summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/dlink/dl2k.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/net/ethernet/dlink/dl2k.c
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/net/ethernet/dlink/dl2k.c1868
1 files changed, 1868 insertions, 0 deletions
diff --git a/drivers/net/ethernet/dlink/dl2k.c b/drivers/net/ethernet/dlink/dl2k.c
new file mode 100644
index 000000000..734acb834
--- /dev/null
+++ b/drivers/net/ethernet/dlink/dl2k.c
@@ -0,0 +1,1868 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
+/*
+ Copyright (c) 2001, 2002 by D-Link Corporation
+ Written by Edward Peng.<edward_peng@dlink.com.tw>
+ Created 03-May-2001, base on Linux' sundance.c.
+
+*/
+
+#include "dl2k.h"
+#include <linux/dma-mapping.h>
+
+#define dw32(reg, val) iowrite32(val, ioaddr + (reg))
+#define dw16(reg, val) iowrite16(val, ioaddr + (reg))
+#define dw8(reg, val) iowrite8(val, ioaddr + (reg))
+#define dr32(reg) ioread32(ioaddr + (reg))
+#define dr16(reg) ioread16(ioaddr + (reg))
+#define dr8(reg) ioread8(ioaddr + (reg))
+
+#define MAX_UNITS 8
+static int mtu[MAX_UNITS];
+static int vlan[MAX_UNITS];
+static int jumbo[MAX_UNITS];
+static char *media[MAX_UNITS];
+static int tx_flow=-1;
+static int rx_flow=-1;
+static int copy_thresh;
+static int rx_coalesce=10; /* Rx frame count each interrupt */
+static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
+static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
+
+
+MODULE_AUTHOR ("Edward Peng");
+MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
+MODULE_LICENSE("GPL");
+module_param_array(mtu, int, NULL, 0);
+module_param_array(media, charp, NULL, 0);
+module_param_array(vlan, int, NULL, 0);
+module_param_array(jumbo, int, NULL, 0);
+module_param(tx_flow, int, 0);
+module_param(rx_flow, int, 0);
+module_param(copy_thresh, int, 0);
+module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
+module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
+module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
+
+
+/* Enable the default interrupts */
+#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
+ UpdateStats | LinkEvent)
+
+static void dl2k_enable_int(struct netdev_private *np)
+{
+ void __iomem *ioaddr = np->ioaddr;
+
+ dw16(IntEnable, DEFAULT_INTR);
+}
+
+static const int max_intrloop = 50;
+static const int multicast_filter_limit = 0x40;
+
+static int rio_open (struct net_device *dev);
+static void rio_timer (struct timer_list *t);
+static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
+static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
+static irqreturn_t rio_interrupt (int irq, void *dev_instance);
+static void rio_free_tx (struct net_device *dev, int irq);
+static void tx_error (struct net_device *dev, int tx_status);
+static int receive_packet (struct net_device *dev);
+static void rio_error (struct net_device *dev, int int_status);
+static void set_multicast (struct net_device *dev);
+static struct net_device_stats *get_stats (struct net_device *dev);
+static int clear_stats (struct net_device *dev);
+static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
+static int rio_close (struct net_device *dev);
+static int find_miiphy (struct net_device *dev);
+static int parse_eeprom (struct net_device *dev);
+static int read_eeprom (struct netdev_private *, int eep_addr);
+static int mii_wait_link (struct net_device *dev, int wait);
+static int mii_set_media (struct net_device *dev);
+static int mii_get_media (struct net_device *dev);
+static int mii_set_media_pcs (struct net_device *dev);
+static int mii_get_media_pcs (struct net_device *dev);
+static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
+static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
+ u16 data);
+
+static const struct ethtool_ops ethtool_ops;
+
+static const struct net_device_ops netdev_ops = {
+ .ndo_open = rio_open,
+ .ndo_start_xmit = start_xmit,
+ .ndo_stop = rio_close,
+ .ndo_get_stats = get_stats,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_set_mac_address = eth_mac_addr,
+ .ndo_set_rx_mode = set_multicast,
+ .ndo_do_ioctl = rio_ioctl,
+ .ndo_tx_timeout = rio_tx_timeout,
+};
+
+static int
+rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+ struct net_device *dev;
+ struct netdev_private *np;
+ static int card_idx;
+ int chip_idx = ent->driver_data;
+ int err, irq;
+ void __iomem *ioaddr;
+ void *ring_space;
+ dma_addr_t ring_dma;
+
+ err = pci_enable_device (pdev);
+ if (err)
+ return err;
+
+ irq = pdev->irq;
+ err = pci_request_regions (pdev, "dl2k");
+ if (err)
+ goto err_out_disable;
+
+ pci_set_master (pdev);
+
+ err = -ENOMEM;
+
+ dev = alloc_etherdev (sizeof (*np));
+ if (!dev)
+ goto err_out_res;
+ SET_NETDEV_DEV(dev, &pdev->dev);
+
+ np = netdev_priv(dev);
+
+ /* IO registers range. */
+ ioaddr = pci_iomap(pdev, 0, 0);
+ if (!ioaddr)
+ goto err_out_dev;
+ np->eeprom_addr = ioaddr;
+
+#ifdef MEM_MAPPING
+ /* MM registers range. */
+ ioaddr = pci_iomap(pdev, 1, 0);
+ if (!ioaddr)
+ goto err_out_iounmap;
+#endif
+ np->ioaddr = ioaddr;
+ np->chip_id = chip_idx;
+ np->pdev = pdev;
+ spin_lock_init (&np->tx_lock);
+ spin_lock_init (&np->rx_lock);
+
+ /* Parse manual configuration */
+ np->an_enable = 1;
+ np->tx_coalesce = 1;
+ if (card_idx < MAX_UNITS) {
+ if (media[card_idx] != NULL) {
+ np->an_enable = 0;
+ if (strcmp (media[card_idx], "auto") == 0 ||
+ strcmp (media[card_idx], "autosense") == 0 ||
+ strcmp (media[card_idx], "0") == 0 ) {
+ np->an_enable = 2;
+ } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
+ strcmp (media[card_idx], "4") == 0) {
+ np->speed = 100;
+ np->full_duplex = 1;
+ } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
+ strcmp (media[card_idx], "3") == 0) {
+ np->speed = 100;
+ np->full_duplex = 0;
+ } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
+ strcmp (media[card_idx], "2") == 0) {
+ np->speed = 10;
+ np->full_duplex = 1;
+ } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
+ strcmp (media[card_idx], "1") == 0) {
