summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/omap2.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/mtd/nand/raw/omap2.c
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/mtd/nand/raw/omap2.c2319
1 files changed, 2319 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
new file mode 100644
index 000000000..512f60780
--- /dev/null
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -0,0 +1,2319 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
+ * Copyright © 2004 Micron Technology Inc.
+ * Copyright © 2004 David Brownell
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/gpio/consumer.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/sched.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/omap-dma.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+#include <linux/mtd/nand_bch.h>
+#include <linux/platform_data/elm.h>
+
+#include <linux/omap-gpmc.h>
+#include <linux/platform_data/mtd-nand-omap2.h>
+
+#define DRIVER_NAME "omap2-nand"
+#define OMAP_NAND_TIMEOUT_MS 5000
+
+#define NAND_Ecc_P1e (1 << 0)
+#define NAND_Ecc_P2e (1 << 1)
+#define NAND_Ecc_P4e (1 << 2)
+#define NAND_Ecc_P8e (1 << 3)
+#define NAND_Ecc_P16e (1 << 4)
+#define NAND_Ecc_P32e (1 << 5)
+#define NAND_Ecc_P64e (1 << 6)
+#define NAND_Ecc_P128e (1 << 7)
+#define NAND_Ecc_P256e (1 << 8)
+#define NAND_Ecc_P512e (1 << 9)
+#define NAND_Ecc_P1024e (1 << 10)
+#define NAND_Ecc_P2048e (1 << 11)
+
+#define NAND_Ecc_P1o (1 << 16)
+#define NAND_Ecc_P2o (1 << 17)
+#define NAND_Ecc_P4o (1 << 18)
+#define NAND_Ecc_P8o (1 << 19)
+#define NAND_Ecc_P16o (1 << 20)
+#define NAND_Ecc_P32o (1 << 21)
+#define NAND_Ecc_P64o (1 << 22)
+#define NAND_Ecc_P128o (1 << 23)
+#define NAND_Ecc_P256o (1 << 24)
+#define NAND_Ecc_P512o (1 << 25)
+#define NAND_Ecc_P1024o (1 << 26)
+#define NAND_Ecc_P2048o (1 << 27)
+
+#define TF(value) (value ? 1 : 0)
+
+#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
+#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
+#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
+#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
+#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
+#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
+#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
+#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
+
+#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
+#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
+#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
+#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
+#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
+#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
+#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
+#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
+
+#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
+#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
+#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
+#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
+#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
+#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
+#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
+#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
+
+#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
+#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
+#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
+#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
+#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
+#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
+#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
+#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
+
+#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
+#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
+
+#define PREFETCH_CONFIG1_CS_SHIFT 24
+#define ECC_CONFIG_CS_SHIFT 1
+#define CS_MASK 0x7
+#define ENABLE_PREFETCH (0x1 << 7)
+#define DMA_MPU_MODE_SHIFT 2
+#define ECCSIZE0_SHIFT 12
+#define ECCSIZE1_SHIFT 22
+#define ECC1RESULTSIZE 0x1
+#define ECCCLEAR 0x100
+#define ECC1 0x1
+#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
+#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
+#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
+#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
+#define STATUS_BUFF_EMPTY 0x00000001
+
+#define SECTOR_BYTES 512
+/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
+#define BCH4_BIT_PAD 4
+
+/* GPMC ecc engine settings for read */
+#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
+#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
+#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
+#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
+#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
+
+/* GPMC ecc engine settings for write */
+#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
+#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
+#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
+
+#define BADBLOCK_MARKER_LENGTH 2
+
+static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
+ 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
+ 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
+ 0x07, 0x0e};
+static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
+ 0xac, 0x6b, 0xff, 0x99, 0x7b};
+static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
+
+struct omap_nand_info {
+ struct nand_chip nand;
+ struct platform_device *pdev;
+
+ int gpmc_cs;
+ bool dev_ready;
+ enum nand_io xfer_type;
+ int devsize;
+ enum omap_ecc ecc_opt;
+ struct device_node *elm_of_node;
+
+ unsigned long phys_base;
+ struct completion comp;
+ struct dma_chan *dma;
+ int gpmc_irq_fifo;
+ int gpmc_irq_count;
+ enum {
+ OMAP_NAND_IO_READ = 0, /* read */
+ OMAP_NAND_IO_WRITE, /* write */
+ } iomode;
+ u_char *buf;
+ int buf_len;
+ /* Interface to GPMC */
+ struct gpmc_nand_regs reg;
+ struct gpmc_nand_ops *ops;
+ bool flash_bbt;
+ /* fields specific for BCHx_HW ECC scheme */
+ struct device *elm_dev;
+ /* NAND ready gpio */
+ struct gpio_desc *ready_gpiod;
+};
+
+static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
+{
+ return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
+}
+
+/**
+ * omap_prefetch_enable - configures and starts prefetch transfer
+ * @cs: cs (chip select) number
+ * @fifo_th: fifo threshold to be used for read/ write
+ * @dma_mode: dma mode enable (1) or disable (0)
+ * @u32_count: number of bytes to be transferred
+ * @is_write: prefetch read(0) or write post(1) mode
+ */
+static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
+ unsigned int u32_count, int is_write, struct omap_nand_info *info)
+{
+ u32 val;
+
+ if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
+ return -1;
+
+ if (readl(info->reg.gpmc_prefetch_control))
+ return -EBUSY;
+
+ /* Set the amount of bytes to be prefetched */
+ writel(u32_count, info->reg.gpmc_prefetch_config2);
+
+ /* Set dma/mpu mode, the prefetch read / post write and
+ * enable the engine. Set which cs is has requested for.
+ */
+ val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
+ PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
+ (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
+ writel(val, info->reg.gpmc_prefetch_config1);
+
+ /* Start the prefetch engine */
+ writel(0x1, info->reg.gpmc_prefetch_control);
+
+ return 0;
+}
+
+/**
+ * omap_prefetch_reset - disables and stops the prefetch engine
+ */
+static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
+{
+ u32 config1;
+
+ /* check if the same module/cs is trying to reset */
+ config1 = readl(info->reg.gpmc_prefetch_config1);
+ if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
+ return -EINVAL;
+
+ /* Stop the PFPW engine */
+ writel(0x0, info->reg.gpmc_prefetch_control);
+
+ /* Reset/disable the PFPW engine */
+ writel(0x0, info->reg.gpmc_prefetch_config1);
+
+ return 0;
+}
+
+/**
+ * omap_hwcontrol - hardware specific access to control-lines
+ * @chip: NAND chip object
+ * @cmd: command to device
+ * @ctrl:
+ * NAND_NCE: bit 0 -> don't care
+ * NAND_CLE: bit 1 -> Command Latch
+ * NAND_ALE: bit 2 -> Address Latch
+ *
+ * NOTE: boards may use different bits for these!!
