summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/ubi/eba.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/mtd/ubi/eba.c
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/mtd/ubi/eba.c')
-rw-r--r--drivers/mtd/ubi/eba.c1709
1 files changed, 1709 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c
new file mode 100644
index 000000000..b4cdf2351
--- /dev/null
+++ b/drivers/mtd/ubi/eba.c
@@ -0,0 +1,1709 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (c) International Business Machines Corp., 2006
+ *
+ * Author: Artem Bityutskiy (Битюцкий Артём)
+ */
+
+/*
+ * The UBI Eraseblock Association (EBA) sub-system.
+ *
+ * This sub-system is responsible for I/O to/from logical eraseblock.
+ *
+ * Although in this implementation the EBA table is fully kept and managed in
+ * RAM, which assumes poor scalability, it might be (partially) maintained on
+ * flash in future implementations.
+ *
+ * The EBA sub-system implements per-logical eraseblock locking. Before
+ * accessing a logical eraseblock it is locked for reading or writing. The
+ * per-logical eraseblock locking is implemented by means of the lock tree. The
+ * lock tree is an RB-tree which refers all the currently locked logical
+ * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
+ * They are indexed by (@vol_id, @lnum) pairs.
+ *
+ * EBA also maintains the global sequence counter which is incremented each
+ * time a logical eraseblock is mapped to a physical eraseblock and it is
+ * stored in the volume identifier header. This means that each VID header has
+ * a unique sequence number. The sequence number is only increased an we assume
+ * 64 bits is enough to never overflow.
+ */
+
+#include <linux/slab.h>
+#include <linux/crc32.h>
+#include <linux/err.h>
+#include "ubi.h"
+
+/* Number of physical eraseblocks reserved for atomic LEB change operation */
+#define EBA_RESERVED_PEBS 1
+
+/**
+ * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
+ * @pnum: the physical eraseblock number attached to the LEB
+ *
+ * This structure is encoding a LEB -> PEB association. Note that the LEB
+ * number is not stored here, because it is the index used to access the
+ * entries table.
+ */
+struct ubi_eba_entry {
+ int pnum;
+};
+
+/**
+ * struct ubi_eba_table - LEB -> PEB association information
+ * @entries: the LEB to PEB mapping (one entry per LEB).
+ *
+ * This structure is private to the EBA logic and should be kept here.
+ * It is encoding the LEB to PEB association table, and is subject to
+ * changes.
+ */
+struct ubi_eba_table {
+ struct ubi_eba_entry *entries;
+};
+
+/**
+ * next_sqnum - get next sequence number.
+ * @ubi: UBI device description object
+ *
+ * This function returns next sequence number to use, which is just the current
+ * global sequence counter value. It also increases the global sequence
+ * counter.
+ */
+unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
+{
+ unsigned long long sqnum;
+
+ spin_lock(&ubi->ltree_lock);
+ sqnum = ubi->global_sqnum++;
+ spin_unlock(&ubi->ltree_lock);
+
+ return sqnum;
+}
+
+/**
+ * ubi_get_compat - get compatibility flags of a volume.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ *
+ * This function returns compatibility flags for an internal volume. User
+ * volumes have no compatibility flags, so %0 is returned.
+ */
+static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
+{
+ if (vol_id == UBI_LAYOUT_VOLUME_ID)
+ return UBI_LAYOUT_VOLUME_COMPAT;
+ return 0;
+}
+
+/**
+ * ubi_eba_get_ldesc - get information about a LEB
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @ldesc: the LEB descriptor to fill
+ *
+ * Used to query information about a specific LEB.
+ * It is currently only returning the physical position of the LEB, but will be
+ * extended to provide more information.
+ */
+void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
+ struct ubi_eba_leb_desc *ldesc)
+{
+ ldesc->lnum = lnum;
+ ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
+}
+
+/**
+ * ubi_eba_create_table - allocate a new EBA table and initialize it with all
+ * LEBs unmapped
+ * @vol: volume containing the EBA table to copy
+ * @nentries: number of entries in the table
+ *
+ * Allocate a new EBA table and initialize it with all LEBs unmapped.
+ * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
+ */
+struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
+ int nentries)
+{
+ struct ubi_eba_table *tbl;
+ int err = -ENOMEM;
+ int i;
+
+ tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
+ if (!tbl)
+ return ERR_PTR(-ENOMEM);
+
+ tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
+ GFP_KERNEL);
+ if (!tbl->entries)
+ goto err;
+
+ for (i = 0; i < nentries; i++)
+ tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
+
+ return tbl;
+
+err:
+ kfree(tbl->entries);
+ kfree(tbl);
+
+ return ERR_PTR(err);
+}
+
+/**
+ * ubi_eba_destroy_table - destroy an EBA table
+ * @tbl: the table to destroy
+ *
+ * Destroy an EBA table.
+ */
+void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
+{
+ if (!tbl)
+ return;
+
+ kfree(tbl->entries);
+ kfree(tbl);
+}
+
+/**
+ * ubi_eba_copy_table - copy the EBA table attached to vol into another table
+ * @vol: volume containing the EBA table to copy
+ * @dst: destination
+ * @nentries: number of entries to copy
+ *
+ * Copy the EBA table stored in vol into the one pointed by dst.
+ */
+void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
+ int nentries)
+{
+ struct ubi_eba_table *src;
+ int i;
+
+ ubi_assert(dst && vol && vol->eba_tbl);
+
+ src = vol->eba_tbl;
+
+ for (i = 0; i < nentries; i++)
+ dst->entries[i].pnum = src->entries[i].pnum;
+}
+
+/**
+ * ubi_eba_replace_table - assign a new EBA table to a volume
+ * @vol: volume containing the EBA table to copy
+ * @tbl: new EBA table
+ *
+ * Assign a new EBA table to the volume and release the old one.
+ */
+void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
+{
+ ubi_eba_destroy_table(vol->eba_tbl);
+ vol->eba_tbl = tbl;
+}
+
+/**
+ * ltree_lookup - look up the lock tree.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ *
+ * This function returns a pointer to the corresponding &struct ubi_ltree_entry
+ * object if the logical eraseblock is locked and %NULL if it is not.
+ * @ubi->ltree_lock has to be locked.