+ np->speed = 10;
+ np->full_duplex = 0;
+ } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
+ strcmp (media[card_idx], "6") == 0) {
+ np->speed=1000;
+ np->full_duplex=1;
+ } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
+ strcmp (media[card_idx], "5") == 0) {
+ np->speed = 1000;
+ np->full_duplex = 0;
+ } else {
+ np->an_enable = 1;
+ }
+ }
+ if (jumbo[card_idx] != 0) {
+ np->jumbo = 1;
+ dev->mtu = MAX_JUMBO;
+ } else {
+ np->jumbo = 0;
+ if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
+ dev->mtu = mtu[card_idx];
+ }
+ np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
+ vlan[card_idx] : 0;
+ if (rx_coalesce > 0 && rx_timeout > 0) {
+ np->rx_coalesce = rx_coalesce;
+ np->rx_timeout = rx_timeout;
+ np->coalesce = 1;
+ }
+ np->tx_flow = (tx_flow == 0) ? 0 : 1;
+ np->rx_flow = (rx_flow == 0) ? 0 : 1;
+
+ if (tx_coalesce < 1)
+ tx_coalesce = 1;
+ else if (tx_coalesce > TX_RING_SIZE-1)
+ tx_coalesce = TX_RING_SIZE - 1;
+ }
+ dev->netdev_ops = &netdev_ops;
+ dev->watchdog_timeo = TX_TIMEOUT;
+ dev->ethtool_ops = &ethtool_ops;
+#if 0
+ dev->features = NETIF_F_IP_CSUM;
+#endif
+ /* MTU range: 68 - 1536 or 8000 */
+ dev->min_mtu = ETH_MIN_MTU;
+ dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
+
+ pci_set_drvdata (pdev, dev);
+
+ ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
+ GFP_KERNEL);
+ if (!ring_space)
+ goto err_out_iounmap;
+ np->tx_ring = ring_space;
+ np->tx_ring_dma = ring_dma;
+
+ ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
+ GFP_KERNEL);
+ if (!ring_space)
+ goto err_out_unmap_tx;
+ np->rx_ring = ring_space;
+ np->rx_ring_dma = ring_dma;
+
+ /* Parse eeprom data */
+ parse_eeprom (dev);
+
+ /* Find PHY address */
+ err = find_miiphy (dev);
+ if (err)
+ goto err_out_unmap_rx;
+
+ /* Fiber device? */
+ np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
+ np->link_status = 0;
+ /* Set media and reset PHY */
+ if (np->phy_media) {
+ /* default Auto-Negotiation for fiber deivices */
+ if (np->an_enable == 2) {
+ np->an_enable = 1;
+ }
+ } else {
+ /* Auto-Negotiation is mandatory for 1000BASE-T,
+ IEEE 802.3ab Annex 28D page 14 */
+ if (np->speed == 1000)
+ np->an_enable = 1;
+ }
+
+ err = register_netdev (dev);
+ if (err)
+ goto err_out_unmap_rx;
+
+ card_idx++;
+
+ printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
+ dev->name, np->name, dev->dev_addr, irq);
+ if (tx_coalesce > 1)
+ printk(KERN_INFO "tx_coalesce:\t%d packets\n",
+ tx_coalesce);
+ if (np->coalesce)
+ printk(KERN_INFO
+ "rx_coalesce:\t%d packets\n"
+ "rx_timeout: \t%d ns\n",
+ np->rx_coalesce, np->rx_timeout*640);
+ if (np->vlan)
+ printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
+ return 0;
+
+err_out_unmap_rx:
+ dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
+ np->rx_ring_dma);
+err_out_unmap_tx:
+ dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
+ np->tx_ring_dma);
+err_out_iounmap:
+#ifdef MEM_MAPPING
+ pci_iounmap(pdev, np->ioaddr);
+#endif
+ pci_iounmap(pdev, np->eeprom_addr);
+err_out_dev:
+ free_netdev (dev);
+err_out_res:
+ pci_release_regions (pdev);
+err_out_disable:
+ pci_disable_device (pdev);
+ return err;
+}
+
+static int
+find_miiphy (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ int i, phy_found = 0;
+
+ np->phy_addr = 1;
+
+ for (i = 31; i >= 0; i--) {
+ int mii_status = mii_read (dev, i, 1);
+ if (mii_status != 0xffff && mii_status != 0x0000) {
+ np->phy_addr = i;
+ phy_found++;
+ }
+ }
+ if (!phy_found) {
+ printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static int
+parse_eeprom (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ int i, j;
+ u8 sromdata[256];
+ u8 *psib;
+ u32 crc;
+ PSROM_t psrom = (PSROM_t) sromdata;
+
+ int cid, next;
+
+ for (i = 0; i < 128; i++)
+ ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
+
+ if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
+ /* Check CRC */
+ crc = ~ether_crc_le (256 - 4, sromdata);
+ if (psrom->crc != cpu_to_le32(crc)) {
+ printk (KERN_ERR "%s: EEPROM data CRC error.\n",
+ dev->name);
+ return -1;
+ }
+ }
+
+ /* Set MAC address */
+ for (i = 0; i < 6; i++)
+ dev->dev_addr[i] = psrom->mac_addr[i];
+
+ if (np->chip_id == CHIP_IP1000A) {
+ np->led_mode = psrom->led_mode;
+ return 0;
+ }
+
+ if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
+ return 0;
+ }
+
+ /* Parse Software Information Block */
+ i = 0x30;
+ psib = (u8 *) sromdata;
+ do {
+ cid = psib[i++];
+ next = psib[i++];
+ if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
+ printk (KERN_ERR "Cell data error\n");
+ return -1;
+ }
+ switch (cid) {
+ case 0: /* Format version */
+ break;
+ case 1: /* End of cell */
+ return 0;
+ case 2: /* Duplex Polarity */
+ np->duplex_polarity = psib[i];
+ dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
+ break;
+ case 3: /* Wake Polarity */
+ np->wake_polarity = psib[i];
+ break;
+ case 9: /* Adapter description */
+ j = (next - i > 255) ? 255 : next - i;
+ memcpy (np->name, &(psib[i]), j);
+ break;
+ case 4:
+ case 5:
+ case 6:
+ case 7:
+ case 8: /* Reversed */
+ break;
+ default: /* Unknown cell */
+ return -1;
+ }
+ i = next;
+ } while (1);
+
+ return 0;
+}
+
+static void rio_set_led_mode(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ u32 mode;
+
+ if (np->chip_id != CHIP_IP1000A)
+ return;
+
+ mode = dr32(ASICCtrl);
+ mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
+
+ if (np->led_mode & 0x01)
+ mode |= IPG_AC_LED_MODE;
+ if (np->led_mode & 0x02)
+ mode |= IPG_AC_LED_MODE_BIT_1;
+ if (np->led_mode & 0x08)
+ mode |= IPG_AC_LED_SPEED;
+
+ dw32(ASICCtrl, mode);
+}
+
+static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
+{
+ return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
+}
+
+static void free_list(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ struct sk_buff *skb;
+ int i;
+
+ /* Free all the skbuffs in the queue. */
+ for (i = 0; i < RX_RING_SIZE; i++) {
+ skb = np->rx_skbuff[i];
+ if (skb) {
+ dma_unmap_single(&np->pdev->dev,
+ desc_to_dma(&np->rx_ring[i]),
