block->size = size; + + if (!res) + list_add(&va_block->node, va_list); + else + list_add(&va_block->node, &res->node); + + merge_va_blocks_locked(hdev, va_list, va_block); + + print_va_list_locked(hdev, va_list); + + return 0; +} + +/* + * add_va_block - wrapper for add_va_block_locked + * + * @hdev : pointer to the habanalabs device structure + * @va_list : pointer to the virtual addresses block list + * @start : start virtual address + * @end : end virtual address + * + * This function does the following: + * - Takes the list lock and calls add_va_block_locked + */ +static inline int add_va_block(struct hl_device *hdev, + struct hl_va_range *va_range, u64 start, u64 end) +{ + int rc; + + mutex_lock(&va_range->lock); + rc = add_va_block_locked(hdev, &va_range->list, start, end); + mutex_unlock(&va_range->lock); + + return rc; +} + +/* + * get_va_block() - get a virtual block for the given size and alignment. + * @hdev: pointer to the habanalabs device structure. + * @va_range: pointer to the virtual addresses range. + * @size: requested block size. + * @hint_addr: hint for requested address by the user. + * @va_block_align: required alignment of the virtual block start address. + * + * This function does the following: + * - Iterate on the virtual block list to find a suitable virtual block for the + * given size and alignment. + * - Reserve the requested block and update the list. + * - Return the start address of the virtual block. + */ +static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range, + u64 size, u64 hint_addr, u32 va_block_align) +{ + struct hl_vm_va_block *va_block, *new_va_block = NULL; + u64 valid_start, valid_size, prev_start, prev_end, align_mask, + res_valid_start = 0, res_valid_size = 0; + bool add_prev = false; + + align_mask = ~((u64)va_block_align - 1); + + /* check if hint_addr is aligned */ + if (hint_addr & (va_block_align - 1)) + hint_addr = 0; + + mutex_lock(&va_range->lock); + + print_va_list_locked(hdev, &va_range->list); + + list_for_each_entry(va_block, &va_range->list, node) { + /* calc the first possible aligned addr */ + valid_start = va_block->start; + + if (valid_start & (va_block_align - 1)) { + valid_start &= align_mask; + valid_start += va_block_align; + if (valid_start > va_block->end) + continue; + } + + valid_size = va_block->end - valid_start; + + if (valid_size >= size && + (!new_va_block || valid_size < res_valid_size)) { + new_va_block = va_block; + res_valid_start = valid_start; + res_valid_size = valid_size; + } + + if (hint_addr && hint_addr >= valid_start && + ((hint_addr + size) <= va_block->end)) { + new_va_block = va_block; + res_valid_start = hint_addr; + res_valid_size = valid_size; + break; + } + } + + if (!new_va_block) { + dev_err(hdev->dev, "no available va block for size %llu\n", + size); + goto out; + } + + if (res_valid_start > new_va_block->start) { + prev_start = new_va_block->start; + prev_end = res_valid_start - 1; + + new_va_block->start = res_valid_start; + new_va_block->size = res_valid_size; + + add_prev = true; + } + + if (new_va_block->size > size) { + new_va_block->start += size; + new_va_block->size = new_va_block->end - new_va_block->start; + } else { + list_del(&new_va_block->node); + kfree(new_va_block); + } + + if (add_prev) + add_va_block_locked(hdev, &va_range->list, prev_start, + prev_end); + + print_va_list_locked(hdev, &va_range->list); +out: + mutex_unlock(&va_range->lock); + + return res_valid_start; +} + +/* + * get_sg_info - get number of pages and the DMA address from SG list + * + * @sg : the SG list + * @dma_addr : pointer to DMA address to return + * + * Calculate the number of consecutive pages described by the SG list. Take the + * offset of the address in the first page, add to it the length and round it up + * to the number of needed pages. + */ +static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr) +{ + *dma_addr = sg_dma_address(sg); + + return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) + + (PAGE_SIZE - 1)) >> PAGE_SHIFT; +} + +/* + * init_phys_pg_pack_from_userptr - initialize physical page pack from host + * memory + * @ctx: current context + * @userptr: userptr to initialize from + * @pphys_pg_pack: result pointer + * + * This function does the following: + * - Pin the physical pages related to the given virtual block + * - Create a physical page pack from the physical pages related to the given + * virtual block + */ +static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx, + struct hl_userptr *userptr, + struct hl_vm_phys_pg_pack **pphys_pg_pack) +{ + struct hl_vm_phys_pg_pack *phys_pg_pack; + struct scatterlist *sg; + dma_addr_t dma_addr; + u64 page_mask, total_npages; + u32 npages, page_size = PAGE_SIZE, + huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size; + bool first = true, is_huge_page_opt = true; + int rc, i, j; + u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size); + + phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL); + if (!phys_pg_pack) + return -ENOMEM; + + phys_pg_pack->vm_type = userptr->vm_type; + phys_pg_pack->created_from_userptr = true; + phys_pg_pack->asid = ctx->asid; + atomic_set(&phys_pg_pack->mapping_cnt, 1); + + /* Only if all dma_addrs are aligned to 2MB and their + * sizes is at least 2MB, we can use huge page mapping. + * We limit the 2MB optimization to this condition, + * since later on we acquire the related VA range as one + * consecutive block. + */ + total_npages = 0; + for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) { + npages = get_sg_info(sg, &dma_addr); + + total_npages += npages; + + if ((npages % pgs_in_huge_page) || + (dma_addr & (huge_page_size - 1))) + is_huge_page_opt = false; + } + + if (is_huge_page_opt) { + page_size = huge_page_size; + do_div(total_npages, pgs_in_huge_page); + } + + page_mask = ~(((u64) page_size) - 1); + + phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64), + GFP_KERNEL); + if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) { + rc = -ENOMEM; + goto page_pack_arr_mem_err; + } + + phys_pg_pack->npages = total_npages; + phys_pg_pack->page_size = page_size; + phys_pg_pack->total_size = total_npages * page_size; + + j = 0; + for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) { + npages = get_sg_info(sg, &dma_addr); + + /* align down to physical page size and save the offset */ + if (first) { + first = false; + phys_pg_pack->offset = dma_addr & (page_size - 1); + dma_addr &= page_mask; + } + + while (npages) { + phys_pg_pack->pages[j++] = dma_addr; + dma_addr += page_size; + + if (is_huge_page_opt) + npages -= pgs_in_huge_page; + else + npages--; + } + } + + *pphys_pg_pack = phys_pg_pack; + + return 0; + +page_pack_arr_mem_err: + kfree(phys_pg_pack); + + return rc; +} + +/* + * map_phys_pg_pack - maps the physical page pack. + * @ctx: current context + * @vaddr: start address of the virtual area to map from + * @phys_pg_pack: the pack of physical pages to map to + * + * This function does the following: + * - Maps each chunk of virtual memory to matching physical chunk + * - Stores number of successful mappings in the given argument + * - Returns 0 on success, error code otherwise + */ +static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, + struct hl_vm_phys_pg_pack *phys_pg_pack) +{ + struct hl_device *hdev = ctx->hdev; + u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i; + u32 page_size = phys_pg_pack->page_size; + int rc = 0; + + for (i = 0 ; i < phys_pg_pack->npages ; i++) { + paddr = phys_pg_pack->pages[i]; + + rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size, + (i + 1) == phys_pg_pack->npages); + if (rc) { + dev_err(hdev->dev, + "map failed for handle %u, npages: %llu, mapped: %llu", + phys_pg_pack->handle, phys_pg_pack->npages, + mapped_pg_cnt); + goto err; + } + + mapped_pg_cnt++; + next_vaddr += page_size; + } + + return 0; + +err: + next_vaddr = vaddr; + for (i = 0 ; i < mapped_pg_cnt ; i++) { + if (hl_mmu_unmap(ctx, next_vaddr, page_size, + (i + 1) == mapped_pg_cnt)) + dev_warn_ratelimited(hdev->dev, + "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n", + phys_pg_pack->handle, next_vaddr, + phys_pg_pack->pages[i], page_size); + + next_vaddr += page_size; + } + + return rc; +} + +/* + * unmap_phys_pg_pack - unmaps the physical page pack + * @ctx: current context + * @vaddr: start address of the virtual area to unmap + * @phys_pg_pack: the pack of physical pages to unmap + */ +static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr, + struct hl_vm_phys_pg_pack *phys_pg_pack) +{ + struct hl_device *hdev = ctx->hdev; + u64 next_vaddr, i; + u32 page_size; + + page_size = phys_pg_pack->page_size; + next_vaddr = vaddr; + + for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) { + if (hl_mmu_unmap(ctx, next_vaddr, page_size, + (i + 1) == phys_pg_pack->npages)) + dev_warn_ratelimited(hdev->dev, + "unmap failed for vaddr: 0x%llx\n", next_vaddr); + + /* + * unmapping on Palladium can be really long, so avoid a CPU + * soft lockup bug by sleeping a little between unmapping pages + */ + if (hdev->pldm) + usleep_range(500, 1000); + } +} + +static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args, + u64 *paddr) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + u32 handle; + + handle = lower_32_bits(args->map_device.handle); + spin_lock(&vm->idr_lock); + phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); + if (!phys_pg_pack) { + spin_unlock(&vm->idr_lock); + dev_err(hdev->dev, "no match for handle %u\n", handle); + return -EINVAL; + } + + *paddr = phys_pg_pack->pages[0]; + + spin_unlock(&vm->idr_lock); + + return 0; +} + +/* + * map_device_va - map the given memory + * + * @ctx : current context + * @args : host parameters with handle/host virtual address + * @device_addr : pointer to result device virtual address + * + * This function does the following: + * - If given a physical device memory handle, map to a device virtual block + * and return the start address of this block + * - If given a host virtual address and size, find the related physical pages, + * map a device virtual block to this pages and return the start address of + * this block + */ +static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, + u64 *device_addr) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_pack; + struct hl_userptr *userptr = NULL; + struct hl_vm_hash_node *hnode; + struct hl_va_range *va_range; + enum vm_type_t *vm_type; + u64 ret_vaddr, hint_addr; + u32 handle = 0, va_block_align; + int rc; + bool is_userptr = args->flags & HL_MEM_USERPTR; + + /* Assume failure */ + *device_addr = 0; + + if (is_userptr) { + u64 addr = args->map_host.host_virt_addr, + size = args->map_host.mem_size; + u32 page_size = hdev->asic_prop.pmmu.page_size, + huge_page_size = hdev->asic_prop.pmmu_huge.page_size; + + rc = dma_map_host_va(hdev, addr, size, &userptr); + if (rc) { + dev_err(hdev->dev, "failed to get userptr from va\n"); + return rc; + } + + rc = init_phys_pg_pack_from_userptr(ctx, userptr, + &phys_pg_pack); + if (rc) { + dev_err(hdev->dev, + "unable to init page pack for vaddr 0x%llx\n", + addr); + goto init_page_pack_err; + } + + vm_type = (enum vm_type_t *) userptr; + hint_addr = args->map_host.hint_addr; + handle = phys_pg_pack->handle; + + /* get required alignment */ + if (phys_pg_pack->page_size == page_size) { + va_range = ctx->host_va_range; + + /* + * huge page alignment may be needed in case of regular + * page mapping, depending on the host VA alignment + */ + if (addr & (huge_page_size - 1)) + va_block_align = page_size; + else + va_block_align = huge_page_size; + } else { + /* + * huge page alignment is needed in case of huge page + * mapping + */ + va_range = ctx->host_huge_va_range; + va_block_align = huge_page_size; + } + } else { + handle = lower_32_bits(args->map_device.handle); + + spin_lock(&vm->idr_lock); + phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle); + if (!phys_pg_pack) { + spin_unlock(&vm->idr_lock); + dev_err(hdev->dev, + "no match for handle %u\n", handle); + return -EINVAL; + } + + /* increment now to avoid freeing device memory while mapping */ + atomic_inc(&phys_pg_pack->mapping_cnt); + + spin_unlock(&vm->idr_lock); + + vm_type = (enum vm_type_t *) phys_pg_pack; + + hint_addr = args->map_device.hint_addr; + + /* DRAM VA alignment is the same as the DRAM page size */ + va_range = ctx->dram_va_range; + va_block_align = hdev->asic_prop.dmmu.page_size; + } + + /* + * relevant for mapping device physical memory only, as host memory is + * implicitly shared + */ + if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) && + phys_pg_pack->asid != ctx->asid) { + dev_err(hdev->dev, + "Failed to map memory, handle %u is not shared\n", + handle); + rc = -EPERM; + goto shared_err; + } + + hnode = kzalloc(sizeof(*hnode), GFP_KERNEL); + if (!hnode) { + rc = -ENOMEM; + goto hnode_err; + } + + ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size, + hint_addr, va_block_align); + if (!ret_vaddr) { + dev_err(hdev->dev, "no available va block for handle %u\n", + handle); + rc = -ENOMEM; + goto va_block_err; + } + + mutex_lock(&ctx->mmu_lock); + + rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack); + if (rc) { + mutex_unlock(&ctx->mmu_lock); + dev_err(hdev->dev, "mapping page pack failed for handle %u\n", + handle); + goto map_err; + } + + rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type); + + mutex_unlock(&ctx->mmu_lock); + + if (rc) { + dev_err(hdev->dev, + "mapping handle %u failed due to MMU cache invalidation\n", + handle); + goto map_err; + } + + ret_vaddr += phys_pg_pack->offset; + + hnode->ptr = vm_type; + hnode->vaddr = ret_vaddr; + + mutex_lock(&ctx->mem_hash_lock); + hash_add(ctx->mem_hash, &hnode->node, ret_vaddr); + mutex_unlock(&ctx->mem_hash_lock); + + *device_addr = ret_vaddr; + + if (is_userptr) + free_phys_pg_pack(hdev, phys_pg_pack); + + return 0; + +map_err: + if (add_va_block(hdev, va_range, ret_vaddr, + ret_vaddr + phys_pg_pack->total_size - 1)) + dev_warn(hdev->dev, + "release va block failed for handle 0x%x, vaddr: 0x%llx\n", + handle, ret_vaddr); + +va_block_err: + kfree(hnode); +hnode_err: +shared_err: + atomic_dec(&phys_pg_pack->mapping_cnt); + if (is_userptr) + free_phys_pg_pack(hdev, phys_pg_pack); +init_page_pack_err: + if (is_userptr) + dma_unmap_host_va(hdev, userptr); + + return rc; +} + +/* + * unmap_device_va - unmap the given device virtual address + * + * @ctx : current context + * @vaddr : device virtual address to unmap + * @ctx_free : true if in context free flow, false otherwise. + * + * This function does the following: + * - Unmap the physical pages related to the given virtual address + * - return the device virtual block to the virtual block list + */ +static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; + struct hl_vm_hash_node *hnode = NULL; + struct hl_userptr *userptr = NULL; + struct hl_va_range *va_range; + enum vm_type_t *vm_type; + bool is_userptr; + int rc = 0; + + /* protect from double entrance */ + mutex_lock(&ctx->mem_hash_lock); + hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr) + if (vaddr == hnode->vaddr) + break; + + if (!hnode) { + mutex_unlock(&ctx->mem_hash_lock); + dev_err(hdev->dev, + "unmap failed, no mem hnode for vaddr 0x%llx\n", + vaddr); + return -EINVAL; + } + + hash_del(&hnode->node); + mutex_unlock(&ctx->mem_hash_lock); + + vm_type = hnode->ptr; + + if (*vm_type == VM_TYPE_USERPTR) { + is_userptr = true; + userptr = hnode->ptr; + rc = init_phys_pg_pack_from_userptr(ctx, userptr, + &phys_pg_pack); + if (rc) { + dev_err(hdev->dev, + "unable to init page pack for vaddr 0x%llx\n", + vaddr); + goto vm_type_err; + } + + if (phys_pg_pack->page_size == + hdev->asic_prop.pmmu.page_size) + va_range = ctx->host_va_range; + else + va_range = ctx->host_huge_va_range; + } else if (*vm_type == VM_TYPE_PHYS_PACK) { + is_userptr = false; + va_range = ctx->dram_va_range; + phys_pg_pack = hnode->ptr; + } else { + dev_warn(hdev->dev, + "unmap failed, unknown vm desc for vaddr 0x%llx\n", + vaddr); + rc = -EFAULT; + goto vm_type_err; + } + + if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) { + dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr); + rc = -EINVAL; + goto mapping_cnt_err; + } + + vaddr &= ~(((u64) phys_pg_pack->page_size) - 1); + + mutex_lock(&ctx->mmu_lock); + + unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack); + + /* + * During context free this function is called in a loop to clean all + * the context mappings. Hence the cache invalidation can be called once + * at the loop end rather than for each iteration + */ + if (!ctx_free) + rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true, + *vm_type); + + mutex_unlock(&ctx->mmu_lock); + + /* + * If the context is closing we don't need to check for the MMU cache + * invalidation return code and update the VA free list as in this flow + * we invalidate the MMU cache outside of this unmap function and the VA + * free list will be freed anyway. + */ + if (!ctx_free) { + int tmp_rc; + + if (rc) + dev_err(hdev->dev, + "unmapping vaddr 0x%llx failed due to MMU cache invalidation\n", + vaddr); + + tmp_rc = add_va_block(hdev, va_range, vaddr, + vaddr + phys_pg_pack->total_size - 1); + if (tmp_rc) { + dev_warn(hdev->dev, + "add va block failed for vaddr: 0x%llx\n", + vaddr); + if (!rc) + rc = tmp_rc; + } + } + + atomic_dec(&phys_pg_pack->mapping_cnt); + kfree(hnode); + + if (is_userptr) { + free_phys_pg_pack(hdev, phys_pg_pack); + dma_unmap_host_va(hdev, userptr); + } + + return rc; + +mapping_cnt_err: + if (is_userptr) + free_phys_pg_pack(hdev, phys_pg_pack); +vm_type_err: + mutex_lock(&ctx->mem_hash_lock); + hash_add(ctx->mem_hash, &hnode->node, vaddr); + mutex_unlock(&ctx->mem_hash_lock); + + return rc; +} + +static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) +{ + struct hl_device *hdev = hpriv->hdev; + struct hl_ctx *ctx = hpriv->ctx; + u64 device_addr = 0; + u32 handle = 0; + int rc; + + switch (args->in.op) { + case HL_MEM_OP_ALLOC: + if (args->in.alloc.mem_size == 0) { + dev_err(hdev->dev, + "alloc size must be larger than 0\n"); + rc = -EINVAL; + goto out; + } + + /* Force contiguous as there are no real MMU + * translations to overcome physical memory gaps + */ + args->in.flags |= HL_MEM_CONTIGUOUS; + rc = alloc_device_memory(ctx, &args->in, &handle); + + memset(args, 0, sizeof(*args)); + args->out.handle = (__u64) handle; + break; + + case HL_MEM_OP_FREE: + rc = free_device_memory(ctx, args->in.free.handle); + break; + + case HL_MEM_OP_MAP: + if (args->in.flags & HL_MEM_USERPTR) { + device_addr = args->in.map_host.host_virt_addr; + rc = 0; + } else { + rc = get_paddr_from_handle(ctx, &args->in, + &device_addr); + } + + memset(args, 0, sizeof(*args)); + args->out.device_virt_addr = device_addr; + break; + + case HL_MEM_OP_UNMAP: + rc = 0; + break; + + default: + dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); + rc = -ENOTTY; + break; + } + +out: + return rc; +} + +int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) +{ + union hl_mem_args *args = data; + struct hl_device *hdev = hpriv->hdev; + struct hl_ctx *ctx = hpriv->ctx; + u64 device_addr = 0; + u32 handle = 0; + int rc; + + if (hl_device_disabled_or_in_reset(hdev)) { + dev_warn_ratelimited(hdev->dev, + "Device is %s. Can't execute MEMORY IOCTL\n", + atomic_read(&hdev->in_reset) ? "in_reset" : "disabled"); + return -EBUSY; + } + + if (!hdev->mmu_enable) + return mem_ioctl_no_mmu(hpriv, args); + + switch (args->in.op) { + case HL_MEM_OP_ALLOC: + if (!hdev->dram_supports_virtual_memory) { + dev_err(hdev->dev, "DRAM alloc is not supported\n"); + rc = -EINVAL; + goto out; + } + + if (args->in.alloc.mem_size == 0) { + dev_err(hdev->dev, + "alloc size must be larger than 0\n"); + rc = -EINVAL; + goto out; + } + rc = alloc_device_memory(ctx, &args->in, &handle); + + memset(args, 0, sizeof(*args)); + args->out.handle = (__u64) handle; + break; + + case HL_MEM_OP_FREE: + rc = free_device_memory(ctx, args->in.free.handle); + break; + + case HL_MEM_OP_MAP: + rc = map_device_va(ctx, &args->in, &device_addr); + + memset(args, 0, sizeof(*args)); + args->out.device_virt_addr = device_addr; + break; + + case HL_MEM_OP_UNMAP: + rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr, + false); + break; + + default: + dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); + rc = -ENOTTY; + break; + } + +out: + return rc; +} + +static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size, + u32 npages, u64 start, u32 offset, + struct hl_userptr *userptr) +{ + int rc; + + if (!access_ok((void __user *) (uintptr_t) addr, size)) { + dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr); + return -EFAULT; + } + + userptr->vec = frame_vector_create(npages); + if (!userptr->vec) { + dev_err(hdev->dev, "Failed to create frame vector\n"); + return -ENOMEM; + } + + rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE, + userptr->vec); + + if (rc != npages) { + dev_err(hdev->dev, + "Failed to map host memory, user ptr probably wrong\n"); + if (rc < 0) + goto destroy_framevec; + rc = -EFAULT; + goto put_framevec; + } + + if (frame_vector_to_pages(userptr->vec) < 0) { + dev_err(hdev->dev, + "Failed to translate frame vector to pages\n"); + rc = -EFAULT; + goto put_framevec; + } + + rc = sg_alloc_table_from_pages(userptr->sgt, + frame_vector_pages(userptr->vec), + npages, offset, size, GFP_ATOMIC); + if (rc < 0) { + dev_err(hdev->dev, "failed to create SG table from pages\n"); + goto put_framevec; + } + + return 0; + +put_framevec: + put_vaddr_frames(userptr->vec); +destroy_framevec: + frame_vector_destroy(userptr->vec); + return rc; +} + +/* + * hl_pin_host_memory - pins a chunk of host memory. + * @hdev: pointer to the habanalabs device structure + * @addr: the host virtual address of the memory area + * @size: the size of the memory area + * @userptr: pointer to hl_userptr structure + * + * This function does the following: + * - Pins the physical pages + * - Create an SG list from those pages + */ +int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size, + struct hl_userptr *userptr) +{ + u64 start, end; + u32 npages, offset; + int rc; + + if (!size) { + dev_err(hdev->dev, "size to pin is invalid - %llu\n", size); + return -EINVAL; + } + + /* + * If the combination of the address and size requested for this memory + * region causes an integer overflow, return error. + */ + if (((addr + size) < addr) || + PAGE_ALIGN(addr + size) < (addr + size)) { + dev_err(hdev->dev, + "user pointer 0x%llx + %llu causes integer overflow\n", + addr, size); + return -EINVAL; + } + + /* + * This function can be called also from data path, hence use atomic + * always as it is not a big allocation. + */ + userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC); + if (!userptr->sgt) + return -ENOMEM; + + start = addr & PAGE_MASK; + offset = addr & ~PAGE_MASK; + end = PAGE_ALIGN(addr + size); + npages = (end - start) >> PAGE_SHIFT; + + userptr->size = size; + userptr->addr = addr; + userptr->dma_mapped = false; + INIT_LIST_HEAD(&userptr->job_node); + + rc = get_user_memory(hdev, addr, size, npages, start, offset, + userptr); + if (rc) { + dev_err(hdev->dev, + "failed to get user memory for address 0x%llx\n", + addr); + goto free_sgt; + } + + hl_debugfs_add_userptr(hdev, userptr); + + return 0; + +free_sgt: + kfree(userptr->sgt); + return rc; +} + +/* + * hl_unpin_host_memory - unpins a chunk of host memory. + * @hdev: pointer to the habanalabs device structure + * @userptr: pointer to hl_userptr structure + * + * This function does the following: + * - Unpins the physical pages related to the host memory + * - Free the SG list + */ +void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr) +{ + struct page **pages; + + hl_debugfs_remove_userptr(hdev, userptr); + + if (userptr->dma_mapped) + hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl, + userptr->sgt->nents, + userptr->dir); + + pages = frame_vector_pages(userptr->vec); + if (!IS_ERR(pages)) { + int i; + + for (i = 0; i < frame_vector_count(userptr->vec); i++) + set_page_dirty_lock(pages[i]); + } + put_vaddr_frames(userptr->vec); + frame_vector_destroy(userptr->vec); + + list_del(&userptr->job_node); + + sg_free_table(userptr->sgt); + kfree(userptr->sgt); +} + +/* + * hl_userptr_delete_list - clear userptr list + * + * @hdev : pointer to the habanalabs device structure + * @userptr_list : pointer to the list to clear + * + * This function does the following: + * - Iterates over the list and unpins the host memory and frees the userptr + * structure. + */ +void hl_userptr_delete_list(struct hl_device *hdev, + struct list_head *userptr_list) +{ + struct hl_userptr *userptr, *tmp; + + list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) { + hl_unpin_host_memory(hdev, userptr); + kfree(userptr); + } + + INIT_LIST_HEAD(userptr_list); +} + +/* + * hl_userptr_is_pinned - returns whether the given userptr is pinned + * + * @hdev : pointer to the habanalabs device structure + * @userptr_list : pointer to the list to clear + * @userptr : pointer to userptr to check + * + * This function does the following: + * - Iterates over the list and checks if the given userptr is in it, means is + * pinned. If so, returns true, otherwise returns false. + */ +bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, + u32 size, struct list_head *userptr_list, + struct hl_userptr **userptr) +{ + list_for_each_entry((*userptr), userptr_list, job_node) { + if ((addr == (*userptr)->addr) && (size == (*userptr)->size)) + return true; + } + + return false; +} + +/* + * va_range_init - initialize virtual addresses range + * @hdev: pointer to the habanalabs device structure + * @va_range: pointer to the range to initialize + * @start: range start address + * @end: range end address + * + * This function does the following: + * - Initializes the virtual addresses list of the given range with the given + * addresses. + */ +static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range, + u64 start, u64 end) +{ + int rc; + + INIT_LIST_HEAD(&va_range->list); + + /* PAGE_SIZE alignment */ + + if (start & (PAGE_SIZE - 1)) { + start &= PAGE_MASK; + start += PAGE_SIZE; + } + + if (end & (PAGE_SIZE - 1)) + end &= PAGE_MASK; + + if (start >= end) { + dev_err(hdev->dev, "too small vm range for va list\n"); + return -EFAULT; + } + + rc = add_va_block(hdev, va_range, start, end); + + if (rc) { + dev_err(hdev->dev, "Failed to init host va list\n"); + return rc; + } + + va_range->start_addr = start; + va_range->end_addr = end; + + return 0; +} + +/* + * va_range_fini() - clear a virtual addresses range + * @hdev: pointer to the habanalabs structure + * va_range: pointer to virtual addresses range + * + * This function does the following: + * - Frees the virtual addresses block list and its lock + */ +static void va_range_fini(struct hl_device *hdev, + struct hl_va_range *va_range) +{ + mutex_lock(&va_range->lock); + clear_va_list_locked(hdev, &va_range->list); + mutex_unlock(&va_range->lock); + + mutex_destroy(&va_range->lock); + kfree(va_range); +} + +/* + * vm_ctx_init_with_ranges() - initialize virtual memory for context + * @ctx: pointer to the habanalabs context structure + * @host_range_start: host virtual addresses range start. + * @host_range_end: host virtual addresses range end. + * @host_huge_range_start: host virtual addresses range start for memory + * allocated with huge pages. + * @host_huge_range_end: host virtual addresses range end for memory allocated + * with huge pages. + * @dram_range_start: dram virtual addresses range start. + * @dram_range_end: dram virtual addresses range end. + * + * This function initializes the following: + * - MMU for context + * - Virtual address to area descriptor hashtable + * - Virtual block list of available virtual memory + */ +static int vm_ctx_init_with_ranges(struct hl_ctx *ctx, + u64 host_range_start, + u64 host_range_end, + u64 host_huge_range_start, + u64 host_huge_range_end, + u64 dram_range_start, + u64 dram_range_end) +{ + struct hl_device *hdev = ctx->hdev; + int rc; + + ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL); + if (!ctx->host_va_range) + return -ENOMEM; + + ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range), + GFP_KERNEL); + if (!ctx->host_huge_va_range) { + rc = -ENOMEM; + goto host_huge_va_range_err; + } + + ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL); + if (!ctx->dram_va_range) { + rc = -ENOMEM; + goto dram_va_range_err; + } + + rc = hl_mmu_ctx_init(ctx); + if (rc) { + dev_err(hdev->dev, "failed to init context %d\n", ctx->asid); + goto mmu_ctx_err; + } + + mutex_init(&ctx->mem_hash_lock); + hash_init(ctx->mem_hash); + + mutex_init(&ctx->host_va_range->lock); + + rc = va_range_init(hdev, ctx->host_va_range, host_range_start, + host_range_end); + if (rc) { + dev_err(hdev->dev, "failed to init host vm range\n"); + goto host_page_range_err; + } + + if (hdev->pmmu_huge_range) { + mutex_init(&ctx->host_huge_va_range->lock); + + rc = va_range_init(hdev, ctx->host_huge_va_range, + host_huge_range_start, + host_huge_range_end); + if (rc) { + dev_err(hdev->dev, + "failed to init host huge vm range\n"); + goto host_hpage_range_err; + } + } else { + kfree(ctx->host_huge_va_range); + ctx->host_huge_va_range = ctx->host_va_range; + } + + mutex_init(&ctx->dram_va_range->lock); + + rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start, + dram_range_end); + if (rc) { + dev_err(hdev->dev, "failed to init dram vm range\n"); + goto dram_vm_err; + } + + hl_debugfs_add_ctx_mem_hash(hdev, ctx); + + return 0; + +dram_vm_err: + mutex_destroy(&ctx->dram_va_range->lock); + + if (hdev->pmmu_huge_range) { + mutex_lock(&ctx->host_huge_va_range->lock); + clear_va_list_locked(hdev, &ctx->host_huge_va_range->list); + mutex_unlock(&ctx->host_huge_va_range->lock); + } +host_hpage_range_err: + if (hdev->pmmu_huge_range) + mutex_destroy(&ctx->host_huge_va_range->lock); + mutex_lock(&ctx->host_va_range->lock); + clear_va_list_locked(hdev, &ctx->host_va_range->list); + mutex_unlock(&ctx->host_va_range->lock); +host_page_range_err: + mutex_destroy(&ctx->host_va_range->lock); + mutex_destroy(&ctx->mem_hash_lock); + hl_mmu_ctx_fini(ctx); +mmu_ctx_err: + kfree(ctx->dram_va_range); +dram_va_range_err: + kfree(ctx->host_huge_va_range); +host_huge_va_range_err: + kfree(ctx->host_va_range); + + return rc; +} + +int hl_vm_ctx_init(struct hl_ctx *ctx) +{ + struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; + u64 host_range_start, host_range_end, host_huge_range_start, + host_huge_range_end, dram_range_start, dram_range_end; + + atomic64_set(&ctx->dram_phys_mem, 0); + + /* + * - If MMU is enabled, init the ranges as usual. + * - If MMU is disabled, in case of host mapping, the returned address + * is the given one. + * In case of DRAM mapping, the returned address is the physical + * address of the memory related to the given handle. + */ + if (ctx->hdev->mmu_enable) { + dram_range_start = prop->dmmu.start_addr; + dram_range_end = prop->dmmu.end_addr; + host_range_start = prop->pmmu.start_addr; + host_range_end = prop->pmmu.end_addr; + host_huge_range_start = prop->pmmu_huge.start_addr; + host_huge_range_end = prop->pmmu_huge.end_addr; + } else { + dram_range_start = prop->dram_user_base_address; + dram_range_end = prop->dram_end_address; + host_range_start = prop->dram_user_base_address; + host_range_end = prop->dram_end_address; + host_huge_range_start = prop->dram_user_base_address; + host_huge_range_end = prop->dram_end_address; + } + + return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end, + host_huge_range_start, + host_huge_range_end, + dram_range_start, + dram_range_end); +} + +/* + * hl_vm_ctx_fini - virtual memory teardown of context + * + * @ctx : pointer to the habanalabs context structure + * + * This function perform teardown the following: + * - Virtual block list of available virtual memory + * - Virtual address to area descriptor hashtable + * - MMU for context + * + * In addition this function does the following: + * - Unmaps the existing hashtable nodes if the hashtable is not empty. The + * hashtable should be empty as no valid mappings should exist at this + * point. + * - Frees any existing physical page list from the idr which relates to the + * current context asid. + * - This function checks the virtual block list for correctness. At this point + * the list should contain one element which describes the whole virtual + * memory range of the context. Otherwise, a warning is printed. + */ +void hl_vm_ctx_fini(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_vm *vm = &hdev->vm; + struct hl_vm_phys_pg_pack *phys_pg_list; + struct hl_vm_hash_node *hnode; + struct hlist_node *tmp_node; + int i; + + hl_debugfs_remove_ctx_mem_hash(hdev, ctx); + + /* + * Clearly something went wrong on hard reset so no point in printing + * another side effect error + */ + if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash)) + dev_notice(hdev->dev, + "user released device without removing its memory mappings\n"); + + hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) { + dev_dbg(hdev->dev, + "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n", + hnode->vaddr, ctx->asid); + unmap_device_va(ctx, hnode->vaddr, true); + } + + /* invalidate the cache once after the unmapping loop */ + hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR); + hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK); + + spin_lock(&vm->idr_lock); + idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i) + if (phys_pg_list->asid == ctx->asid) { + dev_dbg(hdev->dev, + "page list 0x%px of asid %d is still alive\n", + phys_pg_list, ctx->asid); + atomic64_sub(phys_pg_list->total_size, + &hdev->dram_used_mem); + free_phys_pg_pack(hdev, phys_pg_list); + idr_remove(&vm->phys_pg_pack_handles, i); + } + spin_unlock(&vm->idr_lock); + + va_range_fini(hdev, ctx->dram_va_range); + if (hdev->pmmu_huge_range) + va_range_fini(hdev, ctx->host_huge_va_range); + va_range_fini(hdev, ctx->host_va_range); + + mutex_destroy(&ctx->mem_hash_lock); + hl_mmu_ctx_fini(ctx); +} + +/* + * hl_vm_init - initialize virtual memory module + * + * @hdev : pointer to the habanalabs device structure + * + * This function initializes the following: + * - MMU module + * - DRAM physical pages pool of 2MB + * - Idr for device memory allocation handles + */ +int hl_vm_init(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_vm *vm = &hdev->vm; + int rc; + + vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1); + if (!vm->dram_pg_pool) { + dev_err(hdev->dev, "Failed to create dram page pool\n"); + return -ENOMEM; + } + + kref_init(&vm->dram_pg_pool_refcount); + + rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address, + prop->dram_end_address - prop->dram_user_base_address, + -1); + + if (rc) { + dev_err(hdev->dev, + "Failed to add memory to dram page pool %d\n", rc); + goto pool_add_err; + } + + spin_lock_init(&vm->idr_lock); + idr_init(&vm->phys_pg_pack_handles); + + atomic64_set(&hdev->dram_used_mem, 0); + + vm->init_done = true; + + return 0; + +pool_add_err: + gen_pool_destroy(vm->dram_pg_pool); + + return rc; +} + +/* + * hl_vm_fini - virtual memory module teardown + * + * @hdev : pointer to the habanalabs device structure + * + * This function perform teardown to the following: + * - Idr for device memory allocation handles + * - DRAM physical pages pool of 2MB + * - MMU module + */ +void hl_vm_fini(struct hl_device *hdev) +{ + struct hl_vm *vm = &hdev->vm; + + if (!vm->init_done) + return; + + /* + * At this point all the contexts should be freed and hence no DRAM + * memory should be in use. Hence the DRAM pool should be freed here. + */ + if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1) + dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n", + __func__); + + vm->init_done = false; +} |