+ */
+static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
+ int lnum)
+{
+ struct rb_node *p;
+
+ p = ubi->ltree.rb_node;
+ while (p) {
+ struct ubi_ltree_entry *le;
+
+ le = rb_entry(p, struct ubi_ltree_entry, rb);
+
+ if (vol_id < le->vol_id)
+ p = p->rb_left;
+ else if (vol_id > le->vol_id)
+ p = p->rb_right;
+ else {
+ if (lnum < le->lnum)
+ p = p->rb_left;
+ else if (lnum > le->lnum)
+ p = p->rb_right;
+ else
+ return le;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ * ltree_add_entry - add new entry to the lock tree.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ *
+ * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
+ * lock tree. If such entry is already there, its usage counter is increased.
+ * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
+ * failed.
+ */
+static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
+ int vol_id, int lnum)
+{
+ struct ubi_ltree_entry *le, *le1, *le_free;
+
+ le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
+ if (!le)
+ return ERR_PTR(-ENOMEM);
+
+ le->users = 0;
+ init_rwsem(&le->mutex);
+ le->vol_id = vol_id;
+ le->lnum = lnum;
+
+ spin_lock(&ubi->ltree_lock);
+ le1 = ltree_lookup(ubi, vol_id, lnum);
+
+ if (le1) {
+ /*
+ * This logical eraseblock is already locked. The newly
+ * allocated lock entry is not needed.
+ */
+ le_free = le;
+ le = le1;
+ } else {
+ struct rb_node **p, *parent = NULL;
+
+ /*
+ * No lock entry, add the newly allocated one to the
+ * @ubi->ltree RB-tree.
+ */
+ le_free = NULL;
+
+ p = &ubi->ltree.rb_node;
+ while (*p) {
+ parent = *p;
+ le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
+
+ if (vol_id < le1->vol_id)
+ p = &(*p)->rb_left;
+ else if (vol_id > le1->vol_id)
+ p = &(*p)->rb_right;
+ else {
+ ubi_assert(lnum != le1->lnum);
+ if (lnum < le1->lnum)
+ p = &(*p)->rb_left;
+ else
+ p = &(*p)->rb_right;
+ }
+ }
+
+ rb_link_node(&le->rb, parent, p);
+ rb_insert_color(&le->rb, &ubi->ltree);
+ }
+ le->users += 1;
+ spin_unlock(&ubi->ltree_lock);
+
+ kfree(le_free);
+ return le;
+}
+
+/**
+ * leb_read_lock - lock logical eraseblock for reading.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ *
+ * This function locks a logical eraseblock for reading. Returns zero in case
+ * of success and a negative error code in case of failure.
+ */
+static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
+{
+ struct ubi_ltree_entry *le;
+
+ le = ltree_add_entry(ubi, vol_id, lnum);
+ if (IS_ERR(le))
+ return PTR_ERR(le);
+ down_read(&le->mutex);
+ return 0;
+}
+
+/**
+ * leb_read_unlock - unlock logical eraseblock.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ */
+static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
+{
+ struct ubi_ltree_entry *le;
+
+ spin_lock(&ubi->ltree_lock);
+ le = ltree_lookup(ubi, vol_id, lnum);
+ le->users -= 1;
+ ubi_assert(le->users >= 0);
+ up_read(&le->mutex);
+ if (le->users == 0) {
+ rb_erase(&le->rb, &ubi->ltree);
+ kfree(le);
+ }
+ spin_unlock(&ubi->ltree_lock);
+}
+
+/**
+ * leb_write_lock - lock logical eraseblock for writing.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ *
+ * This function locks a logical eraseblock for writing. Returns zero in case
+ * of success and a negative error code in case of failure.
+ */
+static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
+{
+ struct ubi_ltree_entry *le;
+
+ le = ltree_add_entry(ubi, vol_id, lnum);
+ if (IS_ERR(le))
+ return PTR_ERR(le);
+ down_write(&le->mutex);
+ return 0;
+}
+
+/**
+ * leb_write_trylock - try to lock logical eraseblock for writing.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ *
+ * This function locks a logical eraseblock for writing if there is no
+ * contention and does nothing if there is contention. Returns %0 in case of
+ * success, %1 in case of contention, and and a negative error code in case of
+ * failure.
+ */
+static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
+{
+ struct ubi_ltree_entry *le;
+
+ le = ltree_add_entry(ubi, vol_id, lnum);
+ if (IS_ERR(le))
+ return PTR_ERR(le);
+ if (down_write_trylock(&le->mutex))
+ return 0;
+
+ /* Contention, cancel */
+ spin_lock(&ubi->ltree_lock);
+ le->users -= 1;
+ ubi_assert(le->users >= 0);
+ if (le->users == 0) {
+ rb_erase(&le->rb, &ubi->ltree);
+ kfree(le);
+ }
+ spin_unlock(&ubi->ltree_lock);
+
+ return 1;
+}
+
+/**
+ * leb_write_unlock - unlock logical eraseblock.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ */
+static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
+{
+ struct ubi_ltree_entry *le;
+
+ spin_lock(&ubi->ltree_lock);
+ le = ltree_lookup(ubi, vol_id, lnum);
+ le->users -= 1;
+ ubi_assert(le->users >= 0);
+ up_write(&le->mutex);
+ if (le->users == 0) {
+ rb_erase(&le->rb, &ubi->ltree);
+ kfree(le);
+ }
+ spin_unlock(&ubi->ltree_lock);
+}
+
+/**
+ * ubi_eba_is_mapped - check if a LEB is mapped.
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ *
+ * This function returns true if the LEB is mapped, false otherwise.
+ */
+bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
+{
+ return vol->eba_tbl->entries[lnum].pnum >= 0;
+}
+
+/**
+ * ubi_eba_unmap_leb - un-map logical eraseblock.
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ *
+ * This function un-maps logical eraseblock @lnum and schedules corresponding
+ * physical eraseblock for erasure. Returns zero in case of success and a
+ * negative error code in case of failure.