+ skb->len, DMA_FROM_DEVICE);
+ dev_kfree_skb(skb);
+ np->rx_skbuff[i] = NULL;
+ }
+ np->rx_ring[i].status = 0;
+ np->rx_ring[i].fraginfo = 0;
+ }
+ for (i = 0; i < TX_RING_SIZE; i++) {
+ skb = np->tx_skbuff[i];
+ if (skb) {
+ dma_unmap_single(&np->pdev->dev,
+ desc_to_dma(&np->tx_ring[i]),
+ skb->len, DMA_TO_DEVICE);
+ dev_kfree_skb(skb);
+ np->tx_skbuff[i] = NULL;
+ }
+ }
+}
+
+static void rio_reset_ring(struct netdev_private *np)
+{
+ int i;
+
+ np->cur_rx = 0;
+ np->cur_tx = 0;
+ np->old_rx = 0;
+ np->old_tx = 0;
+
+ for (i = 0; i < TX_RING_SIZE; i++)
+ np->tx_ring[i].status = cpu_to_le64(TFDDone);
+
+ for (i = 0; i < RX_RING_SIZE; i++)
+ np->rx_ring[i].status = 0;
+}
+
+ /* allocate and initialize Tx and Rx descriptors */
+static int alloc_list(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ int i;
+
+ rio_reset_ring(np);
+ np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
+
+ /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
+ for (i = 0; i < TX_RING_SIZE; i++) {
+ np->tx_skbuff[i] = NULL;
+ np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
+ ((i + 1) % TX_RING_SIZE) *
+ sizeof(struct netdev_desc));
+ }
+
+ /* Initialize Rx descriptors & allocate buffers */
+ for (i = 0; i < RX_RING_SIZE; i++) {
+ /* Allocated fixed size of skbuff */
+ struct sk_buff *skb;
+
+ skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
+ np->rx_skbuff[i] = skb;
+ if (!skb) {
+ free_list(dev);
+ return -ENOMEM;
+ }
+
+ np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
+ ((i + 1) % RX_RING_SIZE) *
+ sizeof(struct netdev_desc));
+ /* Rubicon now supports 40 bits of addressing space. */
+ np->rx_ring[i].fraginfo =
+ cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
+ np->rx_buf_sz, DMA_FROM_DEVICE));
+ np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
+ }
+
+ return 0;
+}
+
+static void rio_hw_init(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ int i;
+ u16 macctrl;
+
+ /* Reset all logic functions */
+ dw16(ASICCtrl + 2,
+ GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
+ mdelay(10);
+
+ rio_set_led_mode(dev);
+
+ /* DebugCtrl bit 4, 5, 9 must set */
+ dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
+
+ if (np->chip_id == CHIP_IP1000A &&
+ (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
+ /* PHY magic taken from ipg driver, undocumented registers */
+ mii_write(dev, np->phy_addr, 31, 0x0001);
+ mii_write(dev, np->phy_addr, 27, 0x01e0);
+ mii_write(dev, np->phy_addr, 31, 0x0002);
+ mii_write(dev, np->phy_addr, 27, 0xeb8e);
+ mii_write(dev, np->phy_addr, 31, 0x0000);
+ mii_write(dev, np->phy_addr, 30, 0x005e);
+ /* advertise 1000BASE-T half & full duplex, prefer MASTER */
+ mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
+ }
+
+ if (np->phy_media)
+ mii_set_media_pcs(dev);
+ else
+ mii_set_media(dev);
+
+ /* Jumbo frame */
+ if (np->jumbo != 0)
+ dw16(MaxFrameSize, MAX_JUMBO+14);
+
+ /* Set RFDListPtr */
+ dw32(RFDListPtr0, np->rx_ring_dma);
+ dw32(RFDListPtr1, 0);
+
+ /* Set station address */
+ /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
+ * too. However, it doesn't work on IP1000A so we use 16-bit access.
+ */
+ for (i = 0; i < 3; i++)
+ dw16(StationAddr0 + 2 * i,
+ cpu_to_le16(((u16 *)dev->dev_addr)[i]));
+
+ set_multicast (dev);
+ if (np->coalesce) {
+ dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
+ }
+ /* Set RIO to poll every N*320nsec. */
+ dw8(RxDMAPollPeriod, 0x20);
+ dw8(TxDMAPollPeriod, 0xff);
+ dw8(RxDMABurstThresh, 0x30);
+ dw8(RxDMAUrgentThresh, 0x30);
+ dw32(RmonStatMask, 0x0007ffff);
+ /* clear statistics */
+ clear_stats (dev);
+
+ /* VLAN supported */
+ if (np->vlan) {
+ /* priority field in RxDMAIntCtrl */
+ dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
+ /* VLANId */
+ dw16(VLANId, np->vlan);
+ /* Length/Type should be 0x8100 */
+ dw32(VLANTag, 0x8100 << 16 | np->vlan);
+ /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
+ VLAN information tagged by TFC' VID, CFI fields. */
+ dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
+ }
+
+ /* Start Tx/Rx */
+ dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
+
+ macctrl = 0;
+ macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
+ macctrl |= (np->full_duplex) ? DuplexSelect : 0;
+ macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
+ macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
+ dw16(MACCtrl, macctrl);
+}
+
+static void rio_hw_stop(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+
+ /* Disable interrupts */
+ dw16(IntEnable, 0);
+
+ /* Stop Tx and Rx logics */
+ dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
+}
+
+static int rio_open(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ const int irq = np->pdev->irq;
+ int i;
+
+ i = alloc_list(dev);
+ if (i)
+ return i;
+
+ rio_hw_init(dev);
+
+ i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
+ if (i) {
+ rio_hw_stop(dev);
+ free_list(dev);
+ return i;
+ }
+
+ timer_setup(&np->timer, rio_timer, 0);
+ np->timer.expires = jiffies + 1 * HZ;
+ add_timer(&np->timer);
+
+ netif_start_queue (dev);
+
+ dl2k_enable_int(np);
+ return 0;
+}
+
+static void
+rio_timer (struct timer_list *t)
+{
+ struct netdev_private *np = from_timer(np, t, timer);
+ struct net_device *dev = pci_get_drvdata(np->pdev);
+ unsigned int entry;
+ int next_tick = 1*HZ;
+ unsigned long flags;
+
+ spin_lock_irqsave(&np->rx_lock, flags);
+ /* Recover rx ring exhausted error */
+ if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
+ printk(KERN_INFO "Try to recover rx ring exhausted...\n");
+ /* Re-allocate skbuffs to fill the descriptor ring */
+ for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
+ struct sk_buff *skb;
+ entry = np->old_rx % RX_RING_SIZE;
+ /* Dropped packets don't need to re-allocate */
+ if (np->rx_skbuff[entry] == NULL) {
+ skb = netdev_alloc_skb_ip_align(dev,
+ np->rx_buf_sz);
+ if (skb == NULL) {
+ np->rx_ring[entry].fraginfo = 0;
+ printk (KERN_INFO
+ "%s: Still unable to re-allocate Rx skbuff.#%d\n",
