summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/s3c2410.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/mtd/nand/raw/s3c2410.c
parentInitial commit. (diff)
downloadlinux-upstream/5.10.209.tar.xz
linux-upstream/5.10.209.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/mtd/nand/raw/s3c2410.c')
-rw-r--r--drivers/mtd/nand/raw/s3c2410.c1294
1 files changed, 1294 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
new file mode 100644
index 000000000..fbd0fa48e
--- /dev/null
+++ b/drivers/mtd/nand/raw/s3c2410.c
@@ -0,0 +1,1294 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright © 2004-2008 Simtec Electronics
+ * http://armlinux.simtec.co.uk/
+ * Ben Dooks <ben@simtec.co.uk>
+ *
+ * Samsung S3C2410/S3C2440/S3C2412 NAND driver
+*/
+
+#define pr_fmt(fmt) "nand-s3c2410: " fmt
+
+#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
+#define DEBUG
+#endif
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+#include <linux/cpufreq.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <linux/platform_data/mtd-nand-s3c2410.h>
+
+#define S3C2410_NFREG(x) (x)
+
+#define S3C2410_NFCONF S3C2410_NFREG(0x00)
+#define S3C2410_NFCMD S3C2410_NFREG(0x04)
+#define S3C2410_NFADDR S3C2410_NFREG(0x08)
+#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
+#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
+#define S3C2410_NFECC S3C2410_NFREG(0x14)
+#define S3C2440_NFCONT S3C2410_NFREG(0x04)
+#define S3C2440_NFCMD S3C2410_NFREG(0x08)
+#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
+#define S3C2440_NFDATA S3C2410_NFREG(0x10)
+#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
+#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
+#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
+#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
+#define S3C2410_NFCONF_EN (1<<15)
+#define S3C2410_NFCONF_INITECC (1<<12)
+#define S3C2410_NFCONF_nFCE (1<<11)
+#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
+#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
+#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
+#define S3C2410_NFSTAT_BUSY (1<<0)
+#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
+#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
+#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
+#define S3C2440_NFCONT_INITECC (1<<4)
+#define S3C2440_NFCONT_nFCE (1<<1)
+#define S3C2440_NFCONT_ENABLE (1<<0)
+#define S3C2440_NFSTAT_READY (1<<0)
+#define S3C2412_NFCONF_NANDBOOT (1<<31)
+#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
+#define S3C2412_NFCONT_nFCE0 (1<<1)
+#define S3C2412_NFSTAT_READY (1<<0)
+
+/* new oob placement block for use with hardware ecc generation
+ */
+static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = 0;
+ oobregion->length = 3;
+
+ return 0;
+}
+
+static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = 8;
+ oobregion->length = 8;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
+ .ecc = s3c2410_ooblayout_ecc,
+ .free = s3c2410_ooblayout_free,
+};
+
+/* controller and mtd information */
+
+struct s3c2410_nand_info;
+
+/**
+ * struct s3c2410_nand_mtd - driver MTD structure
+ * @mtd: The MTD instance to pass to the MTD layer.
+ * @chip: The NAND chip information.
+ * @set: The platform information supplied for this set of NAND chips.
+ * @info: Link back to the hardware information.
+*/
+struct s3c2410_nand_mtd {
+ struct nand_chip chip;
+ struct s3c2410_nand_set *set;
+ struct s3c2410_nand_info *info;
+};
+
+enum s3c_cpu_type {
+ TYPE_S3C2410,
+ TYPE_S3C2412,
+ TYPE_S3C2440,
+};
+
+enum s3c_nand_clk_state {
+ CLOCK_DISABLE = 0,
+ CLOCK_ENABLE,
+ CLOCK_SUSPEND,
+};
+
+/* overview of the s3c2410 nand state */
+
+/**
+ * struct s3c2410_nand_info - NAND controller state.
+ * @mtds: An array of MTD instances on this controoler.
+ * @platform: The platform data for this board.
+ * @device: The platform device we bound to.
+ * @clk: The clock resource for this controller.
+ * @regs: The area mapped for the hardware registers.
+ * @sel_reg: Pointer to the register controlling the NAND selection.
+ * @sel_bit: The bit in @sel_reg to select the NAND chip.
+ * @mtd_count: The number of MTDs created from this controller.
+ * @save_sel: The contents of @sel_reg to be saved over suspend.
+ * @clk_rate: The clock rate from @clk.
+ * @clk_state: The current clock state.
+ * @cpu_type: The exact type of this controller.
+ */
+struct s3c2410_nand_info {
+ /* mtd info */
+ struct nand_controller controller;
+ struct s3c2410_nand_mtd *mtds;
+ struct s3c2410_platform_nand *platform;
+
+ /* device info */
+ struct device *device;
+ struct clk *clk;
+ void __iomem *regs;
+ void __iomem *sel_reg;
+ int sel_bit;
+ int mtd_count;
+ unsigned long save_sel;
+ unsigned long clk_rate;
+ enum s3c_nand_clk_state clk_state;
+
+ enum s3c_cpu_type cpu_type;
+
+#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
+ struct notifier_block freq_transition;
+#endif
+};
+
+struct s3c24XX_nand_devtype_data {
+ enum s3c_cpu_type type;
+};
+
+static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
+ .type = TYPE_S3C2410,
+};
+
+static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
+ .type = TYPE_S3C2412,
+};
+
+static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
+ .type = TYPE_S3C2440,
+};
+
+/* conversion functions */
+
+static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
+{
+ return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
+ chip);
+}
+
+static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
+{
+ return s3c2410_nand_mtd_toours(mtd)->info;
+}
+
+static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
+{
+ return platform_get_drvdata(dev);
+}
+
+static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
+{
+ return dev_get_platdata(&dev->dev);
+}
+
+static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
+{
+#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+/**
+ * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
+ * @info: The controller instance.
+ * @new_state: State to which clock should be set.
+ */
+static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
+ enum s3c_nand_clk_state new_state)
+{
+ if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
+ return;
+
+ if (info->clk_state == CLOCK_ENABLE) {
+ if (new_state != CLOCK_ENABLE)
+ clk_disable_unprepare(info->clk);
+ } else {
+ if (new_state == CLOCK_ENABLE)
+ clk_prepare_enable(info->clk);
+ }
+
+ info->clk_state = new_state;
+}
+
+/* timing calculations */
+
+#define NS_IN_KHZ 1000000
+
+/**
+ * s3c_nand_calc_rate - calculate timing data.
+ * @wanted: The cycle time in nanoseconds.
+ * @clk: The clock rate in kHz.
+ * @max: The maximum divider value.
+ *
+ * Calculate the timing value from the given parameters.
+ */
+static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
+{
+ int result;
+
+ result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
+
+ pr_debug("result %d from %ld, %d\n", result, clk, wanted);
+
+ if (result > max) {
+ pr_err("%d ns is too big for current clock rate %ld\n",
+ wanted, clk);
+ return -1;
+ }
+
+ if (result < 1)
+ result = 1;
+
+ return result;
+}
+
+#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
+
+/* controller setup */
+
+/**
+ * s3c2410_nand_setrate - setup controller timing information.
+ * @info: The controller instance.
+ *
+ * Given the information supplied by the platform, calculate and set
+ * the necessary timing registers in the hardware to generate the
+ * necessary timing cycles to the hardware.
+ */
+static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
+{
+ struct s3c2410_platform_nand *plat = info->platform;
+ int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
+ int tacls, twrph0, twrph1;
+ unsigned long clkrate = clk_get_rate(info->clk);
+ unsigned long set, cfg, mask;
+ unsigned long flags;
+
+ /* calculate the timing information for the controller */
+
+ info->clk_rate = clkrate;
+ clkrate /= 1000; /* turn clock into kHz for ease of use */
+
+ if (plat != NULL) {
+ tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
+ twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
+ twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
+ } else {
+ /* default timings */
+ tacls = tacls_max;
+ twrph0 = 8;
+ twrph1 = 8;
+ }
+
+ if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
+ dev_err(info->device, "cannot get suitable timings\n");
+ return -EINVAL;
+ }
+
+ dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
+ tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
+ twrph1, to_ns(twrph1, clkrate));
+
+ switch (info->cpu_type) {
+ case TYPE_S3C2410:
+ mask = (S3C2410_NFCONF_TACLS(3) |
+ S3C2410_NFCONF_TWRPH0(7) |
+ S3C2410_NFCONF_TWRPH1(7));
+ set = S3C2410_NFCONF_EN;
+ set |= S3C2410_NFCONF_TACLS(tacls - 1);
+ set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
+ set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
+ break;
+
+ case TYPE_S3C2440:
+ case TYPE_S3C2412:
+ mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
+ S3C2440_NFCONF_TWRPH0(7) |
+ S3C2440_NFCONF_TWRPH1(7));
+
+ set = S3C2440_NFCONF_TACLS(tacls - 1);
+ set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
+ set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
+ break;
+
+ default:
+ BUG();
+ }
+
+ local_irq_save(flags);
+
+ cfg = readl(info->regs + S3C2410_NFCONF);
+ cfg &= ~mask;
+ cfg |= set;
+ writel(cfg, info->regs + S3C2410_NFCONF);
+
+ local_irq_restore(flags);
+
+ dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
+
+ return 0;
+}
+
+/**
+ * s3c2410_nand_inithw - basic hardware initialisation
+ * @info: The hardware state.
+ *
+ * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
+ * to setup the hardware access speeds and set the controller to be enabled.
+*/
+static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
+{
+ int ret;
+
+ ret = s3c2410_nand_setrate(info);
+ if (ret < 0)
+ return ret;
+
+ switch (info->cpu_type) {
+ case TYPE_S3C2410:
+ default:
+ break;
+
+ case TYPE_S3C2440:
+ case TYPE_S3C2412:
+ /* enable the controller and de-assert nFCE */
+
+ writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
+ }
+
+ return 0;
+}
+
+/**
+ * s3c2410_nand_select_chip - select the given nand chip
+ * @this: NAND chip object.
+ * @chip: The chip number.
+ *
+ * This is called by the MTD layer to either select a given chip for the
+ * @mtd instance, or to indicate that the access has finished and the
+ * chip can be de-selected.
+ *
+ * The routine ensures that the nFCE line is correctly setup, and any
+ * platform specific selection code is called to route nFCE to the specific
+ * chip.
+ */
+static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
+{
+ struct s3c2410_nand_info *info;
+ struct s3c2410_nand_mtd *nmtd;
+ unsigned long cur;
+
+ nmtd = nand_get_controller_data(this);
+ info = nmtd->info;
+
+ if (chip != -1)
+ s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+
+ cur = readl(info->sel_reg);
+
+ if (chip == -1) {
+ cur |= info->sel_bit;
+ } else {
+ if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
+ dev_err(info->device, "invalid chip %d\n", chip);
+ return;
+ }
+
+ if (info->platform != NULL) {
+ if (info->platform->select_chip != NULL)
+ (info->platform->select_chip) (nmtd->set, chip);
+ }
+
+ cur &= ~info->sel_bit;
+ }
+
+ writel(cur, info->sel_reg);
+
+ if (chip == -1)
+ s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+}
+
+/* s3c2410_nand_hwcontrol
+ *
+ * Issue command and address cycles to the chip
+*/
+
+static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
+ unsigned int ctrl)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ if (ctrl & NAND_CLE)
+ writeb(cmd, info->regs + S3C2410_NFCMD);
+ else
+ writeb(cmd, info->regs + S3C2410_NFADDR);
+}
+
+/* command and control functions */
+
+static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
+ unsigned int ctrl)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ if (ctrl & NAND_CLE)
+ writeb(cmd, info->regs + S3C2440_NFCMD);
+ else
+ writeb(cmd, info->regs + S3C2440_NFADDR);
+}
+
+/* s3c2410_nand_devready()
+ *
+ * returns 0 if the nand is busy, 1 if it is ready
+*/
+
+static int s3c2410_nand_devready(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
+}
+
+static int s3c2440_nand_devready(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
+}
+
+static int s3c2412_nand_devready(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
+}
+
+/* ECC handling functions */
+
+static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ unsigned int diff0, diff1, diff2;
+ unsigned int bit, byte;
+
+ pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
+
+ diff0 = read_ecc[0] ^ calc_ecc[0];
+ diff1 = read_ecc[1] ^ calc_ecc[1];
+ diff2 = read_ecc[2] ^ calc_ecc[2];
+
+ pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
+ __func__, 3, read_ecc, 3, calc_ecc,
+ diff0, diff1, diff2);
+
+ if (diff0 == 0 && diff1 == 0 && diff2 == 0)
+ return 0; /* ECC is ok */
+
+ /* sometimes people do not think about using the ECC, so check
+ * to see if we have an 0xff,0xff,0xff read ECC and then ignore
+ * the error, on the assumption that this is an un-eccd page.
+ */
+ if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
+ && info->platform->ignore_unset_ecc)
+ return 0;
+
+ /* Can we correct this ECC (ie, one row and column change).
+ * Note, this is similar to the 256 error code on smartmedia */
+
+ if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
+ ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
+ ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
+ /* calculate the bit position of the error */
+
+ bit = ((diff2 >> 3) & 1) |
+ ((diff2 >> 4) & 2) |
+ ((diff2 >> 5) & 4);
+
+ /* calculate the byte position of the error */
+
+ byte = ((diff2 << 7) & 0x100) |
+ ((diff1 << 0) & 0x80) |
+ ((diff1 << 1) & 0x40) |
+ ((diff1 << 2) & 0x20) |
+ ((diff1 << 3) & 0x10) |
+ ((diff0 >> 4) & 0x08) |
+ ((diff0 >> 3) & 0x04) |
+ ((diff0 >> 2) & 0x02) |
+ ((diff0 >> 1) & 0x01);
+
+ dev_dbg(info->device, "correcting error bit %d, byte %d\n",
+ bit, byte);
+
+ dat[byte] ^= (1 << bit);
+ return 1;
+ }
+
+ /* if there is only one bit difference in the ECC, then
+ * one of only a row or column parity has changed, which
+ * means the error is most probably in the ECC itself */
+
+ diff0 |= (diff1 << 8);
+ diff0 |= (diff2 << 16);
+
+ /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
+ if ((diff0 & (diff0 - 1)) == 0)
+ return 1;
+
+ return -1;
+}
+
+/* ECC functions
+ *
+ * These allow the s3c2410 and s3c2440 to use the controller's ECC
+ * generator block to ECC the data as it passes through]
+*/
+
+static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
+{
+ struct s3c2410_nand_info *info;
+ unsigned long ctrl;
+
+ info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
+ ctrl = readl(info->regs + S3C2410_NFCONF);
+ ctrl |= S3C2410_NFCONF_INITECC;
+ writel(ctrl, info->regs + S3C2410_NFCONF);
+}
+
+static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
+{
+ struct s3c2410_nand_info *info;
+ unsigned long ctrl;
+
+ info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
+ ctrl = readl(info->regs + S3C2440_NFCONT);
+ writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
+ info->regs + S3C2440_NFCONT);
+}
+
+static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
+{
+ struct s3c2410_nand_info *info;
+ unsigned long ctrl;
+
+ info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
+ ctrl = readl(info->regs + S3C2440_NFCONT);
+ writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
+}
+
+static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
+ const u_char *dat, u_char *ecc_code)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
+ ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
+ ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
+
+ pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
+
+ return 0;
+}
+
+static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
+ const u_char *dat, u_char *ecc_code)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
+
+ ecc_code[0] = ecc;
+ ecc_code[1] = ecc >> 8;
+ ecc_code[2] = ecc >> 16;
+
+ pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
+
+ return 0;
+}
+
+static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
+ const u_char *dat, u_char *ecc_code)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
+
+ ecc_code[0] = ecc;
+ ecc_code[1] = ecc >> 8;
+ ecc_code[2] = ecc >> 16;
+
+ pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
+
+ return 0;
+}
+
+/* over-ride the standard functions for a little more speed. We can
+ * use read/write block to move the data buffers to/from the controller
+*/
+
+static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
+{
+ readsb(this->legacy.IO_ADDR_R, buf, len);
+}
+
+static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(this);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
+
+ /* cleanup if we've got less than a word to do */
+ if (len & 3) {
+ buf += len & ~3;
+
+ for (; len & 3; len--)
+ *buf++ = readb(info->regs + S3C2440_NFDATA);
+ }
+}
+
+static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
+ int len)
+{
+ writesb(this->legacy.IO_ADDR_W, buf, len);
+}
+
+static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
+ int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(this);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
+
+ /* cleanup any fractional write */
+ if (len & 3) {
+ buf += len & ~3;
+
+ for (; len & 3; len--, buf++)
+ writeb(*buf, info->regs + S3C2440_NFDATA);
+ }
+}
+
+/* cpufreq driver support */
+
+#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
+
+static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
+ unsigned long val, void *data)
+{
+ struct s3c2410_nand_info *info;
+ unsigned long newclk;
+
+ info = container_of(nb, struct s3c2410_nand_info, freq_transition);
+ newclk = clk_get_rate(info->clk);
+
+ if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
+ (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
+ s3c2410_nand_setrate(info);
+ }
+
+ return 0;
+}
+
+static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
+{
+ info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
+
+ return cpufreq_register_notifier(&info->freq_transition,
+ CPUFREQ_TRANSITION_NOTIFIER);
+}
+
+static inline void
+s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
+{
+ cpufreq_unregister_notifier(&info->freq_transition,
+ CPUFREQ_TRANSITION_NOTIFIER);
+}
+
+#else
+static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
+{
+ return 0;
+}
+
+static inline void
+s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
+{
+}
+#endif
+
+/* device management functions */
+
+static int s3c24xx_nand_remove(struct platform_device *pdev)
+{
+ struct s3c2410_nand_info *info = to_nand_info(pdev);
+
+ if (info == NULL)
+ return 0;
+
+ s3c2410_nand_cpufreq_deregister(info);
+
+ /* Release all our mtds and their partitions, then go through
+ * freeing the resources used
+ */
+
+ if (info->mtds != NULL) {
+ struct s3c2410_nand_mtd *ptr = info->mtds;
+ int mtdno;
+
+ for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
+ pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
+ WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
+ nand_cleanup(&ptr->chip);
+ }
+ }
+
+ /* free the common resources */
+
+ if (!IS_ERR(info->clk))
+ s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
+
+ return 0;
+}
+
+static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
+ struct s3c2410_nand_mtd *mtd,
+ struct s3c2410_nand_set *set)
+{
+ if (set) {
+ struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
+
+ mtdinfo->name = set->name;
+
+ return mtd_device_register(mtdinfo, set->partitions,
+ set->nr_partitions);
+ }
+
+ return -ENODEV;
+}
+
+static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
+ const struct nand_interface_config *conf)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ struct s3c2410_platform_nand *pdata = info->platform;
+ const struct nand_sdr_timings *timings;
+ int tacls;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return -ENOTSUPP;
+
+ tacls = timings->tCLS_min - timings->tWP_min;
+ if (tacls < 0)
+ tacls = 0;
+
+ pdata->tacls = DIV_ROUND_UP(tacls, 1000);
+ pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
+ pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
+
+ return s3c2410_nand_setrate(info);
+}
+
+/**
+ * s3c2410_nand_init_chip - initialise a single instance of an chip
+ * @info: The base NAND controller the chip is on.
+ * @nmtd: The new controller MTD instance to fill in.
+ * @set: The information passed from the board specific platform data.
+ *
+ * Initialise the given @nmtd from the information in @info and @set. This
+ * readies the structure for use with the MTD layer functions by ensuring
+ * all pointers are setup and the necessary control routines selected.
+ */
+static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
+ struct s3c2410_nand_mtd *nmtd,
+ struct s3c2410_nand_set *set)
+{
+ struct device_node *np = info->device->of_node;
+ struct nand_chip *chip = &nmtd->chip;
+ void __iomem *regs = info->regs;
+
+ nand_set_flash_node(chip, set->of_node);
+
+ chip->legacy.write_buf = s3c2410_nand_write_buf;
+ chip->legacy.read_buf = s3c2410_nand_read_buf;
+ chip->legacy.select_chip = s3c2410_nand_select_chip;
+ chip->legacy.chip_delay = 50;
+ nand_set_controller_data(chip, nmtd);
+ chip->options = set->options;
+ chip->controller = &info->controller;
+
+ /*
+ * let's keep behavior unchanged for legacy boards booting via pdata and
+ * auto-detect timings only when booting with a device tree.
+ */
+ if (!np)
+ chip->options |= NAND_KEEP_TIMINGS;
+
+ switch (info->cpu_type) {
+ case TYPE_S3C2410:
+ chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
+ info->sel_reg = regs + S3C2410_NFCONF;
+ info->sel_bit = S3C2410_NFCONF_nFCE;
+ chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol;
+ chip->legacy.dev_ready = s3c2410_nand_devready;
+ break;
+
+ case TYPE_S3C2440:
+ chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
+ info->sel_reg = regs + S3C2440_NFCONT;
+ info->sel_bit = S3C2440_NFCONT_nFCE;
+ chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
+ chip->legacy.dev_ready = s3c2440_nand_devready;
+ chip->legacy.read_buf = s3c2440_nand_read_buf;
+ chip->legacy.write_buf = s3c2440_nand_write_buf;
+ break;
+
+ case TYPE_S3C2412:
+ chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
+ info->sel_reg = regs + S3C2440_NFCONT;
+ info->sel_bit = S3C2412_NFCONT_nFCE0;
+ chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol;
+ chip->legacy.dev_ready = s3c2412_nand_devready;
+
+ if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
+ dev_info(info->device, "System booted from NAND\n");
+
+ break;
+ }
+
+ chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
+
+ nmtd->info = info;
+ nmtd->set = set;
+
+ chip->ecc.engine_type = info->platform->engine_type;
+
+ /*
+ * If you use u-boot BBT creation code, specifying this flag will
+ * let the kernel fish out the BBT from the NAND.
+ */
+ if (set->flash_bbt)
+ chip->bbt_options |= NAND_BBT_USE_FLASH;
+}
+
+/**
+ * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
+ * @chip: The NAND chip
+ *
+ * This hook is called by the core after the identification of the NAND chip,
+ * once the relevant per-chip information is up to date.. This call ensure that
+ * we update the internal state accordingly.
+ *
+ * The internal state is currently limited to the ECC state information.
+*/
+static int s3c2410_nand_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ switch (chip->ecc.engine_type) {
+
+ case NAND_ECC_ENGINE_TYPE_NONE:
+ dev_info(info->device, "ECC disabled\n");
+ break;
+
+ case NAND_ECC_ENGINE_TYPE_SOFT:
+ /*
+ * This driver expects Hamming based ECC when engine_type is set
+ * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
+ * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
+ * to s3c2410_platform_nand.
+ */
+ chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
+ dev_info(info->device, "soft ECC\n");
+ break;
+
+ case NAND_ECC_ENGINE_TYPE_ON_HOST:
+ chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+ chip->ecc.correct = s3c2410_nand_correct_data;
+ chip->ecc.strength = 1;
+
+ switch (info->cpu_type) {
+ case TYPE_S3C2410:
+ chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
+ chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+ break;
+
+ case TYPE_S3C2412:
+ chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
+ chip->ecc.calculate = s3c2412_nand_calculate_ecc;
+ break;
+
+ case TYPE_S3C2440:
+ chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
+ chip->ecc.calculate = s3c2440_nand_calculate_ecc;
+ break;
+ }
+
+ dev_dbg(info->device, "chip %p => page shift %d\n",
+ chip, chip->page_shift);
+
+ /* change the behaviour depending on whether we are using
+ * the large or small page nand device */
+ if (chip->page_shift > 10) {
+ chip->ecc.size = 256;
+ chip->ecc.bytes = 3;
+ } else {
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 3;
+ mtd_set_ooblayout(nand_to_mtd(chip),
+ &s3c2410_ooblayout_ops);
+ }
+
+ dev_info(info->device, "hardware ECC\n");
+ break;
+
+ default:
+ dev_err(info->device, "invalid ECC mode!\n");
+ return -EINVAL;
+ }
+
+ if (chip->bbt_options & NAND_BBT_USE_FLASH)
+ chip->options |= NAND_SKIP_BBTSCAN;
+
+ return 0;
+}
+
+static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
+ .attach_chip = s3c2410_nand_attach_chip,
+ .setup_interface = s3c2410_nand_setup_interface,
+};
+
+static const struct of_device_id s3c24xx_nand_dt_ids[] = {
+ {
+ .compatible = "samsung,s3c2410-nand",
+ .data = &s3c2410_nand_devtype_data,
+ }, {
+ /* also compatible with s3c6400 */
+ .compatible = "samsung,s3c2412-nand",
+ .data = &s3c2412_nand_devtype_data,
+ }, {
+ .compatible = "samsung,s3c2440-nand",
+ .data = &s3c2440_nand_devtype_data,
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
+
+static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
+{
+ const struct s3c24XX_nand_devtype_data *devtype_data;
+ struct s3c2410_platform_nand *pdata;
+ struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
+ struct device_node *np = pdev->dev.of_node, *child;
+ struct s3c2410_nand_set *sets;
+
+ devtype_data = of_device_get_match_data(&pdev->dev);
+ if (!devtype_data)
+ return -ENODEV;
+
+ info->cpu_type = devtype_data->type;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ pdev->dev.platform_data = pdata;
+
+ pdata->nr_sets = of_get_child_count(np);
+ if (!pdata->nr_sets)
+ return 0;
+
+ sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
+ GFP_KERNEL);
+ if (!sets)
+ return -ENOMEM;
+
+ pdata->sets = sets;
+
+ for_each_available_child_of_node(np, child) {
+ sets->name = (char *)child->name;
+ sets->of_node = child;
+ sets->nr_chips = 1;
+
+ of_node_get(child);
+
+ sets++;
+ }
+
+ return 0;
+}
+
+static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
+{
+ struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
+
+ info->cpu_type = platform_get_device_id(pdev)->driver_data;
+
+ return 0;
+}
+
+/* s3c24xx_nand_probe
+ *
+ * called by device layer when it finds a device matching
+ * one our driver can handled. This code checks to see if
+ * it can allocate all necessary resources then calls the
+ * nand layer to look for devices
+*/
+static int s3c24xx_nand_probe(struct platform_device *pdev)
+{
+ struct s3c2410_platform_nand *plat;
+ struct s3c2410_nand_info *info;
+ struct s3c2410_nand_mtd *nmtd;
+ struct s3c2410_nand_set *sets;
+ struct resource *res;
+ int err = 0;
+ int size;
+ int nr_sets;
+ int setno;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+ if (info == NULL) {
+ err = -ENOMEM;
+ goto exit_error;
+ }
+
+ platform_set_drvdata(pdev, info);
+
+ nand_controller_init(&info->controller);
+ info->controller.ops = &s3c24xx_nand_controller_ops;
+
+ /* get the clock source and enable it */
+
+ info->clk = devm_clk_get(&pdev->dev, "nand");
+ if (IS_ERR(info->clk)) {
+ dev_err(&pdev->dev, "failed to get clock\n");
+ err = -ENOENT;
+ goto exit_error;
+ }
+
+ s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+
+ if (pdev->dev.of_node)
+ err = s3c24xx_nand_probe_dt(pdev);
+ else
+ err = s3c24xx_nand_probe_pdata(pdev);
+
+ if (err)
+ goto exit_error;
+
+ plat = to_nand_plat(pdev);
+
+ /* allocate and map the resource */
+
+ /* currently we assume we have the one resource */
+ res = pdev->resource;
+ size = resource_size(res);
+
+ info->device = &pdev->dev;
+ info->platform = plat;
+
+ info->regs = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(info->regs)) {
+ err = PTR_ERR(info->regs);
+ goto exit_error;
+ }
+
+ dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
+
+ if (!plat->sets || plat->nr_sets < 1) {
+ err = -EINVAL;
+ goto exit_error;
+ }
+
+ sets = plat->sets;
+ nr_sets = plat->nr_sets;
+
+ info->mtd_count = nr_sets;
+
+ /* allocate our information */
+
+ size = nr_sets * sizeof(*info->mtds);
+ info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
+ if (info->mtds == NULL) {
+ err = -ENOMEM;
+ goto exit_error;
+ }
+
+ /* initialise all possible chips */
+
+ nmtd = info->mtds;
+
+ for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
+ struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
+
+ pr_debug("initialising set %d (%p, info %p)\n",
+ setno, nmtd, info);
+
+ mtd->dev.parent = &pdev->dev;
+ s3c2410_nand_init_chip(info, nmtd, sets);
+
+ err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
+ if (err)
+ goto exit_error;
+
+ s3c2410_nand_add_partition(info, nmtd, sets);
+ }
+
+ /* initialise the hardware */
+ err = s3c2410_nand_inithw(info);
+ if (err != 0)
+ goto exit_error;
+
+ err = s3c2410_nand_cpufreq_register(info);
+ if (err < 0) {
+ dev_err(&pdev->dev, "failed to init cpufreq support\n");
+ goto exit_error;
+ }
+
+ if (allow_clk_suspend(info)) {
+ dev_info(&pdev->dev, "clock idle support enabled\n");
+ s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+ }
+
+ return 0;
+
+ exit_error:
+ s3c24xx_nand_remove(pdev);
+
+ if (err == 0)
+ err = -EINVAL;
+ return err;
+}
+
+/* PM Support */
+#ifdef CONFIG_PM
+
+static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
+{
+ struct s3c2410_nand_info *info = platform_get_drvdata(dev);
+
+ if (info) {
+ info->save_sel = readl(info->sel_reg);
+
+ /* For the moment, we must ensure nFCE is high during
+ * the time we are suspended. This really should be
+ * handled by suspending the MTDs we are using, but
+ * that is currently not the case. */
+
+ writel(info->save_sel | info->sel_bit, info->sel_reg);
+
+ s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
+ }
+
+ return 0;
+}
+
+static int s3c24xx_nand_resume(struct platform_device *dev)
+{
+ struct s3c2410_nand_info *info = platform_get_drvdata(dev);
+ unsigned long sel;
+
+ if (info) {
+ s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+ s3c2410_nand_inithw(info);
+
+ /* Restore the state of the nFCE line. */
+
+ sel = readl(info->sel_reg);
+ sel &= ~info->sel_bit;
+ sel |= info->save_sel & info->sel_bit;
+ writel(sel, info->sel_reg);
+
+ s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+ }
+
+ return 0;
+}
+
+#else
+#define s3c24xx_nand_suspend NULL
+#define s3c24xx_nand_resume NULL
+#endif
+
+/* driver device registration */
+
+static const struct platform_device_id s3c24xx_driver_ids[] = {
+ {
+ .name = "s3c2410-nand",
+ .driver_data = TYPE_S3C2410,
+ }, {
+ .name = "s3c2440-nand",
+ .driver_data = TYPE_S3C2440,
+ }, {
+ .name = "s3c2412-nand",
+ .driver_data = TYPE_S3C2412,
+ }, {
+ .name = "s3c6400-nand",
+ .driver_data = TYPE_S3C2412, /* compatible with 2412 */
+ },
+ { }
+};
+
+MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
+
+static struct platform_driver s3c24xx_nand_driver = {
+ .probe = s3c24xx_nand_probe,
+ .remove = s3c24xx_nand_remove,
+ .suspend = s3c24xx_nand_suspend,
+ .resume = s3c24xx_nand_resume,
+ .id_table = s3c24xx_driver_ids,
+ .driver = {
+ .name = "s3c24xx-nand",
+ .of_match_table = s3c24xx_nand_dt_ids,
+ },
+};
+
+module_platform_driver(s3c24xx_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_DESCRIPTION("S3C24XX MTD NAND driver");