+ */
+int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
+ int lnum)
+{
+ int err, pnum, vol_id = vol->vol_id;
+
+ if (ubi->ro_mode)
+ return -EROFS;
+
+ err = leb_write_lock(ubi, vol_id, lnum);
+ if (err)
+ return err;
+
+ pnum = vol->eba_tbl->entries[lnum].pnum;
+ if (pnum < 0)
+ /* This logical eraseblock is already unmapped */
+ goto out_unlock;
+
+ dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
+
+ down_read(&ubi->fm_eba_sem);
+ vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
+ up_read(&ubi->fm_eba_sem);
+ err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
+
+out_unlock:
+ leb_write_unlock(ubi, vol_id, lnum);
+ return err;
+}
+
+#ifdef CONFIG_MTD_UBI_FASTMAP
+/**
+ * check_mapping - check and fixup a mapping
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @pnum: physical eraseblock number
+ *
+ * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
+ * operations, if such an operation is interrupted the mapping still looks
+ * good, but upon first read an ECC is reported to the upper layer.
+ * Normaly during the full-scan at attach time this is fixed, for Fastmap
+ * we have to deal with it while reading.
+ * If the PEB behind a LEB shows this symthom we change the mapping to
+ * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
+ *
+ * Returns 0 on success, negative error code in case of failure.
+ */
+static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
+ int *pnum)
+{
+ int err;
+ struct ubi_vid_io_buf *vidb;
+ struct ubi_vid_hdr *vid_hdr;
+
+ if (!ubi->fast_attach)
+ return 0;
+
+ if (!vol->checkmap || test_bit(lnum, vol->checkmap))
+ return 0;
+
+ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
+ if (!vidb)
+ return -ENOMEM;
+
+ err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
+ if (err > 0 && err != UBI_IO_BITFLIPS) {
+ int torture = 0;
+
+ switch (err) {
+ case UBI_IO_FF:
+ case UBI_IO_FF_BITFLIPS:
+ case UBI_IO_BAD_HDR:
+ case UBI_IO_BAD_HDR_EBADMSG:
+ break;
+ default:
+ ubi_assert(0);
+ }
+
+ if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
+ torture = 1;
+
+ down_read(&ubi->fm_eba_sem);
+ vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
+ up_read(&ubi->fm_eba_sem);
+ ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
+
+ *pnum = UBI_LEB_UNMAPPED;
+ } else if (err < 0) {
+ ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
+ *pnum, err);
+
+ goto out_free;
+ } else {
+ int found_vol_id, found_lnum;
+
+ ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
+
+ vid_hdr = ubi_get_vid_hdr(vidb);
+ found_vol_id = be32_to_cpu(vid_hdr->vol_id);
+ found_lnum = be32_to_cpu(vid_hdr->lnum);
+
+ if (found_lnum != lnum || found_vol_id != vol->vol_id) {
+ ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
+ *pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
+ ubi_ro_mode(ubi);
+ err = -EINVAL;
+ goto out_free;
+ }
+ }
+
+ set_bit(lnum, vol->checkmap);
+ err = 0;
+
+out_free:
+ ubi_free_vid_buf(vidb);
+
+ return err;
+}
+#else
+static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
+ int *pnum)
+{
+ return 0;
+}
+#endif
+
+/**
+ * ubi_eba_read_leb - read data.
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @buf: buffer to store the read data
+ * @offset: offset from where to read
+ * @len: how many bytes to read
+ * @check: data CRC check flag
+ *
+ * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
+ * bytes. The @check flag only makes sense for static volumes and forces
+ * eraseblock data CRC checking.
+ *
+ * In case of success this function returns zero. In case of a static volume,
+ * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
+ * returned for any volume type if an ECC error was detected by the MTD device
+ * driver. Other negative error cored may be returned in case of other errors.
+ */
+int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
+ void *buf, int offset, int len, int check)
+{
+ int err, pnum, scrub = 0, vol_id = vol->vol_id;
+ struct ubi_vid_io_buf *vidb;
+ struct ubi_vid_hdr *vid_hdr;
+ uint32_t crc;
+
+ err = leb_read_lock(ubi, vol_id, lnum);
+ if (err)
+ return err;
+
+ pnum = vol->eba_tbl->entries[lnum].pnum;
+ if (pnum >= 0) {
+ err = check_mapping(ubi, vol, lnum, &pnum);
+ if (err < 0)
+ goto out_unlock;
+ }
+
+ if (pnum == UBI_LEB_UNMAPPED) {
+ /*
+ * The logical eraseblock is not mapped, fill the whole buffer
+ * with 0xFF bytes. The exception is static volumes for which
+ * it is an error to read unmapped logical eraseblocks.
+ */
+ dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
+ len, offset, vol_id, lnum);
+ leb_read_unlock(ubi, vol_id, lnum);
+ ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
+ memset(buf, 0xFF, len);
+ return 0;
+ }
+
+ dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
+ len, offset, vol_id, lnum, pnum);
+
+ if (vol->vol_type == UBI_DYNAMIC_VOLUME)
+ check = 0;
+
+retry:
+ if (check) {
+ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
+ if (!vidb) {
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+
+ vid_hdr = ubi_get_vid_hdr(vidb);
+
+ err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
+ if (err && err != UBI_IO_BITFLIPS) {
+ if (err > 0) {
+ /*
+ * The header is either absent or corrupted.
+ * The former case means there is a bug -
+ * switch to read-only mode just in case.
+ * The latter case means a real corruption - we
+ * may try to recover data. FIXME: but this is
+ * not implemented.
+ */
+ if (err == UBI_IO_BAD_HDR_EBADMSG ||
+ err == UBI_IO_BAD_HDR) {
+ ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
+ pnum, vol_id, lnum);
+ err = -EBADMSG;
+ } else {
+ /*
+ * Ending up here in the non-Fastmap case
+ * is a clear bug as the VID header had to
+ * be present at scan time to have it referenced.
+ * With fastmap the story is more complicated.
+ * Fastmap has the mapping info without the need
+ * of a full scan. So the LEB could have been
+ * unmapped, Fastmap cannot know this and keeps
+ * the LEB referenced.
+ * This is valid and works as the layer above UBI
+ * has to do bookkeeping about used/referenced
+ * LEBs in any case.
+ */
+ if (ubi->fast_attach) {
+ err = -EBADMSG;
+ } else {
+ err = -EINVAL;
+ ubi_ro_mode(ubi);
+ }
+ }
+ }
+ goto out_free;
+ } else if (err == UBI_IO_BITFLIPS)
+ scrub = 1;
+
+ ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
+ ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
+
+ crc = be32_to_cpu(vid_hdr->data_crc);
+ ubi_free_vid_buf(vidb);
+ }
+
+ err = ubi_io_read_data(ubi, buf, pnum, offset, len);
+ if (err) {
+ if (err == UBI_IO_BITFLIPS)
+ scrub = 1;
+ else if (mtd_is_eccerr(err)) {
+ if (vol->vol_type == UBI_DYNAMIC_VOLUME)
+ goto out_unlock;
+ scrub = 1;
+ if (!check) {
+ ubi_msg(ubi, "force data checking");
+ check = 1;
+ goto retry;
+ }
+ } else
+ goto out_unlock;
+ }
+
+ if (check) {
+ uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
+ if (crc1 != crc) {
+ ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
+ crc1, crc);
+ err = -EBADMSG;
+ goto out_unlock;
+ }
+ }
+
+ if (scrub)
+ err = ubi_wl_scrub_peb(ubi, pnum);
+
+ leb_read_unlock(ubi, vol_id, lnum);
+ return err;
+
+out_free:
+ ubi_free_vid_buf(vidb);
+out_unlock:
+ leb_read_unlock(ubi, vol_id, lnum);
+ return err;
+}
+
+/**
+ * ubi_eba_read_leb_sg - read data into a scatter gather list.
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @sgl: UBI scatter gather list to store the read data
+ * @offset: offset from where to read
+ * @len: how many bytes to read
+ * @check: data CRC check flag
+ *
+ * This function works exactly like ubi_eba_read_leb(). But instead of
+ * storing the read data into a buffer it writes to an UBI scatter gather
+ * list.
+ */
+int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
+ struct ubi_sgl *sgl, int lnum, int offset, int len,
+ int check)
+{
+ int to_read;
+ int ret;
+ struct scatterlist *sg;
+
+ for (;;) {
+ ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
+ sg = &sgl->sg[sgl->list_pos];
+ if (len < sg->length - sgl->page_pos)
+ to_read = len;
+ else
+ to_read = sg->length - sgl->page_pos;
+
+ ret = ubi_eba_read_leb(ubi, vol, lnum,
+ sg_virt(sg) + sgl->page_pos, offset,
+ to_read, check);
+ if (ret < 0)
+ return ret;
+
+ offset += to_read;
+ len -= to_read;
+ if (!len) {
+ sgl->page_pos += to_read;
+ if (sgl->page_pos == sg->length) {
+ sgl->list_pos++;
+ sgl->page_pos = 0;
+ }
+
+ break;
+ }
+
+ sgl->list_pos++;
+ sgl->page_pos = 0;
+ }
+
+ return ret;
+}
+
+/**
+ * try_recover_peb - try to recover from write failure.
+ * @vol: volume description object
+ * @pnum: the physical eraseblock to recover
+ * @lnum: logical eraseblock number
+ * @buf: data which was not written because of the write failure
+ * @offset: offset of the failed write
+ * @len: how many bytes should have been written
+ * @vidb: VID buffer
+ * @retry: whether the caller should retry in case of failure
+ *
+ * This function is called in case of a write failure and moves all good data
+ * from the potentially bad physical eraseblock to a good physical eraseblock.
+ * This function also writes the data which was not written due to the failure.
+ * Returns 0 in case of success, and a negative error code in case of failure.
+ * In case of failure, the %retry parameter is set to false if this is a fatal
+ * error (retrying won't help), and true otherwise.
+ */
+static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
+ const void *buf, int offset, int len,
+ struct ubi_vid_io_buf *vidb, bool *retry)
+{
+ struct ubi_device *ubi = vol->ubi;
+ struct ubi_vid_hdr *vid_hdr;
+ int new_pnum, err, vol_id = vol->vol_id, data_size;
+ uint32_t crc;
+
+ *retry = false;
+
+ new_pnum = ubi_wl_get_peb(ubi);
+ if (new_pnum < 0) {
+ err = new_pnum;
+ goto out_put;
+ }
+
+ ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
+ pnum, new_pnum);
+
+ err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
+ if (err && err != UBI_IO_BITFLIPS) {
+ if (err > 0)
+ err = -EIO;
+ goto out_put;
+ }
+
+ vid_hdr = ubi_get_vid_hdr(vidb);
+ ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
+
+ mutex_lock(&ubi->buf_mutex);
+ memset(ubi->peb_buf + offset, 0xFF, len);
+
+ /* Read everything before the area where the write failure happened */
+ if (offset > 0) {
+ err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
+ if (err && err != UBI_IO_BITFLIPS)
+ goto out_unlock;
+ }
+
+ *retry = true;
+
+ memcpy(ubi->peb_buf + offset, buf, len);
+
+ data_size = offset + len;
+ crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ vid_hdr->copy_flag = 1;
+ vid_hdr->data_size = cpu_to_be32(data_size);
+ vid_hdr->data_crc = cpu_to_be32(crc);
+ err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
+ if (err)
+ goto out_unlock;
+
+ err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
+
+out_unlock:
+ mutex_unlock(&ubi->buf_mutex);
+
+ if (!err)
+ vol->eba_tbl->entries[lnum].pnum = new_pnum;
+
+out_put:
+ up_read(&ubi->fm_eba_sem);
+
+ if (!err) {
+ ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
+ ubi_msg(ubi, "data was successfully recovered");
+ } else if (new_pnum >= 0) {
+ /*
+ * Bad luck? This physical eraseblock is bad too? Crud. Let's
+ * try to get another one.
+ */
+ ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
+ ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
+ }
+
+ return err;
+}
+
+/**
+ * recover_peb - recover from write failure.
+ * @ubi: UBI device description object
+ * @pnum: the physical eraseblock to recover
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ * @buf: data which was not written because of the write failure
+ * @offset: offset of the failed write
+ * @len: how many bytes should have been written
+ *
+ * This function is called in case of a write failure and moves all good data
+ * from the potentially bad physical eraseblock to a good physical eraseblock.
+ * This function also writes the data which was not written due to the failure.
+ * Returns 0 in case of success, and a negative error code in case of failure.
+ * This function tries %UBI_IO_RETRIES before giving up.
+ */
+static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
+ const void *buf, int offset, int len)
+{
+ int err, idx = vol_id2idx(ubi, vol_id), tries;
+ struct ubi_volume *vol = ubi->volumes[idx];
+ struct ubi_vid_io_buf *vidb;
+
+ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
+ if (!vidb)
+ return -ENOMEM;
+
+ for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
+ bool retry;
+
+ err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
+ &retry);
+ if (!err || !retry)
+ break;
+
+ ubi_msg(ubi, "try again");
+ }
+
+ ubi_free_vid_buf(vidb);
+
+ return err;
+}
+
+/**
+ * try_write_vid_and_data - try to write VID header and data to a new PEB.
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @vidb: the VID buffer to write
+ * @buf: buffer containing the data
+ * @offset: where to start writing data
+ * @len: how many bytes should be written
+ *
+ * This function tries to write VID header and data belonging to logical
+ * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
+ * in case of success and a negative error code in case of failure.
+ * In case of error, it is possible that something was still written to the
+ * flash media, but may be some garbage.
+ */
+static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
+ struct ubi_vid_io_buf *vidb, const void *buf,
+ int offset, int len)
+{
+ struct ubi_device *ubi = vol->ubi;
+ int pnum, opnum, err, err2, vol_id = vol->vol_id;
+
+ pnum = ubi_wl_get_peb(ubi);
+ if (pnum < 0) {
+ err = pnum;
+ goto out_put;
+ }
+
+ opnum = vol->eba_tbl->entries[lnum].pnum;
+
+ dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
+ len, offset, vol_id, lnum, pnum);
+
+ err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
+ if (err) {
+ ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
+ vol_id, lnum, pnum);
+ goto out_put;
+ }
+
+ if (len) {
+ err = ubi_io_write_data(ubi, buf, pnum, offset, len);
+ if (err) {
+ ubi_warn(ubi,
+ "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
+ len, offset, vol_id, lnum, pnum);
+ goto out_put;
+ }
+ }
+
+ vol->eba_tbl->entries[lnum].pnum = pnum;
+
+out_put:
+ up_read(&ubi->fm_eba_sem);
+
+ if (err && pnum >= 0) {
+ err2 = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
+ if (err2) {
+ ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
+ pnum, err2);
+ }
+ } else if (!err && opnum >= 0) {
+ err2 = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
+ if (err2) {
+ ubi_warn(ubi, "failed to return physical eraseblock %d, error %d",
+ opnum, err2);
+ }
+ }
+
+ return err;
+}
+
+/**
+ * ubi_eba_write_leb - write data to dynamic volume.
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @buf: the data to write
+ * @offset: offset within the logical eraseblock where to write
+ * @len: how many bytes to write
+ *
+ * This function writes data to logical eraseblock @lnum of a dynamic volume
+ * @vol. Returns zero in case of success and a negative error code in case
+ * of failure. In case of error, it is possible that something was still
+ * written to the flash media, but may be some garbage.
+ * This function retries %UBI_IO_RETRIES times before giving up.
+ */
+int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
+ const void *buf, int offset, int len)
+{
+ int err, pnum, tries, vol_id = vol->vol_id;
+ struct ubi_vid_io_buf *vidb;
+ struct ubi_vid_hdr *vid_hdr;
+
+ if (ubi->ro_mode)
+ return -EROFS;
+
+ err = leb_write_lock(ubi, vol_id, lnum);
+ if (err)
+ return err;
+
+ pnum = vol->eba_tbl->entries[lnum].pnum;
+ if (pnum >= 0) {
+ err = check_mapping(ubi, vol, lnum, &pnum);
+ if (err < 0)
+ goto out;
+ }
+
+ if (pnum >= 0) {
+ dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
+ len, offset, vol_id, lnum, pnum);
+
+ err = ubi_io_write_data(ubi, buf, pnum, offset, len);
+ if (err) {
+ ubi_warn(ubi, "failed to write data to PEB %d", pnum);
+ if (err == -EIO && ubi->bad_allowed)
+ err = recover_peb(ubi, pnum, vol_id, lnum, buf,
+ offset, len);
+ }
+
+ goto out;
+ }
+
+ /*
+ * The logical eraseblock is not mapped. We have to get a free physical
+ * eraseblock and write the volume identifier header there first.
+ */
+ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
+ if (!vidb) {
+ leb_write_unlock(ubi, vol_id, lnum);
+ return -ENOMEM;
+ }
+
+ vid_hdr = ubi_get_vid_hdr(vidb);
+
+ vid_hdr->vol_type = UBI_VID_DYNAMIC;
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ vid_hdr->vol_id = cpu_to_be32(vol_id);
+ vid_hdr->lnum = cpu_to_be32(lnum);
+ vid_hdr->compat = ubi_get_compat(ubi, vol_id);
+ vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
+
+ for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
+ err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
+ if (err != -EIO || !ubi->bad_allowed)
+ break;
+
+ /*
+ * Fortunately, this is the first write operation to this
+ * physical eraseblock, so just put it and request a new one.
+ * We assume that if this physical eraseblock went bad, the
+ * erase code will handle that.
+ */
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ ubi_msg(ubi, "try another PEB");
+ }
+
+ ubi_free_vid_buf(vidb);
+
+out:
+ if (err)
+ ubi_ro_mode(ubi);
+
+ leb_write_unlock(ubi, vol_id, lnum);
+
+ return err;
+}
+
+/**
+ * ubi_eba_write_leb_st - write data to static volume.
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @buf: data to write
+ * @len: how many bytes to write
+ * @used_ebs: how many logical eraseblocks will this volume contain
+ *
+ * This function writes data to logical eraseblock @lnum of static volume
+ * @vol. The @used_ebs argument should contain total number of logical
+ * eraseblock in this static volume.
+ *
+ * When writing to the last logical eraseblock, the @len argument doesn't have
+ * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
+ * to the real data size, although the @buf buffer has to contain the
+ * alignment. In all other cases, @len has to be aligned.
+ *
+ * It is prohibited to write more than once to logical eraseblocks of static
+ * volumes. This function returns zero in case of success and a negative error
+ * code in case of failure.
+ */
+int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
+ int lnum, const void *buf, int len, int used_ebs)
+{
+ int err, tries, data_size = len, vol_id = vol->vol_id;
+ struct ubi_vid_io_buf *vidb;
+ struct ubi_vid_hdr *vid_hdr;
+ uint32_t crc;
+
+ if (ubi->ro_mode)
+ return -EROFS;
+
+ if (lnum == used_ebs - 1)
+ /* If this is the last LEB @len may be unaligned */
+ len = ALIGN(data_size, ubi->min_io_size);
+ else
+ ubi_assert(!(len & (ubi->min_io_size - 1)));
+
+ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
+ if (!vidb)
+ return -ENOMEM;
+
+ vid_hdr = ubi_get_vid_hdr(vidb);
+
+ err = leb_write_lock(ubi, vol_id, lnum);
+ if (err)
+ goto out;
+
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ vid_hdr->vol_id = cpu_to_be32(vol_id);
+ vid_hdr->lnum = cpu_to_be32(lnum);
+ vid_hdr->compat = ubi_get_compat(ubi, vol_id);
+ vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
+
+ crc = crc32(UBI_CRC32_INIT, buf, data_size);
+ vid_hdr->vol_type = UBI_VID_STATIC;
+ vid_hdr->data_size = cpu_to_be32(data_size);
+ vid_hdr->used_ebs = cpu_to_be32(used_ebs);
+ vid_hdr->data_crc = cpu_to_be32(crc);
+
+ ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
+
+ for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
+ err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
+ if (err != -EIO || !ubi->bad_allowed)
+ break;
+
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ ubi_msg(ubi, "try another PEB");
+ }
+
+ if (err)
+ ubi_ro_mode(ubi);
+
+ leb_write_unlock(ubi, vol_id, lnum);
+
+out:
+ ubi_free_vid_buf(vidb);
+
+ return err;
+}
+
+/*
+ * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
+ * @ubi: UBI device description object
+ * @vol: volume description object
+ * @lnum: logical eraseblock number
+ * @buf: data to write
+ * @len: how many bytes to write
+ *
+ * This function changes the contents of a logical eraseblock atomically. @buf
+ * has to contain new logical eraseblock data, and @len - the length of the
+ * data, which has to be aligned. This function guarantees that in case of an
+ * unclean reboot the old contents is preserved. Returns zero in case of
+ * success and a negative error code in case of failure.
+ *
+ * UBI reserves one LEB for the "atomic LEB change" operation, so only one
+ * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
+ */
+int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
+ int lnum, const void *buf, int len)
+{
+ int err, tries, vol_id = vol->vol_id;
+ struct ubi_vid_io_buf *vidb;
+ struct ubi_vid_hdr *vid_hdr;
+ uint32_t crc;
+
+ if (ubi->ro_mode)
+ return -EROFS;
+
+ if (len == 0) {
+ /*
+ * Special case when data length is zero. In this case the LEB
+ * has to be unmapped and mapped somewhere else.
+ */
+ err = ubi_eba_unmap_leb(ubi, vol, lnum);
+ if (err)
+ return err;
+ return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
+ }
+
+ vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
+ if (!vidb)
+ return -ENOMEM;
+
+ vid_hdr = ubi_get_vid_hdr(vidb);
+
+ mutex_lock(&ubi->alc_mutex);
+ err = leb_write_lock(ubi, vol_id, lnum);
+ if (err)
+ goto out_mutex;
+
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ vid_hdr->vol_id = cpu_to_be32(vol_id);
+ vid_hdr->lnum = cpu_to_be32(lnum);
+ vid_hdr->compat = ubi_get_compat(ubi, vol_id);
+ vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
+
+ crc = crc32(UBI_CRC32_INIT, buf, len);
+ vid_hdr->vol_type = UBI_VID_DYNAMIC;
+ vid_hdr->data_size = cpu_to_be32(len);
+ vid_hdr->copy_flag = 1;
+ vid_hdr->data_crc = cpu_to_be32(crc);
+
+ dbg_eba("change LEB %d:%d", vol_id, lnum);
+
+ for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
+ err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
+ if (err != -EIO || !ubi->bad_allowed)
+ break;
+
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+ ubi_msg(ubi, "try another PEB");
+ }
+
+ /*
+ * This flash device does not admit of bad eraseblocks or
+ * something nasty and unexpected happened. Switch to read-only
+ * mode just in case.
+ */
+ if (err)
+ ubi_ro_mode(ubi);
+
+ leb_write_unlock(ubi, vol_id, lnum);
+
+out_mutex:
+ mutex_unlock(&ubi->alc_mutex);
+ ubi_free_vid_buf(vidb);
+ return err;
+}
+
+/**
+ * is_error_sane - check whether a read error is sane.
+ * @err: code of the error happened during reading
+ *
+ * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
+ * cannot read data from the target PEB (an error @err happened). If the error
+ * code is sane, then we treat this error as non-fatal. Otherwise the error is
+ * fatal and UBI will be switched to R/O mode later.
+ *
+ * The idea is that we try not to switch to R/O mode if the read error is
+ * something which suggests there was a real read problem. E.g., %-EIO. Or a
+ * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
+ * mode, simply because we do not know what happened at the MTD level, and we
+ * cannot handle this. E.g., the underlying driver may have become crazy, and
+ * it is safer to switch to R/O mode to preserve the data.
+ *
+ * And bear in mind, this is about reading from the target PEB, i.e. the PEB
+ * which we have just written.
+ */
+static int is_error_sane(int err)
+{
+ if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
+ err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
+ return 0;
+ return 1;
+}
+
+/**
+ * ubi_eba_copy_leb - copy logical eraseblock.
+ * @ubi: UBI device description object
+ * @from: physical eraseblock number from where to copy
+ * @to: physical eraseblock number where to copy
+ * @vid_hdr: VID header of the @from physical eraseblock
+ *
+ * This function copies logical eraseblock from physical eraseblock @from to
+ * physical eraseblock @to. The @vid_hdr buffer may be changed by this
+ * function. Returns:
+ * o %0 in case of success;
+ * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
+ * o a negative error code in case of failure.
+ */
+int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
+ struct ubi_vid_io_buf *vidb)
+{
+ int err, vol_id, lnum, data_size, aldata_size, idx;
+ struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
+ struct ubi_volume *vol;
+ uint32_t crc;
+
+ ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
+
+ vol_id = be32_to_cpu(vid_hdr->vol_id);
+ lnum = be32_to_cpu(vid_hdr->lnum);
+
+ dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
+
+ if (vid_hdr->vol_type == UBI_VID_STATIC) {
+ data_size = be32_to_cpu(vid_hdr->data_size);
+ aldata_size = ALIGN(data_size, ubi->min_io_size);
+ } else
+ data_size = aldata_size =
+ ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
+
+ idx = vol_id2idx(ubi, vol_id);
+ spin_lock(&ubi->volumes_lock);
+ /*
+ * Note, we may race with volume deletion, which means that the volume
+ * this logical eraseblock belongs to might be being deleted. Since the
+ * volume deletion un-maps all the volume's logical eraseblocks, it will
+ * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
+ */
+ vol = ubi->volumes[idx];
+ spin_unlock(&ubi->volumes_lock);
+ if (!vol) {
+ /* No need to do further work, cancel */
+ dbg_wl("volume %d is being removed, cancel", vol_id);
+ return MOVE_CANCEL_RACE;
+ }
+
+ /*
+ * We do not want anybody to write to this logical eraseblock while we
+ * are moving it, so lock it.
+ *
+ * Note, we are using non-waiting locking here, because we cannot sleep
+ * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
+ * unmapping the LEB which is mapped to the PEB we are going to move
+ * (@from). This task locks the LEB and goes sleep in the
+ * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
+ * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
+ * LEB is already locked, we just do not move it and return
+ * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
+ * we do not know the reasons of the contention - it may be just a
+ * normal I/O on this LEB, so we want to re-try.
+ */
+ err = leb_write_trylock(ubi, vol_id, lnum);
+ if (err) {
+ dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
+ return MOVE_RETRY;
+ }
+
+ /*
+ * The LEB might have been put meanwhile, and the task which put it is
+ * probably waiting on @ubi->move_mutex. No need to continue the work,
+ * cancel it.
+ */
+ if (vol->eba_tbl->entries[lnum].pnum != from) {
+ dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
+ vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
+ err = MOVE_CANCEL_RACE;
+ goto out_unlock_leb;
+ }
+
+ /*
+ * OK, now the LEB is locked and we can safely start moving it. Since
+ * this function utilizes the @ubi->peb_buf buffer which is shared
+ * with some other functions - we lock the buffer by taking the
+ * @ubi->buf_mutex.
+ */
+ mutex_lock(&ubi->buf_mutex);
+ dbg_wl("read %d bytes of data", aldata_size);
+ err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
+ if (err && err != UBI_IO_BITFLIPS) {
+ ubi_warn(ubi, "error %d while reading data from PEB %d",
+ err, from);
+ err = MOVE_SOURCE_RD_ERR;
+ goto out_unlock_buf;
+ }
+
+ /*
+ * Now we have got to calculate how much data we have to copy. In
+ * case of a static volume it is fairly easy - the VID header contains
+ * the data size. In case of a dynamic volume it is more difficult - we
+ * have to read the contents, cut 0xFF bytes from the end and copy only
+ * the first part. We must do this to avoid writing 0xFF bytes as it
+ * may have some side-effects. And not only this. It is important not
+ * to include those 0xFFs to CRC because later the they may be filled
+ * by data.
+ */
+ if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
+ aldata_size = data_size =
+ ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
+
+ cond_resched();
+ crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
+ cond_resched();
+
+ /*
+ * It may turn out to be that the whole @from physical eraseblock
+ * contains only 0xFF bytes. Then we have to only write the VID header
+ * and do not write any data. This also means we should not set
+ * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
+ */
+ if (data_size > 0) {
+ vid_hdr->copy_flag = 1;
+ vid_hdr->data_size = cpu_to_be32(data_size);
+ vid_hdr->data_crc = cpu_to_be32(crc);
+ }
+ vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
+
+ err = ubi_io_write_vid_hdr(ubi, to, vidb);
+ if (err) {
+ if (err == -EIO)
+ err = MOVE_TARGET_WR_ERR;
+ goto out_unlock_buf;
+ }
+
+ cond_resched();
+
+ /* Read the VID header back and check if it was written correctly */
+ err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
+ if (err) {
+ if (err != UBI_IO_BITFLIPS) {
+ ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
+ err, to);
+ if (is_error_sane(err))
+ err = MOVE_TARGET_RD_ERR;
+ } else
+ err = MOVE_TARGET_BITFLIPS;
+ goto out_unlock_buf;
+ }
+
+ if (data_size > 0) {
+ err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
+ if (err) {
+ if (err == -EIO)
+ err = MOVE_TARGET_WR_ERR;
+ goto out_unlock_buf;
+ }
+
+ cond_resched();
+ }
+
+ ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
+ vol->eba_tbl->entries[lnum].pnum = to;
+
+out_unlock_buf:
+ mutex_unlock(&ubi->buf_mutex);
+out_unlock_leb:
+ leb_write_unlock(ubi, vol_id, lnum);
+ return err;
+}
+
+/**
+ * print_rsvd_warning - warn about not having enough reserved PEBs.
+ * @ubi: UBI device description object
+ *
+ * This is a helper function for 'ubi_eba_init()' which is called when UBI
+ * cannot reserve enough PEBs for bad block handling. This function makes a
+ * decision whether we have to print a warning or not. The algorithm is as
+ * follows:
+ * o if this is a new UBI image, then just print the warning
+ * o if this is an UBI image which has already been used for some time, print
+ * a warning only if we can reserve less than 10% of the expected amount of
+ * the reserved PEB.
+ *
+ * The idea is that when UBI is used, PEBs become bad, and the reserved pool
+ * of PEBs becomes smaller, which is normal and we do not want to scare users
+ * with a warning every time they attach the MTD device. This was an issue
+ * reported by real users.
+ */
+static void print_rsvd_warning(struct ubi_device *ubi,
+ struct ubi_attach_info *ai)
+{
+ /*
+ * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
+ * large number to distinguish between newly flashed and used images.
+ */
+ if (ai->max_sqnum > (1 << 18)) {
+ int min = ubi->beb_rsvd_level / 10;
+
+ if (!min)
+ min = 1;
+ if (ubi->beb_rsvd_pebs > min)
+ return;
+ }
+
+ ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
+ ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
+ if (ubi->corr_peb_count)
+ ubi_warn(ubi, "%d PEBs are corrupted and not used",
+ ubi->corr_peb_count);
+}
+
+/**
+ * self_check_eba - run a self check on the EBA table constructed by fastmap.
+ * @ubi: UBI device description object
+ * @ai_fastmap: UBI attach info object created by fastmap
+ * @ai_scan: UBI attach info object created by scanning
+ *
+ * Returns < 0 in case of an internal error, 0 otherwise.
+ * If a bad EBA table entry was found it will be printed out and
+ * ubi_assert() triggers.
+ */
+int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
+ struct ubi_attach_info *ai_scan)
+{
+ int i, j, num_volumes, ret = 0;
+ int **scan_eba, **fm_eba;
+ struct ubi_ainf_volume *av;
+ struct ubi_volume *vol;
+ struct ubi_ainf_peb *aeb;
+ struct rb_node *rb;
+
+ num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
+
+ scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
+ if (!scan_eba)
+ return -ENOMEM;
+
+ fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
+ if (!fm_eba) {
+ kfree(scan_eba);
+ return -ENOMEM;
+ }
+
+ for (i = 0; i < num_volumes; i++) {
+ vol = ubi->volumes[i];
+ if (!vol)
+ continue;
+
+ scan_eba[i] = kmalloc_array(vol->reserved_pebs,
+ sizeof(**scan_eba),
+ GFP_KERNEL);
+ if (!scan_eba[i]) {
+ ret = -ENOMEM;
+ goto out_free;
+ }
+
+ fm_eba[i] = kmalloc_array(vol->reserved_pebs,
+ sizeof(**fm_eba),
+ GFP_KERNEL);
+ if (!fm_eba[i]) {
+ ret = -ENOMEM;
+ goto out_free;
+ }
+
+ for (j = 0; j < vol->reserved_pebs; j++)
+ scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
+
+ av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
+ if (!av)
+ continue;
+
+ ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
+ scan_eba[i][aeb->lnum] = aeb->pnum;
+
+ av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
+ if (!av)
+ continue;
+
+ ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
+ fm_eba[i][aeb->lnum] = aeb->pnum;
+
+ for (j = 0; j < vol->reserved_pebs; j++) {
+ if (scan_eba[i][j] != fm_eba[i][j]) {
+ if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
+ fm_eba[i][j] == UBI_LEB_UNMAPPED)
+ continue;
+
+ ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
+ vol->vol_id, j, fm_eba[i][j],
+ scan_eba[i][j]);
+ ubi_assert(0);
+ }
+ }
+ }
+
+out_free:
+ for (i = 0; i < num_volumes; i++) {
+ if (!ubi->volumes[i])
+ continue;
+
+ kfree(scan_eba[i]);
+ kfree(fm_eba[i]);
+ }
+
+ kfree(scan_eba);
+ kfree(fm_eba);
+ return ret;
+}
+
+/**
+ * ubi_eba_init - initialize the EBA sub-system using attaching information.
+ * @ubi: UBI device description object
+ * @ai: attaching information
+ *
+ * This function returns zero in case of success and a negative error code in
+ * case of failure.
+ */
+int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
+{
+ int i, err, num_volumes;
+ struct ubi_ainf_volume *av;
+ struct ubi_volume *vol;
+ struct ubi_ainf_peb *aeb;
+ struct rb_node *rb;
+
+ dbg_eba("initialize EBA sub-system");
+
+ spin_lock_init(&ubi->ltree_lock);
+ mutex_init(&ubi->alc_mutex);
+ ubi->ltree = RB_ROOT;
+
+ ubi->global_sqnum = ai->max_sqnum + 1;
+ num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
+
+ for (i = 0; i < num_volumes; i++) {
+ struct ubi_eba_table *tbl;
+
+ vol = ubi->volumes[i];
+ if (!vol)
+ continue;
+
+ cond_resched();
+
+ tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
+ if (IS_ERR(tbl)) {
+ err = PTR_ERR(tbl);
+ goto out_free;
+ }
+
+ ubi_eba_replace_table(vol, tbl);
+
+ av = ubi_find_av(ai, idx2vol_id(ubi, i));
+ if (!av)
+ continue;
+
+ ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
+ if (aeb->lnum >= vol->reserved_pebs) {
+ /*
+ * This may happen in case of an unclean reboot
+ * during re-size.
+ */
+ ubi_move_aeb_to_list(av, aeb, &ai->erase);
+ } else {
+ struct ubi_eba_entry *entry;
+
+ entry = &vol->eba_tbl->entries[aeb->lnum];
+ entry->pnum = aeb->pnum;
+ }
+ }
+ }
+
+ if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
+ ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
+ ubi->avail_pebs, EBA_RESERVED_PEBS);
+ if (ubi->corr_peb_count)
+ ubi_err(ubi, "%d PEBs are corrupted and not used",
+ ubi->corr_peb_count);
+ err = -ENOSPC;
+ goto out_free;
+ }
+ ubi->avail_pebs -= EBA_RESERVED_PEBS;
+ ubi->rsvd_pebs += EBA_RESERVED_PEBS;
+
+ if (ubi->bad_allowed) {
+ ubi_calculate_reserved(ubi);
+
+ if (ubi->avail_pebs < ubi->beb_rsvd_level) {
+ /* No enough free physical eraseblocks */
+ ubi->beb_rsvd_pebs = ubi->avail_pebs;
+ print_rsvd_warning(ubi, ai);
+ } else
+ ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
+
+ ubi->avail_pebs -= ubi->beb_rsvd_pebs;
+ ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
+ }
+
+ dbg_eba("EBA sub-system is initialized");
+ return 0;
+
+out_free:
+ for (i = 0; i < num_volumes; i++) {
+ if (!ubi->volumes[i])
+ continue;
+ ubi_eba_replace_table(ubi->volumes[i], NULL);
+ }
+ return err;
+}