+ dev->name, entry);
+ break;
+ }
+ np->rx_skbuff[entry] = skb;
+ np->rx_ring[entry].fraginfo =
+ cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
+ np->rx_buf_sz, DMA_FROM_DEVICE));
+ }
+ np->rx_ring[entry].fraginfo |=
+ cpu_to_le64((u64)np->rx_buf_sz << 48);
+ np->rx_ring[entry].status = 0;
+ } /* end for */
+ } /* end if */
+ spin_unlock_irqrestore (&np->rx_lock, flags);
+ np->timer.expires = jiffies + next_tick;
+ add_timer(&np->timer);
+}
+
+static void
+rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+
+ printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
+ dev->name, dr32(TxStatus));
+ rio_free_tx(dev, 0);
+ dev->if_port = 0;
+ netif_trans_update(dev); /* prevent tx timeout */
+}
+
+static netdev_tx_t
+start_xmit (struct sk_buff *skb, struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ struct netdev_desc *txdesc;
+ unsigned entry;
+ u64 tfc_vlan_tag = 0;
+
+ if (np->link_status == 0) { /* Link Down */
+ dev_kfree_skb(skb);
+ return NETDEV_TX_OK;
+ }
+ entry = np->cur_tx % TX_RING_SIZE;
+ np->tx_skbuff[entry] = skb;
+ txdesc = &np->tx_ring[entry];
+
+#if 0
+ if (skb->ip_summed == CHECKSUM_PARTIAL) {
+ txdesc->status |=
+ cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
+ IPChecksumEnable);
+ }
+#endif
+ if (np->vlan) {
+ tfc_vlan_tag = VLANTagInsert |
+ ((u64)np->vlan << 32) |
+ ((u64)skb->priority << 45);
+ }
+ txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
+ skb->len, DMA_TO_DEVICE));
+ txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
+
+ /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
+ * Work around: Always use 1 descriptor in 10Mbps mode */
+ if (entry % np->tx_coalesce == 0 || np->speed == 10)
+ txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
+ WordAlignDisable |
+ TxDMAIndicate |
+ (1 << FragCountShift));
+ else
+ txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
+ WordAlignDisable |
+ (1 << FragCountShift));
+
+ /* TxDMAPollNow */
+ dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
+ /* Schedule ISR */
+ dw32(CountDown, 10000);
+ np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
+ if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
+ < TX_QUEUE_LEN - 1 && np->speed != 10) {
+ /* do nothing */
+ } else if (!netif_queue_stopped(dev)) {
+ netif_stop_queue (dev);
+ }
+
+ /* The first TFDListPtr */
+ if (!dr32(TFDListPtr0)) {
+ dw32(TFDListPtr0, np->tx_ring_dma +
+ entry * sizeof (struct netdev_desc));
+ dw32(TFDListPtr1, 0);
+ }
+
+ return NETDEV_TX_OK;
+}
+
+static irqreturn_t
+rio_interrupt (int irq, void *dev_instance)
+{
+ struct net_device *dev = dev_instance;
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ unsigned int_status;
+ int cnt = max_intrloop;
+ int handled = 0;
+
+ while (1) {
+ int_status = dr16(IntStatus);
+ dw16(IntStatus, int_status);
+ int_status &= DEFAULT_INTR;
+ if (int_status == 0 || --cnt < 0)
+ break;
+ handled = 1;
+ /* Processing received packets */
+ if (int_status & RxDMAComplete)
+ receive_packet (dev);
+ /* TxDMAComplete interrupt */
+ if ((int_status & (TxDMAComplete|IntRequested))) {
+ int tx_status;
+ tx_status = dr32(TxStatus);
+ if (tx_status & 0x01)
+ tx_error (dev, tx_status);
+ /* Free used tx skbuffs */
+ rio_free_tx (dev, 1);
+ }
+
+ /* Handle uncommon events */
+ if (int_status &
+ (HostError | LinkEvent | UpdateStats))
+ rio_error (dev, int_status);
+ }
+ if (np->cur_tx != np->old_tx)
+ dw32(CountDown, 100);
+ return IRQ_RETVAL(handled);
+}
+
+static void
+rio_free_tx (struct net_device *dev, int irq)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ int entry = np->old_tx % TX_RING_SIZE;
+ int tx_use = 0;
+ unsigned long flag = 0;
+
+ if (irq)
+ spin_lock(&np->tx_lock);
+ else
+ spin_lock_irqsave(&np->tx_lock, flag);
+
+ /* Free used tx skbuffs */
+ while (entry != np->cur_tx) {
+ struct sk_buff *skb;
+
+ if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
+ break;
+ skb = np->tx_skbuff[entry];
+ dma_unmap_single(&np->pdev->dev,
+ desc_to_dma(&np->tx_ring[entry]), skb->len,
+ DMA_TO_DEVICE);
+ if (irq)
+ dev_consume_skb_irq(skb);
+ else
+ dev_kfree_skb(skb);
+
+ np->tx_skbuff[entry] = NULL;
+ entry = (entry + 1) % TX_RING_SIZE;
+ tx_use++;
+ }
+ if (irq)
+ spin_unlock(&np->tx_lock);
+ else
+ spin_unlock_irqrestore(&np->tx_lock, flag);
+ np->old_tx = entry;
+
+ /* If the ring is no longer full, clear tx_full and
+ call netif_wake_queue() */
+
+ if (netif_queue_stopped(dev) &&
+ ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
+ < TX_QUEUE_LEN - 1 || np->speed == 10)) {
+ netif_wake_queue (dev);
+ }
+}
+
+static void
+tx_error (struct net_device *dev, int tx_status)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ int frame_id;
+ int i;
+
+ frame_id = (tx_status & 0xffff0000);
+ printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
+ dev->name, tx_status, frame_id);
+ dev->stats.tx_errors++;
+ /* Ttransmit Underrun */
+ if (tx_status & 0x10) {
+ dev->stats.tx_fifo_errors++;
+ dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
+ /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
+ dw16(ASICCtrl + 2,
+ TxReset | DMAReset | FIFOReset | NetworkReset);
+ /* Wait for ResetBusy bit clear */
+ for (i = 50; i > 0; i--) {
+ if (!(dr16(ASICCtrl + 2) & ResetBusy))
+ break;
+ mdelay (1);
+ }
+ rio_set_led_mode(dev);
+ rio_free_tx (dev, 1);
+ /* Reset TFDListPtr */
+ dw32(TFDListPtr0, np->tx_ring_dma +
+ np->old_tx * sizeof (struct netdev_desc));
+ dw32(TFDListPtr1, 0);
+
+ /* Let TxStartThresh stay default value */
+ }
+ /* Late Collision */
+ if (tx_status & 0x04) {
+ dev->stats.tx_fifo_errors++;
+ /* TxReset and clear FIFO */
+ dw16(ASICCtrl + 2, TxReset | FIFOReset);
+ /* Wait reset done */
+ for (i = 50; i > 0; i--) {
+ if (!(dr16(ASICCtrl + 2) & ResetBusy))
+ break;
+ mdelay (1);
+ }
+ rio_set_led_mode(dev);
+ /* Let TxStartThresh stay default value */
+ }
+ /* Maximum Collisions */
+ if (tx_status & 0x08)
+ dev->stats.collisions++;
+ /* Restart the Tx */
+ dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