+ */
+static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+
+ if (cmd != NAND_CMD_NONE) {
+ if (ctrl & NAND_CLE)
+ writeb(cmd, info->reg.gpmc_nand_command);
+
+ else if (ctrl & NAND_ALE)
+ writeb(cmd, info->reg.gpmc_nand_address);
+
+ else /* NAND_NCE */
+ writeb(cmd, info->reg.gpmc_nand_data);
+ }
+}
+
+/**
+ * omap_read_buf8 - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+
+ ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
+}
+
+/**
+ * omap_write_buf8 - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ u_char *p = (u_char *)buf;
+ bool status;
+
+ while (len--) {
+ iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
+ /* wait until buffer is available for write */
+ do {
+ status = info->ops->nand_writebuffer_empty();
+ } while (!status);
+ }
+}
+
+/**
+ * omap_read_buf16 - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *nand = mtd_to_nand(mtd);
+
+ ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
+}
+
+/**
+ * omap_write_buf16 - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ u16 *p = (u16 *) buf;
+ bool status;
+ /* FIXME try bursts of writesw() or DMA ... */
+ len >>= 1;
+
+ while (len--) {
+ iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
+ /* wait until buffer is available for write */
+ do {
+ status = info->ops->nand_writebuffer_empty();
+ } while (!status);
+ }
+}
+
+/**
+ * omap_read_buf_pref - read data from NAND controller into buffer
+ * @chip: NAND chip object
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ uint32_t r_count = 0;
+ int ret = 0;
+ u32 *p = (u32 *)buf;
+
+ /* take care of subpage reads */
+ if (len % 4) {
+ if (info->nand.options & NAND_BUSWIDTH_16)
+ omap_read_buf16(mtd, buf, len % 4);
+ else
+ omap_read_buf8(mtd, buf, len % 4);
+ p = (u32 *) (buf + len % 4);
+ len -= len % 4;
+ }
+
+ /* configure and start prefetch transfer */
+ ret = omap_prefetch_enable(info->gpmc_cs,
+ PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
+ if (ret) {
+ /* PFPW engine is busy, use cpu copy method */
+ if (info->nand.options & NAND_BUSWIDTH_16)
+ omap_read_buf16(mtd, (u_char *)p, len);
+ else
+ omap_read_buf8(mtd, (u_char *)p, len);
+ } else {
+ do {
+ r_count = readl(info->reg.gpmc_prefetch_status);
+ r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
+ r_count = r_count >> 2;
+ ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
+ p += r_count;
+ len -= r_count << 2;
+ } while (len);
+ /* disable and stop the PFPW engine */
+ omap_prefetch_reset(info->gpmc_cs, info);
+ }
+}
+
+/**
+ * omap_write_buf_pref - write buffer to NAND controller
+ * @chip: NAND chip object
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ uint32_t w_count = 0;
+ int i = 0, ret = 0;
+ u16 *p = (u16 *)buf;
+ unsigned long tim, limit;
+ u32 val;
+
+ /* take care of subpage writes */
+ if (len % 2 != 0) {
+ writeb(*buf, info->nand.legacy.IO_ADDR_W);
+ p = (u16 *)(buf + 1);
+ len--;
+ }
+
+ /* configure and start prefetch transfer */
+ ret = omap_prefetch_enable(info->gpmc_cs,
+ PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
+ if (ret) {
+ /* PFPW engine is busy, use cpu copy method */
+ if (info->nand.options & NAND_BUSWIDTH_16)
+ omap_write_buf16(mtd, (u_char *)p, len);
+ else
+ omap_write_buf8(mtd, (u_char *)p, len);
+ } else {
+ while (len) {
+ w_count = readl(info->reg.gpmc_prefetch_status);
+ w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
+ w_count = w_count >> 1;
+ for (i = 0; (i < w_count) && len; i++, len -= 2)
+ iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
+ }
+ /* wait for data to flushed-out before reset the prefetch */
+ tim = 0;
+ limit = (loops_per_jiffy *
+ msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
+ do {
+ cpu_relax();
+ val = readl(info->reg.gpmc_prefetch_status);
+ val = PREFETCH_STATUS_COUNT(val);
+ } while (val && (tim++ < limit));
+
+ /* disable and stop the PFPW engine */
+ omap_prefetch_reset(info->gpmc_cs, info);
+ }
+}
+
+/*
+ * omap_nand_dma_callback: callback on the completion of dma transfer
+ * @data: pointer to completion data structure
+ */
+static void omap_nand_dma_callback(void *data)
+{
+ complete((struct completion *) data);
+}
+
+/*
+ * omap_nand_dma_transfer: configure and start dma transfer
+ * @mtd: MTD device structure
+ * @addr: virtual address in RAM of source/destination
+ * @len: number of data bytes to be transferred
+ * @is_write: flag for read/write operation
+ */
+static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
+ unsigned int len, int is_write)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct dma_async_tx_descriptor *tx;
+ enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
+ DMA_FROM_DEVICE;
+ struct scatterlist sg;
+ unsigned long tim, limit;
+ unsigned n;
+ int ret;
+ u32 val;
+
+ if (!virt_addr_valid(addr))
+ goto out_copy;
+
+ sg_init_one(&sg, addr, len);
+ n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
+ if (n == 0) {
+ dev_err(&info->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n", len);
+ goto out_copy;
+ }
+
+ tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
+ is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!tx)
+ goto out_copy_unmap;
+
+ tx->callback = omap_nand_dma_callback;
+ tx->callback_param = &info->comp;
+ dmaengine_submit(tx);
+
+ init_completion(&info->comp);
+
+ /* setup and start DMA using dma_addr */
+ dma_async_issue_pending(info->dma);
+
+ /* configure and start prefetch transfer */
+ ret = omap_prefetch_enable(info->gpmc_cs,
+ PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
+ if (ret)
+ /* PFPW engine is busy, use cpu copy method */
+ goto out_copy_unmap;
+
+ wait_for_completion(&info->comp);
+ tim = 0;
+ limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
+
+ do {
+ cpu_relax();
+ val = readl(info->reg.gpmc_prefetch_status);
+ val = PREFETCH_STATUS_COUNT(val);
+ } while (val && (tim++ < limit));
+
+ /* disable and stop the PFPW engine */
+ omap_prefetch_reset(info->gpmc_cs, info);
+
+ dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
+ return 0;
+
+out_copy_unmap:
+ dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
+out_copy:
+ if (info->nand.options & NAND_BUSWIDTH_16)
+ is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
+ : omap_write_buf16(mtd, (u_char *) addr, len);
+ else
+ is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
+ : omap_write_buf8(mtd, (u_char *) addr, len);
+ return 0;
+}
+
+/**
+ * omap_read_buf_dma_pref - read data from NAND controller into buffer
+ * @chip: NAND chip object
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (len <= mtd->oobsize)
+ omap_read_buf_pref(chip, buf, len);
+ else
+ /* start transfer in DMA mode */
+ omap_nand_dma_transfer(mtd, buf, len, 0x0);
+}
+
+/**
+ * omap_write_buf_dma_pref - write buffer to NAND controller
+ * @chip: NAND chip object
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ if (len <= mtd->oobsize)
+ omap_write_buf_pref(chip, buf, len);
+ else
+ /* start transfer in DMA mode */
+ omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
+}
+
+/*
+ * omap_nand_irq - GPMC irq handler
+ * @this_irq: gpmc irq number
+ * @dev: omap_nand_info structure pointer is passed here
+ */
+static irqreturn_t omap_nand_irq(int this_irq, void *dev)
+{
+ struct omap_nand_info *info = (struct omap_nand_info *) dev;
+ u32 bytes;
+
+ bytes = readl(info->reg.gpmc_prefetch_status);
+ bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
+ bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
+ if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
+ if (this_irq == info->gpmc_irq_count)
+ goto done;
+
+ if (info->buf_len && (info->buf_len < bytes))
+ bytes = info->buf_len;
+ else if (!info->buf_len)
+ bytes = 0;
+ iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
+ bytes >> 2);
+ info->buf = info->buf + bytes;
+ info->buf_len -= bytes;
+
+ } else {
+ ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
+ bytes >> 2);
+ info->buf = info->buf + bytes;
+
+ if (this_irq == info->gpmc_irq_count)
+ goto done;
+ }
+
+ return IRQ_HANDLED;
+
+done:
+ complete(&info->comp);
+
+ disable_irq_nosync(info->gpmc_irq_fifo);
+ disable_irq_nosync(info->gpmc_irq_count);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * omap_read_buf_irq_pref - read data from NAND controller into buffer
+ * @chip: NAND chip object
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ int ret = 0;
+
+ if (len <= mtd->oobsize) {
+ omap_read_buf_pref(chip, buf, len);
+ return;
+ }
+
+ info->iomode = OMAP_NAND_IO_READ;
+ info->buf = buf;
+ init_completion(&info->comp);
+
+ /* configure and start prefetch transfer */
+ ret = omap_prefetch_enable(info->gpmc_cs,
+ PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
+ if (ret)
+ /* PFPW engine is busy, use cpu copy method */
+ goto out_copy;
+
+ info->buf_len = len;
+
+ enable_irq(info->gpmc_irq_count);
+ enable_irq(info->gpmc_irq_fifo);
+
+ /* waiting for read to complete */
+ wait_for_completion(&info->comp);
+
+ /* disable and stop the PFPW engine */
+ omap_prefetch_reset(info->gpmc_cs, info);
+ return;
+
+out_copy:
+ if (info->nand.options & NAND_BUSWIDTH_16)
+ omap_read_buf16(mtd, buf, len);
+ else
+ omap_read_buf8(mtd, buf, len);
+}
+
+/*
+ * omap_write_buf_irq_pref - write buffer to NAND controller
+ * @chip: NAND chip object
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ int ret = 0;
+ unsigned long tim, limit;
+ u32 val;
+
+ if (len <= mtd->oobsize) {
+ omap_write_buf_pref(chip, buf, len);
+ return;
+ }
+
+ info->iomode = OMAP_NAND_IO_WRITE;
+ info->buf = (u_char *) buf;
+ init_completion(&info->comp);
+
+ /* configure and start prefetch transfer : size=24 */
+ ret = omap_prefetch_enable(info->gpmc_cs,
+ (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
+ if (ret)
+ /* PFPW engine is busy, use cpu copy method */
+ goto out_copy;
+
+ info->buf_len = len;
+
+ enable_irq(info->gpmc_irq_count);
+ enable_irq(info->gpmc_irq_fifo);
+
+ /* waiting for write to complete */
+ wait_for_completion(&info->comp);
+
+ /* wait for data to flushed-out before reset the prefetch */
+ tim = 0;
+ limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
+ do {
+ val = readl(info->reg.gpmc_prefetch_status);
+ val = PREFETCH_STATUS_COUNT(val);
+ cpu_relax();
+ } while (val && (tim++ < limit));
+
+ /* disable and stop the PFPW engine */
+ omap_prefetch_reset(info->gpmc_cs, info);
+ return;
+
+out_copy:
+ if (info->nand.options & NAND_BUSWIDTH_16)
+ omap_write_buf16(mtd, buf, len);
+ else
+ omap_write_buf8(mtd, buf, len);
+}
+
+/**
+ * gen_true_ecc - This function will generate true ECC value
+ * @ecc_buf: buffer to store ecc code
+ *
+ * This generated true ECC value can be used when correcting
+ * data read from NAND flash memory core
+ */
+static void gen_true_ecc(u8 *ecc_buf)
+{
+ u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
+ ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
+
+ ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
+ P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
+ ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
+ P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
+ ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
+ P1e(tmp) | P2048o(tmp) | P2048e(tmp));
+}
+
+/**
+ * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
+ * @ecc_data1: ecc code from nand spare area
+ * @ecc_data2: ecc code from hardware register obtained from hardware ecc
+ * @page_data: page data
+ *
+ * This function compares two ECC's and indicates if there is an error.
+ * If the error can be corrected it will be corrected to the buffer.
+ * If there is no error, %0 is returned. If there is an error but it
+ * was corrected, %1 is returned. Otherwise, %-1 is returned.
+ */
+static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
+ u8 *ecc_data2, /* read from register */
+ u8 *page_data)
+{
+ uint i;
+ u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
+ u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
+ u8 ecc_bit[24];
+ u8 ecc_sum = 0;
+ u8 find_bit = 0;
+ uint find_byte = 0;
+ int isEccFF;
+
+ isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
+
+ gen_true_ecc(ecc_data1);
+ gen_true_ecc(ecc_data2);
+
+ for (i = 0; i <= 2; i++) {
+ *(ecc_data1 + i) = ~(*(ecc_data1 + i));
+ *(ecc_data2 + i) = ~(*(ecc_data2 + i));
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp0_bit[i] = *ecc_data1 % 2;
+ *ecc_data1 = *ecc_data1 / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp1_bit[i] = *(ecc_data1 + 1) % 2;
+ *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp2_bit[i] = *(ecc_data1 + 2) % 2;
+ *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp0_bit[i] = *ecc_data2 % 2;
+ *ecc_data2 = *ecc_data2 / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp1_bit[i] = *(ecc_data2 + 1) % 2;
+ *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp2_bit[i] = *(ecc_data2 + 2) % 2;
+ *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
+ }
+
+ for (i = 0; i < 6; i++)
+ ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
+
+ for (i = 0; i < 8; i++)
+ ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
+
+ for (i = 0; i < 8; i++)
+ ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
+
+ ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
+ ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
+
+ for (i = 0; i < 24; i++)
+ ecc_sum += ecc_bit[i];
+
+ switch (ecc_sum) {
+ case 0:
+ /* Not reached because this function is not called if
+ * ECC values are equal
+ */
+ return 0;
+
+ case 1:
+ /* Uncorrectable error */
+ pr_debug("ECC UNCORRECTED_ERROR 1\n");
+ return -EBADMSG;
+
+ case 11:
+ /* UN-Correctable error */
+ pr_debug("ECC UNCORRECTED_ERROR B\n");
+ return -EBADMSG;
+
+ case 12:
+ /* Correctable error */
+ find_byte = (ecc_bit[23] << 8) +
+ (ecc_bit[21] << 7) +
+ (ecc_bit[19] << 6) +
+ (ecc_bit[17] << 5) +
+ (ecc_bit[15] << 4) +
+ (ecc_bit[13] << 3) +
+ (ecc_bit[11] << 2) +
+ (ecc_bit[9] << 1) +
+ ecc_bit[7];
+
+ find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
+
+ pr_debug("Correcting single bit ECC error at offset: "
+ "%d, bit: %d\n", find_byte, find_bit);
+
+ page_data[find_byte] ^= (1 << find_bit);
+
+ return 1;
+ default:
+ if (isEccFF) {
+ if (ecc_data2[0] == 0 &&
+ ecc_data2[1] == 0 &&
+ ecc_data2[2] == 0)
+ return 0;
+ }
+ pr_debug("UNCORRECTED_ERROR default\n");
+ return -EBADMSG;
+ }
+}
+
+/**
+ * omap_correct_data - Compares the ECC read with HW generated ECC
+ * @chip: NAND chip object
+ * @dat: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from HW ECC registers
+ *
+ * Compares the ecc read from nand spare area with ECC registers values
+ * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
+ * detection and correction. If there are no errors, %0 is returned. If
+ * there were errors and all of the errors were corrected, the number of
+ * corrected errors is returned. If uncorrectable errors exist, %-1 is
+ * returned.
+ */
+static int omap_correct_data(struct nand_chip *chip, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ int blockCnt = 0, i = 0, ret = 0;
+ int stat = 0;
+
+ /* Ex NAND_ECC_HW12_2048 */
+ if (info->nand.ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
+ info->nand.ecc.size == 2048)
+ blockCnt = 4;
+ else
+ blockCnt = 1;
+
+ for (i = 0; i < blockCnt; i++) {
+ if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+ ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
+ if (ret < 0)
+ return ret;
+ /* keep track of the number of corrected errors */
+ stat += ret;
+ }
+ read_ecc += 3;
+ calc_ecc += 3;
+ dat += 512;
+ }
+ return stat;
+}
+
+/**
+ * omap_calcuate_ecc - Generate non-inverted ECC bytes.
+ * @chip: NAND chip object
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ *
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page. Reading
+ * an erased page will produce an ECC mismatch between generated and read
+ * ECC bytes that has to be dealt with separately.
+ */
+static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
+ u_char *ecc_code)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ u32 val;
+
+ val = readl(info->reg.gpmc_ecc_config);
+ if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
+ return -EINVAL;
+
+ /* read ecc result */
+ val = readl(info->reg.gpmc_ecc1_result);
+ *ecc_code++ = val; /* P128e, ..., P1e */
+ *ecc_code++ = val >> 16; /* P128o, ..., P1o */
+ /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+ *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+
+ return 0;
+}
+
+/**
+ * omap_enable_hwecc - This function enables the hardware ecc functionality
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ */
+static void omap_enable_hwecc(struct nand_chip *chip, int mode)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
+ u32 val;
+
+ /* clear ecc and enable bits */
+ val = ECCCLEAR | ECC1;
+ writel(val, info->reg.gpmc_ecc_control);
+
+ /* program ecc and result sizes */
+ val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
+ ECC1RESULTSIZE);
+ writel(val, info->reg.gpmc_ecc_size_config);
+
+ switch (mode) {
+ case NAND_ECC_READ:
+ case NAND_ECC_WRITE:
+ writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
+ break;
+ case NAND_ECC_READSYN:
+ writel(ECCCLEAR, info->reg.gpmc_ecc_control);
+ break;
+ default:
+ dev_info(&info->pdev->dev,
+ "error: unrecognized Mode[%d]!\n", mode);
+ break;
+ }
+
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+ writel(val, info->reg.gpmc_ecc_config);
+}
+
+/**
+ * omap_wait - wait until the command is done
+ * @this: NAND Chip structure
+ *
+ * Wait function is called during Program and erase operations and
+ * the way it is called from MTD layer, we should wait till the NAND
+ * chip is ready after the programming/erase operation has completed.
+ *
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ */
+static int omap_wait(struct nand_chip *this)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
+ unsigned long timeo = jiffies;
+ int status;
+
+ timeo += msecs_to_jiffies(400);
+
+ writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
+ while (time_before(jiffies, timeo)) {
+ status = readb(info->reg.gpmc_nand_data);
+ if (status & NAND_STATUS_READY)
+ break;
+ cond_resched();
+ }
+
+ status = readb(info->reg.gpmc_nand_data);
+ return status;
+}
+
+/**
+ * omap_dev_ready - checks the NAND Ready GPIO line
+ * @mtd: MTD device structure
+ *
+ * Returns true if ready and false if busy.
+ */
+static int omap_dev_ready(struct nand_chip *chip)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+
+ return gpiod_get_value(info->ready_gpiod);
+}
+
+/**
+ * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ *
+ * When using BCH with SW correction (i.e. no ELM), sector size is set
+ * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
+ * for both reading and writing with:
+ * eccsize0 = 0 (no additional protected byte in spare area)
+ * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
+ */
+static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
+ int mode)
+{
+ unsigned int bch_type;
+ unsigned int dev_width, nsectors;
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ enum omap_ecc ecc_opt = info->ecc_opt;
+ u32 val, wr_mode;
+ unsigned int ecc_size1, ecc_size0;
+
+ /* GPMC configurations for calculating ECC */
+ switch (ecc_opt) {
+ case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+ bch_type = 0;
+ nsectors = 1;
+ wr_mode = BCH_WRAPMODE_6;
+ ecc_size0 = BCH_ECC_SIZE0;
+ ecc_size1 = BCH_ECC_SIZE1;
+ break;
+ case OMAP_ECC_BCH4_CODE_HW:
+ bch_type = 0;
+ nsectors = chip->ecc.steps;
+ if (mode == NAND_ECC_READ) {
+ wr_mode = BCH_WRAPMODE_1;
+ ecc_size0 = BCH4R_ECC_SIZE0;
+ ecc_size1 = BCH4R_ECC_SIZE1;
+ } else {
+ wr_mode = BCH_WRAPMODE_6;
+ ecc_size0 = BCH_ECC_SIZE0;
+ ecc_size1 = BCH_ECC_SIZE1;
+ }
+ break;
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+ bch_type = 1;
+ nsectors = 1;
+ wr_mode = BCH_WRAPMODE_6;
+ ecc_size0 = BCH_ECC_SIZE0;
+ ecc_size1 = BCH_ECC_SIZE1;
+ break;
+ case OMAP_ECC_BCH8_CODE_HW:
+ bch_type = 1;
+ nsectors = chip->ecc.steps;
+ if (mode == NAND_ECC_READ) {
+ wr_mode = BCH_WRAPMODE_1;
+ ecc_size0 = BCH8R_ECC_SIZE0;
+ ecc_size1 = BCH8R_ECC_SIZE1;
+ } else {
+ wr_mode = BCH_WRAPMODE_6;
+ ecc_size0 = BCH_ECC_SIZE0;
+ ecc_size1 = BCH_ECC_SIZE1;
+ }
+ break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ bch_type = 0x2;
+ nsectors = chip->ecc.steps;
+ if (mode == NAND_ECC_READ) {
+ wr_mode = 0x01;
+ ecc_size0 = 52; /* ECC bits in nibbles per sector */
+ ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
+ } else {
+ wr_mode = 0x01;
+ ecc_size0 = 0; /* extra bits in nibbles per sector */
+ ecc_size1 = 52; /* OOB bits in nibbles per sector */
+ }
+ break;
+ default:
+ return;
+ }
+
+ writel(ECC1, info->reg.gpmc_ecc_control);
+
+ /* Configure ecc size for BCH */
+ val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
+ writel(val, info->reg.gpmc_ecc_size_config);
+
+ dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
+
+ /* BCH configuration */
+ val = ((1 << 16) | /* enable BCH */
+ (bch_type << 12) | /* BCH4/BCH8/BCH16 */
+ (wr_mode << 8) | /* wrap mode */
+ (dev_width << 7) | /* bus width */
+ (((nsectors-1) & 0x7) << 4) | /* number of sectors */
+ (info->gpmc_cs << 1) | /* ECC CS */
+ (0x1)); /* enable ECC */
+
+ writel(val, info->reg.gpmc_ecc_config);
+
+ /* Clear ecc and enable bits */
+ writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
+}
+
+static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
+static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
+ 0x97, 0x79, 0xe5, 0x24, 0xb5};
+
+/**
+ * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
+ * @mtd: MTD device structure
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ * @i: The sector number (for a multi sector page)
+ *
+ * Support calculating of BCH4/8/16 ECC vectors for one sector
+ * within a page. Sector number is in @i.
+ */
+static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
+ const u_char *dat, u_char *ecc_calc, int i)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ int eccbytes = info->nand.ecc.bytes;
+ struct gpmc_nand_regs *gpmc_regs = &info->reg;
+ u8 *ecc_code;
+ unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
+ u32 val;
+ int j;
+
+ ecc_code = ecc_calc;
+ switch (info->ecc_opt) {
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+ case OMAP_ECC_BCH8_CODE_HW:
+ bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
+ bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
+ bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
+ bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
+ *ecc_code++ = (bch_val4 & 0xFF);
+ *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
+ *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
+ *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
+ *ecc_code++ = (bch_val3 & 0xFF);
+ *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
+ *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
+ *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
+ *ecc_code++ = (bch_val2 & 0xFF);
+ *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
+ *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
+ *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
+ *ecc_code++ = (bch_val1 & 0xFF);
+ break;
+ case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+ case OMAP_ECC_BCH4_CODE_HW:
+ bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
+ bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
+ *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
+ *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
+ *ecc_code++ = ((bch_val2 & 0xF) << 4) |
+ ((bch_val1 >> 28) & 0xF);
+ *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
+ *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
+ *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
+ *ecc_code++ = ((bch_val1 & 0xF) << 4);
+ break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ val = readl(gpmc_regs->gpmc_bch_result6[i]);
+ ecc_code[0] = ((val >> 8) & 0xFF);
+ ecc_code[1] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result5[i]);
+ ecc_code[2] = ((val >> 24) & 0xFF);
+ ecc_code[3] = ((val >> 16) & 0xFF);
+ ecc_code[4] = ((val >> 8) & 0xFF);
+ ecc_code[5] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result4[i]);
+ ecc_code[6] = ((val >> 24) & 0xFF);
+ ecc_code[7] = ((val >> 16) & 0xFF);
+ ecc_code[8] = ((val >> 8) & 0xFF);
+ ecc_code[9] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result3[i]);
+ ecc_code[10] = ((val >> 24) & 0xFF);
+ ecc_code[11] = ((val >> 16) & 0xFF);
+ ecc_code[12] = ((val >> 8) & 0xFF);
+ ecc_code[13] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result2[i]);
+ ecc_code[14] = ((val >> 24) & 0xFF);
+ ecc_code[15] = ((val >> 16) & 0xFF);
+ ecc_code[16] = ((val >> 8) & 0xFF);
+ ecc_code[17] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result1[i]);
+ ecc_code[18] = ((val >> 24) & 0xFF);
+ ecc_code[19] = ((val >> 16) & 0xFF);
+ ecc_code[20] = ((val >> 8) & 0xFF);
+ ecc_code[21] = ((val >> 0) & 0xFF);
+ val = readl(gpmc_regs->gpmc_bch_result0[i]);
+ ecc_code[22] = ((val >> 24) & 0xFF);
+ ecc_code[23] = ((val >> 16) & 0xFF);
+ ecc_code[24] = ((val >> 8) & 0xFF);
+ ecc_code[25] = ((val >> 0) & 0xFF);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* ECC scheme specific syndrome customizations */
+ switch (info->ecc_opt) {
+ case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+ /* Add constant polynomial to remainder, so that
+ * ECC of blank pages results in 0x0 on reading back
+ */
+ for (j = 0; j < eccbytes; j++)
+ ecc_calc[j] ^= bch4_polynomial[j];
+ break;
+ case OMAP_ECC_BCH4_CODE_HW:
+ /* Set 8th ECC byte as 0x0 for ROM compatibility */
+ ecc_calc[eccbytes - 1] = 0x0;
+ break;
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+ /* Add constant polynomial to remainder, so that
+ * ECC of blank pages results in 0x0 on reading back
+ */
+ for (j = 0; j < eccbytes; j++)
+ ecc_calc[j] ^= bch8_polynomial[j];
+ break;
+ case OMAP_ECC_BCH8_CODE_HW:
+ /* Set 14th ECC byte as 0x0 for ROM compatibility */
+ ecc_calc[eccbytes - 1] = 0x0;
+ break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
+ * @chip: NAND chip object
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ *
+ * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
+ * when SW based correction is required as ECC is required for one sector
+ * at a time.
+ */
+static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
+ const u_char *dat, u_char *ecc_calc)
+{
+ return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
+}
+
+/**
+ * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
+ * @mtd: MTD device structure
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ *
+ * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
+ */
+static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
+ const u_char *dat, u_char *ecc_calc)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ int eccbytes = info->nand.ecc.bytes;
+ unsigned long nsectors;
+ int i, ret;
+
+ nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
+ for (i = 0; i < nsectors; i++) {
+ ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
+ if (ret)
+ return ret;
+
+ ecc_calc += eccbytes;
+ }
+
+ return 0;
+}
+
+/**
+ * erased_sector_bitflips - count bit flips
+ * @data: data sector buffer
+ * @oob: oob buffer
+ * @info: omap_nand_info
+ *
+ * Check the bit flips in erased page falls below correctable level.
+ * If falls below, report the page as erased with correctable bit
+ * flip, else report as uncorrectable page.
+ */
+static int erased_sector_bitflips(u_char *data, u_char *oob,
+ struct omap_nand_info *info)
+{
+ int flip_bits = 0, i;
+
+ for (i = 0; i < info->nand.ecc.size; i++) {
+ flip_bits += hweight8(~data[i]);
+ if (flip_bits > info->nand.ecc.strength)
+ return 0;
+ }
+
+ for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
+ flip_bits += hweight8(~oob[i]);
+ if (flip_bits > info->nand.ecc.strength)
+ return 0;
+ }
+
+ /*
+ * Bit flips falls in correctable level.
+ * Fill data area with 0xFF
+ */
+ if (flip_bits) {
+ memset(data, 0xFF, info->nand.ecc.size);
+ memset(oob, 0xFF, info->nand.ecc.bytes);
+ }
+
+ return flip_bits;
+}
+
+/**
+ * omap_elm_correct_data - corrects page data area in case error reported
+ * @chip: NAND chip object
+ * @data: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from HW ECC registers
+ *
+ * Calculated ecc vector reported as zero in case of non-error pages.
+ * In case of non-zero ecc vector, first filter out erased-pages, and
+ * then process data via ELM to detect bit-flips.
+ */
+static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
+ struct nand_ecc_ctrl *ecc = &info->nand.ecc;
+ int eccsteps = info->nand.ecc.steps;
+ int i , j, stat = 0;
+ int eccflag, actual_eccbytes;
+ struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
+ u_char *ecc_vec = calc_ecc;
+ u_char *spare_ecc = read_ecc;
+ u_char *erased_ecc_vec;
+ u_char *buf;
+ int bitflip_count;
+ bool is_error_reported = false;
+ u32 bit_pos, byte_pos, error_max, pos;
+ int err;
+
+ switch (info->ecc_opt) {
+ case OMAP_ECC_BCH4_CODE_HW:
+ /* omit 7th ECC byte reserved for ROM code compatibility */
+ actual_eccbytes = ecc->bytes - 1;
+ erased_ecc_vec = bch4_vector;
+ break;
+ case OMAP_ECC_BCH8_CODE_HW:
+ /* omit 14th ECC byte reserved for ROM code compatibility */
+ actual_eccbytes = ecc->bytes - 1;
+ erased_ecc_vec = bch8_vector;
+ break;
+ case OMAP_ECC_BCH16_CODE_HW:
+ actual_eccbytes = ecc->bytes;
+ erased_ecc_vec = bch16_vector;
+ break;
+ default:
+ dev_err(&info->pdev->dev, "invalid driver configuration\n");
+ return -EINVAL;
+ }
+
+ /* Initialize elm error vector to zero */
+ memset(err_vec, 0, sizeof(err_vec));
+
+ for (i = 0; i < eccsteps ; i++) {
+ eccflag = 0; /* initialize eccflag */
+
+ /*
+ * Check any error reported,
+ * In case of error, non zero ecc reported.
+ */
+ for (j = 0; j < actual_eccbytes; j++) {
+ if (calc_ecc[j] != 0) {
+ eccflag = 1; /* non zero ecc, error present */
+ break;
+ }
+ }
+
+ if (eccflag == 1) {
+ if (memcmp(calc_ecc, erased_ecc_vec,
+ actual_eccbytes) == 0) {
+ /*
+ * calc_ecc[] matches pattern for ECC(all 0xff)
+ * so this is definitely an erased-page
+ */
+ } else {
+ buf = &data[info->nand.ecc.size * i];
+ /*
+ * count number of 0-bits in read_buf.
+ * This check can be removed once a similar
+ * check is introduced in generic NAND driver
+ */
+ bitflip_count = erased_sector_bitflips(
+ buf, read_ecc, info);
+ if (bitflip_count) {
+ /*
+ * number of 0-bits within ECC limits
+ * So this may be an erased-page
+ */
+ stat += bitflip_count;
+ } else {
+ /*
+ * Too many 0-bits. It may be a
+ * - programmed-page, OR
+ * - erased-page with many bit-flips
+ * So this page requires check by ELM
+ */
+ err_vec[i].error_reported = true;
+ is_error_reported = true;
+ }
+ }
+ }
+
+ /* Update the ecc vector */
+ calc_ecc += ecc->bytes;
+ read_ecc += ecc->bytes;
+ }
+
+ /* Check if any error reported */
+ if (!is_error_reported)
+ return stat;
+
+ /* Decode BCH error using ELM module */
+ elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
+
+ err = 0;
+ for (i = 0; i < eccsteps; i++) {
+ if (err_vec[i].error_uncorrectable) {
+ dev_err(&info->pdev->dev,
+ "uncorrectable bit-flips found\n");
+ err = -EBADMSG;
+ } else if (err_vec[i].error_reported) {
+ for (j = 0; j < err_vec[i].error_count; j++) {
+ switch (info->ecc_opt) {
+ case OMAP_ECC_BCH4_CODE_HW:
+ /* Add 4 bits to take care of padding */
+ pos = err_vec[i].error_loc[j] +
+ BCH4_BIT_PAD;
+ break;
+ case OMAP_ECC_BCH8_CODE_HW:
+ case OMAP_ECC_BCH16_CODE_HW:
+ pos = err_vec[i].error_loc[j];
+ break;
+ default:
+ return -EINVAL;
+ }
+ error_max = (ecc->size + actual_eccbytes) * 8;
+ /* Calculate bit position of error */
+ bit_pos = pos % 8;
+
+ /* Calculate byte position of error */
+ byte_pos = (error_max - pos - 1) / 8;
+
+ if (pos < error_max) {
+ if (byte_pos < 512) {
+ pr_debug("bitflip@dat[%d]=%x\n",
+ byte_pos, data[byte_pos]);
+ data[byte_pos] ^= 1 << bit_pos;
+ } else {
+ pr_debug("bitflip@oob[%d]=%x\n",
+ (byte_pos - 512),
+ spare_ecc[byte_pos - 512]);
+ spare_ecc[byte_pos - 512] ^=
+ 1 << bit_pos;
+ }
+ } else {
+ dev_err(&info->pdev->dev,
+ "invalid bit-flip @ %d:%d\n",
+ byte_pos, bit_pos);
+ err = -EBADMSG;
+ }
+ }
+ }
+
+ /* Update number of correctable errors */
+ stat = max_t(unsigned int, stat, err_vec[i].error_count);
+
+ /* Update page data with sector size */
+ data += ecc->size;
+ spare_ecc += ecc->bytes;
+ }
+
+ return (err) ? err : stat;
+}
+
+/**
+ * omap_write_page_bch - BCH ecc based write page function for entire page
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page
+ *
+ * Custom write page method evolved to support multi sector writing in one shot
+ */
+static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int ret;
+ uint8_t *ecc_calc = chip->ecc.calc_buf;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ /* Enable GPMC ecc engine */
+ chip->ecc.hwctl(chip, NAND_ECC_WRITE);
+
+ /* Write data */
+ chip->legacy.write_buf(chip, buf, mtd->writesize);
+
+ /* Update ecc vector from GPMC result registers */
+ omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
+
+ ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ /* Write ecc vector to OOB area */
+ chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ return nand_prog_page_end_op(chip);
+}
+
+/**
+ * omap_write_subpage_bch - BCH hardware ECC based subpage write
+ * @chip: nand chip info structure
+ * @offset: column address of subpage within the page
+ * @data_len: data length
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * OMAP optimized subpage write method.
+ */
+static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
+ u32 data_len, const u8 *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u8 *ecc_calc = chip->ecc.calc_buf;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ int ecc_steps = chip->ecc.steps;
+ u32 start_step = offset / ecc_size;
+ u32 end_step = (offset + data_len - 1) / ecc_size;
+ int step, ret = 0;
+
+ /*
+ * Write entire page at one go as it would be optimal
+ * as ECC is calculated by hardware.
+ * ECC is calculated for all subpages but we choose
+ * only what we want.
+ */
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ /* Enable GPMC ECC engine */
+ chip->ecc.hwctl(chip, NAND_ECC_WRITE);
+
+ /* Write data */
+ chip->legacy.write_buf(chip, buf, mtd->writesize);
+
+ for (step = 0; step < ecc_steps; step++) {
+ /* mask ECC of un-touched subpages by padding 0xFF */
+ if (step < start_step || step > end_step)
+ memset(ecc_calc, 0xff, ecc_bytes);
+ else
+ ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
+
+ if (ret)
+ return ret;
+
+ buf += ecc_size;
+ ecc_calc += ecc_bytes;
+ }
+
+ /* copy calculated ECC for whole page to chip->buffer->oob */
+ /* this include masked-value(0xFF) for unwritten subpages */
+ ecc_calc = chip->ecc.calc_buf;
+ ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ /* write OOB buffer to NAND device */
+ chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ return nand_prog_page_end_op(chip);
+}
+
+/**
+ * omap_read_page_bch - BCH ecc based page read function for entire page
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
+ * used for error correction.
+ * Custom method evolved to support ELM error correction & multi sector
+ * reading. On reading page data area is read along with OOB data with
+ * ecc engine enabled. ecc vector updated after read of OOB data.
+ * For non error pages ecc vector reported as zero.
+ */
+static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ uint8_t *ecc_calc = chip->ecc.calc_buf;
+ uint8_t *ecc_code = chip->ecc.code_buf;
+ int stat, ret;
+ unsigned int max_bitflips = 0;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+
+ /* Enable GPMC ecc engine */
+ chip->ecc.hwctl(chip, NAND_ECC_READ);
+
+ /* Read data */
+ chip->legacy.read_buf(chip, buf, mtd->writesize);
+
+ /* Read oob bytes */
+ nand_change_read_column_op(chip,
+ mtd->writesize + BADBLOCK_MARKER_LENGTH,
+ chip->oob_poi + BADBLOCK_MARKER_LENGTH,
+ chip->ecc.total, false);
+
+ /* Calculate ecc bytes */
+ omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
+
+ ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+ chip->ecc.total);
+ if (ret)
+ return ret;
+
+ stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
+
+ if (stat < 0) {
+ mtd->ecc_stats.failed++;
+ } else {
+ mtd->ecc_stats.corrected += stat;
+ max_bitflips = max_t(unsigned int, max_bitflips, stat);
+ }
+
+ return max_bitflips;
+}
+
+/**
+ * is_elm_present - checks for presence of ELM module by scanning DT nodes
+ * @omap_nand_info: NAND device structure containing platform data
+ */
+static bool is_elm_present(struct omap_nand_info *info,
+ struct device_node *elm_node)
+{
+ struct platform_device *pdev;
+
+ /* check whether elm-id is passed via DT */
+ if (!elm_node) {
+ dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
+ return false;
+ }
+ pdev = of_find_device_by_node(elm_node);
+ /* check whether ELM device is registered */
+ if (!pdev) {
+ dev_err(&info->pdev->dev, "ELM device not found\n");
+ return false;
+ }
+ /* ELM module available, now configure it */
+ info->elm_dev = &pdev->dev;
+ return true;
+}
+
+static bool omap2_nand_ecc_check(struct omap_nand_info *info)
+{
+ bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
+
+ switch (info->ecc_opt) {
+ case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+ ecc_needs_omap_bch = false;
+ ecc_needs_bch = true;
+ ecc_needs_elm = false;
+ break;
+ case OMAP_ECC_BCH4_CODE_HW:
+ case OMAP_ECC_BCH8_CODE_HW:
+ case OMAP_ECC_BCH16_CODE_HW:
+ ecc_needs_omap_bch = true;
+ ecc_needs_bch = false;
+ ecc_needs_elm = true;
+ break;
+ default:
+ ecc_needs_omap_bch = false;
+ ecc_needs_bch = false;
+ ecc_needs_elm = false;
+ break;
+ }
+
+ if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
+ dev_err(&info->pdev->dev,
+ "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
+ return false;
+ }
+ if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
+ dev_err(&info->pdev->dev,
+ "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
+ return false;
+ }
+ if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
+ dev_err(&info->pdev->dev, "ELM not available\n");
+ return false;
+ }
+
+ return true;
+}
+
+static const char * const nand_xfer_types[] = {
+ [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
+ [NAND_OMAP_POLLED] = "polled",
+ [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
+ [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
+};
+
+static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
+{
+ struct device_node *child = dev->of_node;
+ int i;
+ const char *s;
+ u32 cs;
+
+ if (of_property_read_u32(child, "reg", &cs) < 0) {
+ dev_err(dev, "reg not found in DT\n");
+ return -EINVAL;
+ }
+
+ info->gpmc_cs = cs;
+
+ /* detect availability of ELM module. Won't be present pre-OMAP4 */
+ info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
+ if (!info->elm_of_node) {
+ info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
+ if (!info->elm_of_node)
+ dev_dbg(dev, "ti,elm-id not in DT\n");
+ }
+
+ /* select ecc-scheme for NAND */
+ if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
+ dev_err(dev, "ti,nand-ecc-opt not found\n");
+ return -EINVAL;
+ }
+
+ if (!strcmp(s, "sw")) {
+ info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
+ } else if (!strcmp(s, "ham1") ||
+ !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
+ info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
+ } else if (!strcmp(s, "bch4")) {
+ if (info->elm_of_node)
+ info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
+ else
+ info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
+ } else if (!strcmp(s, "bch8")) {
+ if (info->elm_of_node)
+ info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
+ else
+ info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
+ } else if (!strcmp(s, "bch16")) {
+ info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
+ } else {
+ dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
+ return -EINVAL;
+ }
+
+ /* select data transfer mode */
+ if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
+ for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
+ if (!strcasecmp(s, nand_xfer_types[i])) {
+ info->xfer_type = i;
+ return 0;
+ }
+ }
+
+ dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct nand_chip *chip = &info->nand;
+ int off = BADBLOCK_MARKER_LENGTH;
+
+ if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
+ !(chip->options & NAND_BUSWIDTH_16))
+ off = 1;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = off;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static int omap_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct nand_chip *chip = &info->nand;
+ int off = BADBLOCK_MARKER_LENGTH;
+
+ if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
+ !(chip->options & NAND_BUSWIDTH_16))
+ off = 1;
+
+ if (section)
+ return -ERANGE;
+
+ off += chip->ecc.total;
+ if (off >= mtd->oobsize)
+ return -ERANGE;
+
+ oobregion->offset = off;
+ oobregion->length = mtd->oobsize - off;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
+ .ecc = omap_ooblayout_ecc,
+ .free = omap_ooblayout_free,
+};
+
+static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int off = BADBLOCK_MARKER_LENGTH;
+
+ if (section >= chip->ecc.steps)
+ return -ERANGE;
+
+ /*
+ * When SW correction is employed, one OMAP specific marker byte is
+ * reserved after each ECC step.
+ */
+ oobregion->offset = off + (section * (chip->ecc.bytes + 1));
+ oobregion->length = chip->ecc.bytes;
+
+ return 0;
+}
+
+static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ int off = BADBLOCK_MARKER_LENGTH;
+
+ if (section)
+ return -ERANGE;
+
+ /*
+ * When SW correction is employed, one OMAP specific marker byte is
+ * reserved after each ECC step.
+ */
+ off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
+ if (off >= mtd->oobsize)
+ return -ERANGE;
+
+ oobregion->offset = off;
+ oobregion->length = mtd->oobsize - off;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
+ .ecc = omap_sw_ooblayout_ecc,
+ .free = omap_sw_ooblayout_free,
+};
+
+static int omap_nand_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ struct device *dev = &info->pdev->dev;
+ int min_oobbytes = BADBLOCK_MARKER_LENGTH;
+ int oobbytes_per_step;
+ dma_cap_mask_t mask;
+ int err;
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+ else
+ chip->options |= NAND_SKIP_BBTSCAN;
+
+ /* Re-populate low-level callbacks based on xfer modes */
+ switch (info->xfer_type) {
+ case NAND_OMAP_PREFETCH_POLLED:
+ chip->legacy.read_buf = omap_read_buf_pref;
+ chip->legacy.write_buf = omap_write_buf_pref;
+ break;
+
+ case NAND_OMAP_POLLED:
+ /* Use nand_base defaults for {read,write}_buf */
+ break;
+
+ case NAND_OMAP_PREFETCH_DMA:
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+ info->dma = dma_request_chan(dev->parent, "rxtx");
+
+ if (IS_ERR(info->dma)) {
+ dev_err(dev, "DMA engine request failed\n");
+ return PTR_ERR(info->dma);
+ } else {
+ struct dma_slave_config cfg;
+
+ memset(&cfg, 0, sizeof(cfg));
+ cfg.src_addr = info->phys_base;
+ cfg.dst_addr = info->phys_base;
+ cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ cfg.src_maxburst = 16;
+ cfg.dst_maxburst = 16;
+ err = dmaengine_slave_config(info->dma, &cfg);
+ if (err) {
+ dev_err(dev,
+ "DMA engine slave config failed: %d\n",
+ err);
+ return err;
+ }
+ chip->legacy.read_buf = omap_read_buf_dma_pref;
+ chip->legacy.write_buf = omap_write_buf_dma_pref;
+ }
+ break;
+
+ case NAND_OMAP_PREFETCH_IRQ:
+ info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
+ if (info->gpmc_irq_fifo <= 0)
+ return -ENODEV;
+ err = devm_request_irq(dev, info->gpmc_irq_fifo,
+ omap_nand_irq, IRQF_SHARED,
+ "gpmc-nand-fifo", info);
+ if (err) {
+ dev_err(dev, "Requesting IRQ %d, error %d\n",
+ info->gpmc_irq_fifo, err);
+ info->gpmc_irq_fifo = 0;
+ return err;
+ }
+
+ info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
+ if (info->gpmc_irq_count <= 0)
+ return -ENODEV;
+ err = devm_request_irq(dev, info->gpmc_irq_count,
+ omap_nand_irq, IRQF_SHARED,
+ "gpmc-nand-count", info);
+ if (err) {
+ dev_err(dev, "Requesting IRQ %d, error %d\n",
+ info->gpmc_irq_count, err);
+ info->gpmc_irq_count = 0;
+ return err;
+ }
+
+ chip->legacy.read_buf = omap_read_buf_irq_pref;
+ chip->legacy.write_buf = omap_write_buf_irq_pref;
+
+ break;
+
+ default:
+ dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
+ return -EINVAL;
+ }
+
+ if (!omap2_nand_ecc_check(info))
+ return -EINVAL;
+
+ /*
+ * Bail out earlier to let NAND_ECC_ENGINE_TYPE_SOFT code create its own
+ * ooblayout instead of using ours.
+ */
+ if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
+ chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
+ return 0;
+ }
+
+ /* Populate MTD interface based on ECC scheme */
+ switch (info->ecc_opt) {
+ case OMAP_ECC_HAM1_CODE_HW:
+ dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ chip->ecc.bytes = 3;
+ chip->ecc.size = 512;
+ chip->ecc.strength = 1;
+ chip->ecc.calculate = omap_calculate_ecc;
+ chip->ecc.hwctl = omap_enable_hwecc;
+ chip->ecc.correct = omap_correct_data;
+ mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+ oobbytes_per_step = chip->ecc.bytes;
+
+ if (!(chip->options & NAND_BUSWIDTH_16))
+ min_oobbytes = 1;
+
+ break;
+
+ case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+ pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 7;
+ chip->ecc.strength = 4;
+ chip->ecc.hwctl = omap_enable_hwecc_bch;
+ chip->ecc.correct = nand_bch_correct_data;
+ chip->ecc.calculate = omap_calculate_ecc_bch_sw;
+ mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
+ /* Reserve one byte for the OMAP marker */
+ oobbytes_per_step = chip->ecc.bytes + 1;
+ /* Software BCH library is used for locating errors */
+ chip->ecc.priv = nand_bch_init(mtd);
+ if (!chip->ecc.priv) {
+ dev_err(dev, "Unable to use BCH library\n");
+ return -EINVAL;
+ }
+ break;
+
+ case OMAP_ECC_BCH4_CODE_HW:
+ pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ chip->ecc.size = 512;
+ /* 14th bit is kept reserved for ROM-code compatibility */
+ chip->ecc.bytes = 7 + 1;
+ chip->ecc.strength = 4;
+ chip->ecc.hwctl = omap_enable_hwecc_bch;
+ chip->ecc.correct = omap_elm_correct_data;
+ chip->ecc.read_page = omap_read_page_bch;
+ chip->ecc.write_page = omap_write_page_bch;
+ chip->ecc.write_subpage = omap_write_subpage_bch;
+ mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+ oobbytes_per_step = chip->ecc.bytes;
+
+ err = elm_config(info->elm_dev, BCH4_ECC,
+ mtd->writesize / chip->ecc.size,
+ chip->ecc.size, chip->ecc.bytes);
+ if (err < 0)
+ return err;
+ break;
+
+ case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+ pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 13;
+ chip->ecc.strength = 8;
+ chip->ecc.hwctl = omap_enable_hwecc_bch;
+ chip->ecc.correct = nand_bch_correct_data;
+ chip->ecc.calculate = omap_calculate_ecc_bch_sw;
+ mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
+ /* Reserve one byte for the OMAP marker */
+ oobbytes_per_step = chip->ecc.bytes + 1;
+ /* Software BCH library is used for locating errors */
+ chip->ecc.priv = nand_bch_init(mtd);
+ if (!chip->ecc.priv) {
+ dev_err(dev, "unable to use BCH library\n");
+ return -EINVAL;
+ }
+ break;
+
+ case OMAP_ECC_BCH8_CODE_HW:
+ pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ chip->ecc.size = 512;
+ /* 14th bit is kept reserved for ROM-code compatibility */
+ chip->ecc.bytes = 13 + 1;
+ chip->ecc.strength = 8;
+ chip->ecc.hwctl = omap_enable_hwecc_bch;
+ chip->ecc.correct = omap_elm_correct_data;
+ chip->ecc.read_page = omap_read_page_bch;
+ chip->ecc.write_page = omap_write_page_bch;
+ chip->ecc.write_subpage = omap_write_subpage_bch;
+ mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+ oobbytes_per_step = chip->ecc.bytes;
+
+ err = elm_config(info->elm_dev, BCH8_ECC,
+ mtd->writesize / chip->ecc.size,
+ chip->ecc.size, chip->ecc.bytes);
+ if (err < 0)
+ return err;
+
+ break;
+
+ case OMAP_ECC_BCH16_CODE_HW:
+ pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 26;
+ chip->ecc.strength = 16;
+ chip->ecc.hwctl = omap_enable_hwecc_bch;
+ chip->ecc.correct = omap_elm_correct_data;
+ chip->ecc.read_page = omap_read_page_bch;
+ chip->ecc.write_page = omap_write_page_bch;
+ chip->ecc.write_subpage = omap_write_subpage_bch;
+ mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+ oobbytes_per_step = chip->ecc.bytes;
+
+ err = elm_config(info->elm_dev, BCH16_ECC,
+ mtd->writesize / chip->ecc.size,
+ chip->ecc.size, chip->ecc.bytes);
+ if (err < 0)
+ return err;
+
+ break;
+ default:
+ dev_err(dev, "Invalid or unsupported ECC scheme\n");
+ return -EINVAL;
+ }
+
+ /* Check if NAND device's OOB is enough to store ECC signatures */
+ min_oobbytes += (oobbytes_per_step *
+ (mtd->writesize / chip->ecc.size));
+ if (mtd->oobsize < min_oobbytes) {
+ dev_err(dev,
+ "Not enough OOB bytes: required = %d, available=%d\n",
+ min_oobbytes, mtd->oobsize);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static const struct nand_controller_ops omap_nand_controller_ops = {
+ .attach_chip = omap_nand_attach_chip,
+};
+
+/* Shared among all NAND instances to synchronize access to the ECC Engine */
+static struct nand_controller omap_gpmc_controller;
+static bool omap_gpmc_controller_initialized;
+
+static int omap_nand_probe(struct platform_device *pdev)
+{
+ struct omap_nand_info *info;
+ struct mtd_info *mtd;
+ struct nand_chip *nand_chip;
+ int err;
+ struct resource *res;
+ struct device *dev = &pdev->dev;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ info->pdev = pdev;
+
+ err = omap_get_dt_info(dev, info);
+ if (err)
+ return err;
+
+ info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
+ if (!info->ops) {
+ dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
+ return -ENODEV;
+ }
+
+ nand_chip = &info->nand;
+ mtd = nand_to_mtd(nand_chip);
+ mtd->dev.parent = &pdev->dev;
+ nand_chip->ecc.priv = NULL;
+ nand_set_flash_node(nand_chip, dev->of_node);
+
+ if (!mtd->name) {
+ mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
+ "omap2-nand.%d", info->gpmc_cs);
+ if (!mtd->name) {
+ dev_err(&pdev->dev, "Failed to set MTD name\n");
+ return -ENOMEM;
+ }
+ }
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
+ return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
+
+ info->phys_base = res->start;
+
+ if (!omap_gpmc_controller_initialized) {
+ omap_gpmc_controller.ops = &omap_nand_controller_ops;
+ nand_controller_init(&omap_gpmc_controller);
+ omap_gpmc_controller_initialized = true;
+ }
+
+ nand_chip->controller = &omap_gpmc_controller;
+
+ nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
+ nand_chip->legacy.cmd_ctrl = omap_hwcontrol;
+
+ info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
+ GPIOD_IN);
+ if (IS_ERR(info->ready_gpiod)) {
+ dev_err(dev, "failed to get ready gpio\n");
+ return PTR_ERR(info->ready_gpiod);
+ }
+
+ /*
+ * If RDY/BSY line is connected to OMAP then use the omap ready
+ * function and the generic nand_wait function which reads the status
+ * register after monitoring the RDY/BSY line. Otherwise use a standard
+ * chip delay which is slightly more than tR (AC Timing) of the NAND
+ * device and read status register until you get a failure or success
+ */
+ if (info->ready_gpiod) {
+ nand_chip->legacy.dev_ready = omap_dev_ready;
+ nand_chip->legacy.chip_delay = 0;
+ } else {
+ nand_chip->legacy.waitfunc = omap_wait;
+ nand_chip->legacy.chip_delay = 50;
+ }
+
+ if (info->flash_bbt)
+ nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
+
+ /* scan NAND device connected to chip controller */
+ nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
+
+ err = nand_scan(nand_chip, 1);
+ if (err)
+ goto return_error;
+
+ err = mtd_device_register(mtd, NULL, 0);
+ if (err)
+ goto cleanup_nand;
+
+ platform_set_drvdata(pdev, mtd);
+
+ return 0;
+
+cleanup_nand:
+ nand_cleanup(nand_chip);
+
+return_error:
+ if (!IS_ERR_OR_NULL(info->dma))
+ dma_release_channel(info->dma);
+ if (nand_chip->ecc.priv) {
+ nand_bch_free(nand_chip->ecc.priv);
+ nand_chip->ecc.priv = NULL;
+ }
+ return err;
+}
+
+static int omap_nand_remove(struct platform_device *pdev)
+{
+ struct mtd_info *mtd = platform_get_drvdata(pdev);
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct omap_nand_info *info = mtd_to_omap(mtd);
+ int ret;
+
+ if (nand_chip->ecc.priv) {
+ nand_bch_free(nand_chip->ecc.priv);
+ nand_chip->ecc.priv = NULL;
+ }
+ if (info->dma)
+ dma_release_channel(info->dma);
+ ret = mtd_device_unregister(mtd);
+ WARN_ON(ret);
+ nand_cleanup(nand_chip);
+ return ret;
+}
+
+static const struct of_device_id omap_nand_ids[] = {
+ { .compatible = "ti,omap2-nand", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, omap_nand_ids);
+
+static struct platform_driver omap_nand_driver = {
+ .probe = omap_nand_probe,
+ .remove = omap_nand_remove,
+ .driver = {
+ .name = DRIVER_NAME,
+ .of_match_table = of_match_ptr(omap_nand_ids),
+ },
+};
+
+module_platform_driver(omap_nand_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");