+}
+
+static int
+receive_packet (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ int entry = np->cur_rx % RX_RING_SIZE;
+ int cnt = 30;
+
+ /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
+ while (1) {
+ struct netdev_desc *desc = &np->rx_ring[entry];
+ int pkt_len;
+ u64 frame_status;
+
+ if (!(desc->status & cpu_to_le64(RFDDone)) ||
+ !(desc->status & cpu_to_le64(FrameStart)) ||
+ !(desc->status & cpu_to_le64(FrameEnd)))
+ break;
+
+ /* Chip omits the CRC. */
+ frame_status = le64_to_cpu(desc->status);
+ pkt_len = frame_status & 0xffff;
+ if (--cnt < 0)
+ break;
+ /* Update rx error statistics, drop packet. */
+ if (frame_status & RFS_Errors) {
+ dev->stats.rx_errors++;
+ if (frame_status & (RxRuntFrame | RxLengthError))
+ dev->stats.rx_length_errors++;
+ if (frame_status & RxFCSError)
+ dev->stats.rx_crc_errors++;
+ if (frame_status & RxAlignmentError && np->speed != 1000)
+ dev->stats.rx_frame_errors++;
+ if (frame_status & RxFIFOOverrun)
+ dev->stats.rx_fifo_errors++;
+ } else {
+ struct sk_buff *skb;
+
+ /* Small skbuffs for short packets */
+ if (pkt_len > copy_thresh) {
+ dma_unmap_single(&np->pdev->dev,
+ desc_to_dma(desc),
+ np->rx_buf_sz,
+ DMA_FROM_DEVICE);
+ skb_put (skb = np->rx_skbuff[entry], pkt_len);
+ np->rx_skbuff[entry] = NULL;
+ } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
+ dma_sync_single_for_cpu(&np->pdev->dev,
+ desc_to_dma(desc),
+ np->rx_buf_sz,
+ DMA_FROM_DEVICE);
+ skb_copy_to_linear_data (skb,
+ np->rx_skbuff[entry]->data,
+ pkt_len);
+ skb_put (skb, pkt_len);
+ dma_sync_single_for_device(&np->pdev->dev,
+ desc_to_dma(desc),
+ np->rx_buf_sz,
+ DMA_FROM_DEVICE);
+ }
+ skb->protocol = eth_type_trans (skb, dev);
+#if 0
+ /* Checksum done by hw, but csum value unavailable. */
+ if (np->pdev->pci_rev_id >= 0x0c &&
+ !(frame_status & (TCPError | UDPError | IPError))) {
+ skb->ip_summed = CHECKSUM_UNNECESSARY;
+ }
+#endif
+ netif_rx (skb);
+ }
+ entry = (entry + 1) % RX_RING_SIZE;
+ }
+ spin_lock(&np->rx_lock);
+ np->cur_rx = entry;
+ /* Re-allocate skbuffs to fill the descriptor ring */
+ entry = np->old_rx;
+ while (entry != np->cur_rx) {
+ struct sk_buff *skb;
+ /* Dropped packets don't need to re-allocate */
+ if (np->rx_skbuff[entry] == NULL) {
+ skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
+ if (skb == NULL) {
+ np->rx_ring[entry].fraginfo = 0;
+ printk (KERN_INFO
+ "%s: receive_packet: "
+ "Unable to re-allocate Rx skbuff.#%d\n",
+ dev->name, entry);
+ break;
+ }
+ np->rx_skbuff[entry] = skb;
+ np->rx_ring[entry].fraginfo =
+ cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
+ np->rx_buf_sz, DMA_FROM_DEVICE));
+ }
+ np->rx_ring[entry].fraginfo |=
+ cpu_to_le64((u64)np->rx_buf_sz << 48);
+ np->rx_ring[entry].status = 0;
+ entry = (entry + 1) % RX_RING_SIZE;
+ }
+ np->old_rx = entry;
+ spin_unlock(&np->rx_lock);
+ return 0;
+}
+
+static void
+rio_error (struct net_device *dev, int int_status)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ u16 macctrl;
+
+ /* Link change event */
+ if (int_status & LinkEvent) {
+ if (mii_wait_link (dev, 10) == 0) {
+ printk (KERN_INFO "%s: Link up\n", dev->name);
+ if (np->phy_media)
+ mii_get_media_pcs (dev);
+ else
+ mii_get_media (dev);
+ if (np->speed == 1000)
+ np->tx_coalesce = tx_coalesce;
+ else
+ np->tx_coalesce = 1;
+ macctrl = 0;
+ macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
+ macctrl |= (np->full_duplex) ? DuplexSelect : 0;
+ macctrl |= (np->tx_flow) ?
+ TxFlowControlEnable : 0;
+ macctrl |= (np->rx_flow) ?
+ RxFlowControlEnable : 0;
+ dw16(MACCtrl, macctrl);
+ np->link_status = 1;
+ netif_carrier_on(dev);
+ } else {
+ printk (KERN_INFO "%s: Link off\n", dev->name);
+ np->link_status = 0;
+ netif_carrier_off(dev);
+ }
+ }
+
+ /* UpdateStats statistics registers */
+ if (int_status & UpdateStats) {
+ get_stats (dev);
+ }
+
+ /* PCI Error, a catastronphic error related to the bus interface
+ occurs, set GlobalReset and HostReset to reset. */
+ if (int_status & HostError) {
+ printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
+ dev->name, int_status);
+ dw16(ASICCtrl + 2, GlobalReset | HostReset);
+ mdelay (500);
+ rio_set_led_mode(dev);
+ }
+}
+
+static struct net_device_stats *
+get_stats (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+#ifdef MEM_MAPPING
+ int i;
+#endif
+ unsigned int stat_reg;
+
+ /* All statistics registers need to be acknowledged,
+ else statistic overflow could cause problems */
+
+ dev->stats.rx_packets += dr32(FramesRcvOk);
+ dev->stats.tx_packets += dr32(FramesXmtOk);
+ dev->stats.rx_bytes += dr32(OctetRcvOk);
+ dev->stats.tx_bytes += dr32(OctetXmtOk);
+
+ dev->stats.multicast = dr32(McstFramesRcvdOk);
+ dev->stats.collisions += dr32(SingleColFrames)
+ + dr32(MultiColFrames);
+
+ /* detailed tx errors */
+ stat_reg = dr16(FramesAbortXSColls);
+ dev->stats.tx_aborted_errors += stat_reg;
+ dev->stats.tx_errors += stat_reg;
+
+ stat_reg = dr16(CarrierSenseErrors);
+ dev->stats.tx_carrier_errors += stat_reg;
+ dev->stats.tx_errors += stat_reg;
+
+ /* Clear all other statistic register. */
+ dr32(McstOctetXmtOk);
+ dr16(BcstFramesXmtdOk);
+ dr32(McstFramesXmtdOk);
+ dr16(BcstFramesRcvdOk);
+ dr16(MacControlFramesRcvd);
+ dr16(FrameTooLongErrors);
+ dr16(InRangeLengthErrors);
+ dr16(FramesCheckSeqErrors);
+ dr16(FramesLostRxErrors);
+ dr32(McstOctetXmtOk);
+ dr32(BcstOctetXmtOk);
+ dr32(McstFramesXmtdOk);
+ dr32(FramesWDeferredXmt);
+ dr32(LateCollisions);
+ dr16(BcstFramesXmtdOk);
+ dr16(MacControlFramesXmtd);
+ dr16(FramesWEXDeferal);
+
+#ifdef MEM_MAPPING
+ for (i = 0x100; i <= 0x150; i += 4)
+ dr32(i);
+#endif
+ dr16(TxJumboFrames);
+ dr16(RxJumboFrames);
+ dr16(TCPCheckSumErrors);
+ dr16(UDPCheckSumErrors);
+ dr16(IPCheckSumErrors);
+ return &dev->stats;
+}
+
+static int
+clear_stats (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+#ifdef MEM_MAPPING
+ int i;
+#endif
+
+ /* All statistics registers need to be acknowledged,
+ else statistic overflow could cause problems */
+ dr32(FramesRcvOk);
+ dr32(FramesXmtOk);
+ dr32(OctetRcvOk);
+ dr32(OctetXmtOk);
+
+ dr32(McstFramesRcvdOk);
+ dr32(SingleColFrames);
+ dr32(MultiColFrames);
+ dr32(LateCollisions);
+ /* detailed rx errors */
+ dr16(FrameTooLongErrors);
+ dr16(InRangeLengthErrors);
+ dr16(FramesCheckSeqErrors);
+ dr16(FramesLostRxErrors);
+
+ /* detailed tx errors */
+ dr16(FramesAbortXSColls);
+ dr16(CarrierSenseErrors);
+
+ /* Clear all other statistic register. */
+ dr32(McstOctetXmtOk);
+ dr16(BcstFramesXmtdOk);
+ dr32(McstFramesXmtdOk);
+ dr16(BcstFramesRcvdOk);
+ dr16(MacControlFramesRcvd);
+ dr32(McstOctetXmtOk);
+ dr32(BcstOctetXmtOk);
+ dr32(McstFramesXmtdOk);
+ dr32(FramesWDeferredXmt);
+ dr16(BcstFramesXmtdOk);
+ dr16(MacControlFramesXmtd);
+ dr16(FramesWEXDeferal);
+#ifdef MEM_MAPPING
+ for (i = 0x100; i <= 0x150; i += 4)
+ dr32(i);
+#endif
+ dr16(TxJumboFrames);
+ dr16(RxJumboFrames);
+ dr16(TCPCheckSumErrors);
+ dr16(UDPCheckSumErrors);
+ dr16(IPCheckSumErrors);
+ return 0;
+}
+
+static void
+set_multicast (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ u32 hash_table[2];
+ u16 rx_mode = 0;
+
+ hash_table[0] = hash_table[1] = 0;
+ /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
+ hash_table[1] |= 0x02000000;
+ if (dev->flags & IFF_PROMISC) {
+ /* Receive all frames promiscuously. */
+ rx_mode = ReceiveAllFrames;
+ } else if ((dev->flags & IFF_ALLMULTI) ||
+ (netdev_mc_count(dev) > multicast_filter_limit)) {
+ /* Receive broadcast and multicast frames */
+ rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
+ } else if (!netdev_mc_empty(dev)) {
+ struct netdev_hw_addr *ha;
+ /* Receive broadcast frames and multicast frames filtering
+ by Hashtable */
+ rx_mode =
+ ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
+ netdev_for_each_mc_addr(ha, dev) {
+ int bit, index = 0;
+ int crc = ether_crc_le(ETH_ALEN, ha->addr);
+ /* The inverted high significant 6 bits of CRC are
+ used as an index to hashtable */
+ for (bit = 0; bit < 6; bit++)
+ if (crc & (1 << (31 - bit)))
+ index |= (1 << bit);
+ hash_table[index / 32] |= (1 << (index % 32));
+ }
+ } else {
+ rx_mode = ReceiveBroadcast | ReceiveUnicast;
+ }
+ if (np->vlan) {
+ /* ReceiveVLANMatch field in ReceiveMode */
+ rx_mode |= ReceiveVLANMatch;
+ }
+
+ dw32(HashTable0, hash_table[0]);
+ dw32(HashTable1, hash_table[1]);
+ dw16(ReceiveMode, rx_mode);
+}
+
+static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
+{
+ struct netdev_private *np = netdev_priv(dev);
+
+ strlcpy(info->driver, "dl2k", sizeof(info->driver));
+ strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
+}
+
+static int rio_get_link_ksettings(struct net_device *dev,
+ struct ethtool_link_ksettings *cmd)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ u32 supported, advertising;
+
+ if (np->phy_media) {
+ /* fiber device */
+ supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
+ advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
+ cmd->base.port = PORT_FIBRE;
+ } else {
+ /* copper device */
+ supported = SUPPORTED_10baseT_Half |
+ SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
+ | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
+ SUPPORTED_Autoneg | SUPPORTED_MII;
+ advertising = ADVERTISED_10baseT_Half |
+ ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
+ ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
+ ADVERTISED_Autoneg | ADVERTISED_MII;
+ cmd->base.port = PORT_MII;
+ }
+ if (np->link_status) {
+ cmd->base.speed = np->speed;
+ cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
+ } else {
+ cmd->base.speed = SPEED_UNKNOWN;
+ cmd->base.duplex = DUPLEX_UNKNOWN;
+ }
+ if (np->an_enable)
+ cmd->base.autoneg = AUTONEG_ENABLE;
+ else
+ cmd->base.autoneg = AUTONEG_DISABLE;
+
+ cmd->base.phy_address = np->phy_addr;
+
+ ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
+ supported);
+ ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
+ advertising);
+
+ return 0;
+}
+
+static int rio_set_link_ksettings(struct net_device *dev,
+ const struct ethtool_link_ksettings *cmd)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ u32 speed = cmd->base.speed;
+ u8 duplex = cmd->base.duplex;
+
+ netif_carrier_off(dev);
+ if (cmd->base.autoneg == AUTONEG_ENABLE) {
+ if (np->an_enable) {
+ return 0;
+ } else {
+ np->an_enable = 1;
+ mii_set_media(dev);
+ return 0;
+ }
+ } else {
+ np->an_enable = 0;
+ if (np->speed == 1000) {
+ speed = SPEED_100;
+ duplex = DUPLEX_FULL;
+ printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
+ }
+ switch (speed) {
+ case SPEED_10:
+ np->speed = 10;
+ np->full_duplex = (duplex == DUPLEX_FULL);
+ break;
+ case SPEED_100:
+ np->speed = 100;
+ np->full_duplex = (duplex == DUPLEX_FULL);
+ break;
+ case SPEED_1000: /* not supported */
+ default:
+ return -EINVAL;
+ }
+ mii_set_media(dev);
+ }
+ return 0;
+}
+
+static u32 rio_get_link(struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ return np->link_status;
+}
+
+static const struct ethtool_ops ethtool_ops = {
+ .get_drvinfo = rio_get_drvinfo,
+ .get_link = rio_get_link,
+ .get_link_ksettings = rio_get_link_ksettings,
+ .set_link_ksettings = rio_set_link_ksettings,
+};
+
+static int
+rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
+{
+ int phy_addr;
+ struct netdev_private *np = netdev_priv(dev);
+ struct mii_ioctl_data *miidata = if_mii(rq);
+
+ phy_addr = np->phy_addr;
+ switch (cmd) {
+ case SIOCGMIIPHY:
+ miidata->phy_id = phy_addr;
+ break;
+ case SIOCGMIIREG:
+ miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
+ break;
+ case SIOCSMIIREG:
+ if (!capable(CAP_NET_ADMIN))
+ return -EPERM;
+ mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
+ break;
+ default:
+ return -EOPNOTSUPP;
+ }
+ return 0;
+}
+
+#define EEP_READ 0x0200
+#define EEP_BUSY 0x8000
+/* Read the EEPROM word */
+/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
+static int read_eeprom(struct netdev_private *np, int eep_addr)
+{
+ void __iomem *ioaddr = np->eeprom_addr;
+ int i = 1000;
+
+ dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
+ while (i-- > 0) {
+ if (!(dr16(EepromCtrl) & EEP_BUSY))
+ return dr16(EepromData);
+ }
+ return 0;
+}
+
+enum phy_ctrl_bits {
+ MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
+ MII_DUPLEX = 0x08,
+};
+
+#define mii_delay() dr8(PhyCtrl)
+static void
+mii_sendbit (struct net_device *dev, u32 data)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+
+ data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
+ dw8(PhyCtrl, data);
+ mii_delay ();
+ dw8(PhyCtrl, data | MII_CLK);
+ mii_delay ();
+}
+
+static int
+mii_getbit (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ void __iomem *ioaddr = np->ioaddr;
+ u8 data;
+
+ data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
+ dw8(PhyCtrl, data);
+ mii_delay ();
+ dw8(PhyCtrl, data | MII_CLK);
+ mii_delay ();
+ return (dr8(PhyCtrl) >> 1) & 1;
+}
+
+static void
+mii_send_bits (struct net_device *dev, u32 data, int len)
+{
+ int i;
+
+ for (i = len - 1; i >= 0; i--) {
+ mii_sendbit (dev, data & (1 << i));
+ }
+}
+
+static int
+mii_read (struct net_device *dev, int phy_addr, int reg_num)
+{
+ u32 cmd;
+ int i;
+ u32 retval = 0;
+
+ /* Preamble */
+ mii_send_bits (dev, 0xffffffff, 32);
+ /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
+ /* ST,OP = 0110'b for read operation */
+ cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
+ mii_send_bits (dev, cmd, 14);
+ /* Turnaround */
+ if (mii_getbit (dev))
+ goto err_out;
+ /* Read data */
+ for (i = 0; i < 16; i++) {
+ retval |= mii_getbit (dev);
+ retval <<= 1;
+ }
+ /* End cycle */
+ mii_getbit (dev);
+ return (retval >> 1) & 0xffff;
+
+ err_out:
+ return 0;
+}
+static int
+mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
+{
+ u32 cmd;
+
+ /* Preamble */
+ mii_send_bits (dev, 0xffffffff, 32);
+ /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
+ /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
+ cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
+ mii_send_bits (dev, cmd, 32);
+ /* End cycle */
+ mii_getbit (dev);
+ return 0;
+}
+static int
+mii_wait_link (struct net_device *dev, int wait)
+{
+ __u16 bmsr;
+ int phy_addr;
+ struct netdev_private *np;
+
+ np = netdev_priv(dev);
+ phy_addr = np->phy_addr;
+
+ do {
+ bmsr = mii_read (dev, phy_addr, MII_BMSR);
+ if (bmsr & BMSR_LSTATUS)
+ return 0;
+ mdelay (1);
+ } while (--wait > 0);
+ return -1;
+}
+static int
+mii_get_media (struct net_device *dev)
+{
+ __u16 negotiate;
+ __u16 bmsr;
+ __u16 mscr;
+ __u16 mssr;
+ int phy_addr;
+ struct netdev_private *np;
+
+ np = netdev_priv(dev);
+ phy_addr = np->phy_addr;
+
+ bmsr = mii_read (dev, phy_addr, MII_BMSR);
+ if (np->an_enable) {
+ if (!(bmsr & BMSR_ANEGCOMPLETE)) {
+ /* Auto-Negotiation not completed */
+ return -1;
+ }
+ negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
+ mii_read (dev, phy_addr, MII_LPA);
+ mscr = mii_read (dev, phy_addr, MII_CTRL1000);
+ mssr = mii_read (dev, phy_addr, MII_STAT1000);
+ if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
+ np->speed = 1000;
+ np->full_duplex = 1;
+ printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
+ } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
+ np->speed = 1000;
+ np->full_duplex = 0;
+ printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
+ } else if (negotiate & ADVERTISE_100FULL) {
+ np->speed = 100;
+ np->full_duplex = 1;
+ printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
+ } else if (negotiate & ADVERTISE_100HALF) {
+ np->speed = 100;
+ np->full_duplex = 0;
+ printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
+ } else if (negotiate & ADVERTISE_10FULL) {
+ np->speed = 10;
+ np->full_duplex = 1;
+ printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
+ } else if (negotiate & ADVERTISE_10HALF) {
+ np->speed = 10;
+ np->full_duplex = 0;
+ printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
+ }
+ if (negotiate & ADVERTISE_PAUSE_CAP) {
+ np->tx_flow &= 1;
+ np->rx_flow &= 1;
+ } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
+ np->tx_flow = 0;
+ np->rx_flow &= 1;
+ }
+ /* else tx_flow, rx_flow = user select */
+ } else {
+ __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
+ switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
+ case BMCR_SPEED1000:
+ printk (KERN_INFO "Operating at 1000 Mbps, ");
+ break;
+ case BMCR_SPEED100:
+ printk (KERN_INFO "Operating at 100 Mbps, ");
+ break;
+ case 0:
+ printk (KERN_INFO "Operating at 10 Mbps, ");
+ }
+ if (bmcr & BMCR_FULLDPLX) {
+ printk (KERN_CONT "Full duplex\n");
+ } else {
+ printk (KERN_CONT "Half duplex\n");
+ }
+ }
+ if (np->tx_flow)
+ printk(KERN_INFO "Enable Tx Flow Control\n");
+ else
+ printk(KERN_INFO "Disable Tx Flow Control\n");
+ if (np->rx_flow)
+ printk(KERN_INFO "Enable Rx Flow Control\n");
+ else
+ printk(KERN_INFO "Disable Rx Flow Control\n");
+
+ return 0;
+}
+
+static int
+mii_set_media (struct net_device *dev)
+{
+ __u16 pscr;
+ __u16 bmcr;
+ __u16 bmsr;
+ __u16 anar;
+ int phy_addr;
+ struct netdev_private *np;
+ np = netdev_priv(dev);
+ phy_addr = np->phy_addr;
+
+ /* Does user set speed? */
+ if (np->an_enable) {
+ /* Advertise capabilities */
+ bmsr = mii_read (dev, phy_addr, MII_BMSR);
+ anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
+ ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
+ ADVERTISE_100HALF | ADVERTISE_10HALF |
+ ADVERTISE_100BASE4);
+ if (bmsr & BMSR_100FULL)
+ anar |= ADVERTISE_100FULL;
+ if (bmsr & BMSR_100HALF)
+ anar |= ADVERTISE_100HALF;
+ if (bmsr & BMSR_100BASE4)
+ anar |= ADVERTISE_100BASE4;
+ if (bmsr & BMSR_10FULL)
+ anar |= ADVERTISE_10FULL;
+ if (bmsr & BMSR_10HALF)
+ anar |= ADVERTISE_10HALF;
+ anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
+ mii_write (dev, phy_addr, MII_ADVERTISE, anar);
+
+ /* Enable Auto crossover */
+ pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
+ pscr |= 3 << 5; /* 11'b */
+ mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
+
+ /* Soft reset PHY */
+ mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
+ bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+ mdelay(1);
+ } else {
+ /* Force speed setting */
+ /* 1) Disable Auto crossover */
+ pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
+ pscr &= ~(3 << 5);
+ mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
+
+ /* 2) PHY Reset */
+ bmcr = mii_read (dev, phy_addr, MII_BMCR);
+ bmcr |= BMCR_RESET;
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+
+ /* 3) Power Down */
+ bmcr = 0x1940; /* must be 0x1940 */
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+ mdelay (100); /* wait a certain time */
+
+ /* 4) Advertise nothing */
+ mii_write (dev, phy_addr, MII_ADVERTISE, 0);
+
+ /* 5) Set media and Power Up */
+ bmcr = BMCR_PDOWN;
+ if (np->speed == 100) {
+ bmcr |= BMCR_SPEED100;
+ printk (KERN_INFO "Manual 100 Mbps, ");
+ } else if (np->speed == 10) {
+ printk (KERN_INFO "Manual 10 Mbps, ");
+ }
+ if (np->full_duplex) {
+ bmcr |= BMCR_FULLDPLX;
+ printk (KERN_CONT "Full duplex\n");
+ } else {
+ printk (KERN_CONT "Half duplex\n");
+ }
+#if 0
+ /* Set 1000BaseT Master/Slave setting */
+ mscr = mii_read (dev, phy_addr, MII_CTRL1000);
+ mscr |= MII_MSCR_CFG_ENABLE;
+ mscr &= ~MII_MSCR_CFG_VALUE = 0;
+#endif
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+ mdelay(10);
+ }
+ return 0;
+}
+
+static int
+mii_get_media_pcs (struct net_device *dev)
+{
+ __u16 negotiate;
+ __u16 bmsr;
+ int phy_addr;
+ struct netdev_private *np;
+
+ np = netdev_priv(dev);
+ phy_addr = np->phy_addr;
+
+ bmsr = mii_read (dev, phy_addr, PCS_BMSR);
+ if (np->an_enable) {
+ if (!(bmsr & BMSR_ANEGCOMPLETE)) {
+ /* Auto-Negotiation not completed */
+ return -1;
+ }
+ negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
+ mii_read (dev, phy_addr, PCS_ANLPAR);
+ np->speed = 1000;
+ if (negotiate & PCS_ANAR_FULL_DUPLEX) {
+ printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
+ np->full_duplex = 1;
+ } else {
+ printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
+ np->full_duplex = 0;
+ }
+ if (negotiate & PCS_ANAR_PAUSE) {
+ np->tx_flow &= 1;
+ np->rx_flow &= 1;
+ } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
+ np->tx_flow = 0;
+ np->rx_flow &= 1;
+ }
+ /* else tx_flow, rx_flow = user select */
+ } else {
+ __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
+ printk (KERN_INFO "Operating at 1000 Mbps, ");
+ if (bmcr & BMCR_FULLDPLX) {
+ printk (KERN_CONT "Full duplex\n");
+ } else {
+ printk (KERN_CONT "Half duplex\n");
+ }
+ }
+ if (np->tx_flow)
+ printk(KERN_INFO "Enable Tx Flow Control\n");
+ else
+ printk(KERN_INFO "Disable Tx Flow Control\n");
+ if (np->rx_flow)
+ printk(KERN_INFO "Enable Rx Flow Control\n");
+ else
+ printk(KERN_INFO "Disable Rx Flow Control\n");
+
+ return 0;
+}
+
+static int
+mii_set_media_pcs (struct net_device *dev)
+{
+ __u16 bmcr;
+ __u16 esr;
+ __u16 anar;
+ int phy_addr;
+ struct netdev_private *np;
+ np = netdev_priv(dev);
+ phy_addr = np->phy_addr;
+
+ /* Auto-Negotiation? */
+ if (np->an_enable) {
+ /* Advertise capabilities */
+ esr = mii_read (dev, phy_addr, PCS_ESR);
+ anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
+ ~PCS_ANAR_HALF_DUPLEX &
+ ~PCS_ANAR_FULL_DUPLEX;
+ if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
+ anar |= PCS_ANAR_HALF_DUPLEX;
+ if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
+ anar |= PCS_ANAR_FULL_DUPLEX;
+ anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
+ mii_write (dev, phy_addr, MII_ADVERTISE, anar);
+
+ /* Soft reset PHY */
+ mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
+ bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+ mdelay(1);
+ } else {
+ /* Force speed setting */
+ /* PHY Reset */
+ bmcr = BMCR_RESET;
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+ mdelay(10);
+ if (np->full_duplex) {
+ bmcr = BMCR_FULLDPLX;
+ printk (KERN_INFO "Manual full duplex\n");
+ } else {
+ bmcr = 0;
+ printk (KERN_INFO "Manual half duplex\n");
+ }
+ mii_write (dev, phy_addr, MII_BMCR, bmcr);
+ mdelay(10);
+
+ /* Advertise nothing */
+ mii_write (dev, phy_addr, MII_ADVERTISE, 0);
+ }
+ return 0;
+}
+
+
+static int
+rio_close (struct net_device *dev)
+{
+ struct netdev_private *np = netdev_priv(dev);
+ struct pci_dev *pdev = np->pdev;
+
+ netif_stop_queue (dev);
+
+ rio_hw_stop(dev);
+
+ free_irq(pdev->irq, dev);
+ del_timer_sync (&np->timer);
+
+ free_list(dev);
+
+ return 0;
+}
+
+static void
+rio_remove1 (struct pci_dev *pdev)
+{
+ struct net_device *dev = pci_get_drvdata (pdev);
+
+ if (dev) {
+ struct netdev_private *np = netdev_priv(dev);
+
+ unregister_netdev (dev);
+ dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
+ np->rx_ring_dma);
+ dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
+ np->tx_ring_dma);
+#ifdef MEM_MAPPING
+ pci_iounmap(pdev, np->ioaddr);
+#endif
+ pci_iounmap(pdev, np->eeprom_addr);
+ free_netdev (dev);
+ pci_release_regions (pdev);
+ pci_disable_device (pdev);
+ }
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int rio_suspend(struct device *device)
+{
+ struct net_device *dev = dev_get_drvdata(device);
+ struct netdev_private *np = netdev_priv(dev);
+
+ if (!netif_running(dev))
+ return 0;
+
+ netif_device_detach(dev);
+ del_timer_sync(&np->timer);
+ rio_hw_stop(dev);
+
+ return 0;
+}
+
+static int rio_resume(struct device *device)
+{
+ struct net_device *dev = dev_get_drvdata(device);
+ struct netdev_private *np = netdev_priv(dev);
+
+ if (!netif_running(dev))
+ return 0;
+
+ rio_reset_ring(np);
+ rio_hw_init(dev);
+ np->timer.expires = jiffies + 1 * HZ;
+ add_timer(&np->timer);
+ netif_device_attach(dev);
+ dl2k_enable_int(np);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
+#define RIO_PM_OPS (&rio_pm_ops)
+
+#else
+
+#define RIO_PM_OPS NULL
+
+#endif /* CONFIG_PM_SLEEP */
+
+static struct pci_driver rio_driver = {
+ .name = "dl2k",
+ .id_table = rio_pci_tbl,
+ .probe = rio_probe1,
+ .remove = rio_remove1,
+ .driver.pm = RIO_PM_OPS,
+};
+
+module_pci_driver(rio_driver);
+
+/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */