summaryrefslogtreecommitdiffstats
path: root/drivers/scsi/hpsa.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /drivers/scsi/hpsa.c
parentInitial commit. (diff)
downloadlinux-upstream.tar.xz
linux-upstream.zip
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--drivers/scsi/hpsa.c10007
1 files changed, 10007 insertions, 0 deletions
diff --git a/drivers/scsi/hpsa.c b/drivers/scsi/hpsa.c
new file mode 100644
index 000000000..a44a098db
--- /dev/null
+++ b/drivers/scsi/hpsa.c
@@ -0,0 +1,10007 @@
+/*
+ * Disk Array driver for HP Smart Array SAS controllers
+ * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
+ * Copyright 2016 Microsemi Corporation
+ * Copyright 2014-2015 PMC-Sierra, Inc.
+ * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ * NON INFRINGEMENT. See the GNU General Public License for more details.
+ *
+ * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/fs.h>
+#include <linux/timer.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/compat.h>
+#include <linux/blktrace_api.h>
+#include <linux/uaccess.h>
+#include <linux/io.h>
+#include <linux/dma-mapping.h>
+#include <linux/completion.h>
+#include <linux/moduleparam.h>
+#include <scsi/scsi.h>
+#include <scsi/scsi_cmnd.h>
+#include <scsi/scsi_device.h>
+#include <scsi/scsi_host.h>
+#include <scsi/scsi_tcq.h>
+#include <scsi/scsi_eh.h>
+#include <scsi/scsi_transport_sas.h>
+#include <scsi/scsi_dbg.h>
+#include <linux/cciss_ioctl.h>
+#include <linux/string.h>
+#include <linux/bitmap.h>
+#include <linux/atomic.h>
+#include <linux/jiffies.h>
+#include <linux/percpu-defs.h>
+#include <linux/percpu.h>
+#include <asm/unaligned.h>
+#include <asm/div64.h>
+#include "hpsa_cmd.h"
+#include "hpsa.h"
+
+/*
+ * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
+ * with an optional trailing '-' followed by a byte value (0-255).
+ */
+#define HPSA_DRIVER_VERSION "3.4.20-200"
+#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
+#define HPSA "hpsa"
+
+/* How long to wait for CISS doorbell communication */
+#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
+#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
+#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
+#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
+#define MAX_IOCTL_CONFIG_WAIT 1000
+
+/*define how many times we will try a command because of bus resets */
+#define MAX_CMD_RETRIES 3
+/* How long to wait before giving up on a command */
+#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
+
+/* Embedded module documentation macros - see modules.h */
+MODULE_AUTHOR("Hewlett-Packard Company");
+MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
+ HPSA_DRIVER_VERSION);
+MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
+MODULE_VERSION(HPSA_DRIVER_VERSION);
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("cciss");
+
+static int hpsa_simple_mode;
+module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
+MODULE_PARM_DESC(hpsa_simple_mode,
+ "Use 'simple mode' rather than 'performant mode'");
+
+/* define the PCI info for the cards we can control */
+static const struct pci_device_id hpsa_pci_device_id[] = {
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
+ {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
+ {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
+ {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
+ {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
+ {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
+ {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
+ {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
+ {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
+ {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
+ {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
+ {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
+ {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
+ {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
+ PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
+ {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
+ PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
+ {0,}
+};
+
+MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
+
+/* board_id = Subsystem Device ID & Vendor ID
+ * product = Marketing Name for the board
+ * access = Address of the struct of function pointers
+ */
+static struct board_type products[] = {
+ {0x40700E11, "Smart Array 5300", &SA5A_access},
+ {0x40800E11, "Smart Array 5i", &SA5B_access},
+ {0x40820E11, "Smart Array 532", &SA5B_access},
+ {0x40830E11, "Smart Array 5312", &SA5B_access},
+ {0x409A0E11, "Smart Array 641", &SA5A_access},
+ {0x409B0E11, "Smart Array 642", &SA5A_access},
+ {0x409C0E11, "Smart Array 6400", &SA5A_access},
+ {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
+ {0x40910E11, "Smart Array 6i", &SA5A_access},
+ {0x3225103C, "Smart Array P600", &SA5A_access},
+ {0x3223103C, "Smart Array P800", &SA5A_access},
+ {0x3234103C, "Smart Array P400", &SA5A_access},
+ {0x3235103C, "Smart Array P400i", &SA5A_access},
+ {0x3211103C, "Smart Array E200i", &SA5A_access},
+ {0x3212103C, "Smart Array E200", &SA5A_access},
+ {0x3213103C, "Smart Array E200i", &SA5A_access},
+ {0x3214103C, "Smart Array E200i", &SA5A_access},
+ {0x3215103C, "Smart Array E200i", &SA5A_access},
+ {0x3237103C, "Smart Array E500", &SA5A_access},
+ {0x323D103C, "Smart Array P700m", &SA5A_access},
+ {0x3241103C, "Smart Array P212", &SA5_access},
+ {0x3243103C, "Smart Array P410", &SA5_access},
+ {0x3245103C, "Smart Array P410i", &SA5_access},
+ {0x3247103C, "Smart Array P411", &SA5_access},
+ {0x3249103C, "Smart Array P812", &SA5_access},
+ {0x324A103C, "Smart Array P712m", &SA5_access},
+ {0x324B103C, "Smart Array P711m", &SA5_access},
+ {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
+ {0x3350103C, "Smart Array P222", &SA5_access},
+ {0x3351103C, "Smart Array P420", &SA5_access},
+ {0x3352103C, "Smart Array P421", &SA5_access},
+ {0x3353103C, "Smart Array P822", &SA5_access},
+ {0x3354103C, "Smart Array P420i", &SA5_access},
+ {0x3355103C, "Smart Array P220i", &SA5_access},
+ {0x3356103C, "Smart Array P721m", &SA5_access},
+ {0x1920103C, "Smart Array P430i", &SA5_access},
+ {0x1921103C, "Smart Array P830i", &SA5_access},
+ {0x1922103C, "Smart Array P430", &SA5_access},
+ {0x1923103C, "Smart Array P431", &SA5_access},
+ {0x1924103C, "Smart Array P830", &SA5_access},
+ {0x1925103C, "Smart Array P831", &SA5_access},
+ {0x1926103C, "Smart Array P731m", &SA5_access},
+ {0x1928103C, "Smart Array P230i", &SA5_access},
+ {0x1929103C, "Smart Array P530", &SA5_access},
+ {0x21BD103C, "Smart Array P244br", &SA5_access},
+ {0x21BE103C, "Smart Array P741m", &SA5_access},
+ {0x21BF103C, "Smart HBA H240ar", &SA5_access},
+ {0x21C0103C, "Smart Array P440ar", &SA5_access},
+ {0x21C1103C, "Smart Array P840ar", &SA5_access},
+ {0x21C2103C, "Smart Array P440", &SA5_access},
+ {0x21C3103C, "Smart Array P441", &SA5_access},
+ {0x21C4103C, "Smart Array", &SA5_access},
+ {0x21C5103C, "Smart Array P841", &SA5_access},
+ {0x21C6103C, "Smart HBA H244br", &SA5_access},
+ {0x21C7103C, "Smart HBA H240", &SA5_access},
+ {0x21C8103C, "Smart HBA H241", &SA5_access},
+ {0x21C9103C, "Smart Array", &SA5_access},
+ {0x21CA103C, "Smart Array P246br", &SA5_access},
+ {0x21CB103C, "Smart Array P840", &SA5_access},
+ {0x21CC103C, "Smart Array", &SA5_access},
+ {0x21CD103C, "Smart Array", &SA5_access},
+ {0x21CE103C, "Smart HBA", &SA5_access},
+ {0x05809005, "SmartHBA-SA", &SA5_access},
+ {0x05819005, "SmartHBA-SA 8i", &SA5_access},
+ {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
+ {0x05839005, "SmartHBA-SA 8e", &SA5_access},
+ {0x05849005, "SmartHBA-SA 16i", &SA5_access},
+ {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
+ {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
+ {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
+ {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
+ {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
+ {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
+ {0xFFFF103C, "Unknown Smart Array", &SA5_access},
+};
+
+static struct scsi_transport_template *hpsa_sas_transport_template;
+static int hpsa_add_sas_host(struct ctlr_info *h);
+static void hpsa_delete_sas_host(struct ctlr_info *h);
+static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
+ struct hpsa_scsi_dev_t *device);
+static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
+static struct hpsa_scsi_dev_t
+ *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
+ struct sas_rphy *rphy);
+
+#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
+static const struct scsi_cmnd hpsa_cmd_busy;
+#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
+static const struct scsi_cmnd hpsa_cmd_idle;
+static int number_of_controllers;
+
+static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
+static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
+static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
+ void __user *arg);
+static int hpsa_passthru_ioctl(struct ctlr_info *h,
+ IOCTL_Command_struct *iocommand);
+static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
+ BIG_IOCTL_Command_struct *ioc);
+
+#ifdef CONFIG_COMPAT
+static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
+ void __user *arg);
+#endif
+
+static void cmd_free(struct ctlr_info *h, struct CommandList *c);
+static struct CommandList *cmd_alloc(struct ctlr_info *h);
+static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
+static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
+ struct scsi_cmnd *scmd);
+static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
+ void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
+ int cmd_type);
+static void hpsa_free_cmd_pool(struct ctlr_info *h);
+#define VPD_PAGE (1 << 8)
+#define HPSA_SIMPLE_ERROR_BITS 0x03
+
+static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
+static void hpsa_scan_start(struct Scsi_Host *);
+static int hpsa_scan_finished(struct Scsi_Host *sh,
+ unsigned long elapsed_time);
+static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
+
+static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
+static int hpsa_slave_alloc(struct scsi_device *sdev);
+static int hpsa_slave_configure(struct scsi_device *sdev);
+static void hpsa_slave_destroy(struct scsi_device *sdev);
+
+static void hpsa_update_scsi_devices(struct ctlr_info *h);
+static int check_for_unit_attention(struct ctlr_info *h,
+ struct CommandList *c);
+static void check_ioctl_unit_attention(struct ctlr_info *h,
+ struct CommandList *c);
+/* performant mode helper functions */
+static void calc_bucket_map(int *bucket, int num_buckets,
+ int nsgs, int min_blocks, u32 *bucket_map);
+static void hpsa_free_performant_mode(struct ctlr_info *h);
+static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
+static inline u32 next_command(struct ctlr_info *h, u8 q);
+static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
+ u32 *cfg_base_addr, u64 *cfg_base_addr_index,
+ u64 *cfg_offset);
+static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
+ unsigned long *memory_bar);
+static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
+ bool *legacy_board);
+static int wait_for_device_to_become_ready(struct ctlr_info *h,
+ unsigned char lunaddr[],
+ int reply_queue);
+static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
+ int wait_for_ready);
+static inline void finish_cmd(struct CommandList *c);
+static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
+#define BOARD_NOT_READY 0
+#define BOARD_READY 1
+static void hpsa_drain_accel_commands(struct ctlr_info *h);
+static void hpsa_flush_cache(struct ctlr_info *h);
+static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
+ struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+ u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
+static void hpsa_command_resubmit_worker(struct work_struct *work);
+static u32 lockup_detected(struct ctlr_info *h);
+static int detect_controller_lockup(struct ctlr_info *h);
+static void hpsa_disable_rld_caching(struct ctlr_info *h);
+static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
+ struct ReportExtendedLUNdata *buf, int bufsize);
+static bool hpsa_vpd_page_supported(struct ctlr_info *h,
+ unsigned char scsi3addr[], u8 page);
+static int hpsa_luns_changed(struct ctlr_info *h);
+static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
+ struct hpsa_scsi_dev_t *dev,
+ unsigned char *scsi3addr);
+
+static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
+{
+ unsigned long *priv = shost_priv(sdev->host);
+ return (struct ctlr_info *) *priv;
+}
+
+static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
+{
+ unsigned long *priv = shost_priv(sh);
+ return (struct ctlr_info *) *priv;
+}
+
+static inline bool hpsa_is_cmd_idle(struct CommandList *c)
+{
+ return c->scsi_cmd == SCSI_CMD_IDLE;
+}
+
+/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
+static void decode_sense_data(const u8 *sense_data, int sense_data_len,
+ u8 *sense_key, u8 *asc, u8 *ascq)
+{
+ struct scsi_sense_hdr sshdr;
+ bool rc;
+
+ *sense_key = -1;
+ *asc = -1;
+ *ascq = -1;
+
+ if (sense_data_len < 1)
+ return;
+
+ rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
+ if (rc) {
+ *sense_key = sshdr.sense_key;
+ *asc = sshdr.asc;
+ *ascq = sshdr.ascq;
+ }
+}
+
+static int check_for_unit_attention(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ u8 sense_key, asc, ascq;
+ int sense_len;
+
+ if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
+ sense_len = sizeof(c->err_info->SenseInfo);
+ else
+ sense_len = c->err_info->SenseLen;
+
+ decode_sense_data(c->err_info->SenseInfo, sense_len,
+ &sense_key, &asc, &ascq);
+ if (sense_key != UNIT_ATTENTION || asc == 0xff)
+ return 0;
+
+ switch (asc) {
+ case STATE_CHANGED:
+ dev_warn(&h->pdev->dev,
+ "%s: a state change detected, command retried\n",
+ h->devname);
+ break;
+ case LUN_FAILED:
+ dev_warn(&h->pdev->dev,
+ "%s: LUN failure detected\n", h->devname);
+ break;
+ case REPORT_LUNS_CHANGED:
+ dev_warn(&h->pdev->dev,
+ "%s: report LUN data changed\n", h->devname);
+ /*
+ * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
+ * target (array) devices.
+ */
+ break;
+ case POWER_OR_RESET:
+ dev_warn(&h->pdev->dev,
+ "%s: a power on or device reset detected\n",
+ h->devname);
+ break;
+ case UNIT_ATTENTION_CLEARED:
+ dev_warn(&h->pdev->dev,
+ "%s: unit attention cleared by another initiator\n",
+ h->devname);
+ break;
+ default:
+ dev_warn(&h->pdev->dev,
+ "%s: unknown unit attention detected\n",
+ h->devname);
+ break;
+ }
+ return 1;
+}
+
+static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
+{
+ if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
+ (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
+ c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
+ return 0;
+ dev_warn(&h->pdev->dev, HPSA "device busy");
+ return 1;
+}
+
+static u32 lockup_detected(struct ctlr_info *h);
+static ssize_t host_show_lockup_detected(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int ld;
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+
+ h = shost_to_hba(shost);
+ ld = lockup_detected(h);
+
+ return sprintf(buf, "ld=%d\n", ld);
+}
+
+static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int status, len;
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+ char tmpbuf[10];
+
+ if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
+ return -EACCES;
+ len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
+ strncpy(tmpbuf, buf, len);
+ tmpbuf[len] = '\0';
+ if (sscanf(tmpbuf, "%d", &status) != 1)
+ return -EINVAL;
+ h = shost_to_hba(shost);
+ h->acciopath_status = !!status;
+ dev_warn(&h->pdev->dev,
+ "hpsa: HP SSD Smart Path %s via sysfs update.\n",
+ h->acciopath_status ? "enabled" : "disabled");
+ return count;
+}
+
+static ssize_t host_store_raid_offload_debug(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int debug_level, len;
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+ char tmpbuf[10];
+
+ if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
+ return -EACCES;
+ len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
+ strncpy(tmpbuf, buf, len);
+ tmpbuf[len] = '\0';
+ if (sscanf(tmpbuf, "%d", &debug_level) != 1)
+ return -EINVAL;
+ if (debug_level < 0)
+ debug_level = 0;
+ h = shost_to_hba(shost);
+ h->raid_offload_debug = debug_level;
+ dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
+ h->raid_offload_debug);
+ return count;
+}
+
+static ssize_t host_store_rescan(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+ h = shost_to_hba(shost);
+ hpsa_scan_start(h->scsi_host);
+ return count;
+}
+
+static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
+{
+ device->offload_enabled = 0;
+ device->offload_to_be_enabled = 0;
+}
+
+static ssize_t host_show_firmware_revision(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+ unsigned char *fwrev;
+
+ h = shost_to_hba(shost);
+ if (!h->hba_inquiry_data)
+ return 0;
+ fwrev = &h->hba_inquiry_data[32];
+ return snprintf(buf, 20, "%c%c%c%c\n",
+ fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
+}
+
+static ssize_t host_show_commands_outstanding(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct Scsi_Host *shost = class_to_shost(dev);
+ struct ctlr_info *h = shost_to_hba(shost);
+
+ return snprintf(buf, 20, "%d\n",
+ atomic_read(&h->commands_outstanding));
+}
+
+static ssize_t host_show_transport_mode(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+
+ h = shost_to_hba(shost);
+ return snprintf(buf, 20, "%s\n",
+ h->transMethod & CFGTBL_Trans_Performant ?
+ "performant" : "simple");
+}
+
+static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+
+ h = shost_to_hba(shost);
+ return snprintf(buf, 30, "HP SSD Smart Path %s\n",
+ (h->acciopath_status == 1) ? "enabled" : "disabled");
+}
+
+/* List of controllers which cannot be hard reset on kexec with reset_devices */
+static u32 unresettable_controller[] = {
+ 0x324a103C, /* Smart Array P712m */
+ 0x324b103C, /* Smart Array P711m */
+ 0x3223103C, /* Smart Array P800 */
+ 0x3234103C, /* Smart Array P400 */
+ 0x3235103C, /* Smart Array P400i */
+ 0x3211103C, /* Smart Array E200i */
+ 0x3212103C, /* Smart Array E200 */
+ 0x3213103C, /* Smart Array E200i */
+ 0x3214103C, /* Smart Array E200i */
+ 0x3215103C, /* Smart Array E200i */
+ 0x3237103C, /* Smart Array E500 */
+ 0x323D103C, /* Smart Array P700m */
+ 0x40800E11, /* Smart Array 5i */
+ 0x409C0E11, /* Smart Array 6400 */
+ 0x409D0E11, /* Smart Array 6400 EM */
+ 0x40700E11, /* Smart Array 5300 */
+ 0x40820E11, /* Smart Array 532 */
+ 0x40830E11, /* Smart Array 5312 */
+ 0x409A0E11, /* Smart Array 641 */
+ 0x409B0E11, /* Smart Array 642 */
+ 0x40910E11, /* Smart Array 6i */
+};
+
+/* List of controllers which cannot even be soft reset */
+static u32 soft_unresettable_controller[] = {
+ 0x40800E11, /* Smart Array 5i */
+ 0x40700E11, /* Smart Array 5300 */
+ 0x40820E11, /* Smart Array 532 */
+ 0x40830E11, /* Smart Array 5312 */
+ 0x409A0E11, /* Smart Array 641 */
+ 0x409B0E11, /* Smart Array 642 */
+ 0x40910E11, /* Smart Array 6i */
+ /* Exclude 640x boards. These are two pci devices in one slot
+ * which share a battery backed cache module. One controls the
+ * cache, the other accesses the cache through the one that controls
+ * it. If we reset the one controlling the cache, the other will
+ * likely not be happy. Just forbid resetting this conjoined mess.
+ * The 640x isn't really supported by hpsa anyway.
+ */
+ 0x409C0E11, /* Smart Array 6400 */
+ 0x409D0E11, /* Smart Array 6400 EM */
+};
+
+static int board_id_in_array(u32 a[], int nelems, u32 board_id)
+{
+ int i;
+
+ for (i = 0; i < nelems; i++)
+ if (a[i] == board_id)
+ return 1;
+ return 0;
+}
+
+static int ctlr_is_hard_resettable(u32 board_id)
+{
+ return !board_id_in_array(unresettable_controller,
+ ARRAY_SIZE(unresettable_controller), board_id);
+}
+
+static int ctlr_is_soft_resettable(u32 board_id)
+{
+ return !board_id_in_array(soft_unresettable_controller,
+ ARRAY_SIZE(soft_unresettable_controller), board_id);
+}
+
+static int ctlr_is_resettable(u32 board_id)
+{
+ return ctlr_is_hard_resettable(board_id) ||
+ ctlr_is_soft_resettable(board_id);
+}
+
+static ssize_t host_show_resettable(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+
+ h = shost_to_hba(shost);
+ return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
+}
+
+static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
+{
+ return (scsi3addr[3] & 0xC0) == 0x40;
+}
+
+static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
+ "1(+0)ADM", "UNKNOWN", "PHYS DRV"
+};
+#define HPSA_RAID_0 0
+#define HPSA_RAID_4 1
+#define HPSA_RAID_1 2 /* also used for RAID 10 */
+#define HPSA_RAID_5 3 /* also used for RAID 50 */
+#define HPSA_RAID_51 4
+#define HPSA_RAID_6 5 /* also used for RAID 60 */
+#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
+#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
+#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
+
+static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
+{
+ return !device->physical_device;
+}
+
+static ssize_t raid_level_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ ssize_t l = 0;
+ unsigned char rlevel;
+ struct ctlr_info *h;
+ struct scsi_device *sdev;
+ struct hpsa_scsi_dev_t *hdev;
+ unsigned long flags;
+
+ sdev = to_scsi_device(dev);
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->lock, flags);
+ hdev = sdev->hostdata;
+ if (!hdev) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return -ENODEV;
+ }
+
+ /* Is this even a logical drive? */
+ if (!is_logical_device(hdev)) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ l = snprintf(buf, PAGE_SIZE, "N/A\n");
+ return l;
+ }
+
+ rlevel = hdev->raid_level;
+ spin_unlock_irqrestore(&h->lock, flags);
+ if (rlevel > RAID_UNKNOWN)
+ rlevel = RAID_UNKNOWN;
+ l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
+ return l;
+}
+
+static ssize_t lunid_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct scsi_device *sdev;
+ struct hpsa_scsi_dev_t *hdev;
+ unsigned long flags;
+ unsigned char lunid[8];
+
+ sdev = to_scsi_device(dev);
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->lock, flags);
+ hdev = sdev->hostdata;
+ if (!hdev) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return -ENODEV;
+ }
+ memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
+ spin_unlock_irqrestore(&h->lock, flags);
+ return snprintf(buf, 20, "0x%8phN\n", lunid);
+}
+
+static ssize_t unique_id_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct scsi_device *sdev;
+ struct hpsa_scsi_dev_t *hdev;
+ unsigned long flags;
+ unsigned char sn[16];
+
+ sdev = to_scsi_device(dev);
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->lock, flags);
+ hdev = sdev->hostdata;
+ if (!hdev) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return -ENODEV;
+ }
+ memcpy(sn, hdev->device_id, sizeof(sn));
+ spin_unlock_irqrestore(&h->lock, flags);
+ return snprintf(buf, 16 * 2 + 2,
+ "%02X%02X%02X%02X%02X%02X%02X%02X"
+ "%02X%02X%02X%02X%02X%02X%02X%02X\n",
+ sn[0], sn[1], sn[2], sn[3],
+ sn[4], sn[5], sn[6], sn[7],
+ sn[8], sn[9], sn[10], sn[11],
+ sn[12], sn[13], sn[14], sn[15]);
+}
+
+static ssize_t sas_address_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct scsi_device *sdev;
+ struct hpsa_scsi_dev_t *hdev;
+ unsigned long flags;
+ u64 sas_address;
+
+ sdev = to_scsi_device(dev);
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->lock, flags);
+ hdev = sdev->hostdata;
+ if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return -ENODEV;
+ }
+ sas_address = hdev->sas_address;
+ spin_unlock_irqrestore(&h->lock, flags);
+
+ return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
+}
+
+static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct scsi_device *sdev;
+ struct hpsa_scsi_dev_t *hdev;
+ unsigned long flags;
+ int offload_enabled;
+
+ sdev = to_scsi_device(dev);
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->lock, flags);
+ hdev = sdev->hostdata;
+ if (!hdev) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return -ENODEV;
+ }
+ offload_enabled = hdev->offload_enabled;
+ spin_unlock_irqrestore(&h->lock, flags);
+
+ if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
+ return snprintf(buf, 20, "%d\n", offload_enabled);
+ else
+ return snprintf(buf, 40, "%s\n",
+ "Not applicable for a controller");
+}
+
+#define MAX_PATHS 8
+static ssize_t path_info_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct scsi_device *sdev;
+ struct hpsa_scsi_dev_t *hdev;
+ unsigned long flags;
+ int i;
+ int output_len = 0;
+ u8 box;
+ u8 bay;
+ u8 path_map_index = 0;
+ char *active;
+ unsigned char phys_connector[2];
+
+ sdev = to_scsi_device(dev);
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->devlock, flags);
+ hdev = sdev->hostdata;
+ if (!hdev) {
+ spin_unlock_irqrestore(&h->devlock, flags);
+ return -ENODEV;
+ }
+
+ bay = hdev->bay;
+ for (i = 0; i < MAX_PATHS; i++) {
+ path_map_index = 1<<i;
+ if (i == hdev->active_path_index)
+ active = "Active";
+ else if (hdev->path_map & path_map_index)
+ active = "Inactive";
+ else
+ continue;
+
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len,
+ "[%d:%d:%d:%d] %20.20s ",
+ h->scsi_host->host_no,
+ hdev->bus, hdev->target, hdev->lun,
+ scsi_device_type(hdev->devtype));
+
+ if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len,
+ "%s\n", active);
+ continue;
+ }
+
+ box = hdev->box[i];
+ memcpy(&phys_connector, &hdev->phys_connector[i],
+ sizeof(phys_connector));
+ if (phys_connector[0] < '0')
+ phys_connector[0] = '0';
+ if (phys_connector[1] < '0')
+ phys_connector[1] = '0';
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len,
+ "PORT: %.2s ",
+ phys_connector);
+ if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
+ hdev->expose_device) {
+ if (box == 0 || box == 0xFF) {
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len,
+ "BAY: %hhu %s\n",
+ bay, active);
+ } else {
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len,
+ "BOX: %hhu BAY: %hhu %s\n",
+ box, bay, active);
+ }
+ } else if (box != 0 && box != 0xFF) {
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len, "BOX: %hhu %s\n",
+ box, active);
+ } else
+ output_len += scnprintf(buf + output_len,
+ PAGE_SIZE - output_len, "%s\n", active);
+ }
+
+ spin_unlock_irqrestore(&h->devlock, flags);
+ return output_len;
+}
+
+static ssize_t host_show_ctlr_num(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+
+ h = shost_to_hba(shost);
+ return snprintf(buf, 20, "%d\n", h->ctlr);
+}
+
+static ssize_t host_show_legacy_board(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ctlr_info *h;
+ struct Scsi_Host *shost = class_to_shost(dev);
+
+ h = shost_to_hba(shost);
+ return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
+}
+
+static DEVICE_ATTR_RO(raid_level);
+static DEVICE_ATTR_RO(lunid);
+static DEVICE_ATTR_RO(unique_id);
+static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
+static DEVICE_ATTR_RO(sas_address);
+static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
+ host_show_hp_ssd_smart_path_enabled, NULL);
+static DEVICE_ATTR_RO(path_info);
+static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
+ host_show_hp_ssd_smart_path_status,
+ host_store_hp_ssd_smart_path_status);
+static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
+ host_store_raid_offload_debug);
+static DEVICE_ATTR(firmware_revision, S_IRUGO,
+ host_show_firmware_revision, NULL);
+static DEVICE_ATTR(commands_outstanding, S_IRUGO,
+ host_show_commands_outstanding, NULL);
+static DEVICE_ATTR(transport_mode, S_IRUGO,
+ host_show_transport_mode, NULL);
+static DEVICE_ATTR(resettable, S_IRUGO,
+ host_show_resettable, NULL);
+static DEVICE_ATTR(lockup_detected, S_IRUGO,
+ host_show_lockup_detected, NULL);
+static DEVICE_ATTR(ctlr_num, S_IRUGO,
+ host_show_ctlr_num, NULL);
+static DEVICE_ATTR(legacy_board, S_IRUGO,
+ host_show_legacy_board, NULL);
+
+static struct device_attribute *hpsa_sdev_attrs[] = {
+ &dev_attr_raid_level,
+ &dev_attr_lunid,
+ &dev_attr_unique_id,
+ &dev_attr_hp_ssd_smart_path_enabled,
+ &dev_attr_path_info,
+ &dev_attr_sas_address,
+ NULL,
+};
+
+static struct device_attribute *hpsa_shost_attrs[] = {
+ &dev_attr_rescan,
+ &dev_attr_firmware_revision,
+ &dev_attr_commands_outstanding,
+ &dev_attr_transport_mode,
+ &dev_attr_resettable,
+ &dev_attr_hp_ssd_smart_path_status,
+ &dev_attr_raid_offload_debug,
+ &dev_attr_lockup_detected,
+ &dev_attr_ctlr_num,
+ &dev_attr_legacy_board,
+ NULL,
+};
+
+#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
+ HPSA_MAX_CONCURRENT_PASSTHRUS)
+
+static struct scsi_host_template hpsa_driver_template = {
+ .module = THIS_MODULE,
+ .name = HPSA,
+ .proc_name = HPSA,
+ .queuecommand = hpsa_scsi_queue_command,
+ .scan_start = hpsa_scan_start,
+ .scan_finished = hpsa_scan_finished,
+ .change_queue_depth = hpsa_change_queue_depth,
+ .this_id = -1,
+ .eh_device_reset_handler = hpsa_eh_device_reset_handler,
+ .ioctl = hpsa_ioctl,
+ .slave_alloc = hpsa_slave_alloc,
+ .slave_configure = hpsa_slave_configure,
+ .slave_destroy = hpsa_slave_destroy,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = hpsa_compat_ioctl,
+#endif
+ .sdev_attrs = hpsa_sdev_attrs,
+ .shost_attrs = hpsa_shost_attrs,
+ .max_sectors = 2048,
+ .no_write_same = 1,
+};
+
+static inline u32 next_command(struct ctlr_info *h, u8 q)
+{
+ u32 a;
+ struct reply_queue_buffer *rq = &h->reply_queue[q];
+
+ if (h->transMethod & CFGTBL_Trans_io_accel1)
+ return h->access.command_completed(h, q);
+
+ if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
+ return h->access.command_completed(h, q);
+
+ if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
+ a = rq->head[rq->current_entry];
+ rq->current_entry++;
+ atomic_dec(&h->commands_outstanding);
+ } else {
+ a = FIFO_EMPTY;
+ }
+ /* Check for wraparound */
+ if (rq->current_entry == h->max_commands) {
+ rq->current_entry = 0;
+ rq->wraparound ^= 1;
+ }
+ return a;
+}
+
+/*
+ * There are some special bits in the bus address of the
+ * command that we have to set for the controller to know
+ * how to process the command:
+ *
+ * Normal performant mode:
+ * bit 0: 1 means performant mode, 0 means simple mode.
+ * bits 1-3 = block fetch table entry
+ * bits 4-6 = command type (== 0)
+ *
+ * ioaccel1 mode:
+ * bit 0 = "performant mode" bit.
+ * bits 1-3 = block fetch table entry
+ * bits 4-6 = command type (== 110)
+ * (command type is needed because ioaccel1 mode
+ * commands are submitted through the same register as normal
+ * mode commands, so this is how the controller knows whether
+ * the command is normal mode or ioaccel1 mode.)
+ *
+ * ioaccel2 mode:
+ * bit 0 = "performant mode" bit.
+ * bits 1-4 = block fetch table entry (note extra bit)
+ * bits 4-6 = not needed, because ioaccel2 mode has
+ * a separate special register for submitting commands.
+ */
+
+/*
+ * set_performant_mode: Modify the tag for cciss performant
+ * set bit 0 for pull model, bits 3-1 for block fetch
+ * register number
+ */
+#define DEFAULT_REPLY_QUEUE (-1)
+static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
+ int reply_queue)
+{
+ if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
+ c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
+ if (unlikely(!h->msix_vectors))
+ return;
+ c->Header.ReplyQueue = reply_queue;
+ }
+}
+
+static void set_ioaccel1_performant_mode(struct ctlr_info *h,
+ struct CommandList *c,
+ int reply_queue)
+{
+ struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
+
+ /*
+ * Tell the controller to post the reply to the queue for this
+ * processor. This seems to give the best I/O throughput.
+ */
+ cp->ReplyQueue = reply_queue;
+ /*
+ * Set the bits in the address sent down to include:
+ * - performant mode bit (bit 0)
+ * - pull count (bits 1-3)
+ * - command type (bits 4-6)
+ */
+ c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
+ IOACCEL1_BUSADDR_CMDTYPE;
+}
+
+static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
+ struct CommandList *c,
+ int reply_queue)
+{
+ struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
+ &h->ioaccel2_cmd_pool[c->cmdindex];
+
+ /* Tell the controller to post the reply to the queue for this
+ * processor. This seems to give the best I/O throughput.
+ */
+ cp->reply_queue = reply_queue;
+ /* Set the bits in the address sent down to include:
+ * - performant mode bit not used in ioaccel mode 2
+ * - pull count (bits 0-3)
+ * - command type isn't needed for ioaccel2
+ */
+ c->busaddr |= h->ioaccel2_blockFetchTable[0];
+}
+
+static void set_ioaccel2_performant_mode(struct ctlr_info *h,
+ struct CommandList *c,
+ int reply_queue)
+{
+ struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
+
+ /*
+ * Tell the controller to post the reply to the queue for this
+ * processor. This seems to give the best I/O throughput.
+ */
+ cp->reply_queue = reply_queue;
+ /*
+ * Set the bits in the address sent down to include:
+ * - performant mode bit not used in ioaccel mode 2
+ * - pull count (bits 0-3)
+ * - command type isn't needed for ioaccel2
+ */
+ c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
+}
+
+static int is_firmware_flash_cmd(u8 *cdb)
+{
+ return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
+}
+
+/*
+ * During firmware flash, the heartbeat register may not update as frequently
+ * as it should. So we dial down lockup detection during firmware flash. and
+ * dial it back up when firmware flash completes.
+ */
+#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
+#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
+#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
+static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ if (!is_firmware_flash_cmd(c->Request.CDB))
+ return;
+ atomic_inc(&h->firmware_flash_in_progress);
+ h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
+}
+
+static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ if (is_firmware_flash_cmd(c->Request.CDB) &&
+ atomic_dec_and_test(&h->firmware_flash_in_progress))
+ h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
+}
+
+static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
+ struct CommandList *c, int reply_queue)
+{
+ dial_down_lockup_detection_during_fw_flash(h, c);
+ atomic_inc(&h->commands_outstanding);
+ if (c->device)
+ atomic_inc(&c->device->commands_outstanding);
+
+ reply_queue = h->reply_map[raw_smp_processor_id()];
+ switch (c->cmd_type) {
+ case CMD_IOACCEL1:
+ set_ioaccel1_performant_mode(h, c, reply_queue);
+ writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
+ break;
+ case CMD_IOACCEL2:
+ set_ioaccel2_performant_mode(h, c, reply_queue);
+ writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
+ break;
+ case IOACCEL2_TMF:
+ set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
+ writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
+ break;
+ default:
+ set_performant_mode(h, c, reply_queue);
+ h->access.submit_command(h, c);
+ }
+}
+
+static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
+{
+ __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
+}
+
+static inline int is_hba_lunid(unsigned char scsi3addr[])
+{
+ return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
+}
+
+static inline int is_scsi_rev_5(struct ctlr_info *h)
+{
+ if (!h->hba_inquiry_data)
+ return 0;
+ if ((h->hba_inquiry_data[2] & 0x07) == 5)
+ return 1;
+ return 0;
+}
+
+static int hpsa_find_target_lun(struct ctlr_info *h,
+ unsigned char scsi3addr[], int bus, int *target, int *lun)
+{
+ /* finds an unused bus, target, lun for a new physical device
+ * assumes h->devlock is held
+ */
+ int i, found = 0;
+ DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
+
+ bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
+
+ for (i = 0; i < h->ndevices; i++) {
+ if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
+ __set_bit(h->dev[i]->target, lun_taken);
+ }
+
+ i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
+ if (i < HPSA_MAX_DEVICES) {
+ /* *bus = 1; */
+ *target = i;
+ *lun = 0;
+ found = 1;
+ }
+ return !found;
+}
+
+static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *dev, char *description)
+{
+#define LABEL_SIZE 25
+ char label[LABEL_SIZE];
+
+ if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
+ return;
+
+ switch (dev->devtype) {
+ case TYPE_RAID:
+ snprintf(label, LABEL_SIZE, "controller");
+ break;
+ case TYPE_ENCLOSURE:
+ snprintf(label, LABEL_SIZE, "enclosure");
+ break;
+ case TYPE_DISK:
+ case TYPE_ZBC:
+ if (dev->external)
+ snprintf(label, LABEL_SIZE, "external");
+ else if (!is_logical_dev_addr_mode(dev->scsi3addr))
+ snprintf(label, LABEL_SIZE, "%s",
+ raid_label[PHYSICAL_DRIVE]);
+ else
+ snprintf(label, LABEL_SIZE, "RAID-%s",
+ dev->raid_level > RAID_UNKNOWN ? "?" :
+ raid_label[dev->raid_level]);
+ break;
+ case TYPE_ROM:
+ snprintf(label, LABEL_SIZE, "rom");
+ break;
+ case TYPE_TAPE:
+ snprintf(label, LABEL_SIZE, "tape");
+ break;
+ case TYPE_MEDIUM_CHANGER:
+ snprintf(label, LABEL_SIZE, "changer");
+ break;
+ default:
+ snprintf(label, LABEL_SIZE, "UNKNOWN");
+ break;
+ }
+
+ dev_printk(level, &h->pdev->dev,
+ "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
+ h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
+ description,
+ scsi_device_type(dev->devtype),
+ dev->vendor,
+ dev->model,
+ label,
+ dev->offload_config ? '+' : '-',
+ dev->offload_to_be_enabled ? '+' : '-',
+ dev->expose_device);
+}
+
+/* Add an entry into h->dev[] array. */
+static int hpsa_scsi_add_entry(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *device,
+ struct hpsa_scsi_dev_t *added[], int *nadded)
+{
+ /* assumes h->devlock is held */
+ int n = h->ndevices;
+ int i;
+ unsigned char addr1[8], addr2[8];
+ struct hpsa_scsi_dev_t *sd;
+
+ if (n >= HPSA_MAX_DEVICES) {
+ dev_err(&h->pdev->dev, "too many devices, some will be "
+ "inaccessible.\n");
+ return -1;
+ }
+
+ /* physical devices do not have lun or target assigned until now. */
+ if (device->lun != -1)
+ /* Logical device, lun is already assigned. */
+ goto lun_assigned;
+
+ /* If this device a non-zero lun of a multi-lun device
+ * byte 4 of the 8-byte LUN addr will contain the logical
+ * unit no, zero otherwise.
+ */
+ if (device->scsi3addr[4] == 0) {
+ /* This is not a non-zero lun of a multi-lun device */
+ if (hpsa_find_target_lun(h, device->scsi3addr,
+ device->bus, &device->target, &device->lun) != 0)
+ return -1;
+ goto lun_assigned;
+ }
+
+ /* This is a non-zero lun of a multi-lun device.
+ * Search through our list and find the device which
+ * has the same 8 byte LUN address, excepting byte 4 and 5.
+ * Assign the same bus and target for this new LUN.
+ * Use the logical unit number from the firmware.
+ */
+ memcpy(addr1, device->scsi3addr, 8);
+ addr1[4] = 0;
+ addr1[5] = 0;
+ for (i = 0; i < n; i++) {
+ sd = h->dev[i];
+ memcpy(addr2, sd->scsi3addr, 8);
+ addr2[4] = 0;
+ addr2[5] = 0;
+ /* differ only in byte 4 and 5? */
+ if (memcmp(addr1, addr2, 8) == 0) {
+ device->bus = sd->bus;
+ device->target = sd->target;
+ device->lun = device->scsi3addr[4];
+ break;
+ }
+ }
+ if (device->lun == -1) {
+ dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
+ " suspect firmware bug or unsupported hardware "
+ "configuration.\n");
+ return -1;
+ }
+
+lun_assigned:
+
+ h->dev[n] = device;
+ h->ndevices++;
+ added[*nadded] = device;
+ (*nadded)++;
+ hpsa_show_dev_msg(KERN_INFO, h, device,
+ device->expose_device ? "added" : "masked");
+ return 0;
+}
+
+/*
+ * Called during a scan operation.
+ *
+ * Update an entry in h->dev[] array.
+ */
+static void hpsa_scsi_update_entry(struct ctlr_info *h,
+ int entry, struct hpsa_scsi_dev_t *new_entry)
+{
+ /* assumes h->devlock is held */
+ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
+
+ /* Raid level changed. */
+ h->dev[entry]->raid_level = new_entry->raid_level;
+
+ /*
+ * ioacccel_handle may have changed for a dual domain disk
+ */
+ h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
+
+ /* Raid offload parameters changed. Careful about the ordering. */
+ if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
+ /*
+ * if drive is newly offload_enabled, we want to copy the
+ * raid map data first. If previously offload_enabled and
+ * offload_config were set, raid map data had better be
+ * the same as it was before. If raid map data has changed
+ * then it had better be the case that
+ * h->dev[entry]->offload_enabled is currently 0.
+ */
+ h->dev[entry]->raid_map = new_entry->raid_map;
+ h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
+ }
+ if (new_entry->offload_to_be_enabled) {
+ h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
+ wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
+ }
+ h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
+ h->dev[entry]->offload_config = new_entry->offload_config;
+ h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
+ h->dev[entry]->queue_depth = new_entry->queue_depth;
+
+ /*
+ * We can turn off ioaccel offload now, but need to delay turning
+ * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
+ * can't do that until all the devices are updated.
+ */
+ h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
+
+ /*
+ * turn ioaccel off immediately if told to do so.
+ */
+ if (!new_entry->offload_to_be_enabled)
+ h->dev[entry]->offload_enabled = 0;
+
+ hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
+}
+
+/* Replace an entry from h->dev[] array. */
+static void hpsa_scsi_replace_entry(struct ctlr_info *h,
+ int entry, struct hpsa_scsi_dev_t *new_entry,
+ struct hpsa_scsi_dev_t *added[], int *nadded,
+ struct hpsa_scsi_dev_t *removed[], int *nremoved)
+{
+ /* assumes h->devlock is held */
+ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
+ removed[*nremoved] = h->dev[entry];
+ (*nremoved)++;
+
+ /*
+ * New physical devices won't have target/lun assigned yet
+ * so we need to preserve the values in the slot we are replacing.
+ */
+ if (new_entry->target == -1) {
+ new_entry->target = h->dev[entry]->target;
+ new_entry->lun = h->dev[entry]->lun;
+ }
+
+ h->dev[entry] = new_entry;
+ added[*nadded] = new_entry;
+ (*nadded)++;
+
+ hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
+}
+
+/* Remove an entry from h->dev[] array. */
+static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
+ struct hpsa_scsi_dev_t *removed[], int *nremoved)
+{
+ /* assumes h->devlock is held */
+ int i;
+ struct hpsa_scsi_dev_t *sd;
+
+ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
+
+ sd = h->dev[entry];
+ removed[*nremoved] = h->dev[entry];
+ (*nremoved)++;
+
+ for (i = entry; i < h->ndevices-1; i++)
+ h->dev[i] = h->dev[i+1];
+ h->ndevices--;
+ hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
+}
+
+#define SCSI3ADDR_EQ(a, b) ( \
+ (a)[7] == (b)[7] && \
+ (a)[6] == (b)[6] && \
+ (a)[5] == (b)[5] && \
+ (a)[4] == (b)[4] && \
+ (a)[3] == (b)[3] && \
+ (a)[2] == (b)[2] && \
+ (a)[1] == (b)[1] && \
+ (a)[0] == (b)[0])
+
+static void fixup_botched_add(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *added)
+{
+ /* called when scsi_add_device fails in order to re-adjust
+ * h->dev[] to match the mid layer's view.
+ */
+ unsigned long flags;
+ int i, j;
+
+ spin_lock_irqsave(&h->lock, flags);
+ for (i = 0; i < h->ndevices; i++) {
+ if (h->dev[i] == added) {
+ for (j = i; j < h->ndevices-1; j++)
+ h->dev[j] = h->dev[j+1];
+ h->ndevices--;
+ break;
+ }
+ }
+ spin_unlock_irqrestore(&h->lock, flags);
+ kfree(added);
+}
+
+static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
+ struct hpsa_scsi_dev_t *dev2)
+{
+ /* we compare everything except lun and target as these
+ * are not yet assigned. Compare parts likely
+ * to differ first
+ */
+ if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
+ sizeof(dev1->scsi3addr)) != 0)
+ return 0;
+ if (memcmp(dev1->device_id, dev2->device_id,
+ sizeof(dev1->device_id)) != 0)
+ return 0;
+ if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
+ return 0;
+ if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
+ return 0;
+ if (dev1->devtype != dev2->devtype)
+ return 0;
+ if (dev1->bus != dev2->bus)
+ return 0;
+ return 1;
+}
+
+static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
+ struct hpsa_scsi_dev_t *dev2)
+{
+ /* Device attributes that can change, but don't mean
+ * that the device is a different device, nor that the OS
+ * needs to be told anything about the change.
+ */
+ if (dev1->raid_level != dev2->raid_level)
+ return 1;
+ if (dev1->offload_config != dev2->offload_config)
+ return 1;
+ if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
+ return 1;
+ if (!is_logical_dev_addr_mode(dev1->scsi3addr))
+ if (dev1->queue_depth != dev2->queue_depth)
+ return 1;
+ /*
+ * This can happen for dual domain devices. An active
+ * path change causes the ioaccel handle to change
+ *
+ * for example note the handle differences between p0 and p1
+ * Device WWN ,WWN hash,Handle
+ * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
+ * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
+ */
+ if (dev1->ioaccel_handle != dev2->ioaccel_handle)
+ return 1;
+ return 0;
+}
+
+/* Find needle in haystack. If exact match found, return DEVICE_SAME,
+ * and return needle location in *index. If scsi3addr matches, but not
+ * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
+ * location in *index.
+ * In the case of a minor device attribute change, such as RAID level, just
+ * return DEVICE_UPDATED, along with the updated device's location in index.
+ * If needle not found, return DEVICE_NOT_FOUND.
+ */
+static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
+ struct hpsa_scsi_dev_t *haystack[], int haystack_size,
+ int *index)
+{
+ int i;
+#define DEVICE_NOT_FOUND 0
+#define DEVICE_CHANGED 1
+#define DEVICE_SAME 2
+#define DEVICE_UPDATED 3
+ if (needle == NULL)
+ return DEVICE_NOT_FOUND;
+
+ for (i = 0; i < haystack_size; i++) {
+ if (haystack[i] == NULL) /* previously removed. */
+ continue;
+ if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
+ *index = i;
+ if (device_is_the_same(needle, haystack[i])) {
+ if (device_updated(needle, haystack[i]))
+ return DEVICE_UPDATED;
+ return DEVICE_SAME;
+ } else {
+ /* Keep offline devices offline */
+ if (needle->volume_offline)
+ return DEVICE_NOT_FOUND;
+ return DEVICE_CHANGED;
+ }
+ }
+ }
+ *index = -1;
+ return DEVICE_NOT_FOUND;
+}
+
+static void hpsa_monitor_offline_device(struct ctlr_info *h,
+ unsigned char scsi3addr[])
+{
+ struct offline_device_entry *device;
+ unsigned long flags;
+
+ /* Check to see if device is already on the list */
+ spin_lock_irqsave(&h->offline_device_lock, flags);
+ list_for_each_entry(device, &h->offline_device_list, offline_list) {
+ if (memcmp(device->scsi3addr, scsi3addr,
+ sizeof(device->scsi3addr)) == 0) {
+ spin_unlock_irqrestore(&h->offline_device_lock, flags);
+ return;
+ }
+ }
+ spin_unlock_irqrestore(&h->offline_device_lock, flags);
+
+ /* Device is not on the list, add it. */
+ device = kmalloc(sizeof(*device), GFP_KERNEL);
+ if (!device)
+ return;
+
+ memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
+ spin_lock_irqsave(&h->offline_device_lock, flags);
+ list_add_tail(&device->offline_list, &h->offline_device_list);
+ spin_unlock_irqrestore(&h->offline_device_lock, flags);
+}
+
+/* Print a message explaining various offline volume states */
+static void hpsa_show_volume_status(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *sd)
+{
+ if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ switch (sd->volume_offline) {
+ case HPSA_LV_OK:
+ break;
+ case HPSA_LV_UNDERGOING_ERASE:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_NOT_AVAILABLE:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_UNDERGOING_RPI:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_PENDING_RPI:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_ENCRYPTED_NO_KEY:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_UNDERGOING_ENCRYPTION:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_PENDING_ENCRYPTION:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
+ dev_info(&h->pdev->dev,
+ "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
+ h->scsi_host->host_no,
+ sd->bus, sd->target, sd->lun);
+ break;
+ }
+}
+
+/*
+ * Figure the list of physical drive pointers for a logical drive with
+ * raid offload configured.
+ */
+static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *dev[], int ndevices,
+ struct hpsa_scsi_dev_t *logical_drive)
+{
+ struct raid_map_data *map = &logical_drive->raid_map;
+ struct raid_map_disk_data *dd = &map->data[0];
+ int i, j;
+ int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
+ le16_to_cpu(map->metadata_disks_per_row);
+ int nraid_map_entries = le16_to_cpu(map->row_cnt) *
+ le16_to_cpu(map->layout_map_count) *
+ total_disks_per_row;
+ int nphys_disk = le16_to_cpu(map->layout_map_count) *
+ total_disks_per_row;
+ int qdepth;
+
+ if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
+ nraid_map_entries = RAID_MAP_MAX_ENTRIES;
+
+ logical_drive->nphysical_disks = nraid_map_entries;
+
+ qdepth = 0;
+ for (i = 0; i < nraid_map_entries; i++) {
+ logical_drive->phys_disk[i] = NULL;
+ if (!logical_drive->offload_config)
+ continue;
+ for (j = 0; j < ndevices; j++) {
+ if (dev[j] == NULL)
+ continue;
+ if (dev[j]->devtype != TYPE_DISK &&
+ dev[j]->devtype != TYPE_ZBC)
+ continue;
+ if (is_logical_device(dev[j]))
+ continue;
+ if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
+ continue;
+
+ logical_drive->phys_disk[i] = dev[j];
+ if (i < nphys_disk)
+ qdepth = min(h->nr_cmds, qdepth +
+ logical_drive->phys_disk[i]->queue_depth);
+ break;
+ }
+
+ /*
+ * This can happen if a physical drive is removed and
+ * the logical drive is degraded. In that case, the RAID
+ * map data will refer to a physical disk which isn't actually
+ * present. And in that case offload_enabled should already
+ * be 0, but we'll turn it off here just in case
+ */
+ if (!logical_drive->phys_disk[i]) {
+ dev_warn(&h->pdev->dev,
+ "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
+ __func__,
+ h->scsi_host->host_no, logical_drive->bus,
+ logical_drive->target, logical_drive->lun);
+ hpsa_turn_off_ioaccel_for_device(logical_drive);
+ logical_drive->queue_depth = 8;
+ }
+ }
+ if (nraid_map_entries)
+ /*
+ * This is correct for reads, too high for full stripe writes,
+ * way too high for partial stripe writes
+ */
+ logical_drive->queue_depth = qdepth;
+ else {
+ if (logical_drive->external)
+ logical_drive->queue_depth = EXTERNAL_QD;
+ else
+ logical_drive->queue_depth = h->nr_cmds;
+ }
+}
+
+static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *dev[], int ndevices)
+{
+ int i;
+
+ for (i = 0; i < ndevices; i++) {
+ if (dev[i] == NULL)
+ continue;
+ if (dev[i]->devtype != TYPE_DISK &&
+ dev[i]->devtype != TYPE_ZBC)
+ continue;
+ if (!is_logical_device(dev[i]))
+ continue;
+
+ /*
+ * If offload is currently enabled, the RAID map and
+ * phys_disk[] assignment *better* not be changing
+ * because we would be changing ioaccel phsy_disk[] pointers
+ * on a ioaccel volume processing I/O requests.
+ *
+ * If an ioaccel volume status changed, initially because it was
+ * re-configured and thus underwent a transformation, or
+ * a drive failed, we would have received a state change
+ * request and ioaccel should have been turned off. When the
+ * transformation completes, we get another state change
+ * request to turn ioaccel back on. In this case, we need
+ * to update the ioaccel information.
+ *
+ * Thus: If it is not currently enabled, but will be after
+ * the scan completes, make sure the ioaccel pointers
+ * are up to date.
+ */
+
+ if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
+ hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
+ }
+}
+
+static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
+{
+ int rc = 0;
+
+ if (!h->scsi_host)
+ return 1;
+
+ if (is_logical_device(device)) /* RAID */
+ rc = scsi_add_device(h->scsi_host, device->bus,
+ device->target, device->lun);
+ else /* HBA */
+ rc = hpsa_add_sas_device(h->sas_host, device);
+
+ return rc;
+}
+
+static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *dev)
+{
+ int i;
+ int count = 0;
+
+ for (i = 0; i < h->nr_cmds; i++) {
+ struct CommandList *c = h->cmd_pool + i;
+ int refcount = atomic_inc_return(&c->refcount);
+
+ if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
+ dev->scsi3addr)) {
+ unsigned long flags;
+
+ spin_lock_irqsave(&h->lock, flags); /* Implied MB */
+ if (!hpsa_is_cmd_idle(c))
+ ++count;
+ spin_unlock_irqrestore(&h->lock, flags);
+ }
+
+ cmd_free(h, c);
+ }
+
+ return count;
+}
+
+#define NUM_WAIT 20
+static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *device)
+{
+ int cmds = 0;
+ int waits = 0;
+ int num_wait = NUM_WAIT;
+
+ if (device->external)
+ num_wait = HPSA_EH_PTRAID_TIMEOUT;
+
+ while (1) {
+ cmds = hpsa_find_outstanding_commands_for_dev(h, device);
+ if (cmds == 0)
+ break;
+ if (++waits > num_wait)
+ break;
+ msleep(1000);
+ }
+
+ if (waits > num_wait) {
+ dev_warn(&h->pdev->dev,
+ "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
+ __func__,
+ h->scsi_host->host_no,
+ device->bus, device->target, device->lun, cmds);
+ }
+}
+
+static void hpsa_remove_device(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *device)
+{
+ struct scsi_device *sdev = NULL;
+
+ if (!h->scsi_host)
+ return;
+
+ /*
+ * Allow for commands to drain
+ */
+ device->removed = 1;
+ hpsa_wait_for_outstanding_commands_for_dev(h, device);
+
+ if (is_logical_device(device)) { /* RAID */
+ sdev = scsi_device_lookup(h->scsi_host, device->bus,
+ device->target, device->lun);
+ if (sdev) {
+ scsi_remove_device(sdev);
+ scsi_device_put(sdev);
+ } else {
+ /*
+ * We don't expect to get here. Future commands
+ * to this device will get a selection timeout as
+ * if the device were gone.
+ */
+ hpsa_show_dev_msg(KERN_WARNING, h, device,
+ "didn't find device for removal.");
+ }
+ } else { /* HBA */
+
+ hpsa_remove_sas_device(device);
+ }
+}
+
+static void adjust_hpsa_scsi_table(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *sd[], int nsds)
+{
+ /* sd contains scsi3 addresses and devtypes, and inquiry
+ * data. This function takes what's in sd to be the current
+ * reality and updates h->dev[] to reflect that reality.
+ */
+ int i, entry, device_change, changes = 0;
+ struct hpsa_scsi_dev_t *csd;
+ unsigned long flags;
+ struct hpsa_scsi_dev_t **added, **removed;
+ int nadded, nremoved;
+
+ /*
+ * A reset can cause a device status to change
+ * re-schedule the scan to see what happened.
+ */
+ spin_lock_irqsave(&h->reset_lock, flags);
+ if (h->reset_in_progress) {
+ h->drv_req_rescan = 1;
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+ return;
+ }
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+
+ added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
+ removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
+
+ if (!added || !removed) {
+ dev_warn(&h->pdev->dev, "out of memory in "
+ "adjust_hpsa_scsi_table\n");
+ goto free_and_out;
+ }
+
+ spin_lock_irqsave(&h->devlock, flags);
+
+ /* find any devices in h->dev[] that are not in
+ * sd[] and remove them from h->dev[], and for any
+ * devices which have changed, remove the old device
+ * info and add the new device info.
+ * If minor device attributes change, just update
+ * the existing device structure.
+ */
+ i = 0;
+ nremoved = 0;
+ nadded = 0;
+ while (i < h->ndevices) {
+ csd = h->dev[i];
+ device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
+ if (device_change == DEVICE_NOT_FOUND) {
+ changes++;
+ hpsa_scsi_remove_entry(h, i, removed, &nremoved);
+ continue; /* remove ^^^, hence i not incremented */
+ } else if (device_change == DEVICE_CHANGED) {
+ changes++;
+ hpsa_scsi_replace_entry(h, i, sd[entry],
+ added, &nadded, removed, &nremoved);
+ /* Set it to NULL to prevent it from being freed
+ * at the bottom of hpsa_update_scsi_devices()
+ */
+ sd[entry] = NULL;
+ } else if (device_change == DEVICE_UPDATED) {
+ hpsa_scsi_update_entry(h, i, sd[entry]);
+ }
+ i++;
+ }
+
+ /* Now, make sure every device listed in sd[] is also
+ * listed in h->dev[], adding them if they aren't found
+ */
+
+ for (i = 0; i < nsds; i++) {
+ if (!sd[i]) /* if already added above. */
+ continue;
+
+ /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
+ * as the SCSI mid-layer does not handle such devices well.
+ * It relentlessly loops sending TUR at 3Hz, then READ(10)
+ * at 160Hz, and prevents the system from coming up.
+ */
+ if (sd[i]->volume_offline) {
+ hpsa_show_volume_status(h, sd[i]);
+ hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
+ continue;
+ }
+
+ device_change = hpsa_scsi_find_entry(sd[i], h->dev,
+ h->ndevices, &entry);
+ if (device_change == DEVICE_NOT_FOUND) {
+ changes++;
+ if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
+ break;
+ sd[i] = NULL; /* prevent from being freed later. */
+ } else if (device_change == DEVICE_CHANGED) {
+ /* should never happen... */
+ changes++;
+ dev_warn(&h->pdev->dev,
+ "device unexpectedly changed.\n");
+ /* but if it does happen, we just ignore that device */
+ }
+ }
+ hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
+
+ /*
+ * Now that h->dev[]->phys_disk[] is coherent, we can enable
+ * any logical drives that need it enabled.
+ *
+ * The raid map should be current by now.
+ *
+ * We are updating the device list used for I/O requests.
+ */
+ for (i = 0; i < h->ndevices; i++) {
+ if (h->dev[i] == NULL)
+ continue;
+ h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
+ }
+
+ spin_unlock_irqrestore(&h->devlock, flags);
+
+ /* Monitor devices which are in one of several NOT READY states to be
+ * brought online later. This must be done without holding h->devlock,
+ * so don't touch h->dev[]
+ */
+ for (i = 0; i < nsds; i++) {
+ if (!sd[i]) /* if already added above. */
+ continue;
+ if (sd[i]->volume_offline)
+ hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
+ }
+
+ /* Don't notify scsi mid layer of any changes the first time through
+ * (or if there are no changes) scsi_scan_host will do it later the
+ * first time through.
+ */
+ if (!changes)
+ goto free_and_out;
+
+ /* Notify scsi mid layer of any removed devices */
+ for (i = 0; i < nremoved; i++) {
+ if (removed[i] == NULL)
+ continue;
+ if (removed[i]->expose_device)
+ hpsa_remove_device(h, removed[i]);
+ kfree(removed[i]);
+ removed[i] = NULL;
+ }
+
+ /* Notify scsi mid layer of any added devices */
+ for (i = 0; i < nadded; i++) {
+ int rc = 0;
+
+ if (added[i] == NULL)
+ continue;
+ if (!(added[i]->expose_device))
+ continue;
+ rc = hpsa_add_device(h, added[i]);
+ if (!rc)
+ continue;
+ dev_warn(&h->pdev->dev,
+ "addition failed %d, device not added.", rc);
+ /* now we have to remove it from h->dev,
+ * since it didn't get added to scsi mid layer
+ */
+ fixup_botched_add(h, added[i]);
+ h->drv_req_rescan = 1;
+ }
+
+free_and_out:
+ kfree(added);
+ kfree(removed);
+}
+
+/*
+ * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
+ * Assume's h->devlock is held.
+ */
+static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
+ int bus, int target, int lun)
+{
+ int i;
+ struct hpsa_scsi_dev_t *sd;
+
+ for (i = 0; i < h->ndevices; i++) {
+ sd = h->dev[i];
+ if (sd->bus == bus && sd->target == target && sd->lun == lun)
+ return sd;
+ }
+ return NULL;
+}
+
+static int hpsa_slave_alloc(struct scsi_device *sdev)
+{
+ struct hpsa_scsi_dev_t *sd = NULL;
+ unsigned long flags;
+ struct ctlr_info *h;
+
+ h = sdev_to_hba(sdev);
+ spin_lock_irqsave(&h->devlock, flags);
+ if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
+ struct scsi_target *starget;
+ struct sas_rphy *rphy;
+
+ starget = scsi_target(sdev);
+ rphy = target_to_rphy(starget);
+ sd = hpsa_find_device_by_sas_rphy(h, rphy);
+ if (sd) {
+ sd->target = sdev_id(sdev);
+ sd->lun = sdev->lun;
+ }
+ }
+ if (!sd)
+ sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
+ sdev_id(sdev), sdev->lun);
+
+ if (sd && sd->expose_device) {
+ atomic_set(&sd->ioaccel_cmds_out, 0);
+ sdev->hostdata = sd;
+ } else
+ sdev->hostdata = NULL;
+ spin_unlock_irqrestore(&h->devlock, flags);
+ return 0;
+}
+
+/* configure scsi device based on internal per-device structure */
+#define CTLR_TIMEOUT (120 * HZ)
+static int hpsa_slave_configure(struct scsi_device *sdev)
+{
+ struct hpsa_scsi_dev_t *sd;
+ int queue_depth;
+
+ sd = sdev->hostdata;
+ sdev->no_uld_attach = !sd || !sd->expose_device;
+
+ if (sd) {
+ sd->was_removed = 0;
+ queue_depth = sd->queue_depth != 0 ?
+ sd->queue_depth : sdev->host->can_queue;
+ if (sd->external) {
+ queue_depth = EXTERNAL_QD;
+ sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
+ blk_queue_rq_timeout(sdev->request_queue,
+ HPSA_EH_PTRAID_TIMEOUT);
+ }
+ if (is_hba_lunid(sd->scsi3addr)) {
+ sdev->eh_timeout = CTLR_TIMEOUT;
+ blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
+ }
+ } else {
+ queue_depth = sdev->host->can_queue;
+ }
+
+ scsi_change_queue_depth(sdev, queue_depth);
+
+ return 0;
+}
+
+static void hpsa_slave_destroy(struct scsi_device *sdev)
+{
+ struct hpsa_scsi_dev_t *hdev = NULL;
+
+ hdev = sdev->hostdata;
+
+ if (hdev)
+ hdev->was_removed = 1;
+}
+
+static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
+{
+ int i;
+
+ if (!h->ioaccel2_cmd_sg_list)
+ return;
+ for (i = 0; i < h->nr_cmds; i++) {
+ kfree(h->ioaccel2_cmd_sg_list[i]);
+ h->ioaccel2_cmd_sg_list[i] = NULL;
+ }
+ kfree(h->ioaccel2_cmd_sg_list);
+ h->ioaccel2_cmd_sg_list = NULL;
+}
+
+static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
+{
+ int i;
+
+ if (h->chainsize <= 0)
+ return 0;
+
+ h->ioaccel2_cmd_sg_list =
+ kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
+ GFP_KERNEL);
+ if (!h->ioaccel2_cmd_sg_list)
+ return -ENOMEM;
+ for (i = 0; i < h->nr_cmds; i++) {
+ h->ioaccel2_cmd_sg_list[i] =
+ kmalloc_array(h->maxsgentries,
+ sizeof(*h->ioaccel2_cmd_sg_list[i]),
+ GFP_KERNEL);
+ if (!h->ioaccel2_cmd_sg_list[i])
+ goto clean;
+ }
+ return 0;
+
+clean:
+ hpsa_free_ioaccel2_sg_chain_blocks(h);
+ return -ENOMEM;
+}
+
+static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
+{
+ int i;
+
+ if (!h->cmd_sg_list)
+ return;
+ for (i = 0; i < h->nr_cmds; i++) {
+ kfree(h->cmd_sg_list[i]);
+ h->cmd_sg_list[i] = NULL;
+ }
+ kfree(h->cmd_sg_list);
+ h->cmd_sg_list = NULL;
+}
+
+static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
+{
+ int i;
+
+ if (h->chainsize <= 0)
+ return 0;
+
+ h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
+ GFP_KERNEL);
+ if (!h->cmd_sg_list)
+ return -ENOMEM;
+
+ for (i = 0; i < h->nr_cmds; i++) {
+ h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
+ sizeof(*h->cmd_sg_list[i]),
+ GFP_KERNEL);
+ if (!h->cmd_sg_list[i])
+ goto clean;
+
+ }
+ return 0;
+
+clean:
+ hpsa_free_sg_chain_blocks(h);
+ return -ENOMEM;
+}
+
+static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
+ struct io_accel2_cmd *cp, struct CommandList *c)
+{
+ struct ioaccel2_sg_element *chain_block;
+ u64 temp64;
+ u32 chain_size;
+
+ chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
+ chain_size = le32_to_cpu(cp->sg[0].length);
+ temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(&h->pdev->dev, temp64)) {
+ /* prevent subsequent unmapping */
+ cp->sg->address = 0;
+ return -1;
+ }
+ cp->sg->address = cpu_to_le64(temp64);
+ return 0;
+}
+
+static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
+ struct io_accel2_cmd *cp)
+{
+ struct ioaccel2_sg_element *chain_sg;
+ u64 temp64;
+ u32 chain_size;
+
+ chain_sg = cp->sg;
+ temp64 = le64_to_cpu(chain_sg->address);
+ chain_size = le32_to_cpu(cp->sg[0].length);
+ dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
+}
+
+static int hpsa_map_sg_chain_block(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ struct SGDescriptor *chain_sg, *chain_block;
+ u64 temp64;
+ u32 chain_len;
+
+ chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
+ chain_block = h->cmd_sg_list[c->cmdindex];
+ chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
+ chain_len = sizeof(*chain_sg) *
+ (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
+ chain_sg->Len = cpu_to_le32(chain_len);
+ temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(&h->pdev->dev, temp64)) {
+ /* prevent subsequent unmapping */
+ chain_sg->Addr = cpu_to_le64(0);
+ return -1;
+ }
+ chain_sg->Addr = cpu_to_le64(temp64);
+ return 0;
+}
+
+static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ struct SGDescriptor *chain_sg;
+
+ if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
+ return;
+
+ chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
+ dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
+ le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
+}
+
+
+/* Decode the various types of errors on ioaccel2 path.
+ * Return 1 for any error that should generate a RAID path retry.
+ * Return 0 for errors that don't require a RAID path retry.
+ */
+static int handle_ioaccel_mode2_error(struct ctlr_info *h,
+ struct CommandList *c,
+ struct scsi_cmnd *cmd,
+ struct io_accel2_cmd *c2,
+ struct hpsa_scsi_dev_t *dev)
+{
+ int data_len;
+ int retry = 0;
+ u32 ioaccel2_resid = 0;
+
+ switch (c2->error_data.serv_response) {
+ case IOACCEL2_SERV_RESPONSE_COMPLETE:
+ switch (c2->error_data.status) {
+ case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
+ if (cmd)
+ cmd->result = 0;
+ break;
+ case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
+ cmd->result |= SAM_STAT_CHECK_CONDITION;
+ if (c2->error_data.data_present !=
+ IOACCEL2_SENSE_DATA_PRESENT) {
+ memset(cmd->sense_buffer, 0,
+ SCSI_SENSE_BUFFERSIZE);
+ break;
+ }
+ /* copy the sense data */
+ data_len = c2->error_data.sense_data_len;
+ if (data_len > SCSI_SENSE_BUFFERSIZE)
+ data_len = SCSI_SENSE_BUFFERSIZE;
+ if (data_len > sizeof(c2->error_data.sense_data_buff))
+ data_len =
+ sizeof(c2->error_data.sense_data_buff);
+ memcpy(cmd->sense_buffer,
+ c2->error_data.sense_data_buff, data_len);
+ retry = 1;
+ break;
+ case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
+ retry = 1;
+ break;
+ case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
+ retry = 1;
+ break;
+ case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
+ retry = 1;
+ break;
+ case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
+ retry = 1;
+ break;
+ default:
+ retry = 1;
+ break;
+ }
+ break;
+ case IOACCEL2_SERV_RESPONSE_FAILURE:
+ switch (c2->error_data.status) {
+ case IOACCEL2_STATUS_SR_IO_ERROR:
+ case IOACCEL2_STATUS_SR_IO_ABORTED:
+ case IOACCEL2_STATUS_SR_OVERRUN:
+ retry = 1;
+ break;
+ case IOACCEL2_STATUS_SR_UNDERRUN:
+ cmd->result = (DID_OK << 16); /* host byte */
+ cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
+ ioaccel2_resid = get_unaligned_le32(
+ &c2->error_data.resid_cnt[0]);
+ scsi_set_resid(cmd, ioaccel2_resid);
+ break;
+ case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
+ case IOACCEL2_STATUS_SR_INVALID_DEVICE:
+ case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
+ /*
+ * Did an HBA disk disappear? We will eventually
+ * get a state change event from the controller but
+ * in the meantime, we need to tell the OS that the
+ * HBA disk is no longer there and stop I/O
+ * from going down. This allows the potential re-insert
+ * of the disk to get the same device node.
+ */
+ if (dev->physical_device && dev->expose_device) {
+ cmd->result = DID_NO_CONNECT << 16;
+ dev->removed = 1;
+ h->drv_req_rescan = 1;
+ dev_warn(&h->pdev->dev,
+ "%s: device is gone!\n", __func__);
+ } else
+ /*
+ * Retry by sending down the RAID path.
+ * We will get an event from ctlr to
+ * trigger rescan regardless.
+ */
+ retry = 1;
+ break;
+ default:
+ retry = 1;
+ }
+ break;
+ case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
+ break;
+ case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
+ break;
+ case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
+ retry = 1;
+ break;
+ case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
+ break;
+ default:
+ retry = 1;
+ break;
+ }
+
+ if (dev->in_reset)
+ retry = 0;
+
+ return retry; /* retry on raid path? */
+}
+
+static void hpsa_cmd_resolve_events(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ struct hpsa_scsi_dev_t *dev = c->device;
+
+ /*
+ * Reset c->scsi_cmd here so that the reset handler will know
+ * this command has completed. Then, check to see if the handler is
+ * waiting for this command, and, if so, wake it.
+ */
+ c->scsi_cmd = SCSI_CMD_IDLE;
+ mb(); /* Declare command idle before checking for pending events. */
+ if (dev) {
+ atomic_dec(&dev->commands_outstanding);
+ if (dev->in_reset &&
+ atomic_read(&dev->commands_outstanding) <= 0)
+ wake_up_all(&h->event_sync_wait_queue);
+ }
+}
+
+static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ hpsa_cmd_resolve_events(h, c);
+ cmd_tagged_free(h, c);
+}
+
+static void hpsa_cmd_free_and_done(struct ctlr_info *h,
+ struct CommandList *c, struct scsi_cmnd *cmd)
+{
+ hpsa_cmd_resolve_and_free(h, c);
+ if (cmd && cmd->scsi_done)
+ cmd->scsi_done(cmd);
+}
+
+static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
+{
+ INIT_WORK(&c->work, hpsa_command_resubmit_worker);
+ queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
+}
+
+static void process_ioaccel2_completion(struct ctlr_info *h,
+ struct CommandList *c, struct scsi_cmnd *cmd,
+ struct hpsa_scsi_dev_t *dev)
+{
+ struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
+
+ /* check for good status */
+ if (likely(c2->error_data.serv_response == 0 &&
+ c2->error_data.status == 0)) {
+ cmd->result = 0;
+ return hpsa_cmd_free_and_done(h, c, cmd);
+ }
+
+ /*
+ * Any RAID offload error results in retry which will use
+ * the normal I/O path so the controller can handle whatever is
+ * wrong.
+ */
+ if (is_logical_device(dev) &&
+ c2->error_data.serv_response ==
+ IOACCEL2_SERV_RESPONSE_FAILURE) {
+ if (c2->error_data.status ==
+ IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
+ hpsa_turn_off_ioaccel_for_device(dev);
+ }
+
+ if (dev->in_reset) {
+ cmd->result = DID_RESET << 16;
+ return hpsa_cmd_free_and_done(h, c, cmd);
+ }
+
+ return hpsa_retry_cmd(h, c);
+ }
+
+ if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
+ return hpsa_retry_cmd(h, c);
+
+ return hpsa_cmd_free_and_done(h, c, cmd);
+}
+
+/* Returns 0 on success, < 0 otherwise. */
+static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
+ struct CommandList *cp)
+{
+ u8 tmf_status = cp->err_info->ScsiStatus;
+
+ switch (tmf_status) {
+ case CISS_TMF_COMPLETE:
+ /*
+ * CISS_TMF_COMPLETE never happens, instead,
+ * ei->CommandStatus == 0 for this case.
+ */
+ case CISS_TMF_SUCCESS:
+ return 0;
+ case CISS_TMF_INVALID_FRAME:
+ case CISS_TMF_NOT_SUPPORTED:
+ case CISS_TMF_FAILED:
+ case CISS_TMF_WRONG_LUN:
+ case CISS_TMF_OVERLAPPED_TAG:
+ break;
+ default:
+ dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
+ tmf_status);
+ break;
+ }
+ return -tmf_status;
+}
+
+static void complete_scsi_command(struct CommandList *cp)
+{
+ struct scsi_cmnd *cmd;
+ struct ctlr_info *h;
+ struct ErrorInfo *ei;
+ struct hpsa_scsi_dev_t *dev;
+ struct io_accel2_cmd *c2;
+
+ u8 sense_key;
+ u8 asc; /* additional sense code */
+ u8 ascq; /* additional sense code qualifier */
+ unsigned long sense_data_size;
+
+ ei = cp->err_info;
+ cmd = cp->scsi_cmd;
+ h = cp->h;
+
+ if (!cmd->device) {
+ cmd->result = DID_NO_CONNECT << 16;
+ return hpsa_cmd_free_and_done(h, cp, cmd);
+ }
+
+ dev = cmd->device->hostdata;
+ if (!dev) {
+ cmd->result = DID_NO_CONNECT << 16;
+ return hpsa_cmd_free_and_done(h, cp, cmd);
+ }
+ c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
+
+ scsi_dma_unmap(cmd); /* undo the DMA mappings */
+ if ((cp->cmd_type == CMD_SCSI) &&
+ (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
+ hpsa_unmap_sg_chain_block(h, cp);
+
+ if ((cp->cmd_type == CMD_IOACCEL2) &&
+ (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
+ hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
+
+ cmd->result = (DID_OK << 16); /* host byte */
+ cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
+
+ /* SCSI command has already been cleaned up in SML */
+ if (dev->was_removed) {
+ hpsa_cmd_resolve_and_free(h, cp);
+ return;
+ }
+
+ if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
+ if (dev->physical_device && dev->expose_device &&
+ dev->removed) {
+ cmd->result = DID_NO_CONNECT << 16;
+ return hpsa_cmd_free_and_done(h, cp, cmd);
+ }
+ if (likely(cp->phys_disk != NULL))
+ atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
+ }
+
+ /*
+ * We check for lockup status here as it may be set for
+ * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
+ * fail_all_oustanding_cmds()
+ */
+ if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
+ /* DID_NO_CONNECT will prevent a retry */
+ cmd->result = DID_NO_CONNECT << 16;
+ return hpsa_cmd_free_and_done(h, cp, cmd);
+ }
+
+ if (cp->cmd_type == CMD_IOACCEL2)
+ return process_ioaccel2_completion(h, cp, cmd, dev);
+
+ scsi_set_resid(cmd, ei->ResidualCnt);
+ if (ei->CommandStatus == 0)
+ return hpsa_cmd_free_and_done(h, cp, cmd);
+
+ /* For I/O accelerator commands, copy over some fields to the normal
+ * CISS header used below for error handling.
+ */
+ if (cp->cmd_type == CMD_IOACCEL1) {
+ struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
+ cp->Header.SGList = scsi_sg_count(cmd);
+ cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
+ cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
+ IOACCEL1_IOFLAGS_CDBLEN_MASK;
+ cp->Header.tag = c->tag;
+ memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
+ memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
+
+ /* Any RAID offload error results in retry which will use
+ * the normal I/O path so the controller can handle whatever's
+ * wrong.
+ */
+ if (is_logical_device(dev)) {
+ if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
+ dev->offload_enabled = 0;
+ return hpsa_retry_cmd(h, cp);
+ }
+ }
+
+ /* an error has occurred */
+ switch (ei->CommandStatus) {
+
+ case CMD_TARGET_STATUS:
+ cmd->result |= ei->ScsiStatus;
+ /* copy the sense data */
+ if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
+ sense_data_size = SCSI_SENSE_BUFFERSIZE;
+ else
+ sense_data_size = sizeof(ei->SenseInfo);
+ if (ei->SenseLen < sense_data_size)
+ sense_data_size = ei->SenseLen;
+ memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
+ if (ei->ScsiStatus)
+ decode_sense_data(ei->SenseInfo, sense_data_size,
+ &sense_key, &asc, &ascq);
+ if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
+ switch (sense_key) {
+ case ABORTED_COMMAND:
+ cmd->result |= DID_SOFT_ERROR << 16;
+ break;
+ case UNIT_ATTENTION:
+ if (asc == 0x3F && ascq == 0x0E)
+ h->drv_req_rescan = 1;
+ break;
+ case ILLEGAL_REQUEST:
+ if (asc == 0x25 && ascq == 0x00) {
+ dev->removed = 1;
+ cmd->result = DID_NO_CONNECT << 16;
+ }
+ break;
+ }
+ break;
+ }
+ /* Problem was not a check condition
+ * Pass it up to the upper layers...
+ */
+ if (ei->ScsiStatus) {
+ dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
+ "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
+ "Returning result: 0x%x\n",
+ cp, ei->ScsiStatus,
+ sense_key, asc, ascq,
+ cmd->result);
+ } else { /* scsi status is zero??? How??? */
+ dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
+ "Returning no connection.\n", cp),
+
+ /* Ordinarily, this case should never happen,
+ * but there is a bug in some released firmware
+ * revisions that allows it to happen if, for
+ * example, a 4100 backplane loses power and
+ * the tape drive is in it. We assume that
+ * it's a fatal error of some kind because we
+ * can't show that it wasn't. We will make it
+ * look like selection timeout since that is
+ * the most common reason for this to occur,
+ * and it's severe enough.
+ */
+
+ cmd->result = DID_NO_CONNECT << 16;
+ }
+ break;
+
+ case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
+ break;
+ case CMD_DATA_OVERRUN:
+ dev_warn(&h->pdev->dev,
+ "CDB %16phN data overrun\n", cp->Request.CDB);
+ break;
+ case CMD_INVALID: {
+ /* print_bytes(cp, sizeof(*cp), 1, 0);
+ print_cmd(cp); */
+ /* We get CMD_INVALID if you address a non-existent device
+ * instead of a selection timeout (no response). You will
+ * see this if you yank out a drive, then try to access it.
+ * This is kind of a shame because it means that any other
+ * CMD_INVALID (e.g. driver bug) will get interpreted as a
+ * missing target. */
+ cmd->result = DID_NO_CONNECT << 16;
+ }
+ break;
+ case CMD_PROTOCOL_ERR:
+ cmd->result = DID_ERROR << 16;
+ dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
+ cp->Request.CDB);
+ break;
+ case CMD_HARDWARE_ERR:
+ cmd->result = DID_ERROR << 16;
+ dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
+ cp->Request.CDB);
+ break;
+ case CMD_CONNECTION_LOST:
+ cmd->result = DID_ERROR << 16;
+ dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
+ cp->Request.CDB);
+ break;
+ case CMD_ABORTED:
+ cmd->result = DID_ABORT << 16;
+ break;
+ case CMD_ABORT_FAILED:
+ cmd->result = DID_ERROR << 16;
+ dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
+ cp->Request.CDB);
+ break;
+ case CMD_UNSOLICITED_ABORT:
+ cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
+ dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
+ cp->Request.CDB);
+ break;
+ case CMD_TIMEOUT:
+ cmd->result = DID_TIME_OUT << 16;
+ dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
+ cp->Request.CDB);
+ break;
+ case CMD_UNABORTABLE:
+ cmd->result = DID_ERROR << 16;
+ dev_warn(&h->pdev->dev, "Command unabortable\n");
+ break;
+ case CMD_TMF_STATUS:
+ if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
+ cmd->result = DID_ERROR << 16;
+ break;
+ case CMD_IOACCEL_DISABLED:
+ /* This only handles the direct pass-through case since RAID
+ * offload is handled above. Just attempt a retry.
+ */
+ cmd->result = DID_SOFT_ERROR << 16;
+ dev_warn(&h->pdev->dev,
+ "cp %p had HP SSD Smart Path error\n", cp);
+ break;
+ default:
+ cmd->result = DID_ERROR << 16;
+ dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
+ cp, ei->CommandStatus);
+ }
+
+ return hpsa_cmd_free_and_done(h, cp, cmd);
+}
+
+static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
+ int sg_used, enum dma_data_direction data_direction)
+{
+ int i;
+
+ for (i = 0; i < sg_used; i++)
+ dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
+ le32_to_cpu(c->SG[i].Len),
+ data_direction);
+}
+
+static int hpsa_map_one(struct pci_dev *pdev,
+ struct CommandList *cp,
+ unsigned char *buf,
+ size_t buflen,
+ enum dma_data_direction data_direction)
+{
+ u64 addr64;
+
+ if (buflen == 0 || data_direction == DMA_NONE) {
+ cp->Header.SGList = 0;
+ cp->Header.SGTotal = cpu_to_le16(0);
+ return 0;
+ }
+
+ addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
+ if (dma_mapping_error(&pdev->dev, addr64)) {
+ /* Prevent subsequent unmap of something never mapped */
+ cp->Header.SGList = 0;
+ cp->Header.SGTotal = cpu_to_le16(0);
+ return -1;
+ }
+ cp->SG[0].Addr = cpu_to_le64(addr64);
+ cp->SG[0].Len = cpu_to_le32(buflen);
+ cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
+ cp->Header.SGList = 1; /* no. SGs contig in this cmd */
+ cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
+ return 0;
+}
+
+#define NO_TIMEOUT ((unsigned long) -1)
+#define DEFAULT_TIMEOUT 30000 /* milliseconds */
+static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
+ struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
+{
+ DECLARE_COMPLETION_ONSTACK(wait);
+
+ c->waiting = &wait;
+ __enqueue_cmd_and_start_io(h, c, reply_queue);
+ if (timeout_msecs == NO_TIMEOUT) {
+ /* TODO: get rid of this no-timeout thing */
+ wait_for_completion_io(&wait);
+ return IO_OK;
+ }
+ if (!wait_for_completion_io_timeout(&wait,
+ msecs_to_jiffies(timeout_msecs))) {
+ dev_warn(&h->pdev->dev, "Command timed out.\n");
+ return -ETIMEDOUT;
+ }
+ return IO_OK;
+}
+
+static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
+ int reply_queue, unsigned long timeout_msecs)
+{
+ if (unlikely(lockup_detected(h))) {
+ c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
+ return IO_OK;
+ }
+ return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
+}
+
+static u32 lockup_detected(struct ctlr_info *h)
+{
+ int cpu;
+ u32 rc, *lockup_detected;
+
+ cpu = get_cpu();
+ lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
+ rc = *lockup_detected;
+ put_cpu();
+ return rc;
+}
+
+#define MAX_DRIVER_CMD_RETRIES 25
+static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
+ struct CommandList *c, enum dma_data_direction data_direction,
+ unsigned long timeout_msecs)
+{
+ int backoff_time = 10, retry_count = 0;
+ int rc;
+
+ do {
+ memset(c->err_info, 0, sizeof(*c->err_info));
+ rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+ timeout_msecs);
+ if (rc)
+ break;
+ retry_count++;
+ if (retry_count > 3) {
+ msleep(backoff_time);
+ if (backoff_time < 1000)
+ backoff_time *= 2;
+ }
+ } while ((check_for_unit_attention(h, c) ||
+ check_for_busy(h, c)) &&
+ retry_count <= MAX_DRIVER_CMD_RETRIES);
+ hpsa_pci_unmap(h->pdev, c, 1, data_direction);
+ if (retry_count > MAX_DRIVER_CMD_RETRIES)
+ rc = -EIO;
+ return rc;
+}
+
+static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
+ struct CommandList *c)
+{
+ const u8 *cdb = c->Request.CDB;
+ const u8 *lun = c->Header.LUN.LunAddrBytes;
+
+ dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
+ txt, lun, cdb);
+}
+
+static void hpsa_scsi_interpret_error(struct ctlr_info *h,
+ struct CommandList *cp)
+{
+ const struct ErrorInfo *ei = cp->err_info;
+ struct device *d = &cp->h->pdev->dev;
+ u8 sense_key, asc, ascq;
+ int sense_len;
+
+ switch (ei->CommandStatus) {
+ case CMD_TARGET_STATUS:
+ if (ei->SenseLen > sizeof(ei->SenseInfo))
+ sense_len = sizeof(ei->SenseInfo);
+ else
+ sense_len = ei->SenseLen;
+ decode_sense_data(ei->SenseInfo, sense_len,
+ &sense_key, &asc, &ascq);
+ hpsa_print_cmd(h, "SCSI status", cp);
+ if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
+ dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
+ sense_key, asc, ascq);
+ else
+ dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
+ if (ei->ScsiStatus == 0)
+ dev_warn(d, "SCSI status is abnormally zero. "
+ "(probably indicates selection timeout "
+ "reported incorrectly due to a known "
+ "firmware bug, circa July, 2001.)\n");
+ break;
+ case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
+ break;
+ case CMD_DATA_OVERRUN:
+ hpsa_print_cmd(h, "overrun condition", cp);
+ break;
+ case CMD_INVALID: {
+ /* controller unfortunately reports SCSI passthru's
+ * to non-existent targets as invalid commands.
+ */
+ hpsa_print_cmd(h, "invalid command", cp);
+ dev_warn(d, "probably means device no longer present\n");
+ }
+ break;
+ case CMD_PROTOCOL_ERR:
+ hpsa_print_cmd(h, "protocol error", cp);
+ break;
+ case CMD_HARDWARE_ERR:
+ hpsa_print_cmd(h, "hardware error", cp);
+ break;
+ case CMD_CONNECTION_LOST:
+ hpsa_print_cmd(h, "connection lost", cp);
+ break;
+ case CMD_ABORTED:
+ hpsa_print_cmd(h, "aborted", cp);
+ break;
+ case CMD_ABORT_FAILED:
+ hpsa_print_cmd(h, "abort failed", cp);
+ break;
+ case CMD_UNSOLICITED_ABORT:
+ hpsa_print_cmd(h, "unsolicited abort", cp);
+ break;
+ case CMD_TIMEOUT:
+ hpsa_print_cmd(h, "timed out", cp);
+ break;
+ case CMD_UNABORTABLE:
+ hpsa_print_cmd(h, "unabortable", cp);
+ break;
+ case CMD_CTLR_LOCKUP:
+ hpsa_print_cmd(h, "controller lockup detected", cp);
+ break;
+ default:
+ hpsa_print_cmd(h, "unknown status", cp);
+ dev_warn(d, "Unknown command status %x\n",
+ ei->CommandStatus);
+ }
+}
+
+static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
+ u8 page, u8 *buf, size_t bufsize)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+ if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
+ page, scsi3addr, TYPE_CMD)) {
+ rc = -1;
+ goto out;
+ }
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ }
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
+ u8 *scsi3addr)
+{
+ u8 *buf;
+ u64 sa = 0;
+ int rc = 0;
+
+ buf = kzalloc(1024, GFP_KERNEL);
+ if (!buf)
+ return 0;
+
+ rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
+ buf, 1024);
+
+ if (rc)
+ goto out;
+
+ sa = get_unaligned_be64(buf+12);
+
+out:
+ kfree(buf);
+ return sa;
+}
+
+static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
+ u16 page, unsigned char *buf,
+ unsigned char bufsize)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+
+ if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
+ page, scsi3addr, TYPE_CMD)) {
+ rc = -1;
+ goto out;
+ }
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ }
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
+ u8 reset_type, int reply_queue)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+ c->device = dev;
+
+ /* fill_cmd can't fail here, no data buffer to map. */
+ (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
+ rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
+ if (rc) {
+ dev_warn(&h->pdev->dev, "Failed to send reset command\n");
+ goto out;
+ }
+ /* no unmap needed here because no data xfer. */
+
+ ei = c->err_info;
+ if (ei->CommandStatus != 0) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ }
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
+ struct hpsa_scsi_dev_t *dev,
+ unsigned char *scsi3addr)
+{
+ int i;
+ bool match = false;
+ struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
+ struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
+
+ if (hpsa_is_cmd_idle(c))
+ return false;
+
+ switch (c->cmd_type) {
+ case CMD_SCSI:
+ case CMD_IOCTL_PEND:
+ match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
+ sizeof(c->Header.LUN.LunAddrBytes));
+ break;
+
+ case CMD_IOACCEL1:
+ case CMD_IOACCEL2:
+ if (c->phys_disk == dev) {
+ /* HBA mode match */
+ match = true;
+ } else {
+ /* Possible RAID mode -- check each phys dev. */
+ /* FIXME: Do we need to take out a lock here? If
+ * so, we could just call hpsa_get_pdisk_of_ioaccel2()
+ * instead. */
+ for (i = 0; i < dev->nphysical_disks && !match; i++) {
+ /* FIXME: an alternate test might be
+ *
+ * match = dev->phys_disk[i]->ioaccel_handle
+ * == c2->scsi_nexus; */
+ match = dev->phys_disk[i] == c->phys_disk;
+ }
+ }
+ break;
+
+ case IOACCEL2_TMF:
+ for (i = 0; i < dev->nphysical_disks && !match; i++) {
+ match = dev->phys_disk[i]->ioaccel_handle ==
+ le32_to_cpu(ac->it_nexus);
+ }
+ break;
+
+ case 0: /* The command is in the middle of being initialized. */
+ match = false;
+ break;
+
+ default:
+ dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
+ c->cmd_type);
+ BUG();
+ }
+
+ return match;
+}
+
+static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
+ u8 reset_type, int reply_queue)
+{
+ int rc = 0;
+
+ /* We can really only handle one reset at a time */
+ if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
+ dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
+ return -EINTR;
+ }
+
+ rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
+ if (!rc) {
+ /* incremented by sending the reset request */
+ atomic_dec(&dev->commands_outstanding);
+ wait_event(h->event_sync_wait_queue,
+ atomic_read(&dev->commands_outstanding) <= 0 ||
+ lockup_detected(h));
+ }
+
+ if (unlikely(lockup_detected(h))) {
+ dev_warn(&h->pdev->dev,
+ "Controller lockup detected during reset wait\n");
+ rc = -ENODEV;
+ }
+
+ if (!rc)
+ rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
+
+ mutex_unlock(&h->reset_mutex);
+ return rc;
+}
+
+static void hpsa_get_raid_level(struct ctlr_info *h,
+ unsigned char *scsi3addr, unsigned char *raid_level)
+{
+ int rc;
+ unsigned char *buf;
+
+ *raid_level = RAID_UNKNOWN;
+ buf = kzalloc(64, GFP_KERNEL);
+ if (!buf)
+ return;
+
+ if (!hpsa_vpd_page_supported(h, scsi3addr,
+ HPSA_VPD_LV_DEVICE_GEOMETRY))
+ goto exit;
+
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
+ HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
+
+ if (rc == 0)
+ *raid_level = buf[8];
+ if (*raid_level > RAID_UNKNOWN)
+ *raid_level = RAID_UNKNOWN;
+exit:
+ kfree(buf);
+ return;
+}
+
+#define HPSA_MAP_DEBUG
+#ifdef HPSA_MAP_DEBUG
+static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
+ struct raid_map_data *map_buff)
+{
+ struct raid_map_disk_data *dd = &map_buff->data[0];
+ int map, row, col;
+ u16 map_cnt, row_cnt, disks_per_row;
+
+ if (rc != 0)
+ return;
+
+ /* Show details only if debugging has been activated. */
+ if (h->raid_offload_debug < 2)
+ return;
+
+ dev_info(&h->pdev->dev, "structure_size = %u\n",
+ le32_to_cpu(map_buff->structure_size));
+ dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
+ le32_to_cpu(map_buff->volume_blk_size));
+ dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
+ le64_to_cpu(map_buff->volume_blk_cnt));
+ dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
+ map_buff->phys_blk_shift);
+ dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
+ map_buff->parity_rotation_shift);
+ dev_info(&h->pdev->dev, "strip_size = %u\n",
+ le16_to_cpu(map_buff->strip_size));
+ dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
+ le64_to_cpu(map_buff->disk_starting_blk));
+ dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
+ le64_to_cpu(map_buff->disk_blk_cnt));
+ dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
+ le16_to_cpu(map_buff->data_disks_per_row));
+ dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
+ le16_to_cpu(map_buff->metadata_disks_per_row));
+ dev_info(&h->pdev->dev, "row_cnt = %u\n",
+ le16_to_cpu(map_buff->row_cnt));
+ dev_info(&h->pdev->dev, "layout_map_count = %u\n",
+ le16_to_cpu(map_buff->layout_map_count));
+ dev_info(&h->pdev->dev, "flags = 0x%x\n",
+ le16_to_cpu(map_buff->flags));
+ dev_info(&h->pdev->dev, "encryption = %s\n",
+ le16_to_cpu(map_buff->flags) &
+ RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
+ dev_info(&h->pdev->dev, "dekindex = %u\n",
+ le16_to_cpu(map_buff->dekindex));
+ map_cnt = le16_to_cpu(map_buff->layout_map_count);
+ for (map = 0; map < map_cnt; map++) {
+ dev_info(&h->pdev->dev, "Map%u:\n", map);
+ row_cnt = le16_to_cpu(map_buff->row_cnt);
+ for (row = 0; row < row_cnt; row++) {
+ dev_info(&h->pdev->dev, " Row%u:\n", row);
+ disks_per_row =
+ le16_to_cpu(map_buff->data_disks_per_row);
+ for (col = 0; col < disks_per_row; col++, dd++)
+ dev_info(&h->pdev->dev,
+ " D%02u: h=0x%04x xor=%u,%u\n",
+ col, dd->ioaccel_handle,
+ dd->xor_mult[0], dd->xor_mult[1]);
+ disks_per_row =
+ le16_to_cpu(map_buff->metadata_disks_per_row);
+ for (col = 0; col < disks_per_row; col++, dd++)
+ dev_info(&h->pdev->dev,
+ " M%02u: h=0x%04x xor=%u,%u\n",
+ col, dd->ioaccel_handle,
+ dd->xor_mult[0], dd->xor_mult[1]);
+ }
+ }
+}
+#else
+static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
+ __attribute__((unused)) int rc,
+ __attribute__((unused)) struct raid_map_data *map_buff)
+{
+}
+#endif
+
+static int hpsa_get_raid_map(struct ctlr_info *h,
+ unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
+{
+ int rc = 0;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+
+ if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
+ sizeof(this_device->raid_map), 0,
+ scsi3addr, TYPE_CMD)) {
+ dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
+ cmd_free(h, c);
+ return -1;
+ }
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ goto out;
+ }
+ cmd_free(h, c);
+
+ /* @todo in the future, dynamically allocate RAID map memory */
+ if (le32_to_cpu(this_device->raid_map.structure_size) >
+ sizeof(this_device->raid_map)) {
+ dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
+ rc = -1;
+ }
+ hpsa_debug_map_buff(h, rc, &this_device->raid_map);
+ return rc;
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
+ unsigned char scsi3addr[], u16 bmic_device_index,
+ struct bmic_sense_subsystem_info *buf, size_t bufsize)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+
+ rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
+ 0, RAID_CTLR_LUNID, TYPE_CMD);
+ if (rc)
+ goto out;
+
+ c->Request.CDB[2] = bmic_device_index & 0xff;
+ c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
+
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ }
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static int hpsa_bmic_id_controller(struct ctlr_info *h,
+ struct bmic_identify_controller *buf, size_t bufsize)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+
+ rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
+ 0, RAID_CTLR_LUNID, TYPE_CMD);
+ if (rc)
+ goto out;
+
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ }
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
+ unsigned char scsi3addr[], u16 bmic_device_index,
+ struct bmic_identify_physical_device *buf, size_t bufsize)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+ rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
+ 0, RAID_CTLR_LUNID, TYPE_CMD);
+ if (rc)
+ goto out;
+
+ c->Request.CDB[2] = bmic_device_index & 0xff;
+ c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
+
+ hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -1;
+ }
+out:
+ cmd_free(h, c);
+
+ return rc;
+}
+
+/*
+ * get enclosure information
+ * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
+ * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
+ * Uses id_physical_device to determine the box_index.
+ */
+static void hpsa_get_enclosure_info(struct ctlr_info *h,
+ unsigned char *scsi3addr,
+ struct ReportExtendedLUNdata *rlep, int rle_index,
+ struct hpsa_scsi_dev_t *encl_dev)
+{
+ int rc = -1;
+ struct CommandList *c = NULL;
+ struct ErrorInfo *ei = NULL;
+ struct bmic_sense_storage_box_params *bssbp = NULL;
+ struct bmic_identify_physical_device *id_phys = NULL;
+ struct ext_report_lun_entry *rle;
+ u16 bmic_device_index = 0;
+
+ if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
+ return;
+
+ rle = &rlep->LUN[rle_index];
+
+ encl_dev->eli =
+ hpsa_get_enclosure_logical_identifier(h, scsi3addr);
+
+ bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
+
+ if (encl_dev->target == -1 || encl_dev->lun == -1) {
+ rc = IO_OK;
+ goto out;
+ }
+
+ if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
+ rc = IO_OK;
+ goto out;
+ }
+
+ bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
+ if (!bssbp)
+ goto out;
+
+ id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
+ if (!id_phys)
+ goto out;
+
+ rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
+ id_phys, sizeof(*id_phys));
+ if (rc) {
+ dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
+ __func__, encl_dev->external, bmic_device_index);
+ goto out;
+ }
+
+ c = cmd_alloc(h);
+
+ rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
+ sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
+
+ if (rc)
+ goto out;
+
+ if (id_phys->phys_connector[1] == 'E')
+ c->Request.CDB[5] = id_phys->box_index;
+ else
+ c->Request.CDB[5] = 0;
+
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ rc = -1;
+ goto out;
+ }
+
+ encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
+ memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
+ bssbp->phys_connector, sizeof(bssbp->phys_connector));
+
+ rc = IO_OK;
+out:
+ kfree(bssbp);
+ kfree(id_phys);
+
+ if (c)
+ cmd_free(h, c);
+
+ if (rc != IO_OK)
+ hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
+ "Error, could not get enclosure information");
+}
+
+static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
+ unsigned char *scsi3addr)
+{
+ struct ReportExtendedLUNdata *physdev;
+ u32 nphysicals;
+ u64 sa = 0;
+ int i;
+
+ physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
+ if (!physdev)
+ return 0;
+
+ if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
+ dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
+ kfree(physdev);
+ return 0;
+ }
+ nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
+
+ for (i = 0; i < nphysicals; i++)
+ if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
+ sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
+ break;
+ }
+
+ kfree(physdev);
+
+ return sa;
+}
+
+static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
+ struct hpsa_scsi_dev_t *dev)
+{
+ int rc;
+ u64 sa = 0;
+
+ if (is_hba_lunid(scsi3addr)) {
+ struct bmic_sense_subsystem_info *ssi;
+
+ ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
+ if (!ssi)
+ return;
+
+ rc = hpsa_bmic_sense_subsystem_information(h,
+ scsi3addr, 0, ssi, sizeof(*ssi));
+ if (rc == 0) {
+ sa = get_unaligned_be64(ssi->primary_world_wide_id);
+ h->sas_address = sa;
+ }
+
+ kfree(ssi);
+ } else
+ sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
+
+ dev->sas_address = sa;
+}
+
+static void hpsa_ext_ctrl_present(struct ctlr_info *h,
+ struct ReportExtendedLUNdata *physdev)
+{
+ u32 nphysicals;
+ int i;
+
+ if (h->discovery_polling)
+ return;
+
+ nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
+
+ for (i = 0; i < nphysicals; i++) {
+ if (physdev->LUN[i].device_type ==
+ BMIC_DEVICE_TYPE_CONTROLLER
+ && !is_hba_lunid(physdev->LUN[i].lunid)) {
+ dev_info(&h->pdev->dev,
+ "External controller present, activate discovery polling and disable rld caching\n");
+ hpsa_disable_rld_caching(h);
+ h->discovery_polling = 1;
+ break;
+ }
+ }
+}
+
+/* Get a device id from inquiry page 0x83 */
+static bool hpsa_vpd_page_supported(struct ctlr_info *h,
+ unsigned char scsi3addr[], u8 page)
+{
+ int rc;
+ int i;
+ int pages;
+ unsigned char *buf, bufsize;
+
+ buf = kzalloc(256, GFP_KERNEL);
+ if (!buf)
+ return false;
+
+ /* Get the size of the page list first */
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr,
+ VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
+ buf, HPSA_VPD_HEADER_SZ);
+ if (rc != 0)
+ goto exit_unsupported;
+ pages = buf[3];
+ if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
+ bufsize = pages + HPSA_VPD_HEADER_SZ;
+ else
+ bufsize = 255;
+
+ /* Get the whole VPD page list */
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr,
+ VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
+ buf, bufsize);
+ if (rc != 0)
+ goto exit_unsupported;
+
+ pages = buf[3];
+ for (i = 1; i <= pages; i++)
+ if (buf[3 + i] == page)
+ goto exit_supported;
+exit_unsupported:
+ kfree(buf);
+ return false;
+exit_supported:
+ kfree(buf);
+ return true;
+}
+
+/*
+ * Called during a scan operation.
+ * Sets ioaccel status on the new device list, not the existing device list
+ *
+ * The device list used during I/O will be updated later in
+ * adjust_hpsa_scsi_table.
+ */
+static void hpsa_get_ioaccel_status(struct ctlr_info *h,
+ unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
+{
+ int rc;
+ unsigned char *buf;
+ u8 ioaccel_status;
+
+ this_device->offload_config = 0;
+ this_device->offload_enabled = 0;
+ this_device->offload_to_be_enabled = 0;
+
+ buf = kzalloc(64, GFP_KERNEL);
+ if (!buf)
+ return;
+ if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
+ goto out;
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr,
+ VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
+ if (rc != 0)
+ goto out;
+
+#define IOACCEL_STATUS_BYTE 4
+#define OFFLOAD_CONFIGURED_BIT 0x01
+#define OFFLOAD_ENABLED_BIT 0x02
+ ioaccel_status = buf[IOACCEL_STATUS_BYTE];
+ this_device->offload_config =
+ !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
+ if (this_device->offload_config) {
+ bool offload_enabled =
+ !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
+ /*
+ * Check to see if offload can be enabled.
+ */
+ if (offload_enabled) {
+ rc = hpsa_get_raid_map(h, scsi3addr, this_device);
+ if (rc) /* could not load raid_map */
+ goto out;
+ this_device->offload_to_be_enabled = 1;
+ }
+ }
+
+out:
+ kfree(buf);
+ return;
+}
+
+/* Get the device id from inquiry page 0x83 */
+static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
+ unsigned char *device_id, int index, int buflen)
+{
+ int rc;
+ unsigned char *buf;
+
+ /* Does controller have VPD for device id? */
+ if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
+ return 1; /* not supported */
+
+ buf = kzalloc(64, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
+ HPSA_VPD_LV_DEVICE_ID, buf, 64);
+ if (rc == 0) {
+ if (buflen > 16)
+ buflen = 16;
+ memcpy(device_id, &buf[8], buflen);
+ }
+
+ kfree(buf);
+
+ return rc; /*0 - got id, otherwise, didn't */
+}
+
+static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
+ void *buf, int bufsize,
+ int extended_response)
+{
+ int rc = IO_OK;
+ struct CommandList *c;
+ unsigned char scsi3addr[8];
+ struct ErrorInfo *ei;
+
+ c = cmd_alloc(h);
+
+ /* address the controller */
+ memset(scsi3addr, 0, sizeof(scsi3addr));
+ if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
+ buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
+ rc = -EAGAIN;
+ goto out;
+ }
+ if (extended_response)
+ c->Request.CDB[1] = extended_response;
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if (rc)
+ goto out;
+ ei = c->err_info;
+ if (ei->CommandStatus != 0 &&
+ ei->CommandStatus != CMD_DATA_UNDERRUN) {
+ hpsa_scsi_interpret_error(h, c);
+ rc = -EIO;
+ } else {
+ struct ReportLUNdata *rld = buf;
+
+ if (rld->extended_response_flag != extended_response) {
+ if (!h->legacy_board) {
+ dev_err(&h->pdev->dev,
+ "report luns requested format %u, got %u\n",
+ extended_response,
+ rld->extended_response_flag);
+ rc = -EINVAL;
+ } else
+ rc = -EOPNOTSUPP;
+ }
+ }
+out:
+ cmd_free(h, c);
+ return rc;
+}
+
+static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
+ struct ReportExtendedLUNdata *buf, int bufsize)
+{
+ int rc;
+ struct ReportLUNdata *lbuf;
+
+ rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
+ HPSA_REPORT_PHYS_EXTENDED);
+ if (!rc || rc != -EOPNOTSUPP)
+ return rc;
+
+ /* REPORT PHYS EXTENDED is not supported */
+ lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
+ if (!lbuf)
+ return -ENOMEM;
+
+ rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
+ if (!rc) {
+ int i;
+ u32 nphys;
+
+ /* Copy ReportLUNdata header */
+ memcpy(buf, lbuf, 8);
+ nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
+ for (i = 0; i < nphys; i++)
+ memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
+ }
+ kfree(lbuf);
+ return rc;
+}
+
+static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
+ struct ReportLUNdata *buf, int bufsize)
+{
+ return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
+}
+
+static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
+ int bus, int target, int lun)
+{
+ device->bus = bus;
+ device->target = target;
+ device->lun = lun;
+}
+
+/* Use VPD inquiry to get details of volume status */
+static int hpsa_get_volume_status(struct ctlr_info *h,
+ unsigned char scsi3addr[])
+{
+ int rc;
+ int status;
+ int size;
+ unsigned char *buf;
+
+ buf = kzalloc(64, GFP_KERNEL);
+ if (!buf)
+ return HPSA_VPD_LV_STATUS_UNSUPPORTED;
+
+ /* Does controller have VPD for logical volume status? */
+ if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
+ goto exit_failed;
+
+ /* Get the size of the VPD return buffer */
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
+ buf, HPSA_VPD_HEADER_SZ);
+ if (rc != 0)
+ goto exit_failed;
+ size = buf[3];
+
+ /* Now get the whole VPD buffer */
+ rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
+ buf, size + HPSA_VPD_HEADER_SZ);
+ if (rc != 0)
+ goto exit_failed;
+ status = buf[4]; /* status byte */
+
+ kfree(buf);
+ return status;
+exit_failed:
+ kfree(buf);
+ return HPSA_VPD_LV_STATUS_UNSUPPORTED;
+}
+
+/* Determine offline status of a volume.
+ * Return either:
+ * 0 (not offline)
+ * 0xff (offline for unknown reasons)
+ * # (integer code indicating one of several NOT READY states
+ * describing why a volume is to be kept offline)
+ */
+static unsigned char hpsa_volume_offline(struct ctlr_info *h,
+ unsigned char scsi3addr[])
+{
+ struct CommandList *c;
+ unsigned char *sense;
+ u8 sense_key, asc, ascq;
+ int sense_len;
+ int rc, ldstat = 0;
+ u16 cmd_status;
+ u8 scsi_status;
+#define ASC_LUN_NOT_READY 0x04
+#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
+#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
+
+ c = cmd_alloc(h);
+
+ (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
+ rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+ NO_TIMEOUT);
+ if (rc) {
+ cmd_free(h, c);
+ return HPSA_VPD_LV_STATUS_UNSUPPORTED;
+ }
+ sense = c->err_info->SenseInfo;
+ if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
+ sense_len = sizeof(c->err_info->SenseInfo);
+ else
+ sense_len = c->err_info->SenseLen;
+ decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
+ cmd_status = c->err_info->CommandStatus;
+ scsi_status = c->err_info->ScsiStatus;
+ cmd_free(h, c);
+
+ /* Determine the reason for not ready state */
+ ldstat = hpsa_get_volume_status(h, scsi3addr);
+
+ /* Keep volume offline in certain cases: */
+ switch (ldstat) {
+ case HPSA_LV_FAILED:
+ case HPSA_LV_UNDERGOING_ERASE:
+ case HPSA_LV_NOT_AVAILABLE:
+ case HPSA_LV_UNDERGOING_RPI:
+ case HPSA_LV_PENDING_RPI:
+ case HPSA_LV_ENCRYPTED_NO_KEY:
+ case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
+ case HPSA_LV_UNDERGOING_ENCRYPTION:
+ case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
+ case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
+ return ldstat;
+ case HPSA_VPD_LV_STATUS_UNSUPPORTED:
+ /* If VPD status page isn't available,
+ * use ASC/ASCQ to determine state
+ */
+ if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
+ (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
+ return ldstat;
+ break;
+ default:
+ break;
+ }
+ return HPSA_LV_OK;
+}
+
+static int hpsa_update_device_info(struct ctlr_info *h,
+ unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
+ unsigned char *is_OBDR_device)
+{
+
+#define OBDR_SIG_OFFSET 43
+#define OBDR_TAPE_SIG "$DR-10"
+#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
+#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
+
+ unsigned char *inq_buff;
+ unsigned char *obdr_sig;
+ int rc = 0;
+
+ inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
+ if (!inq_buff) {
+ rc = -ENOMEM;
+ goto bail_out;
+ }
+
+ /* Do an inquiry to the device to see what it is. */
+ if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
+ (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
+ dev_err(&h->pdev->dev,
+ "%s: inquiry failed, device will be skipped.\n",
+ __func__);
+ rc = HPSA_INQUIRY_FAILED;
+ goto bail_out;
+ }
+
+ scsi_sanitize_inquiry_string(&inq_buff[8], 8);
+ scsi_sanitize_inquiry_string(&inq_buff[16], 16);
+
+ this_device->devtype = (inq_buff[0] & 0x1f);
+ memcpy(this_device->scsi3addr, scsi3addr, 8);
+ memcpy(this_device->vendor, &inq_buff[8],
+ sizeof(this_device->vendor));
+ memcpy(this_device->model, &inq_buff[16],
+ sizeof(this_device->model));
+ this_device->rev = inq_buff[2];
+ memset(this_device->device_id, 0,
+ sizeof(this_device->device_id));
+ if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
+ sizeof(this_device->device_id)) < 0) {
+ dev_err(&h->pdev->dev,
+ "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
+ h->ctlr, __func__,
+ h->scsi_host->host_no,
+ this_device->bus, this_device->target,
+ this_device->lun,
+ scsi_device_type(this_device->devtype),
+ this_device->model);
+ rc = HPSA_LV_FAILED;
+ goto bail_out;
+ }
+
+ if ((this_device->devtype == TYPE_DISK ||
+ this_device->devtype == TYPE_ZBC) &&
+ is_logical_dev_addr_mode(scsi3addr)) {
+ unsigned char volume_offline;
+
+ hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
+ if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
+ hpsa_get_ioaccel_status(h, scsi3addr, this_device);
+ volume_offline = hpsa_volume_offline(h, scsi3addr);
+ if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
+ h->legacy_board) {
+ /*
+ * Legacy boards might not support volume status
+ */
+ dev_info(&h->pdev->dev,
+ "C0:T%d:L%d Volume status not available, assuming online.\n",
+ this_device->target, this_device->lun);
+ volume_offline = 0;
+ }
+ this_device->volume_offline = volume_offline;
+ if (volume_offline == HPSA_LV_FAILED) {
+ rc = HPSA_LV_FAILED;
+ dev_err(&h->pdev->dev,
+ "%s: LV failed, device will be skipped.\n",
+ __func__);
+ goto bail_out;
+ }
+ } else {
+ this_device->raid_level = RAID_UNKNOWN;
+ this_device->offload_config = 0;
+ hpsa_turn_off_ioaccel_for_device(this_device);
+ this_device->hba_ioaccel_enabled = 0;
+ this_device->volume_offline = 0;
+ this_device->queue_depth = h->nr_cmds;
+ }
+
+ if (this_device->external)
+ this_device->queue_depth = EXTERNAL_QD;
+
+ if (is_OBDR_device) {
+ /* See if this is a One-Button-Disaster-Recovery device
+ * by looking for "$DR-10" at offset 43 in inquiry data.
+ */
+ obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
+ *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
+ strncmp(obdr_sig, OBDR_TAPE_SIG,
+ OBDR_SIG_LEN) == 0);
+ }
+ kfree(inq_buff);
+ return 0;
+
+bail_out:
+ kfree(inq_buff);
+ return rc;
+}
+
+/*
+ * Helper function to assign bus, target, lun mapping of devices.
+ * Logical drive target and lun are assigned at this time, but
+ * physical device lun and target assignment are deferred (assigned
+ * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
+*/
+static void figure_bus_target_lun(struct ctlr_info *h,
+ u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
+{
+ u32 lunid = get_unaligned_le32(lunaddrbytes);
+
+ if (!is_logical_dev_addr_mode(lunaddrbytes)) {
+ /* physical device, target and lun filled in later */
+ if (is_hba_lunid(lunaddrbytes)) {
+ int bus = HPSA_HBA_BUS;
+
+ if (!device->rev)
+ bus = HPSA_LEGACY_HBA_BUS;
+ hpsa_set_bus_target_lun(device,
+ bus, 0, lunid & 0x3fff);
+ } else
+ /* defer target, lun assignment for physical devices */
+ hpsa_set_bus_target_lun(device,
+ HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
+ return;
+ }
+ /* It's a logical device */
+ if (device->external) {
+ hpsa_set_bus_target_lun(device,
+ HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
+ lunid & 0x00ff);
+ return;
+ }
+ hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
+ 0, lunid & 0x3fff);
+}
+
+static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
+ int i, int nphysicals, int nlocal_logicals)
+{
+ /* In report logicals, local logicals are listed first,
+ * then any externals.
+ */
+ int logicals_start = nphysicals + (raid_ctlr_position == 0);
+
+ if (i == raid_ctlr_position)
+ return 0;
+
+ if (i < logicals_start)
+ return 0;
+
+ /* i is in logicals range, but still within local logicals */
+ if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
+ return 0;
+
+ return 1; /* it's an external lun */
+}
+
+/*
+ * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
+ * logdev. The number of luns in physdev and logdev are returned in
+ * *nphysicals and *nlogicals, respectively.
+ * Returns 0 on success, -1 otherwise.
+ */
+static int hpsa_gather_lun_info(struct ctlr_info *h,
+ struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
+ struct ReportLUNdata *logdev, u32 *nlogicals)
+{
+ if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
+ dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
+ return -1;
+ }
+ *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
+ if (*nphysicals > HPSA_MAX_PHYS_LUN) {
+ dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
+ HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
+ *nphysicals = HPSA_MAX_PHYS_LUN;
+ }
+ if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
+ dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
+ return -1;
+ }
+ *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
+ /* Reject Logicals in excess of our max capability. */
+ if (*nlogicals > HPSA_MAX_LUN) {
+ dev_warn(&h->pdev->dev,
+ "maximum logical LUNs (%d) exceeded. "
+ "%d LUNs ignored.\n", HPSA_MAX_LUN,
+ *nlogicals - HPSA_MAX_LUN);
+ *nlogicals = HPSA_MAX_LUN;
+ }
+ if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
+ dev_warn(&h->pdev->dev,
+ "maximum logical + physical LUNs (%d) exceeded. "
+ "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
+ *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
+ *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
+ }
+ return 0;
+}
+
+static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
+ int i, int nphysicals, int nlogicals,
+ struct ReportExtendedLUNdata *physdev_list,
+ struct ReportLUNdata *logdev_list)
+{
+ /* Helper function, figure out where the LUN ID info is coming from
+ * given index i, lists of physical and logical devices, where in
+ * the list the raid controller is supposed to appear (first or last)
+ */
+
+ int logicals_start = nphysicals + (raid_ctlr_position == 0);
+ int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
+
+ if (i == raid_ctlr_position)
+ return RAID_CTLR_LUNID;
+
+ if (i < logicals_start)
+ return &physdev_list->LUN[i -
+ (raid_ctlr_position == 0)].lunid[0];
+
+ if (i < last_device)
+ return &logdev_list->LUN[i - nphysicals -
+ (raid_ctlr_position == 0)][0];
+ BUG();
+ return NULL;
+}
+
+/* get physical drive ioaccel handle and queue depth */
+static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
+ struct hpsa_scsi_dev_t *dev,
+ struct ReportExtendedLUNdata *rlep, int rle_index,
+ struct bmic_identify_physical_device *id_phys)
+{
+ int rc;
+ struct ext_report_lun_entry *rle;
+
+ if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
+ return;
+
+ rle = &rlep->LUN[rle_index];
+
+ dev->ioaccel_handle = rle->ioaccel_handle;
+ if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
+ dev->hba_ioaccel_enabled = 1;
+ memset(id_phys, 0, sizeof(*id_phys));
+ rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
+ GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
+ sizeof(*id_phys));
+ if (!rc)
+ /* Reserve space for FW operations */
+#define DRIVE_CMDS_RESERVED_FOR_FW 2
+#define DRIVE_QUEUE_DEPTH 7
+ dev->queue_depth =
+ le16_to_cpu(id_phys->current_queue_depth_limit) -
+ DRIVE_CMDS_RESERVED_FOR_FW;
+ else
+ dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
+}
+
+static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
+ struct ReportExtendedLUNdata *rlep, int rle_index,
+ struct bmic_identify_physical_device *id_phys)
+{
+ struct ext_report_lun_entry *rle;
+
+ if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
+ return;
+
+ rle = &rlep->LUN[rle_index];
+
+ if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
+ this_device->hba_ioaccel_enabled = 1;
+
+ memcpy(&this_device->active_path_index,
+ &id_phys->active_path_number,
+ sizeof(this_device->active_path_index));
+ memcpy(&this_device->path_map,
+ &id_phys->redundant_path_present_map,
+ sizeof(this_device->path_map));
+ memcpy(&this_device->box,
+ &id_phys->alternate_paths_phys_box_on_port,
+ sizeof(this_device->box));
+ memcpy(&this_device->phys_connector,
+ &id_phys->alternate_paths_phys_connector,
+ sizeof(this_device->phys_connector));
+ memcpy(&this_device->bay,
+ &id_phys->phys_bay_in_box,
+ sizeof(this_device->bay));
+}
+
+/* get number of local logical disks. */
+static int hpsa_set_local_logical_count(struct ctlr_info *h,
+ struct bmic_identify_controller *id_ctlr,
+ u32 *nlocals)
+{
+ int rc;
+
+ if (!id_ctlr) {
+ dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
+ __func__);
+ return -ENOMEM;
+ }
+ memset(id_ctlr, 0, sizeof(*id_ctlr));
+ rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
+ if (!rc)
+ if (id_ctlr->configured_logical_drive_count < 255)
+ *nlocals = id_ctlr->configured_logical_drive_count;
+ else
+ *nlocals = le16_to_cpu(
+ id_ctlr->extended_logical_unit_count);
+ else
+ *nlocals = -1;
+ return rc;
+}
+
+static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
+{
+ struct bmic_identify_physical_device *id_phys;
+ bool is_spare = false;
+ int rc;
+
+ id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
+ if (!id_phys)
+ return false;
+
+ rc = hpsa_bmic_id_physical_device(h,
+ lunaddrbytes,
+ GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
+ id_phys, sizeof(*id_phys));
+ if (rc == 0)
+ is_spare = (id_phys->more_flags >> 6) & 0x01;
+
+ kfree(id_phys);
+ return is_spare;
+}
+
+#define RPL_DEV_FLAG_NON_DISK 0x1
+#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
+#define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
+
+#define BMIC_DEVICE_TYPE_ENCLOSURE 6
+
+static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
+ struct ext_report_lun_entry *rle)
+{
+ u8 device_flags;
+ u8 device_type;
+
+ if (!MASKED_DEVICE(lunaddrbytes))
+ return false;
+
+ device_flags = rle->device_flags;
+ device_type = rle->device_type;
+
+ if (device_flags & RPL_DEV_FLAG_NON_DISK) {
+ if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
+ return false;
+ return true;
+ }
+
+ if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
+ return false;
+
+ if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
+ return false;
+
+ /*
+ * Spares may be spun down, we do not want to
+ * do an Inquiry to a RAID set spare drive as
+ * that would have them spun up, that is a
+ * performance hit because I/O to the RAID device
+ * stops while the spin up occurs which can take
+ * over 50 seconds.
+ */
+ if (hpsa_is_disk_spare(h, lunaddrbytes))
+ return true;
+
+ return false;
+}
+
+static void hpsa_update_scsi_devices(struct ctlr_info *h)
+{
+ /* the idea here is we could get notified
+ * that some devices have changed, so we do a report
+ * physical luns and report logical luns cmd, and adjust
+ * our list of devices accordingly.
+ *
+ * The scsi3addr's of devices won't change so long as the
+ * adapter is not reset. That means we can rescan and
+ * tell which devices we already know about, vs. new
+ * devices, vs. disappearing devices.
+ */
+ struct ReportExtendedLUNdata *physdev_list = NULL;
+ struct ReportLUNdata *logdev_list = NULL;
+ struct bmic_identify_physical_device *id_phys = NULL;
+ struct bmic_identify_controller *id_ctlr = NULL;
+ u32 nphysicals = 0;
+ u32 nlogicals = 0;
+ u32 nlocal_logicals = 0;
+ u32 ndev_allocated = 0;
+ struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
+ int ncurrent = 0;
+ int i, n_ext_target_devs, ndevs_to_allocate;
+ int raid_ctlr_position;
+ bool physical_device;
+ DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
+
+ currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
+ physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
+ logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
+ tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
+ id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
+ id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
+
+ if (!currentsd || !physdev_list || !logdev_list ||
+ !tmpdevice || !id_phys || !id_ctlr) {
+ dev_err(&h->pdev->dev, "out of memory\n");
+ goto out;
+ }
+ memset(lunzerobits, 0, sizeof(lunzerobits));
+
+ h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
+
+ if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
+ logdev_list, &nlogicals)) {
+ h->drv_req_rescan = 1;
+ goto out;
+ }
+
+ /* Set number of local logicals (non PTRAID) */
+ if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
+ dev_warn(&h->pdev->dev,
+ "%s: Can't determine number of local logical devices.\n",
+ __func__);
+ }
+
+ /* We might see up to the maximum number of logical and physical disks
+ * plus external target devices, and a device for the local RAID
+ * controller.
+ */
+ ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
+
+ hpsa_ext_ctrl_present(h, physdev_list);
+
+ /* Allocate the per device structures */
+ for (i = 0; i < ndevs_to_allocate; i++) {
+ if (i >= HPSA_MAX_DEVICES) {
+ dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
+ " %d devices ignored.\n", HPSA_MAX_DEVICES,
+ ndevs_to_allocate - HPSA_MAX_DEVICES);
+ break;
+ }
+
+ currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
+ if (!currentsd[i]) {
+ h->drv_req_rescan = 1;
+ goto out;
+ }
+ ndev_allocated++;
+ }
+
+ if (is_scsi_rev_5(h))
+ raid_ctlr_position = 0;
+ else
+ raid_ctlr_position = nphysicals + nlogicals;
+
+ /* adjust our table of devices */
+ n_ext_target_devs = 0;
+ for (i = 0; i < nphysicals + nlogicals + 1; i++) {
+ u8 *lunaddrbytes, is_OBDR = 0;
+ int rc = 0;
+ int phys_dev_index = i - (raid_ctlr_position == 0);
+ bool skip_device = false;
+
+ memset(tmpdevice, 0, sizeof(*tmpdevice));
+
+ physical_device = i < nphysicals + (raid_ctlr_position == 0);
+
+ /* Figure out where the LUN ID info is coming from */
+ lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
+ i, nphysicals, nlogicals, physdev_list, logdev_list);
+
+ /* Determine if this is a lun from an external target array */
+ tmpdevice->external =
+ figure_external_status(h, raid_ctlr_position, i,
+ nphysicals, nlocal_logicals);
+
+ /*
+ * Skip over some devices such as a spare.
+ */
+ if (phys_dev_index >= 0 && !tmpdevice->external &&
+ physical_device) {
+ skip_device = hpsa_skip_device(h, lunaddrbytes,
+ &physdev_list->LUN[phys_dev_index]);
+ if (skip_device)
+ continue;
+ }
+
+ /* Get device type, vendor, model, device id, raid_map */
+ rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
+ &is_OBDR);
+ if (rc == -ENOMEM) {
+ dev_warn(&h->pdev->dev,
+ "Out of memory, rescan deferred.\n");
+ h->drv_req_rescan = 1;
+ goto out;
+ }
+ if (rc) {
+ h->drv_req_rescan = 1;
+ continue;
+ }
+
+ figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
+ this_device = currentsd[ncurrent];
+
+ *this_device = *tmpdevice;
+ this_device->physical_device = physical_device;
+
+ /*
+ * Expose all devices except for physical devices that
+ * are masked.
+ */
+ if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
+ this_device->expose_device = 0;
+ else
+ this_device->expose_device = 1;
+
+
+ /*
+ * Get the SAS address for physical devices that are exposed.
+ */
+ if (this_device->physical_device && this_device->expose_device)
+ hpsa_get_sas_address(h, lunaddrbytes, this_device);
+
+ switch (this_device->devtype) {
+ case TYPE_ROM:
+ /* We don't *really* support actual CD-ROM devices,
+ * just "One Button Disaster Recovery" tape drive
+ * which temporarily pretends to be a CD-ROM drive.
+ * So we check that the device is really an OBDR tape
+ * device by checking for "$DR-10" in bytes 43-48 of
+ * the inquiry data.
+ */
+ if (is_OBDR)
+ ncurrent++;
+ break;
+ case TYPE_DISK:
+ case TYPE_ZBC:
+ if (this_device->physical_device) {
+ /* The disk is in HBA mode. */
+ /* Never use RAID mapper in HBA mode. */
+ this_device->offload_enabled = 0;
+ hpsa_get_ioaccel_drive_info(h, this_device,
+ physdev_list, phys_dev_index, id_phys);
+ hpsa_get_path_info(this_device,
+ physdev_list, phys_dev_index, id_phys);
+ }
+ ncurrent++;
+ break;
+ case TYPE_TAPE:
+ case TYPE_MEDIUM_CHANGER:
+ ncurrent++;
+ break;
+ case TYPE_ENCLOSURE:
+ if (!this_device->external)
+ hpsa_get_enclosure_info(h, lunaddrbytes,
+ physdev_list, phys_dev_index,
+ this_device);
+ ncurrent++;
+ break;
+ case TYPE_RAID:
+ /* Only present the Smartarray HBA as a RAID controller.
+ * If it's a RAID controller other than the HBA itself
+ * (an external RAID controller, MSA500 or similar)
+ * don't present it.
+ */
+ if (!is_hba_lunid(lunaddrbytes))
+ break;
+ ncurrent++;
+ break;
+ default:
+ break;
+ }
+ if (ncurrent >= HPSA_MAX_DEVICES)
+ break;
+ }
+
+ if (h->sas_host == NULL) {
+ int rc = 0;
+
+ rc = hpsa_add_sas_host(h);
+ if (rc) {
+ dev_warn(&h->pdev->dev,
+ "Could not add sas host %d\n", rc);
+ goto out;
+ }
+ }
+
+ adjust_hpsa_scsi_table(h, currentsd, ncurrent);
+out:
+ kfree(tmpdevice);
+ for (i = 0; i < ndev_allocated; i++)
+ kfree(currentsd[i]);
+ kfree(currentsd);
+ kfree(physdev_list);
+ kfree(logdev_list);
+ kfree(id_ctlr);
+ kfree(id_phys);
+}
+
+static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
+ struct scatterlist *sg)
+{
+ u64 addr64 = (u64) sg_dma_address(sg);
+ unsigned int len = sg_dma_len(sg);
+
+ desc->Addr = cpu_to_le64(addr64);
+ desc->Len = cpu_to_le32(len);
+ desc->Ext = 0;
+}
+
+/*
+ * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
+ * dma mapping and fills in the scatter gather entries of the
+ * hpsa command, cp.
+ */
+static int hpsa_scatter_gather(struct ctlr_info *h,
+ struct CommandList *cp,
+ struct scsi_cmnd *cmd)
+{
+ struct scatterlist *sg;
+ int use_sg, i, sg_limit, chained, last_sg;
+ struct SGDescriptor *curr_sg;
+
+ BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
+
+ use_sg = scsi_dma_map(cmd);
+ if (use_sg < 0)
+ return use_sg;
+
+ if (!use_sg)
+ goto sglist_finished;
+
+ /*
+ * If the number of entries is greater than the max for a single list,
+ * then we have a chained list; we will set up all but one entry in the
+ * first list (the last entry is saved for link information);
+ * otherwise, we don't have a chained list and we'll set up at each of
+ * the entries in the one list.
+ */
+ curr_sg = cp->SG;
+ chained = use_sg > h->max_cmd_sg_entries;
+ sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
+ last_sg = scsi_sg_count(cmd) - 1;
+ scsi_for_each_sg(cmd, sg, sg_limit, i) {
+ hpsa_set_sg_descriptor(curr_sg, sg);
+ curr_sg++;
+ }
+
+ if (chained) {
+ /*
+ * Continue with the chained list. Set curr_sg to the chained
+ * list. Modify the limit to the total count less the entries
+ * we've already set up. Resume the scan at the list entry
+ * where the previous loop left off.
+ */
+ curr_sg = h->cmd_sg_list[cp->cmdindex];
+ sg_limit = use_sg - sg_limit;
+ for_each_sg(sg, sg, sg_limit, i) {
+ hpsa_set_sg_descriptor(curr_sg, sg);
+ curr_sg++;
+ }
+ }
+
+ /* Back the pointer up to the last entry and mark it as "last". */
+ (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
+
+ if (use_sg + chained > h->maxSG)
+ h->maxSG = use_sg + chained;
+
+ if (chained) {
+ cp->Header.SGList = h->max_cmd_sg_entries;
+ cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
+ if (hpsa_map_sg_chain_block(h, cp)) {
+ scsi_dma_unmap(cmd);
+ return -1;
+ }
+ return 0;
+ }
+
+sglist_finished:
+
+ cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
+ cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
+ return 0;
+}
+
+static inline void warn_zero_length_transfer(struct ctlr_info *h,
+ u8 *cdb, int cdb_len,
+ const char *func)
+{
+ dev_warn(&h->pdev->dev,
+ "%s: Blocking zero-length request: CDB:%*phN\n",
+ func, cdb_len, cdb);
+}
+
+#define IO_ACCEL_INELIGIBLE 1
+/* zero-length transfers trigger hardware errors. */
+static bool is_zero_length_transfer(u8 *cdb)
+{
+ u32 block_cnt;
+
+ /* Block zero-length transfer sizes on certain commands. */
+ switch (cdb[0]) {
+ case READ_10:
+ case WRITE_10:
+ case VERIFY: /* 0x2F */
+ case WRITE_VERIFY: /* 0x2E */
+ block_cnt = get_unaligned_be16(&cdb[7]);
+ break;
+ case READ_12:
+ case WRITE_12:
+ case VERIFY_12: /* 0xAF */
+ case WRITE_VERIFY_12: /* 0xAE */
+ block_cnt = get_unaligned_be32(&cdb[6]);
+ break;
+ case READ_16:
+ case WRITE_16:
+ case VERIFY_16: /* 0x8F */
+ block_cnt = get_unaligned_be32(&cdb[10]);
+ break;
+ default:
+ return false;
+ }
+
+ return block_cnt == 0;
+}
+
+static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
+{
+ int is_write = 0;
+ u32 block;
+ u32 block_cnt;
+
+ /* Perform some CDB fixups if needed using 10 byte reads/writes only */
+ switch (cdb[0]) {
+ case WRITE_6:
+ case WRITE_12:
+ is_write = 1;
+ fallthrough;
+ case READ_6:
+ case READ_12:
+ if (*cdb_len == 6) {
+ block = (((cdb[1] & 0x1F) << 16) |
+ (cdb[2] << 8) |
+ cdb[3]);
+ block_cnt = cdb[4];
+ if (block_cnt == 0)
+ block_cnt = 256;
+ } else {
+ BUG_ON(*cdb_len != 12);
+ block = get_unaligned_be32(&cdb[2]);
+ block_cnt = get_unaligned_be32(&cdb[6]);
+ }
+ if (block_cnt > 0xffff)
+ return IO_ACCEL_INELIGIBLE;
+
+ cdb[0] = is_write ? WRITE_10 : READ_10;
+ cdb[1] = 0;
+ cdb[2] = (u8) (block >> 24);
+ cdb[3] = (u8) (block >> 16);
+ cdb[4] = (u8) (block >> 8);
+ cdb[5] = (u8) (block);
+ cdb[6] = 0;
+ cdb[7] = (u8) (block_cnt >> 8);
+ cdb[8] = (u8) (block_cnt);
+ cdb[9] = 0;
+ *cdb_len = 10;
+ break;
+ }
+ return 0;
+}
+
+static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
+ struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+ u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
+{
+ struct scsi_cmnd *cmd = c->scsi_cmd;
+ struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
+ unsigned int len;
+ unsigned int total_len = 0;
+ struct scatterlist *sg;
+ u64 addr64;
+ int use_sg, i;
+ struct SGDescriptor *curr_sg;
+ u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
+
+ /* TODO: implement chaining support */
+ if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
+
+ if (is_zero_length_transfer(cdb)) {
+ warn_zero_length_transfer(h, cdb, cdb_len, __func__);
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ c->cmd_type = CMD_IOACCEL1;
+
+ /* Adjust the DMA address to point to the accelerated command buffer */
+ c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
+ (c->cmdindex * sizeof(*cp));
+ BUG_ON(c->busaddr & 0x0000007F);
+
+ use_sg = scsi_dma_map(cmd);
+ if (use_sg < 0) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return use_sg;
+ }
+
+ if (use_sg) {
+ curr_sg = cp->SG;
+ scsi_for_each_sg(cmd, sg, use_sg, i) {
+ addr64 = (u64) sg_dma_address(sg);
+ len = sg_dma_len(sg);
+ total_len += len;
+ curr_sg->Addr = cpu_to_le64(addr64);
+ curr_sg->Len = cpu_to_le32(len);
+ curr_sg->Ext = cpu_to_le32(0);
+ curr_sg++;
+ }
+ (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
+
+ switch (cmd->sc_data_direction) {
+ case DMA_TO_DEVICE:
+ control |= IOACCEL1_CONTROL_DATA_OUT;
+ break;
+ case DMA_FROM_DEVICE:
+ control |= IOACCEL1_CONTROL_DATA_IN;
+ break;
+ case DMA_NONE:
+ control |= IOACCEL1_CONTROL_NODATAXFER;
+ break;
+ default:
+ dev_err(&h->pdev->dev, "unknown data direction: %d\n",
+ cmd->sc_data_direction);
+ BUG();
+ break;
+ }
+ } else {
+ control |= IOACCEL1_CONTROL_NODATAXFER;
+ }
+
+ c->Header.SGList = use_sg;
+ /* Fill out the command structure to submit */
+ cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
+ cp->transfer_len = cpu_to_le32(total_len);
+ cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
+ (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
+ cp->control = cpu_to_le32(control);
+ memcpy(cp->CDB, cdb, cdb_len);
+ memcpy(cp->CISS_LUN, scsi3addr, 8);
+ /* Tag was already set at init time. */
+ enqueue_cmd_and_start_io(h, c);
+ return 0;
+}
+
+/*
+ * Queue a command directly to a device behind the controller using the
+ * I/O accelerator path.
+ */
+static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ struct scsi_cmnd *cmd = c->scsi_cmd;
+ struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+
+ if (!dev)
+ return -1;
+
+ c->phys_disk = dev;
+
+ if (dev->in_reset)
+ return -1;
+
+ return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
+ cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
+}
+
+/*
+ * Set encryption parameters for the ioaccel2 request
+ */
+static void set_encrypt_ioaccel2(struct ctlr_info *h,
+ struct CommandList *c, struct io_accel2_cmd *cp)
+{
+ struct scsi_cmnd *cmd = c->scsi_cmd;
+ struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+ struct raid_map_data *map = &dev->raid_map;
+ u64 first_block;
+
+ /* Are we doing encryption on this device */
+ if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
+ return;
+ /* Set the data encryption key index. */
+ cp->dekindex = map->dekindex;
+
+ /* Set the encryption enable flag, encoded into direction field. */
+ cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
+
+ /* Set encryption tweak values based on logical block address
+ * If block size is 512, tweak value is LBA.
+ * For other block sizes, tweak is (LBA * block size)/ 512)
+ */
+ switch (cmd->cmnd[0]) {
+ /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
+ case READ_6:
+ case WRITE_6:
+ first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
+ (cmd->cmnd[2] << 8) |
+ cmd->cmnd[3]);
+ break;
+ case WRITE_10:
+ case READ_10:
+ /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
+ case WRITE_12:
+ case READ_12:
+ first_block = get_unaligned_be32(&cmd->cmnd[2]);
+ break;
+ case WRITE_16:
+ case READ_16:
+ first_block = get_unaligned_be64(&cmd->cmnd[2]);
+ break;
+ default:
+ dev_err(&h->pdev->dev,
+ "ERROR: %s: size (0x%x) not supported for encryption\n",
+ __func__, cmd->cmnd[0]);
+ BUG();
+ break;
+ }
+
+ if (le32_to_cpu(map->volume_blk_size) != 512)
+ first_block = first_block *
+ le32_to_cpu(map->volume_blk_size)/512;
+
+ cp->tweak_lower = cpu_to_le32(first_block);
+ cp->tweak_upper = cpu_to_le32(first_block >> 32);
+}
+
+static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
+ struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+ u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
+{
+ struct scsi_cmnd *cmd = c->scsi_cmd;
+ struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
+ struct ioaccel2_sg_element *curr_sg;
+ int use_sg, i;
+ struct scatterlist *sg;
+ u64 addr64;
+ u32 len;
+ u32 total_len = 0;
+
+ if (!cmd->device)
+ return -1;
+
+ if (!cmd->device->hostdata)
+ return -1;
+
+ BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
+
+ if (is_zero_length_transfer(cdb)) {
+ warn_zero_length_transfer(h, cdb, cdb_len, __func__);
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ c->cmd_type = CMD_IOACCEL2;
+ /* Adjust the DMA address to point to the accelerated command buffer */
+ c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
+ (c->cmdindex * sizeof(*cp));
+ BUG_ON(c->busaddr & 0x0000007F);
+
+ memset(cp, 0, sizeof(*cp));
+ cp->IU_type = IOACCEL2_IU_TYPE;
+
+ use_sg = scsi_dma_map(cmd);
+ if (use_sg < 0) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return use_sg;
+ }
+
+ if (use_sg) {
+ curr_sg = cp->sg;
+ if (use_sg > h->ioaccel_maxsg) {
+ addr64 = le64_to_cpu(
+ h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
+ curr_sg->address = cpu_to_le64(addr64);
+ curr_sg->length = 0;
+ curr_sg->reserved[0] = 0;
+ curr_sg->reserved[1] = 0;
+ curr_sg->reserved[2] = 0;
+ curr_sg->chain_indicator = IOACCEL2_CHAIN;
+
+ curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
+ }
+ scsi_for_each_sg(cmd, sg, use_sg, i) {
+ addr64 = (u64) sg_dma_address(sg);
+ len = sg_dma_len(sg);
+ total_len += len;
+ curr_sg->address = cpu_to_le64(addr64);
+ curr_sg->length = cpu_to_le32(len);
+ curr_sg->reserved[0] = 0;
+ curr_sg->reserved[1] = 0;
+ curr_sg->reserved[2] = 0;
+ curr_sg->chain_indicator = 0;
+ curr_sg++;
+ }
+
+ /*
+ * Set the last s/g element bit
+ */
+ (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
+
+ switch (cmd->sc_data_direction) {
+ case DMA_TO_DEVICE:
+ cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+ cp->direction |= IOACCEL2_DIR_DATA_OUT;
+ break;
+ case DMA_FROM_DEVICE:
+ cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+ cp->direction |= IOACCEL2_DIR_DATA_IN;
+ break;
+ case DMA_NONE:
+ cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+ cp->direction |= IOACCEL2_DIR_NO_DATA;
+ break;
+ default:
+ dev_err(&h->pdev->dev, "unknown data direction: %d\n",
+ cmd->sc_data_direction);
+ BUG();
+ break;
+ }
+ } else {
+ cp->direction &= ~IOACCEL2_DIRECTION_MASK;
+ cp->direction |= IOACCEL2_DIR_NO_DATA;
+ }
+
+ /* Set encryption parameters, if necessary */
+ set_encrypt_ioaccel2(h, c, cp);
+
+ cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
+ cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
+ memcpy(cp->cdb, cdb, sizeof(cp->cdb));
+
+ cp->data_len = cpu_to_le32(total_len);
+ cp->err_ptr = cpu_to_le64(c->busaddr +
+ offsetof(struct io_accel2_cmd, error_data));
+ cp->err_len = cpu_to_le32(sizeof(cp->error_data));
+
+ /* fill in sg elements */
+ if (use_sg > h->ioaccel_maxsg) {
+ cp->sg_count = 1;
+ cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
+ if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ scsi_dma_unmap(cmd);
+ return -1;
+ }
+ } else
+ cp->sg_count = (u8) use_sg;
+
+ if (phys_disk->in_reset) {
+ cmd->result = DID_RESET << 16;
+ return -1;
+ }
+
+ enqueue_cmd_and_start_io(h, c);
+ return 0;
+}
+
+/*
+ * Queue a command to the correct I/O accelerator path.
+ */
+static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
+ struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
+ u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
+{
+ if (!c->scsi_cmd->device)
+ return -1;
+
+ if (!c->scsi_cmd->device->hostdata)
+ return -1;
+
+ if (phys_disk->in_reset)
+ return -1;
+
+ /* Try to honor the device's queue depth */
+ if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
+ phys_disk->queue_depth) {
+ atomic_dec(&phys_disk->ioaccel_cmds_out);
+ return IO_ACCEL_INELIGIBLE;
+ }
+ if (h->transMethod & CFGTBL_Trans_io_accel1)
+ return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
+ cdb, cdb_len, scsi3addr,
+ phys_disk);
+ else
+ return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
+ cdb, cdb_len, scsi3addr,
+ phys_disk);
+}
+
+static void raid_map_helper(struct raid_map_data *map,
+ int offload_to_mirror, u32 *map_index, u32 *current_group)
+{
+ if (offload_to_mirror == 0) {
+ /* use physical disk in the first mirrored group. */
+ *map_index %= le16_to_cpu(map->data_disks_per_row);
+ return;
+ }
+ do {
+ /* determine mirror group that *map_index indicates */
+ *current_group = *map_index /
+ le16_to_cpu(map->data_disks_per_row);
+ if (offload_to_mirror == *current_group)
+ continue;
+ if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
+ /* select map index from next group */
+ *map_index += le16_to_cpu(map->data_disks_per_row);
+ (*current_group)++;
+ } else {
+ /* select map index from first group */
+ *map_index %= le16_to_cpu(map->data_disks_per_row);
+ *current_group = 0;
+ }
+ } while (offload_to_mirror != *current_group);
+}
+
+/*
+ * Attempt to perform offload RAID mapping for a logical volume I/O.
+ */
+static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ struct scsi_cmnd *cmd = c->scsi_cmd;
+ struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+ struct raid_map_data *map = &dev->raid_map;
+ struct raid_map_disk_data *dd = &map->data[0];
+ int is_write = 0;
+ u32 map_index;
+ u64 first_block, last_block;
+ u32 block_cnt;
+ u32 blocks_per_row;
+ u64 first_row, last_row;
+ u32 first_row_offset, last_row_offset;
+ u32 first_column, last_column;
+ u64 r0_first_row, r0_last_row;
+ u32 r5or6_blocks_per_row;
+ u64 r5or6_first_row, r5or6_last_row;
+ u32 r5or6_first_row_offset, r5or6_last_row_offset;
+ u32 r5or6_first_column, r5or6_last_column;
+ u32 total_disks_per_row;
+ u32 stripesize;
+ u32 first_group, last_group, current_group;
+ u32 map_row;
+ u32 disk_handle;
+ u64 disk_block;
+ u32 disk_block_cnt;
+ u8 cdb[16];
+ u8 cdb_len;
+ u16 strip_size;
+#if BITS_PER_LONG == 32
+ u64 tmpdiv;
+#endif
+ int offload_to_mirror;
+
+ if (!dev)
+ return -1;
+
+ if (dev->in_reset)
+ return -1;
+
+ /* check for valid opcode, get LBA and block count */
+ switch (cmd->cmnd[0]) {
+ case WRITE_6:
+ is_write = 1;
+ fallthrough;
+ case READ_6:
+ first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
+ (cmd->cmnd[2] << 8) |
+ cmd->cmnd[3]);
+ block_cnt = cmd->cmnd[4];
+ if (block_cnt == 0)
+ block_cnt = 256;
+ break;
+ case WRITE_10:
+ is_write = 1;
+ fallthrough;
+ case READ_10:
+ first_block =
+ (((u64) cmd->cmnd[2]) << 24) |
+ (((u64) cmd->cmnd[3]) << 16) |
+ (((u64) cmd->cmnd[4]) << 8) |
+ cmd->cmnd[5];
+ block_cnt =
+ (((u32) cmd->cmnd[7]) << 8) |
+ cmd->cmnd[8];
+ break;
+ case WRITE_12:
+ is_write = 1;
+ fallthrough;
+ case READ_12:
+ first_block =
+ (((u64) cmd->cmnd[2]) << 24) |
+ (((u64) cmd->cmnd[3]) << 16) |
+ (((u64) cmd->cmnd[4]) << 8) |
+ cmd->cmnd[5];
+ block_cnt =
+ (((u32) cmd->cmnd[6]) << 24) |
+ (((u32) cmd->cmnd[7]) << 16) |
+ (((u32) cmd->cmnd[8]) << 8) |
+ cmd->cmnd[9];
+ break;
+ case WRITE_16:
+ is_write = 1;
+ fallthrough;
+ case READ_16:
+ first_block =
+ (((u64) cmd->cmnd[2]) << 56) |
+ (((u64) cmd->cmnd[3]) << 48) |
+ (((u64) cmd->cmnd[4]) << 40) |
+ (((u64) cmd->cmnd[5]) << 32) |
+ (((u64) cmd->cmnd[6]) << 24) |
+ (((u64) cmd->cmnd[7]) << 16) |
+ (((u64) cmd->cmnd[8]) << 8) |
+ cmd->cmnd[9];
+ block_cnt =
+ (((u32) cmd->cmnd[10]) << 24) |
+ (((u32) cmd->cmnd[11]) << 16) |
+ (((u32) cmd->cmnd[12]) << 8) |
+ cmd->cmnd[13];
+ break;
+ default:
+ return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
+ }
+ last_block = first_block + block_cnt - 1;
+
+ /* check for write to non-RAID-0 */
+ if (is_write && dev->raid_level != 0)
+ return IO_ACCEL_INELIGIBLE;
+
+ /* check for invalid block or wraparound */
+ if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
+ last_block < first_block)
+ return IO_ACCEL_INELIGIBLE;
+
+ /* calculate stripe information for the request */
+ blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
+ le16_to_cpu(map->strip_size);
+ strip_size = le16_to_cpu(map->strip_size);
+#if BITS_PER_LONG == 32
+ tmpdiv = first_block;
+ (void) do_div(tmpdiv, blocks_per_row);
+ first_row = tmpdiv;
+ tmpdiv = last_block;
+ (void) do_div(tmpdiv, blocks_per_row);
+ last_row = tmpdiv;
+ first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
+ last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
+ tmpdiv = first_row_offset;
+ (void) do_div(tmpdiv, strip_size);
+ first_column = tmpdiv;
+ tmpdiv = last_row_offset;
+ (void) do_div(tmpdiv, strip_size);
+ last_column = tmpdiv;
+#else
+ first_row = first_block / blocks_per_row;
+ last_row = last_block / blocks_per_row;
+ first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
+ last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
+ first_column = first_row_offset / strip_size;
+ last_column = last_row_offset / strip_size;
+#endif
+
+ /* if this isn't a single row/column then give to the controller */
+ if ((first_row != last_row) || (first_column != last_column))
+ return IO_ACCEL_INELIGIBLE;
+
+ /* proceeding with driver mapping */
+ total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
+ le16_to_cpu(map->metadata_disks_per_row);
+ map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
+ le16_to_cpu(map->row_cnt);
+ map_index = (map_row * total_disks_per_row) + first_column;
+
+ switch (dev->raid_level) {
+ case HPSA_RAID_0:
+ break; /* nothing special to do */
+ case HPSA_RAID_1:
+ /* Handles load balance across RAID 1 members.
+ * (2-drive R1 and R10 with even # of drives.)
+ * Appropriate for SSDs, not optimal for HDDs
+ * Ensure we have the correct raid_map.
+ */
+ if (le16_to_cpu(map->layout_map_count) != 2) {
+ hpsa_turn_off_ioaccel_for_device(dev);
+ return IO_ACCEL_INELIGIBLE;
+ }
+ if (dev->offload_to_mirror)
+ map_index += le16_to_cpu(map->data_disks_per_row);
+ dev->offload_to_mirror = !dev->offload_to_mirror;
+ break;
+ case HPSA_RAID_ADM:
+ /* Handles N-way mirrors (R1-ADM)
+ * and R10 with # of drives divisible by 3.)
+ * Ensure we have the correct raid_map.
+ */
+ if (le16_to_cpu(map->layout_map_count) != 3) {
+ hpsa_turn_off_ioaccel_for_device(dev);
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ offload_to_mirror = dev->offload_to_mirror;
+ raid_map_helper(map, offload_to_mirror,
+ &map_index, &current_group);
+ /* set mirror group to use next time */
+ offload_to_mirror =
+ (offload_to_mirror >=
+ le16_to_cpu(map->layout_map_count) - 1)
+ ? 0 : offload_to_mirror + 1;
+ dev->offload_to_mirror = offload_to_mirror;
+ /* Avoid direct use of dev->offload_to_mirror within this
+ * function since multiple threads might simultaneously
+ * increment it beyond the range of dev->layout_map_count -1.
+ */
+ break;
+ case HPSA_RAID_5:
+ case HPSA_RAID_6:
+ if (le16_to_cpu(map->layout_map_count) <= 1)
+ break;
+
+ /* Verify first and last block are in same RAID group */
+ r5or6_blocks_per_row =
+ le16_to_cpu(map->strip_size) *
+ le16_to_cpu(map->data_disks_per_row);
+ if (r5or6_blocks_per_row == 0) {
+ hpsa_turn_off_ioaccel_for_device(dev);
+ return IO_ACCEL_INELIGIBLE;
+ }
+ stripesize = r5or6_blocks_per_row *
+ le16_to_cpu(map->layout_map_count);
+#if BITS_PER_LONG == 32
+ tmpdiv = first_block;
+ first_group = do_div(tmpdiv, stripesize);
+ tmpdiv = first_group;
+ (void) do_div(tmpdiv, r5or6_blocks_per_row);
+ first_group = tmpdiv;
+ tmpdiv = last_block;
+ last_group = do_div(tmpdiv, stripesize);
+ tmpdiv = last_group;
+ (void) do_div(tmpdiv, r5or6_blocks_per_row);
+ last_group = tmpdiv;
+#else
+ first_group = (first_block % stripesize) / r5or6_blocks_per_row;
+ last_group = (last_block % stripesize) / r5or6_blocks_per_row;
+#endif
+ if (first_group != last_group)
+ return IO_ACCEL_INELIGIBLE;
+
+ /* Verify request is in a single row of RAID 5/6 */
+#if BITS_PER_LONG == 32
+ tmpdiv = first_block;
+ (void) do_div(tmpdiv, stripesize);
+ first_row = r5or6_first_row = r0_first_row = tmpdiv;
+ tmpdiv = last_block;
+ (void) do_div(tmpdiv, stripesize);
+ r5or6_last_row = r0_last_row = tmpdiv;
+#else
+ first_row = r5or6_first_row = r0_first_row =
+ first_block / stripesize;
+ r5or6_last_row = r0_last_row = last_block / stripesize;
+#endif
+ if (r5or6_first_row != r5or6_last_row)
+ return IO_ACCEL_INELIGIBLE;
+
+
+ /* Verify request is in a single column */
+#if BITS_PER_LONG == 32
+ tmpdiv = first_block;
+ first_row_offset = do_div(tmpdiv, stripesize);
+ tmpdiv = first_row_offset;
+ first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
+ r5or6_first_row_offset = first_row_offset;
+ tmpdiv = last_block;
+ r5or6_last_row_offset = do_div(tmpdiv, stripesize);
+ tmpdiv = r5or6_last_row_offset;
+ r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
+ tmpdiv = r5or6_first_row_offset;
+ (void) do_div(tmpdiv, map->strip_size);
+ first_column = r5or6_first_column = tmpdiv;
+ tmpdiv = r5or6_last_row_offset;
+ (void) do_div(tmpdiv, map->strip_size);
+ r5or6_last_column = tmpdiv;
+#else
+ first_row_offset = r5or6_first_row_offset =
+ (u32)((first_block % stripesize) %
+ r5or6_blocks_per_row);
+
+ r5or6_last_row_offset =
+ (u32)((last_block % stripesize) %
+ r5or6_blocks_per_row);
+
+ first_column = r5or6_first_column =
+ r5or6_first_row_offset / le16_to_cpu(map->strip_size);
+ r5or6_last_column =
+ r5or6_last_row_offset / le16_to_cpu(map->strip_size);
+#endif
+ if (r5or6_first_column != r5or6_last_column)
+ return IO_ACCEL_INELIGIBLE;
+
+ /* Request is eligible */
+ map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
+ le16_to_cpu(map->row_cnt);
+
+ map_index = (first_group *
+ (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
+ (map_row * total_disks_per_row) + first_column;
+ break;
+ default:
+ return IO_ACCEL_INELIGIBLE;
+ }
+
+ if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
+ return IO_ACCEL_INELIGIBLE;
+
+ c->phys_disk = dev->phys_disk[map_index];
+ if (!c->phys_disk)
+ return IO_ACCEL_INELIGIBLE;
+
+ disk_handle = dd[map_index].ioaccel_handle;
+ disk_block = le64_to_cpu(map->disk_starting_blk) +
+ first_row * le16_to_cpu(map->strip_size) +
+ (first_row_offset - first_column *
+ le16_to_cpu(map->strip_size));
+ disk_block_cnt = block_cnt;
+
+ /* handle differing logical/physical block sizes */
+ if (map->phys_blk_shift) {
+ disk_block <<= map->phys_blk_shift;
+ disk_block_cnt <<= map->phys_blk_shift;
+ }
+ BUG_ON(disk_block_cnt > 0xffff);
+
+ /* build the new CDB for the physical disk I/O */
+ if (disk_block > 0xffffffff) {
+ cdb[0] = is_write ? WRITE_16 : READ_16;
+ cdb[1] = 0;
+ cdb[2] = (u8) (disk_block >> 56);
+ cdb[3] = (u8) (disk_block >> 48);
+ cdb[4] = (u8) (disk_block >> 40);
+ cdb[5] = (u8) (disk_block >> 32);
+ cdb[6] = (u8) (disk_block >> 24);
+ cdb[7] = (u8) (disk_block >> 16);
+ cdb[8] = (u8) (disk_block >> 8);
+ cdb[9] = (u8) (disk_block);
+ cdb[10] = (u8) (disk_block_cnt >> 24);
+ cdb[11] = (u8) (disk_block_cnt >> 16);
+ cdb[12] = (u8) (disk_block_cnt >> 8);
+ cdb[13] = (u8) (disk_block_cnt);
+ cdb[14] = 0;
+ cdb[15] = 0;
+ cdb_len = 16;
+ } else {
+ cdb[0] = is_write ? WRITE_10 : READ_10;
+ cdb[1] = 0;
+ cdb[2] = (u8) (disk_block >> 24);
+ cdb[3] = (u8) (disk_block >> 16);
+ cdb[4] = (u8) (disk_block >> 8);
+ cdb[5] = (u8) (disk_block);
+ cdb[6] = 0;
+ cdb[7] = (u8) (disk_block_cnt >> 8);
+ cdb[8] = (u8) (disk_block_cnt);
+ cdb[9] = 0;
+ cdb_len = 10;
+ }
+ return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
+ dev->scsi3addr,
+ dev->phys_disk[map_index]);
+}
+
+/*
+ * Submit commands down the "normal" RAID stack path
+ * All callers to hpsa_ciss_submit must check lockup_detected
+ * beforehand, before (opt.) and after calling cmd_alloc
+ */
+static int hpsa_ciss_submit(struct ctlr_info *h,
+ struct CommandList *c, struct scsi_cmnd *cmd,
+ struct hpsa_scsi_dev_t *dev)
+{
+ cmd->host_scribble = (unsigned char *) c;
+ c->cmd_type = CMD_SCSI;
+ c->scsi_cmd = cmd;
+ c->Header.ReplyQueue = 0; /* unused in simple mode */
+ memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
+ c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
+
+ /* Fill in the request block... */
+
+ c->Request.Timeout = 0;
+ BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
+ c->Request.CDBLen = cmd->cmd_len;
+ memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
+ switch (cmd->sc_data_direction) {
+ case DMA_TO_DEVICE:
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
+ break;
+ case DMA_FROM_DEVICE:
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
+ break;
+ case DMA_NONE:
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
+ break;
+ case DMA_BIDIRECTIONAL:
+ /* This can happen if a buggy application does a scsi passthru
+ * and sets both inlen and outlen to non-zero. ( see
+ * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
+ */
+
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
+ /* This is technically wrong, and hpsa controllers should
+ * reject it with CMD_INVALID, which is the most correct
+ * response, but non-fibre backends appear to let it
+ * slide by, and give the same results as if this field
+ * were set correctly. Either way is acceptable for
+ * our purposes here.
+ */
+
+ break;
+
+ default:
+ dev_err(&h->pdev->dev, "unknown data direction: %d\n",
+ cmd->sc_data_direction);
+ BUG();
+ break;
+ }
+
+ if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
+ hpsa_cmd_resolve_and_free(h, c);
+ return SCSI_MLQUEUE_HOST_BUSY;
+ }
+
+ if (dev->in_reset) {
+ hpsa_cmd_resolve_and_free(h, c);
+ return SCSI_MLQUEUE_HOST_BUSY;
+ }
+
+ c->device = dev;
+
+ enqueue_cmd_and_start_io(h, c);
+ /* the cmd'll come back via intr handler in complete_scsi_command() */
+ return 0;
+}
+
+static void hpsa_cmd_init(struct ctlr_info *h, int index,
+ struct CommandList *c)
+{
+ dma_addr_t cmd_dma_handle, err_dma_handle;
+
+ /* Zero out all of commandlist except the last field, refcount */
+ memset(c, 0, offsetof(struct CommandList, refcount));
+ c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
+ cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
+ c->err_info = h->errinfo_pool + index;
+ memset(c->err_info, 0, sizeof(*c->err_info));
+ err_dma_handle = h->errinfo_pool_dhandle
+ + index * sizeof(*c->err_info);
+ c->cmdindex = index;
+ c->busaddr = (u32) cmd_dma_handle;
+ c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
+ c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
+ c->h = h;
+ c->scsi_cmd = SCSI_CMD_IDLE;
+}
+
+static void hpsa_preinitialize_commands(struct ctlr_info *h)
+{
+ int i;
+
+ for (i = 0; i < h->nr_cmds; i++) {
+ struct CommandList *c = h->cmd_pool + i;
+
+ hpsa_cmd_init(h, i, c);
+ atomic_set(&c->refcount, 0);
+ }
+}
+
+static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
+ struct CommandList *c)
+{
+ dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
+
+ BUG_ON(c->cmdindex != index);
+
+ memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
+ memset(c->err_info, 0, sizeof(*c->err_info));
+ c->busaddr = (u32) cmd_dma_handle;
+}
+
+static int hpsa_ioaccel_submit(struct ctlr_info *h,
+ struct CommandList *c, struct scsi_cmnd *cmd)
+{
+ struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
+ int rc = IO_ACCEL_INELIGIBLE;
+
+ if (!dev)
+ return SCSI_MLQUEUE_HOST_BUSY;
+
+ if (dev->in_reset)
+ return SCSI_MLQUEUE_HOST_BUSY;
+
+ if (hpsa_simple_mode)
+ return IO_ACCEL_INELIGIBLE;
+
+ cmd->host_scribble = (unsigned char *) c;
+
+ if (dev->offload_enabled) {
+ hpsa_cmd_init(h, c->cmdindex, c);
+ c->cmd_type = CMD_SCSI;
+ c->scsi_cmd = cmd;
+ c->device = dev;
+ rc = hpsa_scsi_ioaccel_raid_map(h, c);
+ if (rc < 0) /* scsi_dma_map failed. */
+ rc = SCSI_MLQUEUE_HOST_BUSY;
+ } else if (dev->hba_ioaccel_enabled) {
+ hpsa_cmd_init(h, c->cmdindex, c);
+ c->cmd_type = CMD_SCSI;
+ c->scsi_cmd = cmd;
+ c->device = dev;
+ rc = hpsa_scsi_ioaccel_direct_map(h, c);
+ if (rc < 0) /* scsi_dma_map failed. */
+ rc = SCSI_MLQUEUE_HOST_BUSY;
+ }
+ return rc;
+}
+
+static void hpsa_command_resubmit_worker(struct work_struct *work)
+{
+ struct scsi_cmnd *cmd;
+ struct hpsa_scsi_dev_t *dev;
+ struct CommandList *c = container_of(work, struct CommandList, work);
+
+ cmd = c->scsi_cmd;
+ dev = cmd->device->hostdata;
+ if (!dev) {
+ cmd->result = DID_NO_CONNECT << 16;
+ return hpsa_cmd_free_and_done(c->h, c, cmd);
+ }
+
+ if (dev->in_reset) {
+ cmd->result = DID_RESET << 16;
+ return hpsa_cmd_free_and_done(c->h, c, cmd);
+ }
+
+ if (c->cmd_type == CMD_IOACCEL2) {
+ struct ctlr_info *h = c->h;
+ struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
+ int rc;
+
+ if (c2->error_data.serv_response ==
+ IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
+ rc = hpsa_ioaccel_submit(h, c, cmd);
+ if (rc == 0)
+ return;
+ if (rc == SCSI_MLQUEUE_HOST_BUSY) {
+ /*
+ * If we get here, it means dma mapping failed.
+ * Try again via scsi mid layer, which will
+ * then get SCSI_MLQUEUE_HOST_BUSY.
+ */
+ cmd->result = DID_IMM_RETRY << 16;
+ return hpsa_cmd_free_and_done(h, c, cmd);
+ }
+ /* else, fall thru and resubmit down CISS path */
+ }
+ }
+ hpsa_cmd_partial_init(c->h, c->cmdindex, c);
+ if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
+ /*
+ * If we get here, it means dma mapping failed. Try
+ * again via scsi mid layer, which will then get
+ * SCSI_MLQUEUE_HOST_BUSY.
+ *
+ * hpsa_ciss_submit will have already freed c
+ * if it encountered a dma mapping failure.
+ */
+ cmd->result = DID_IMM_RETRY << 16;
+ cmd->scsi_done(cmd);
+ }
+}
+
+/* Running in struct Scsi_Host->host_lock less mode */
+static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
+{
+ struct ctlr_info *h;
+ struct hpsa_scsi_dev_t *dev;
+ struct CommandList *c;
+ int rc = 0;
+
+ /* Get the ptr to our adapter structure out of cmd->host. */
+ h = sdev_to_hba(cmd->device);
+
+ BUG_ON(cmd->request->tag < 0);
+
+ dev = cmd->device->hostdata;
+ if (!dev) {
+ cmd->result = DID_NO_CONNECT << 16;
+ cmd->scsi_done(cmd);
+ return 0;
+ }
+
+ if (dev->removed) {
+ cmd->result = DID_NO_CONNECT << 16;
+ cmd->scsi_done(cmd);
+ return 0;
+ }
+
+ if (unlikely(lockup_detected(h))) {
+ cmd->result = DID_NO_CONNECT << 16;
+ cmd->scsi_done(cmd);
+ return 0;
+ }
+
+ if (dev->in_reset)
+ return SCSI_MLQUEUE_DEVICE_BUSY;
+
+ c = cmd_tagged_alloc(h, cmd);
+ if (c == NULL)
+ return SCSI_MLQUEUE_DEVICE_BUSY;
+
+ /*
+ * This is necessary because the SML doesn't zero out this field during
+ * error recovery.
+ */
+ cmd->result = 0;
+
+ /*
+ * Call alternate submit routine for I/O accelerated commands.
+ * Retries always go down the normal I/O path.
+ */
+ if (likely(cmd->retries == 0 &&
+ !blk_rq_is_passthrough(cmd->request) &&
+ h->acciopath_status)) {
+ rc = hpsa_ioaccel_submit(h, c, cmd);
+ if (rc == 0)
+ return 0;
+ if (rc == SCSI_MLQUEUE_HOST_BUSY) {
+ hpsa_cmd_resolve_and_free(h, c);
+ return SCSI_MLQUEUE_HOST_BUSY;
+ }
+ }
+ return hpsa_ciss_submit(h, c, cmd, dev);
+}
+
+static void hpsa_scan_complete(struct ctlr_info *h)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&h->scan_lock, flags);
+ h->scan_finished = 1;
+ wake_up(&h->scan_wait_queue);
+ spin_unlock_irqrestore(&h->scan_lock, flags);
+}
+
+static void hpsa_scan_start(struct Scsi_Host *sh)
+{
+ struct ctlr_info *h = shost_to_hba(sh);
+ unsigned long flags;
+
+ /*
+ * Don't let rescans be initiated on a controller known to be locked
+ * up. If the controller locks up *during* a rescan, that thread is
+ * probably hosed, but at least we can prevent new rescan threads from
+ * piling up on a locked up controller.
+ */
+ if (unlikely(lockup_detected(h)))
+ return hpsa_scan_complete(h);
+
+ /*
+ * If a scan is already waiting to run, no need to add another
+ */
+ spin_lock_irqsave(&h->scan_lock, flags);
+ if (h->scan_waiting) {
+ spin_unlock_irqrestore(&h->scan_lock, flags);
+ return;
+ }
+
+ spin_unlock_irqrestore(&h->scan_lock, flags);
+
+ /* wait until any scan already in progress is finished. */
+ while (1) {
+ spin_lock_irqsave(&h->scan_lock, flags);
+ if (h->scan_finished)
+ break;
+ h->scan_waiting = 1;
+ spin_unlock_irqrestore(&h->scan_lock, flags);
+ wait_event(h->scan_wait_queue, h->scan_finished);
+ /* Note: We don't need to worry about a race between this
+ * thread and driver unload because the midlayer will
+ * have incremented the reference count, so unload won't
+ * happen if we're in here.
+ */
+ }
+ h->scan_finished = 0; /* mark scan as in progress */
+ h->scan_waiting = 0;
+ spin_unlock_irqrestore(&h->scan_lock, flags);
+
+ if (unlikely(lockup_detected(h)))
+ return hpsa_scan_complete(h);
+
+ /*
+ * Do the scan after a reset completion
+ */
+ spin_lock_irqsave(&h->reset_lock, flags);
+ if (h->reset_in_progress) {
+ h->drv_req_rescan = 1;
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+ hpsa_scan_complete(h);
+ return;
+ }
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+
+ hpsa_update_scsi_devices(h);
+
+ hpsa_scan_complete(h);
+}
+
+static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
+{
+ struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
+
+ if (!logical_drive)
+ return -ENODEV;
+
+ if (qdepth < 1)
+ qdepth = 1;
+ else if (qdepth > logical_drive->queue_depth)
+ qdepth = logical_drive->queue_depth;
+
+ return scsi_change_queue_depth(sdev, qdepth);
+}
+
+static int hpsa_scan_finished(struct Scsi_Host *sh,
+ unsigned long elapsed_time)
+{
+ struct ctlr_info *h = shost_to_hba(sh);
+ unsigned long flags;
+ int finished;
+
+ spin_lock_irqsave(&h->scan_lock, flags);
+ finished = h->scan_finished;
+ spin_unlock_irqrestore(&h->scan_lock, flags);
+ return finished;
+}
+
+static int hpsa_scsi_host_alloc(struct ctlr_info *h)
+{
+ struct Scsi_Host *sh;
+
+ sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info));
+ if (sh == NULL) {
+ dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
+ return -ENOMEM;
+ }
+
+ sh->io_port = 0;
+ sh->n_io_port = 0;
+ sh->this_id = -1;
+ sh->max_channel = 3;
+ sh->max_cmd_len = MAX_COMMAND_SIZE;
+ sh->max_lun = HPSA_MAX_LUN;
+ sh->max_id = HPSA_MAX_LUN;
+ sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
+ sh->cmd_per_lun = sh->can_queue;
+ sh->sg_tablesize = h->maxsgentries;
+ sh->transportt = hpsa_sas_transport_template;
+ sh->hostdata[0] = (unsigned long) h;
+ sh->irq = pci_irq_vector(h->pdev, 0);
+ sh->unique_id = sh->irq;
+
+ h->scsi_host = sh;
+ return 0;
+}
+
+static int hpsa_scsi_add_host(struct ctlr_info *h)
+{
+ int rv;
+
+ rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
+ if (rv) {
+ dev_err(&h->pdev->dev, "scsi_add_host failed\n");
+ return rv;
+ }
+ scsi_scan_host(h->scsi_host);
+ return 0;
+}
+
+/*
+ * The block layer has already gone to the trouble of picking out a unique,
+ * small-integer tag for this request. We use an offset from that value as
+ * an index to select our command block. (The offset allows us to reserve the
+ * low-numbered entries for our own uses.)
+ */
+static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
+{
+ int idx = scmd->request->tag;
+
+ if (idx < 0)
+ return idx;
+
+ /* Offset to leave space for internal cmds. */
+ return idx += HPSA_NRESERVED_CMDS;
+}
+
+/*
+ * Send a TEST_UNIT_READY command to the specified LUN using the specified
+ * reply queue; returns zero if the unit is ready, and non-zero otherwise.
+ */
+static int hpsa_send_test_unit_ready(struct ctlr_info *h,
+ struct CommandList *c, unsigned char lunaddr[],
+ int reply_queue)
+{
+ int rc;
+
+ /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
+ (void) fill_cmd(c, TEST_UNIT_READY, h,
+ NULL, 0, 0, lunaddr, TYPE_CMD);
+ rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
+ if (rc)
+ return rc;
+ /* no unmap needed here because no data xfer. */
+
+ /* Check if the unit is already ready. */
+ if (c->err_info->CommandStatus == CMD_SUCCESS)
+ return 0;
+
+ /*
+ * The first command sent after reset will receive "unit attention" to
+ * indicate that the LUN has been reset...this is actually what we're
+ * looking for (but, success is good too).
+ */
+ if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
+ c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
+ (c->err_info->SenseInfo[2] == NO_SENSE ||
+ c->err_info->SenseInfo[2] == UNIT_ATTENTION))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
+ * returns zero when the unit is ready, and non-zero when giving up.
+ */
+static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
+ struct CommandList *c,
+ unsigned char lunaddr[], int reply_queue)
+{
+ int rc;
+ int count = 0;
+ int waittime = 1; /* seconds */
+
+ /* Send test unit ready until device ready, or give up. */
+ for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
+
+ /*
+ * Wait for a bit. do this first, because if we send
+ * the TUR right away, the reset will just abort it.
+ */
+ msleep(1000 * waittime);
+
+ rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
+ if (!rc)
+ break;
+
+ /* Increase wait time with each try, up to a point. */
+ if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
+ waittime *= 2;
+
+ dev_warn(&h->pdev->dev,
+ "waiting %d secs for device to become ready.\n",
+ waittime);
+ }
+
+ return rc;
+}
+
+static int wait_for_device_to_become_ready(struct ctlr_info *h,
+ unsigned char lunaddr[],
+ int reply_queue)
+{
+ int first_queue;
+ int last_queue;
+ int rq;
+ int rc = 0;
+ struct CommandList *c;
+
+ c = cmd_alloc(h);
+
+ /*
+ * If no specific reply queue was requested, then send the TUR
+ * repeatedly, requesting a reply on each reply queue; otherwise execute
+ * the loop exactly once using only the specified queue.
+ */
+ if (reply_queue == DEFAULT_REPLY_QUEUE) {
+ first_queue = 0;
+ last_queue = h->nreply_queues - 1;
+ } else {
+ first_queue = reply_queue;
+ last_queue = reply_queue;
+ }
+
+ for (rq = first_queue; rq <= last_queue; rq++) {
+ rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
+ if (rc)
+ break;
+ }
+
+ if (rc)
+ dev_warn(&h->pdev->dev, "giving up on device.\n");
+ else
+ dev_warn(&h->pdev->dev, "device is ready.\n");
+
+ cmd_free(h, c);
+ return rc;
+}
+
+/* Need at least one of these error handlers to keep ../scsi/hosts.c from
+ * complaining. Doing a host- or bus-reset can't do anything good here.
+ */
+static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
+{
+ int rc = SUCCESS;
+ int i;
+ struct ctlr_info *h;
+ struct hpsa_scsi_dev_t *dev = NULL;
+ u8 reset_type;
+ char msg[48];
+ unsigned long flags;
+
+ /* find the controller to which the command to be aborted was sent */
+ h = sdev_to_hba(scsicmd->device);
+ if (h == NULL) /* paranoia */
+ return FAILED;
+
+ spin_lock_irqsave(&h->reset_lock, flags);
+ h->reset_in_progress = 1;
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+
+ if (lockup_detected(h)) {
+ rc = FAILED;
+ goto return_reset_status;
+ }
+
+ dev = scsicmd->device->hostdata;
+ if (!dev) {
+ dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
+ rc = FAILED;
+ goto return_reset_status;
+ }
+
+ if (dev->devtype == TYPE_ENCLOSURE) {
+ rc = SUCCESS;
+ goto return_reset_status;
+ }
+
+ /* if controller locked up, we can guarantee command won't complete */
+ if (lockup_detected(h)) {
+ snprintf(msg, sizeof(msg),
+ "cmd %d RESET FAILED, lockup detected",
+ hpsa_get_cmd_index(scsicmd));
+ hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+ rc = FAILED;
+ goto return_reset_status;
+ }
+
+ /* this reset request might be the result of a lockup; check */
+ if (detect_controller_lockup(h)) {
+ snprintf(msg, sizeof(msg),
+ "cmd %d RESET FAILED, new lockup detected",
+ hpsa_get_cmd_index(scsicmd));
+ hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+ rc = FAILED;
+ goto return_reset_status;
+ }
+
+ /* Do not attempt on controller */
+ if (is_hba_lunid(dev->scsi3addr)) {
+ rc = SUCCESS;
+ goto return_reset_status;
+ }
+
+ if (is_logical_dev_addr_mode(dev->scsi3addr))
+ reset_type = HPSA_DEVICE_RESET_MSG;
+ else
+ reset_type = HPSA_PHYS_TARGET_RESET;
+
+ sprintf(msg, "resetting %s",
+ reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
+ hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+
+ /*
+ * wait to see if any commands will complete before sending reset
+ */
+ dev->in_reset = true; /* block any new cmds from OS for this device */
+ for (i = 0; i < 10; i++) {
+ if (atomic_read(&dev->commands_outstanding) > 0)
+ msleep(1000);
+ else
+ break;
+ }
+
+ /* send a reset to the SCSI LUN which the command was sent to */
+ rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
+ if (rc == 0)
+ rc = SUCCESS;
+ else
+ rc = FAILED;
+
+ sprintf(msg, "reset %s %s",
+ reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
+ rc == SUCCESS ? "completed successfully" : "failed");
+ hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
+
+return_reset_status:
+ spin_lock_irqsave(&h->reset_lock, flags);
+ h->reset_in_progress = 0;
+ if (dev)
+ dev->in_reset = false;
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+ return rc;
+}
+
+/*
+ * For operations with an associated SCSI command, a command block is allocated
+ * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
+ * block request tag as an index into a table of entries. cmd_tagged_free() is
+ * the complement, although cmd_free() may be called instead.
+ */
+static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
+ struct scsi_cmnd *scmd)
+{
+ int idx = hpsa_get_cmd_index(scmd);
+ struct CommandList *c = h->cmd_pool + idx;
+
+ if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
+ dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
+ idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
+ /* The index value comes from the block layer, so if it's out of
+ * bounds, it's probably not our bug.
+ */
+ BUG();
+ }
+
+ if (unlikely(!hpsa_is_cmd_idle(c))) {
+ /*
+ * We expect that the SCSI layer will hand us a unique tag
+ * value. Thus, there should never be a collision here between
+ * two requests...because if the selected command isn't idle
+ * then someone is going to be very disappointed.
+ */
+ if (idx != h->last_collision_tag) { /* Print once per tag */
+ dev_warn(&h->pdev->dev,
+ "%s: tag collision (tag=%d)\n", __func__, idx);
+ if (scmd)
+ scsi_print_command(scmd);
+ h->last_collision_tag = idx;
+ }
+ return NULL;
+ }
+
+ atomic_inc(&c->refcount);
+
+ hpsa_cmd_partial_init(h, idx, c);
+ return c;
+}
+
+static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
+{
+ /*
+ * Release our reference to the block. We don't need to do anything
+ * else to free it, because it is accessed by index.
+ */
+ (void)atomic_dec(&c->refcount);
+}
+
+/*
+ * For operations that cannot sleep, a command block is allocated at init,
+ * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
+ * which ones are free or in use. Lock must be held when calling this.
+ * cmd_free() is the complement.
+ * This function never gives up and returns NULL. If it hangs,
+ * another thread must call cmd_free() to free some tags.
+ */
+
+static struct CommandList *cmd_alloc(struct ctlr_info *h)
+{
+ struct CommandList *c;
+ int refcount, i;
+ int offset = 0;
+
+ /*
+ * There is some *extremely* small but non-zero chance that that
+ * multiple threads could get in here, and one thread could
+ * be scanning through the list of bits looking for a free
+ * one, but the free ones are always behind him, and other
+ * threads sneak in behind him and eat them before he can
+ * get to them, so that while there is always a free one, a
+ * very unlucky thread might be starved anyway, never able to
+ * beat the other threads. In reality, this happens so
+ * infrequently as to be indistinguishable from never.
+ *
+ * Note that we start allocating commands before the SCSI host structure
+ * is initialized. Since the search starts at bit zero, this
+ * all works, since we have at least one command structure available;
+ * however, it means that the structures with the low indexes have to be
+ * reserved for driver-initiated requests, while requests from the block
+ * layer will use the higher indexes.
+ */
+
+ for (;;) {
+ i = find_next_zero_bit(h->cmd_pool_bits,
+ HPSA_NRESERVED_CMDS,
+ offset);
+ if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
+ offset = 0;
+ continue;
+ }
+ c = h->cmd_pool + i;
+ refcount = atomic_inc_return(&c->refcount);
+ if (unlikely(refcount > 1)) {
+ cmd_free(h, c); /* already in use */
+ offset = (i + 1) % HPSA_NRESERVED_CMDS;
+ continue;
+ }
+ set_bit(i & (BITS_PER_LONG - 1),
+ h->cmd_pool_bits + (i / BITS_PER_LONG));
+ break; /* it's ours now. */
+ }
+ hpsa_cmd_partial_init(h, i, c);
+ c->device = NULL;
+ return c;
+}
+
+/*
+ * This is the complementary operation to cmd_alloc(). Note, however, in some
+ * corner cases it may also be used to free blocks allocated by
+ * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
+ * the clear-bit is harmless.
+ */
+static void cmd_free(struct ctlr_info *h, struct CommandList *c)
+{
+ if (atomic_dec_and_test(&c->refcount)) {
+ int i;
+
+ i = c - h->cmd_pool;
+ clear_bit(i & (BITS_PER_LONG - 1),
+ h->cmd_pool_bits + (i / BITS_PER_LONG));
+ }
+}
+
+#ifdef CONFIG_COMPAT
+
+static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
+ void __user *arg)
+{
+ struct ctlr_info *h = sdev_to_hba(dev);
+ IOCTL32_Command_struct __user *arg32 = arg;
+ IOCTL_Command_struct arg64;
+ int err;
+ u32 cp;
+
+ if (!arg)
+ return -EINVAL;
+
+ memset(&arg64, 0, sizeof(arg64));
+ if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
+ return -EFAULT;
+ if (get_user(cp, &arg32->buf))
+ return -EFAULT;
+ arg64.buf = compat_ptr(cp);
+
+ if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
+ return -EAGAIN;
+ err = hpsa_passthru_ioctl(h, &arg64);
+ atomic_inc(&h->passthru_cmds_avail);
+ if (err)
+ return err;
+ if (copy_to_user(&arg32->error_info, &arg64.error_info,
+ sizeof(arg32->error_info)))
+ return -EFAULT;
+ return 0;
+}
+
+static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
+ unsigned int cmd, void __user *arg)
+{
+ struct ctlr_info *h = sdev_to_hba(dev);
+ BIG_IOCTL32_Command_struct __user *arg32 = arg;
+ BIG_IOCTL_Command_struct arg64;
+ int err;
+ u32 cp;
+
+ if (!arg)
+ return -EINVAL;
+ memset(&arg64, 0, sizeof(arg64));
+ if (copy_from_user(&arg64, arg32,
+ offsetof(BIG_IOCTL32_Command_struct, buf)))
+ return -EFAULT;
+ if (get_user(cp, &arg32->buf))
+ return -EFAULT;
+ arg64.buf = compat_ptr(cp);
+
+ if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
+ return -EAGAIN;
+ err = hpsa_big_passthru_ioctl(h, &arg64);
+ atomic_inc(&h->passthru_cmds_avail);
+ if (err)
+ return err;
+ if (copy_to_user(&arg32->error_info, &arg64.error_info,
+ sizeof(arg32->error_info)))
+ return -EFAULT;
+ return 0;
+}
+
+static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
+ void __user *arg)
+{
+ switch (cmd) {
+ case CCISS_GETPCIINFO:
+ case CCISS_GETINTINFO:
+ case CCISS_SETINTINFO:
+ case CCISS_GETNODENAME:
+ case CCISS_SETNODENAME:
+ case CCISS_GETHEARTBEAT:
+ case CCISS_GETBUSTYPES:
+ case CCISS_GETFIRMVER:
+ case CCISS_GETDRIVVER:
+ case CCISS_REVALIDVOLS:
+ case CCISS_DEREGDISK:
+ case CCISS_REGNEWDISK:
+ case CCISS_REGNEWD:
+ case CCISS_RESCANDISK:
+ case CCISS_GETLUNINFO:
+ return hpsa_ioctl(dev, cmd, arg);
+
+ case CCISS_PASSTHRU32:
+ return hpsa_ioctl32_passthru(dev, cmd, arg);
+ case CCISS_BIG_PASSTHRU32:
+ return hpsa_ioctl32_big_passthru(dev, cmd, arg);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+#endif
+
+static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
+{
+ struct hpsa_pci_info pciinfo;
+
+ if (!argp)
+ return -EINVAL;
+ pciinfo.domain = pci_domain_nr(h->pdev->bus);
+ pciinfo.bus = h->pdev->bus->number;
+ pciinfo.dev_fn = h->pdev->devfn;
+ pciinfo.board_id = h->board_id;
+ if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
+ return -EFAULT;
+ return 0;
+}
+
+static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
+{
+ DriverVer_type DriverVer;
+ unsigned char vmaj, vmin, vsubmin;
+ int rc;
+
+ rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
+ &vmaj, &vmin, &vsubmin);
+ if (rc != 3) {
+ dev_info(&h->pdev->dev, "driver version string '%s' "
+ "unrecognized.", HPSA_DRIVER_VERSION);
+ vmaj = 0;
+ vmin = 0;
+ vsubmin = 0;
+ }
+ DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
+ if (!argp)
+ return -EINVAL;
+ if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
+ return -EFAULT;
+ return 0;
+}
+
+static int hpsa_passthru_ioctl(struct ctlr_info *h,
+ IOCTL_Command_struct *iocommand)
+{
+ struct CommandList *c;
+ char *buff = NULL;
+ u64 temp64;
+ int rc = 0;
+
+ if (!capable(CAP_SYS_RAWIO))
+ return -EPERM;
+ if ((iocommand->buf_size < 1) &&
+ (iocommand->Request.Type.Direction != XFER_NONE)) {
+ return -EINVAL;
+ }
+ if (iocommand->buf_size > 0) {
+ buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
+ if (buff == NULL)
+ return -ENOMEM;
+ if (iocommand->Request.Type.Direction & XFER_WRITE) {
+ /* Copy the data into the buffer we created */
+ if (copy_from_user(buff, iocommand->buf,
+ iocommand->buf_size)) {
+ rc = -EFAULT;
+ goto out_kfree;
+ }
+ } else {
+ memset(buff, 0, iocommand->buf_size);
+ }
+ }
+ c = cmd_alloc(h);
+
+ /* Fill in the command type */
+ c->cmd_type = CMD_IOCTL_PEND;
+ c->scsi_cmd = SCSI_CMD_BUSY;
+ /* Fill in Command Header */
+ c->Header.ReplyQueue = 0; /* unused in simple mode */
+ if (iocommand->buf_size > 0) { /* buffer to fill */
+ c->Header.SGList = 1;
+ c->Header.SGTotal = cpu_to_le16(1);
+ } else { /* no buffers to fill */
+ c->Header.SGList = 0;
+ c->Header.SGTotal = cpu_to_le16(0);
+ }
+ memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
+
+ /* Fill in Request block */
+ memcpy(&c->Request, &iocommand->Request,
+ sizeof(c->Request));
+
+ /* Fill in the scatter gather information */
+ if (iocommand->buf_size > 0) {
+ temp64 = dma_map_single(&h->pdev->dev, buff,
+ iocommand->buf_size, DMA_BIDIRECTIONAL);
+ if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
+ c->SG[0].Addr = cpu_to_le64(0);
+ c->SG[0].Len = cpu_to_le32(0);
+ rc = -ENOMEM;
+ goto out;
+ }
+ c->SG[0].Addr = cpu_to_le64(temp64);
+ c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
+ c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
+ }
+ rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+ NO_TIMEOUT);
+ if (iocommand->buf_size > 0)
+ hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
+ check_ioctl_unit_attention(h, c);
+ if (rc) {
+ rc = -EIO;
+ goto out;
+ }
+
+ /* Copy the error information out */
+ memcpy(&iocommand->error_info, c->err_info,
+ sizeof(iocommand->error_info));
+ if ((iocommand->Request.Type.Direction & XFER_READ) &&
+ iocommand->buf_size > 0) {
+ /* Copy the data out of the buffer we created */
+ if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
+ rc = -EFAULT;
+ goto out;
+ }
+ }
+out:
+ cmd_free(h, c);
+out_kfree:
+ kfree(buff);
+ return rc;
+}
+
+static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
+ BIG_IOCTL_Command_struct *ioc)
+{
+ struct CommandList *c;
+ unsigned char **buff = NULL;
+ int *buff_size = NULL;
+ u64 temp64;
+ BYTE sg_used = 0;
+ int status = 0;
+ u32 left;
+ u32 sz;
+ BYTE __user *data_ptr;
+
+ if (!capable(CAP_SYS_RAWIO))
+ return -EPERM;
+
+ if ((ioc->buf_size < 1) &&
+ (ioc->Request.Type.Direction != XFER_NONE))
+ return -EINVAL;
+ /* Check kmalloc limits using all SGs */
+ if (ioc->malloc_size > MAX_KMALLOC_SIZE)
+ return -EINVAL;
+ if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
+ return -EINVAL;
+ buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
+ if (!buff) {
+ status = -ENOMEM;
+ goto cleanup1;
+ }
+ buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
+ if (!buff_size) {
+ status = -ENOMEM;
+ goto cleanup1;
+ }
+ left = ioc->buf_size;
+ data_ptr = ioc->buf;
+ while (left) {
+ sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
+ buff_size[sg_used] = sz;
+ buff[sg_used] = kmalloc(sz, GFP_KERNEL);
+ if (buff[sg_used] == NULL) {
+ status = -ENOMEM;
+ goto cleanup1;
+ }
+ if (ioc->Request.Type.Direction & XFER_WRITE) {
+ if (copy_from_user(buff[sg_used], data_ptr, sz)) {
+ status = -EFAULT;
+ goto cleanup1;
+ }
+ } else
+ memset(buff[sg_used], 0, sz);
+ left -= sz;
+ data_ptr += sz;
+ sg_used++;
+ }
+ c = cmd_alloc(h);
+
+ c->cmd_type = CMD_IOCTL_PEND;
+ c->scsi_cmd = SCSI_CMD_BUSY;
+ c->Header.ReplyQueue = 0;
+ c->Header.SGList = (u8) sg_used;
+ c->Header.SGTotal = cpu_to_le16(sg_used);
+ memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
+ memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
+ if (ioc->buf_size > 0) {
+ int i;
+ for (i = 0; i < sg_used; i++) {
+ temp64 = dma_map_single(&h->pdev->dev, buff[i],
+ buff_size[i], DMA_BIDIRECTIONAL);
+ if (dma_mapping_error(&h->pdev->dev,
+ (dma_addr_t) temp64)) {
+ c->SG[i].Addr = cpu_to_le64(0);
+ c->SG[i].Len = cpu_to_le32(0);
+ hpsa_pci_unmap(h->pdev, c, i,
+ DMA_BIDIRECTIONAL);
+ status = -ENOMEM;
+ goto cleanup0;
+ }
+ c->SG[i].Addr = cpu_to_le64(temp64);
+ c->SG[i].Len = cpu_to_le32(buff_size[i]);
+ c->SG[i].Ext = cpu_to_le32(0);
+ }
+ c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
+ }
+ status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
+ NO_TIMEOUT);
+ if (sg_used)
+ hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
+ check_ioctl_unit_attention(h, c);
+ if (status) {
+ status = -EIO;
+ goto cleanup0;
+ }
+
+ /* Copy the error information out */
+ memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
+ if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
+ int i;
+
+ /* Copy the data out of the buffer we created */
+ BYTE __user *ptr = ioc->buf;
+ for (i = 0; i < sg_used; i++) {
+ if (copy_to_user(ptr, buff[i], buff_size[i])) {
+ status = -EFAULT;
+ goto cleanup0;
+ }
+ ptr += buff_size[i];
+ }
+ }
+ status = 0;
+cleanup0:
+ cmd_free(h, c);
+cleanup1:
+ if (buff) {
+ int i;
+
+ for (i = 0; i < sg_used; i++)
+ kfree(buff[i]);
+ kfree(buff);
+ }
+ kfree(buff_size);
+ return status;
+}
+
+static void check_ioctl_unit_attention(struct ctlr_info *h,
+ struct CommandList *c)
+{
+ if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
+ c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
+ (void) check_for_unit_attention(h, c);
+}
+
+/*
+ * ioctl
+ */
+static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
+ void __user *argp)
+{
+ struct ctlr_info *h = sdev_to_hba(dev);
+ int rc;
+
+ switch (cmd) {
+ case CCISS_DEREGDISK:
+ case CCISS_REGNEWDISK:
+ case CCISS_REGNEWD:
+ hpsa_scan_start(h->scsi_host);
+ return 0;
+ case CCISS_GETPCIINFO:
+ return hpsa_getpciinfo_ioctl(h, argp);
+ case CCISS_GETDRIVVER:
+ return hpsa_getdrivver_ioctl(h, argp);
+ case CCISS_PASSTHRU: {
+ IOCTL_Command_struct iocommand;
+
+ if (!argp)
+ return -EINVAL;
+ if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
+ return -EFAULT;
+ if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
+ return -EAGAIN;
+ rc = hpsa_passthru_ioctl(h, &iocommand);
+ atomic_inc(&h->passthru_cmds_avail);
+ if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
+ rc = -EFAULT;
+ return rc;
+ }
+ case CCISS_BIG_PASSTHRU: {
+ BIG_IOCTL_Command_struct ioc;
+ if (!argp)
+ return -EINVAL;
+ if (copy_from_user(&ioc, argp, sizeof(ioc)))
+ return -EFAULT;
+ if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
+ return -EAGAIN;
+ rc = hpsa_big_passthru_ioctl(h, &ioc);
+ atomic_inc(&h->passthru_cmds_avail);
+ if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
+ rc = -EFAULT;
+ return rc;
+ }
+ default:
+ return -ENOTTY;
+ }
+}
+
+static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
+{
+ struct CommandList *c;
+
+ c = cmd_alloc(h);
+
+ /* fill_cmd can't fail here, no data buffer to map */
+ (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
+ RAID_CTLR_LUNID, TYPE_MSG);
+ c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
+ c->waiting = NULL;
+ enqueue_cmd_and_start_io(h, c);
+ /* Don't wait for completion, the reset won't complete. Don't free
+ * the command either. This is the last command we will send before
+ * re-initializing everything, so it doesn't matter and won't leak.
+ */
+ return;
+}
+
+static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
+ void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
+ int cmd_type)
+{
+ enum dma_data_direction dir = DMA_NONE;
+
+ c->cmd_type = CMD_IOCTL_PEND;
+ c->scsi_cmd = SCSI_CMD_BUSY;
+ c->Header.ReplyQueue = 0;
+ if (buff != NULL && size > 0) {
+ c->Header.SGList = 1;
+ c->Header.SGTotal = cpu_to_le16(1);
+ } else {
+ c->Header.SGList = 0;
+ c->Header.SGTotal = cpu_to_le16(0);
+ }
+ memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
+
+ if (cmd_type == TYPE_CMD) {
+ switch (cmd) {
+ case HPSA_INQUIRY:
+ /* are we trying to read a vital product page */
+ if (page_code & VPD_PAGE) {
+ c->Request.CDB[1] = 0x01;
+ c->Request.CDB[2] = (page_code & 0xff);
+ }
+ c->Request.CDBLen = 6;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = HPSA_INQUIRY;
+ c->Request.CDB[4] = size & 0xFF;
+ break;
+ case RECEIVE_DIAGNOSTIC:
+ c->Request.CDBLen = 6;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = cmd;
+ c->Request.CDB[1] = 1;
+ c->Request.CDB[2] = 1;
+ c->Request.CDB[3] = (size >> 8) & 0xFF;
+ c->Request.CDB[4] = size & 0xFF;
+ break;
+ case HPSA_REPORT_LOG:
+ case HPSA_REPORT_PHYS:
+ /* Talking to controller so It's a physical command
+ mode = 00 target = 0. Nothing to write.
+ */
+ c->Request.CDBLen = 12;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = cmd;
+ c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0xFF;
+ c->Request.CDB[9] = size & 0xFF;
+ break;
+ case BMIC_SENSE_DIAG_OPTIONS:
+ c->Request.CDBLen = 16;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ /* Spec says this should be BMIC_WRITE */
+ c->Request.CDB[0] = BMIC_READ;
+ c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
+ break;
+ case BMIC_SET_DIAG_OPTIONS:
+ c->Request.CDBLen = 16;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type,
+ ATTR_SIMPLE, XFER_WRITE);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_WRITE;
+ c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
+ break;
+ case HPSA_CACHE_FLUSH:
+ c->Request.CDBLen = 12;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type,
+ ATTR_SIMPLE, XFER_WRITE);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_WRITE;
+ c->Request.CDB[6] = BMIC_CACHE_FLUSH;
+ c->Request.CDB[7] = (size >> 8) & 0xFF;
+ c->Request.CDB[8] = size & 0xFF;
+ break;
+ case TEST_UNIT_READY:
+ c->Request.CDBLen = 6;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
+ c->Request.Timeout = 0;
+ break;
+ case HPSA_GET_RAID_MAP:
+ c->Request.CDBLen = 12;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = HPSA_CISS_READ;
+ c->Request.CDB[1] = cmd;
+ c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0xFF;
+ c->Request.CDB[9] = size & 0xFF;
+ break;
+ case BMIC_SENSE_CONTROLLER_PARAMETERS:
+ c->Request.CDBLen = 10;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_READ;
+ c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0xFF;
+ break;
+ case BMIC_IDENTIFY_PHYSICAL_DEVICE:
+ c->Request.CDBLen = 10;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_READ;
+ c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0XFF;
+ break;
+ case BMIC_SENSE_SUBSYSTEM_INFORMATION:
+ c->Request.CDBLen = 10;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_READ;
+ c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0XFF;
+ break;
+ case BMIC_SENSE_STORAGE_BOX_PARAMS:
+ c->Request.CDBLen = 10;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_READ;
+ c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0XFF;
+ break;
+ case BMIC_IDENTIFY_CONTROLLER:
+ c->Request.CDBLen = 10;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
+ c->Request.Timeout = 0;
+ c->Request.CDB[0] = BMIC_READ;
+ c->Request.CDB[1] = 0;
+ c->Request.CDB[2] = 0;
+ c->Request.CDB[3] = 0;
+ c->Request.CDB[4] = 0;
+ c->Request.CDB[5] = 0;
+ c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
+ c->Request.CDB[7] = (size >> 16) & 0xFF;
+ c->Request.CDB[8] = (size >> 8) & 0XFF;
+ c->Request.CDB[9] = 0;
+ break;
+ default:
+ dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
+ BUG();
+ }
+ } else if (cmd_type == TYPE_MSG) {
+ switch (cmd) {
+
+ case HPSA_PHYS_TARGET_RESET:
+ c->Request.CDBLen = 16;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
+ c->Request.Timeout = 0; /* Don't time out */
+ memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
+ c->Request.CDB[0] = HPSA_RESET;
+ c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
+ /* Physical target reset needs no control bytes 4-7*/
+ c->Request.CDB[4] = 0x00;
+ c->Request.CDB[5] = 0x00;
+ c->Request.CDB[6] = 0x00;
+ c->Request.CDB[7] = 0x00;
+ break;
+ case HPSA_DEVICE_RESET_MSG:
+ c->Request.CDBLen = 16;
+ c->Request.type_attr_dir =
+ TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
+ c->Request.Timeout = 0; /* Don't time out */
+ memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
+ c->Request.CDB[0] = cmd;
+ c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
+ /* If bytes 4-7 are zero, it means reset the */
+ /* LunID device */
+ c->Request.CDB[4] = 0x00;
+ c->Request.CDB[5] = 0x00;
+ c->Request.CDB[6] = 0x00;
+ c->Request.CDB[7] = 0x00;
+ break;
+ default:
+ dev_warn(&h->pdev->dev, "unknown message type %d\n",
+ cmd);
+ BUG();
+ }
+ } else {
+ dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
+ BUG();
+ }
+
+ switch (GET_DIR(c->Request.type_attr_dir)) {
+ case XFER_READ:
+ dir = DMA_FROM_DEVICE;
+ break;
+ case XFER_WRITE:
+ dir = DMA_TO_DEVICE;
+ break;
+ case XFER_NONE:
+ dir = DMA_NONE;
+ break;
+ default:
+ dir = DMA_BIDIRECTIONAL;
+ }
+ if (hpsa_map_one(h->pdev, c, buff, size, dir))
+ return -1;
+ return 0;
+}
+
+/*
+ * Map (physical) PCI mem into (virtual) kernel space
+ */
+static void __iomem *remap_pci_mem(ulong base, ulong size)
+{
+ ulong page_base = ((ulong) base) & PAGE_MASK;
+ ulong page_offs = ((ulong) base) - page_base;
+ void __iomem *page_remapped = ioremap(page_base,
+ page_offs + size);
+
+ return page_remapped ? (page_remapped + page_offs) : NULL;
+}
+
+static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
+{
+ return h->access.command_completed(h, q);
+}
+
+static inline bool interrupt_pending(struct ctlr_info *h)
+{
+ return h->access.intr_pending(h);
+}
+
+static inline long interrupt_not_for_us(struct ctlr_info *h)
+{
+ return (h->access.intr_pending(h) == 0) ||
+ (h->interrupts_enabled == 0);
+}
+
+static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
+ u32 raw_tag)
+{
+ if (unlikely(tag_index >= h->nr_cmds)) {
+ dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
+ return 1;
+ }
+ return 0;
+}
+
+static inline void finish_cmd(struct CommandList *c)
+{
+ dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
+ if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
+ || c->cmd_type == CMD_IOACCEL2))
+ complete_scsi_command(c);
+ else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
+ complete(c->waiting);
+}
+
+/* process completion of an indexed ("direct lookup") command */
+static inline void process_indexed_cmd(struct ctlr_info *h,
+ u32 raw_tag)
+{
+ u32 tag_index;
+ struct CommandList *c;
+
+ tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
+ if (!bad_tag(h, tag_index, raw_tag)) {
+ c = h->cmd_pool + tag_index;
+ finish_cmd(c);
+ }
+}
+
+/* Some controllers, like p400, will give us one interrupt
+ * after a soft reset, even if we turned interrupts off.
+ * Only need to check for this in the hpsa_xxx_discard_completions
+ * functions.
+ */
+static int ignore_bogus_interrupt(struct ctlr_info *h)
+{
+ if (likely(!reset_devices))
+ return 0;
+
+ if (likely(h->interrupts_enabled))
+ return 0;
+
+ dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
+ "(known firmware bug.) Ignoring.\n");
+
+ return 1;
+}
+
+/*
+ * Convert &h->q[x] (passed to interrupt handlers) back to h.
+ * Relies on (h-q[x] == x) being true for x such that
+ * 0 <= x < MAX_REPLY_QUEUES.
+ */
+static struct ctlr_info *queue_to_hba(u8 *queue)
+{
+ return container_of((queue - *queue), struct ctlr_info, q[0]);
+}
+
+static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
+{
+ struct ctlr_info *h = queue_to_hba(queue);
+ u8 q = *(u8 *) queue;
+ u32 raw_tag;
+
+ if (ignore_bogus_interrupt(h))
+ return IRQ_NONE;
+
+ if (interrupt_not_for_us(h))
+ return IRQ_NONE;
+ h->last_intr_timestamp = get_jiffies_64();
+ while (interrupt_pending(h)) {
+ raw_tag = get_next_completion(h, q);
+ while (raw_tag != FIFO_EMPTY)
+ raw_tag = next_command(h, q);
+ }
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
+{
+ struct ctlr_info *h = queue_to_hba(queue);
+ u32 raw_tag;
+ u8 q = *(u8 *) queue;
+
+ if (ignore_bogus_interrupt(h))
+ return IRQ_NONE;
+
+ h->last_intr_timestamp = get_jiffies_64();
+ raw_tag = get_next_completion(h, q);
+ while (raw_tag != FIFO_EMPTY)
+ raw_tag = next_command(h, q);
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
+{
+ struct ctlr_info *h = queue_to_hba((u8 *) queue);
+ u32 raw_tag;
+ u8 q = *(u8 *) queue;
+
+ if (interrupt_not_for_us(h))
+ return IRQ_NONE;
+ h->last_intr_timestamp = get_jiffies_64();
+ while (interrupt_pending(h)) {
+ raw_tag = get_next_completion(h, q);
+ while (raw_tag != FIFO_EMPTY) {
+ process_indexed_cmd(h, raw_tag);
+ raw_tag = next_command(h, q);
+ }
+ }
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
+{
+ struct ctlr_info *h = queue_to_hba(queue);
+ u32 raw_tag;
+ u8 q = *(u8 *) queue;
+
+ h->last_intr_timestamp = get_jiffies_64();
+ raw_tag = get_next_completion(h, q);
+ while (raw_tag != FIFO_EMPTY) {
+ process_indexed_cmd(h, raw_tag);
+ raw_tag = next_command(h, q);
+ }
+ return IRQ_HANDLED;
+}
+
+/* Send a message CDB to the firmware. Careful, this only works
+ * in simple mode, not performant mode due to the tag lookup.
+ * We only ever use this immediately after a controller reset.
+ */
+static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
+ unsigned char type)
+{
+ struct Command {
+ struct CommandListHeader CommandHeader;
+ struct RequestBlock Request;
+ struct ErrDescriptor ErrorDescriptor;
+ };
+ struct Command *cmd;
+ static const size_t cmd_sz = sizeof(*cmd) +
+ sizeof(cmd->ErrorDescriptor);
+ dma_addr_t paddr64;
+ __le32 paddr32;
+ u32 tag;
+ void __iomem *vaddr;
+ int i, err;
+
+ vaddr = pci_ioremap_bar(pdev, 0);
+ if (vaddr == NULL)
+ return -ENOMEM;
+
+ /* The Inbound Post Queue only accepts 32-bit physical addresses for the
+ * CCISS commands, so they must be allocated from the lower 4GiB of
+ * memory.
+ */
+ err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
+ if (err) {
+ iounmap(vaddr);
+ return err;
+ }
+
+ cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
+ if (cmd == NULL) {
+ iounmap(vaddr);
+ return -ENOMEM;
+ }
+
+ /* This must fit, because of the 32-bit consistent DMA mask. Also,
+ * although there's no guarantee, we assume that the address is at
+ * least 4-byte aligned (most likely, it's page-aligned).
+ */
+ paddr32 = cpu_to_le32(paddr64);
+
+ cmd->CommandHeader.ReplyQueue = 0;
+ cmd->CommandHeader.SGList = 0;
+ cmd->CommandHeader.SGTotal = cpu_to_le16(0);
+ cmd->CommandHeader.tag = cpu_to_le64(paddr64);
+ memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
+
+ cmd->Request.CDBLen = 16;
+ cmd->Request.type_attr_dir =
+ TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
+ cmd->Request.Timeout = 0; /* Don't time out */
+ cmd->Request.CDB[0] = opcode;
+ cmd->Request.CDB[1] = type;
+ memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
+ cmd->ErrorDescriptor.Addr =
+ cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
+ cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
+
+ writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
+
+ for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
+ tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
+ if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
+ break;
+ msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
+ }
+
+ iounmap(vaddr);
+
+ /* we leak the DMA buffer here ... no choice since the controller could
+ * still complete the command.
+ */
+ if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
+ dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
+ opcode, type);
+ return -ETIMEDOUT;
+ }
+
+ dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
+
+ if (tag & HPSA_ERROR_BIT) {
+ dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
+ opcode, type);
+ return -EIO;
+ }
+
+ dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
+ opcode, type);
+ return 0;
+}
+
+#define hpsa_noop(p) hpsa_message(p, 3, 0)
+
+static int hpsa_controller_hard_reset(struct pci_dev *pdev,
+ void __iomem *vaddr, u32 use_doorbell)
+{
+
+ if (use_doorbell) {
+ /* For everything after the P600, the PCI power state method
+ * of resetting the controller doesn't work, so we have this
+ * other way using the doorbell register.
+ */
+ dev_info(&pdev->dev, "using doorbell to reset controller\n");
+ writel(use_doorbell, vaddr + SA5_DOORBELL);
+
+ /* PMC hardware guys tell us we need a 10 second delay after
+ * doorbell reset and before any attempt to talk to the board
+ * at all to ensure that this actually works and doesn't fall
+ * over in some weird corner cases.
+ */
+ msleep(10000);
+ } else { /* Try to do it the PCI power state way */
+
+ /* Quoting from the Open CISS Specification: "The Power
+ * Management Control/Status Register (CSR) controls the power
+ * state of the device. The normal operating state is D0,
+ * CSR=00h. The software off state is D3, CSR=03h. To reset
+ * the controller, place the interface device in D3 then to D0,
+ * this causes a secondary PCI reset which will reset the
+ * controller." */
+
+ int rc = 0;
+
+ dev_info(&pdev->dev, "using PCI PM to reset controller\n");
+
+ /* enter the D3hot power management state */
+ rc = pci_set_power_state(pdev, PCI_D3hot);
+ if (rc)
+ return rc;
+
+ msleep(500);
+
+ /* enter the D0 power management state */
+ rc = pci_set_power_state(pdev, PCI_D0);
+ if (rc)
+ return rc;
+
+ /*
+ * The P600 requires a small delay when changing states.
+ * Otherwise we may think the board did not reset and we bail.
+ * This for kdump only and is particular to the P600.
+ */
+ msleep(500);
+ }
+ return 0;
+}
+
+static void init_driver_version(char *driver_version, int len)
+{
+ memset(driver_version, 0, len);
+ strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
+}
+
+static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
+{
+ char *driver_version;
+ int i, size = sizeof(cfgtable->driver_version);
+
+ driver_version = kmalloc(size, GFP_KERNEL);
+ if (!driver_version)
+ return -ENOMEM;
+
+ init_driver_version(driver_version, size);
+ for (i = 0; i < size; i++)
+ writeb(driver_version[i], &cfgtable->driver_version[i]);
+ kfree(driver_version);
+ return 0;
+}
+
+static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
+ unsigned char *driver_ver)
+{
+ int i;
+
+ for (i = 0; i < sizeof(cfgtable->driver_version); i++)
+ driver_ver[i] = readb(&cfgtable->driver_version[i]);
+}
+
+static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
+{
+
+ char *driver_ver, *old_driver_ver;
+ int rc, size = sizeof(cfgtable->driver_version);
+
+ old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
+ if (!old_driver_ver)
+ return -ENOMEM;
+ driver_ver = old_driver_ver + size;
+
+ /* After a reset, the 32 bytes of "driver version" in the cfgtable
+ * should have been changed, otherwise we know the reset failed.
+ */
+ init_driver_version(old_driver_ver, size);
+ read_driver_ver_from_cfgtable(cfgtable, driver_ver);
+ rc = !memcmp(driver_ver, old_driver_ver, size);
+ kfree(old_driver_ver);
+ return rc;
+}
+/* This does a hard reset of the controller using PCI power management
+ * states or the using the doorbell register.
+ */
+static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
+{
+ u64 cfg_offset;
+ u32 cfg_base_addr;
+ u64 cfg_base_addr_index;
+ void __iomem *vaddr;
+ unsigned long paddr;
+ u32 misc_fw_support;
+ int rc;
+ struct CfgTable __iomem *cfgtable;
+ u32 use_doorbell;
+ u16 command_register;
+
+ /* For controllers as old as the P600, this is very nearly
+ * the same thing as
+ *
+ * pci_save_state(pci_dev);
+ * pci_set_power_state(pci_dev, PCI_D3hot);
+ * pci_set_power_state(pci_dev, PCI_D0);
+ * pci_restore_state(pci_dev);
+ *
+ * For controllers newer than the P600, the pci power state
+ * method of resetting doesn't work so we have another way
+ * using the doorbell register.
+ */
+
+ if (!ctlr_is_resettable(board_id)) {
+ dev_warn(&pdev->dev, "Controller not resettable\n");
+ return -ENODEV;
+ }
+
+ /* if controller is soft- but not hard resettable... */
+ if (!ctlr_is_hard_resettable(board_id))
+ return -ENOTSUPP; /* try soft reset later. */
+
+ /* Save the PCI command register */
+ pci_read_config_word(pdev, 4, &command_register);
+ pci_save_state(pdev);
+
+ /* find the first memory BAR, so we can find the cfg table */
+ rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
+ if (rc)
+ return rc;
+ vaddr = remap_pci_mem(paddr, 0x250);
+ if (!vaddr)
+ return -ENOMEM;
+
+ /* find cfgtable in order to check if reset via doorbell is supported */
+ rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
+ &cfg_base_addr_index, &cfg_offset);
+ if (rc)
+ goto unmap_vaddr;
+ cfgtable = remap_pci_mem(pci_resource_start(pdev,
+ cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
+ if (!cfgtable) {
+ rc = -ENOMEM;
+ goto unmap_vaddr;
+ }
+ rc = write_driver_ver_to_cfgtable(cfgtable);
+ if (rc)
+ goto unmap_cfgtable;
+
+ /* If reset via doorbell register is supported, use that.
+ * There are two such methods. Favor the newest method.
+ */
+ misc_fw_support = readl(&cfgtable->misc_fw_support);
+ use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
+ if (use_doorbell) {
+ use_doorbell = DOORBELL_CTLR_RESET2;
+ } else {
+ use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
+ if (use_doorbell) {
+ dev_warn(&pdev->dev,
+ "Soft reset not supported. Firmware update is required.\n");
+ rc = -ENOTSUPP; /* try soft reset */
+ goto unmap_cfgtable;
+ }
+ }
+
+ rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
+ if (rc)
+ goto unmap_cfgtable;
+
+ pci_restore_state(pdev);
+ pci_write_config_word(pdev, 4, command_register);
+
+ /* Some devices (notably the HP Smart Array 5i Controller)
+ need a little pause here */
+ msleep(HPSA_POST_RESET_PAUSE_MSECS);
+
+ rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
+ if (rc) {
+ dev_warn(&pdev->dev,
+ "Failed waiting for board to become ready after hard reset\n");
+ goto unmap_cfgtable;
+ }
+
+ rc = controller_reset_failed(vaddr);
+ if (rc < 0)
+ goto unmap_cfgtable;
+ if (rc) {
+ dev_warn(&pdev->dev, "Unable to successfully reset "
+ "controller. Will try soft reset.\n");
+ rc = -ENOTSUPP;
+ } else {
+ dev_info(&pdev->dev, "board ready after hard reset.\n");
+ }
+
+unmap_cfgtable:
+ iounmap(cfgtable);
+
+unmap_vaddr:
+ iounmap(vaddr);
+ return rc;
+}
+
+/*
+ * We cannot read the structure directly, for portability we must use
+ * the io functions.
+ * This is for debug only.
+ */
+static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
+{
+#ifdef HPSA_DEBUG
+ int i;
+ char temp_name[17];
+
+ dev_info(dev, "Controller Configuration information\n");
+ dev_info(dev, "------------------------------------\n");
+ for (i = 0; i < 4; i++)
+ temp_name[i] = readb(&(tb->Signature[i]));
+ temp_name[4] = '\0';
+ dev_info(dev, " Signature = %s\n", temp_name);
+ dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
+ dev_info(dev, " Transport methods supported = 0x%x\n",
+ readl(&(tb->TransportSupport)));
+ dev_info(dev, " Transport methods active = 0x%x\n",
+ readl(&(tb->TransportActive)));
+ dev_info(dev, " Requested transport Method = 0x%x\n",
+ readl(&(tb->HostWrite.TransportRequest)));
+ dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
+ readl(&(tb->HostWrite.CoalIntDelay)));
+ dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
+ readl(&(tb->HostWrite.CoalIntCount)));
+ dev_info(dev, " Max outstanding commands = %d\n",
+ readl(&(tb->CmdsOutMax)));
+ dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
+ for (i = 0; i < 16; i++)
+ temp_name[i] = readb(&(tb->ServerName[i]));
+ temp_name[16] = '\0';
+ dev_info(dev, " Server Name = %s\n", temp_name);
+ dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
+ readl(&(tb->HeartBeat)));
+#endif /* HPSA_DEBUG */
+}
+
+static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
+{
+ int i, offset, mem_type, bar_type;
+
+ if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
+ return 0;
+ offset = 0;
+ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
+ bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
+ if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
+ offset += 4;
+ else {
+ mem_type = pci_resource_flags(pdev, i) &
+ PCI_BASE_ADDRESS_MEM_TYPE_MASK;
+ switch (mem_type) {
+ case PCI_BASE_ADDRESS_MEM_TYPE_32:
+ case PCI_BASE_ADDRESS_MEM_TYPE_1M:
+ offset += 4; /* 32 bit */
+ break;
+ case PCI_BASE_ADDRESS_MEM_TYPE_64:
+ offset += 8;
+ break;
+ default: /* reserved in PCI 2.2 */
+ dev_warn(&pdev->dev,
+ "base address is invalid\n");
+ return -1;
+ break;
+ }
+ }
+ if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
+ return i + 1;
+ }
+ return -1;
+}
+
+static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
+{
+ pci_free_irq_vectors(h->pdev);
+ h->msix_vectors = 0;
+}
+
+static void hpsa_setup_reply_map(struct ctlr_info *h)
+{
+ const struct cpumask *mask;
+ unsigned int queue, cpu;
+
+ for (queue = 0; queue < h->msix_vectors; queue++) {
+ mask = pci_irq_get_affinity(h->pdev, queue);
+ if (!mask)
+ goto fallback;
+
+ for_each_cpu(cpu, mask)
+ h->reply_map[cpu] = queue;
+ }
+ return;
+
+fallback:
+ for_each_possible_cpu(cpu)
+ h->reply_map[cpu] = 0;
+}
+
+/* If MSI/MSI-X is supported by the kernel we will try to enable it on
+ * controllers that are capable. If not, we use legacy INTx mode.
+ */
+static int hpsa_interrupt_mode(struct ctlr_info *h)
+{
+ unsigned int flags = PCI_IRQ_LEGACY;
+ int ret;
+
+ /* Some boards advertise MSI but don't really support it */
+ switch (h->board_id) {
+ case 0x40700E11:
+ case 0x40800E11:
+ case 0x40820E11:
+ case 0x40830E11:
+ break;
+ default:
+ ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
+ PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
+ if (ret > 0) {
+ h->msix_vectors = ret;
+ return 0;
+ }
+
+ flags |= PCI_IRQ_MSI;
+ break;
+ }
+
+ ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
+ if (ret < 0)
+ return ret;
+ return 0;
+}
+
+static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
+ bool *legacy_board)
+{
+ int i;
+ u32 subsystem_vendor_id, subsystem_device_id;
+
+ subsystem_vendor_id = pdev->subsystem_vendor;
+ subsystem_device_id = pdev->subsystem_device;
+ *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
+ subsystem_vendor_id;
+
+ if (legacy_board)
+ *legacy_board = false;
+ for (i = 0; i < ARRAY_SIZE(products); i++)
+ if (*board_id == products[i].board_id) {
+ if (products[i].access != &SA5A_access &&
+ products[i].access != &SA5B_access)
+ return i;
+ dev_warn(&pdev->dev,
+ "legacy board ID: 0x%08x\n",
+ *board_id);
+ if (legacy_board)
+ *legacy_board = true;
+ return i;
+ }
+
+ dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
+ if (legacy_board)
+ *legacy_board = true;
+ return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
+}
+
+static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
+ unsigned long *memory_bar)
+{
+ int i;
+
+ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
+ if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
+ /* addressing mode bits already removed */
+ *memory_bar = pci_resource_start(pdev, i);
+ dev_dbg(&pdev->dev, "memory BAR = %lx\n",
+ *memory_bar);
+ return 0;
+ }
+ dev_warn(&pdev->dev, "no memory BAR found\n");
+ return -ENODEV;
+}
+
+static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
+ int wait_for_ready)
+{
+ int i, iterations;
+ u32 scratchpad;
+ if (wait_for_ready)
+ iterations = HPSA_BOARD_READY_ITERATIONS;
+ else
+ iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
+
+ for (i = 0; i < iterations; i++) {
+ scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
+ if (wait_for_ready) {
+ if (scratchpad == HPSA_FIRMWARE_READY)
+ return 0;
+ } else {
+ if (scratchpad != HPSA_FIRMWARE_READY)
+ return 0;
+ }
+ msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
+ }
+ dev_warn(&pdev->dev, "board not ready, timed out.\n");
+ return -ENODEV;
+}
+
+static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
+ u32 *cfg_base_addr, u64 *cfg_base_addr_index,
+ u64 *cfg_offset)
+{
+ *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
+ *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
+ *cfg_base_addr &= (u32) 0x0000ffff;
+ *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
+ if (*cfg_base_addr_index == -1) {
+ dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static void hpsa_free_cfgtables(struct ctlr_info *h)
+{
+ if (h->transtable) {
+ iounmap(h->transtable);
+ h->transtable = NULL;
+ }
+ if (h->cfgtable) {
+ iounmap(h->cfgtable);
+ h->cfgtable = NULL;
+ }
+}
+
+/* Find and map CISS config table and transfer table
++ * several items must be unmapped (freed) later
++ * */
+static int hpsa_find_cfgtables(struct ctlr_info *h)
+{
+ u64 cfg_offset;
+ u32 cfg_base_addr;
+ u64 cfg_base_addr_index;
+ u32 trans_offset;
+ int rc;
+
+ rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
+ &cfg_base_addr_index, &cfg_offset);
+ if (rc)
+ return rc;
+ h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
+ cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
+ if (!h->cfgtable) {
+ dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
+ return -ENOMEM;
+ }
+ rc = write_driver_ver_to_cfgtable(h->cfgtable);
+ if (rc)
+ return rc;
+ /* Find performant mode table. */
+ trans_offset = readl(&h->cfgtable->TransMethodOffset);
+ h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
+ cfg_base_addr_index)+cfg_offset+trans_offset,
+ sizeof(*h->transtable));
+ if (!h->transtable) {
+ dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
+ hpsa_free_cfgtables(h);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
+{
+#define MIN_MAX_COMMANDS 16
+ BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
+
+ h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
+
+ /* Limit commands in memory limited kdump scenario. */
+ if (reset_devices && h->max_commands > 32)
+ h->max_commands = 32;
+
+ if (h->max_commands < MIN_MAX_COMMANDS) {
+ dev_warn(&h->pdev->dev,
+ "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
+ h->max_commands,
+ MIN_MAX_COMMANDS);
+ h->max_commands = MIN_MAX_COMMANDS;
+ }
+}
+
+/* If the controller reports that the total max sg entries is greater than 512,
+ * then we know that chained SG blocks work. (Original smart arrays did not
+ * support chained SG blocks and would return zero for max sg entries.)
+ */
+static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
+{
+ return h->maxsgentries > 512;
+}
+
+/* Interrogate the hardware for some limits:
+ * max commands, max SG elements without chaining, and with chaining,
+ * SG chain block size, etc.
+ */
+static void hpsa_find_board_params(struct ctlr_info *h)
+{
+ hpsa_get_max_perf_mode_cmds(h);
+ h->nr_cmds = h->max_commands;
+ h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
+ h->fw_support = readl(&(h->cfgtable->misc_fw_support));
+ if (hpsa_supports_chained_sg_blocks(h)) {
+ /* Limit in-command s/g elements to 32 save dma'able memory. */
+ h->max_cmd_sg_entries = 32;
+ h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
+ h->maxsgentries--; /* save one for chain pointer */
+ } else {
+ /*
+ * Original smart arrays supported at most 31 s/g entries
+ * embedded inline in the command (trying to use more
+ * would lock up the controller)
+ */
+ h->max_cmd_sg_entries = 31;
+ h->maxsgentries = 31; /* default to traditional values */
+ h->chainsize = 0;
+ }
+
+ /* Find out what task management functions are supported and cache */
+ h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
+ if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
+ dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
+ if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
+ dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
+ if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
+ dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
+}
+
+static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
+{
+ if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
+ dev_err(&h->pdev->dev, "not a valid CISS config table\n");
+ return false;
+ }
+ return true;
+}
+
+static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
+{
+ u32 driver_support;
+
+ driver_support = readl(&(h->cfgtable->driver_support));
+ /* Need to enable prefetch in the SCSI core for 6400 in x86 */
+#ifdef CONFIG_X86
+ driver_support |= ENABLE_SCSI_PREFETCH;
+#endif
+ driver_support |= ENABLE_UNIT_ATTN;
+ writel(driver_support, &(h->cfgtable->driver_support));
+}
+
+/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
+ * in a prefetch beyond physical memory.
+ */
+static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
+{
+ u32 dma_prefetch;
+
+ if (h->board_id != 0x3225103C)
+ return;
+ dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
+ dma_prefetch |= 0x8000;
+ writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
+}
+
+static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
+{
+ int i;
+ u32 doorbell_value;
+ unsigned long flags;
+ /* wait until the clear_event_notify bit 6 is cleared by controller. */
+ for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
+ spin_lock_irqsave(&h->lock, flags);
+ doorbell_value = readl(h->vaddr + SA5_DOORBELL);
+ spin_unlock_irqrestore(&h->lock, flags);
+ if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
+ goto done;
+ /* delay and try again */
+ msleep(CLEAR_EVENT_WAIT_INTERVAL);
+ }
+ return -ENODEV;
+done:
+ return 0;
+}
+
+static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
+{
+ int i;
+ u32 doorbell_value;
+ unsigned long flags;
+
+ /* under certain very rare conditions, this can take awhile.
+ * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
+ * as we enter this code.)
+ */
+ for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
+ if (h->remove_in_progress)
+ goto done;
+ spin_lock_irqsave(&h->lock, flags);
+ doorbell_value = readl(h->vaddr + SA5_DOORBELL);
+ spin_unlock_irqrestore(&h->lock, flags);
+ if (!(doorbell_value & CFGTBL_ChangeReq))
+ goto done;
+ /* delay and try again */
+ msleep(MODE_CHANGE_WAIT_INTERVAL);
+ }
+ return -ENODEV;
+done:
+ return 0;
+}
+
+/* return -ENODEV or other reason on error, 0 on success */
+static int hpsa_enter_simple_mode(struct ctlr_info *h)
+{
+ u32 trans_support;
+
+ trans_support = readl(&(h->cfgtable->TransportSupport));
+ if (!(trans_support & SIMPLE_MODE))
+ return -ENOTSUPP;
+
+ h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
+
+ /* Update the field, and then ring the doorbell */
+ writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
+ writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
+ writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+ if (hpsa_wait_for_mode_change_ack(h))
+ goto error;
+ print_cfg_table(&h->pdev->dev, h->cfgtable);
+ if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
+ goto error;
+ h->transMethod = CFGTBL_Trans_Simple;
+ return 0;
+error:
+ dev_err(&h->pdev->dev, "failed to enter simple mode\n");
+ return -ENODEV;
+}
+
+/* free items allocated or mapped by hpsa_pci_init */
+static void hpsa_free_pci_init(struct ctlr_info *h)
+{
+ hpsa_free_cfgtables(h); /* pci_init 4 */
+ iounmap(h->vaddr); /* pci_init 3 */
+ h->vaddr = NULL;
+ hpsa_disable_interrupt_mode(h); /* pci_init 2 */
+ /*
+ * call pci_disable_device before pci_release_regions per
+ * Documentation/driver-api/pci/pci.rst
+ */
+ pci_disable_device(h->pdev); /* pci_init 1 */
+ pci_release_regions(h->pdev); /* pci_init 2 */
+}
+
+/* several items must be freed later */
+static int hpsa_pci_init(struct ctlr_info *h)
+{
+ int prod_index, err;
+ bool legacy_board;
+
+ prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
+ if (prod_index < 0)
+ return prod_index;
+ h->product_name = products[prod_index].product_name;
+ h->access = *(products[prod_index].access);
+ h->legacy_board = legacy_board;
+ pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
+ PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
+
+ err = pci_enable_device(h->pdev);
+ if (err) {
+ dev_err(&h->pdev->dev, "failed to enable PCI device\n");
+ pci_disable_device(h->pdev);
+ return err;
+ }
+
+ err = pci_request_regions(h->pdev, HPSA);
+ if (err) {
+ dev_err(&h->pdev->dev,
+ "failed to obtain PCI resources\n");
+ pci_disable_device(h->pdev);
+ return err;
+ }
+
+ pci_set_master(h->pdev);
+
+ err = hpsa_interrupt_mode(h);
+ if (err)
+ goto clean1;
+
+ /* setup mapping between CPU and reply queue */
+ hpsa_setup_reply_map(h);
+
+ err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
+ if (err)
+ goto clean2; /* intmode+region, pci */
+ h->vaddr = remap_pci_mem(h->paddr, 0x250);
+ if (!h->vaddr) {
+ dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
+ err = -ENOMEM;
+ goto clean2; /* intmode+region, pci */
+ }
+ err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
+ if (err)
+ goto clean3; /* vaddr, intmode+region, pci */
+ err = hpsa_find_cfgtables(h);
+ if (err)
+ goto clean3; /* vaddr, intmode+region, pci */
+ hpsa_find_board_params(h);
+
+ if (!hpsa_CISS_signature_present(h)) {
+ err = -ENODEV;
+ goto clean4; /* cfgtables, vaddr, intmode+region, pci */
+ }
+ hpsa_set_driver_support_bits(h);
+ hpsa_p600_dma_prefetch_quirk(h);
+ err = hpsa_enter_simple_mode(h);
+ if (err)
+ goto clean4; /* cfgtables, vaddr, intmode+region, pci */
+ return 0;
+
+clean4: /* cfgtables, vaddr, intmode+region, pci */
+ hpsa_free_cfgtables(h);
+clean3: /* vaddr, intmode+region, pci */
+ iounmap(h->vaddr);
+ h->vaddr = NULL;
+clean2: /* intmode+region, pci */
+ hpsa_disable_interrupt_mode(h);
+clean1:
+ /*
+ * call pci_disable_device before pci_release_regions per
+ * Documentation/driver-api/pci/pci.rst
+ */
+ pci_disable_device(h->pdev);
+ pci_release_regions(h->pdev);
+ return err;
+}
+
+static void hpsa_hba_inquiry(struct ctlr_info *h)
+{
+ int rc;
+
+#define HBA_INQUIRY_BYTE_COUNT 64
+ h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
+ if (!h->hba_inquiry_data)
+ return;
+ rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
+ h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
+ if (rc != 0) {
+ kfree(h->hba_inquiry_data);
+ h->hba_inquiry_data = NULL;
+ }
+}
+
+static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
+{
+ int rc, i;
+ void __iomem *vaddr;
+
+ if (!reset_devices)
+ return 0;
+
+ /* kdump kernel is loading, we don't know in which state is
+ * the pci interface. The dev->enable_cnt is equal zero
+ * so we call enable+disable, wait a while and switch it on.
+ */
+ rc = pci_enable_device(pdev);
+ if (rc) {
+ dev_warn(&pdev->dev, "Failed to enable PCI device\n");
+ return -ENODEV;
+ }
+ pci_disable_device(pdev);
+ msleep(260); /* a randomly chosen number */
+ rc = pci_enable_device(pdev);
+ if (rc) {
+ dev_warn(&pdev->dev, "failed to enable device.\n");
+ return -ENODEV;
+ }
+
+ pci_set_master(pdev);
+
+ vaddr = pci_ioremap_bar(pdev, 0);
+ if (vaddr == NULL) {
+ rc = -ENOMEM;
+ goto out_disable;
+ }
+ writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
+ iounmap(vaddr);
+
+ /* Reset the controller with a PCI power-cycle or via doorbell */
+ rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
+
+ /* -ENOTSUPP here means we cannot reset the controller
+ * but it's already (and still) up and running in
+ * "performant mode". Or, it might be 640x, which can't reset
+ * due to concerns about shared bbwc between 6402/6404 pair.
+ */
+ if (rc)
+ goto out_disable;
+
+ /* Now try to get the controller to respond to a no-op */
+ dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
+ for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
+ if (hpsa_noop(pdev) == 0)
+ break;
+ else
+ dev_warn(&pdev->dev, "no-op failed%s\n",
+ (i < 11 ? "; re-trying" : ""));
+ }
+
+out_disable:
+
+ pci_disable_device(pdev);
+ return rc;
+}
+
+static void hpsa_free_cmd_pool(struct ctlr_info *h)
+{
+ kfree(h->cmd_pool_bits);
+ h->cmd_pool_bits = NULL;
+ if (h->cmd_pool) {
+ dma_free_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(struct CommandList),
+ h->cmd_pool,
+ h->cmd_pool_dhandle);
+ h->cmd_pool = NULL;
+ h->cmd_pool_dhandle = 0;
+ }
+ if (h->errinfo_pool) {
+ dma_free_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(struct ErrorInfo),
+ h->errinfo_pool,
+ h->errinfo_pool_dhandle);
+ h->errinfo_pool = NULL;
+ h->errinfo_pool_dhandle = 0;
+ }
+}
+
+static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
+{
+ h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
+ sizeof(unsigned long),
+ GFP_KERNEL);
+ h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(*h->cmd_pool),
+ &h->cmd_pool_dhandle, GFP_KERNEL);
+ h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(*h->errinfo_pool),
+ &h->errinfo_pool_dhandle, GFP_KERNEL);
+ if ((h->cmd_pool_bits == NULL)
+ || (h->cmd_pool == NULL)
+ || (h->errinfo_pool == NULL)) {
+ dev_err(&h->pdev->dev, "out of memory in %s", __func__);
+ goto clean_up;
+ }
+ hpsa_preinitialize_commands(h);
+ return 0;
+clean_up:
+ hpsa_free_cmd_pool(h);
+ return -ENOMEM;
+}
+
+/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
+static void hpsa_free_irqs(struct ctlr_info *h)
+{
+ int i;
+ int irq_vector = 0;
+
+ if (hpsa_simple_mode)
+ irq_vector = h->intr_mode;
+
+ if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
+ /* Single reply queue, only one irq to free */
+ free_irq(pci_irq_vector(h->pdev, irq_vector),
+ &h->q[h->intr_mode]);
+ h->q[h->intr_mode] = 0;
+ return;
+ }
+
+ for (i = 0; i < h->msix_vectors; i++) {
+ free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
+ h->q[i] = 0;
+ }
+ for (; i < MAX_REPLY_QUEUES; i++)
+ h->q[i] = 0;
+}
+
+/* returns 0 on success; cleans up and returns -Enn on error */
+static int hpsa_request_irqs(struct ctlr_info *h,
+ irqreturn_t (*msixhandler)(int, void *),
+ irqreturn_t (*intxhandler)(int, void *))
+{
+ int rc, i;
+ int irq_vector = 0;
+
+ if (hpsa_simple_mode)
+ irq_vector = h->intr_mode;
+
+ /*
+ * initialize h->q[x] = x so that interrupt handlers know which
+ * queue to process.
+ */
+ for (i = 0; i < MAX_REPLY_QUEUES; i++)
+ h->q[i] = (u8) i;
+
+ if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
+ /* If performant mode and MSI-X, use multiple reply queues */
+ for (i = 0; i < h->msix_vectors; i++) {
+ sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
+ rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
+ 0, h->intrname[i],
+ &h->q[i]);
+ if (rc) {
+ int j;
+
+ dev_err(&h->pdev->dev,
+ "failed to get irq %d for %s\n",
+ pci_irq_vector(h->pdev, i), h->devname);
+ for (j = 0; j < i; j++) {
+ free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
+ h->q[j] = 0;
+ }
+ for (; j < MAX_REPLY_QUEUES; j++)
+ h->q[j] = 0;
+ return rc;
+ }
+ }
+ } else {
+ /* Use single reply pool */
+ if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
+ sprintf(h->intrname[0], "%s-msi%s", h->devname,
+ h->msix_vectors ? "x" : "");
+ rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
+ msixhandler, 0,
+ h->intrname[0],
+ &h->q[h->intr_mode]);
+ } else {
+ sprintf(h->intrname[h->intr_mode],
+ "%s-intx", h->devname);
+ rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
+ intxhandler, IRQF_SHARED,
+ h->intrname[0],
+ &h->q[h->intr_mode]);
+ }
+ }
+ if (rc) {
+ dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
+ pci_irq_vector(h->pdev, irq_vector), h->devname);
+ hpsa_free_irqs(h);
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static int hpsa_kdump_soft_reset(struct ctlr_info *h)
+{
+ int rc;
+ hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
+
+ dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
+ rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
+ if (rc) {
+ dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
+ return rc;
+ }
+
+ dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
+ rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
+ if (rc) {
+ dev_warn(&h->pdev->dev, "Board failed to become ready "
+ "after soft reset.\n");
+ return rc;
+ }
+
+ return 0;
+}
+
+static void hpsa_free_reply_queues(struct ctlr_info *h)
+{
+ int i;
+
+ for (i = 0; i < h->nreply_queues; i++) {
+ if (!h->reply_queue[i].head)
+ continue;
+ dma_free_coherent(&h->pdev->dev,
+ h->reply_queue_size,
+ h->reply_queue[i].head,
+ h->reply_queue[i].busaddr);
+ h->reply_queue[i].head = NULL;
+ h->reply_queue[i].busaddr = 0;
+ }
+ h->reply_queue_size = 0;
+}
+
+static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
+{
+ hpsa_free_performant_mode(h); /* init_one 7 */
+ hpsa_free_sg_chain_blocks(h); /* init_one 6 */
+ hpsa_free_cmd_pool(h); /* init_one 5 */
+ hpsa_free_irqs(h); /* init_one 4 */
+ scsi_host_put(h->scsi_host); /* init_one 3 */
+ h->scsi_host = NULL; /* init_one 3 */
+ hpsa_free_pci_init(h); /* init_one 2_5 */
+ free_percpu(h->lockup_detected); /* init_one 2 */
+ h->lockup_detected = NULL; /* init_one 2 */
+ if (h->resubmit_wq) {
+ destroy_workqueue(h->resubmit_wq); /* init_one 1 */
+ h->resubmit_wq = NULL;
+ }
+ if (h->rescan_ctlr_wq) {
+ destroy_workqueue(h->rescan_ctlr_wq);
+ h->rescan_ctlr_wq = NULL;
+ }
+ if (h->monitor_ctlr_wq) {
+ destroy_workqueue(h->monitor_ctlr_wq);
+ h->monitor_ctlr_wq = NULL;
+ }
+
+ kfree(h); /* init_one 1 */
+}
+
+/* Called when controller lockup detected. */
+static void fail_all_outstanding_cmds(struct ctlr_info *h)
+{
+ int i, refcount;
+ struct CommandList *c;
+ int failcount = 0;
+
+ flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
+ for (i = 0; i < h->nr_cmds; i++) {
+ c = h->cmd_pool + i;
+ refcount = atomic_inc_return(&c->refcount);
+ if (refcount > 1) {
+ c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
+ finish_cmd(c);
+ atomic_dec(&h->commands_outstanding);
+ failcount++;
+ }
+ cmd_free(h, c);
+ }
+ dev_warn(&h->pdev->dev,
+ "failed %d commands in fail_all\n", failcount);
+}
+
+static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu) {
+ u32 *lockup_detected;
+ lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
+ *lockup_detected = value;
+ }
+ wmb(); /* be sure the per-cpu variables are out to memory */
+}
+
+static void controller_lockup_detected(struct ctlr_info *h)
+{
+ unsigned long flags;
+ u32 lockup_detected;
+
+ h->access.set_intr_mask(h, HPSA_INTR_OFF);
+ spin_lock_irqsave(&h->lock, flags);
+ lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
+ if (!lockup_detected) {
+ /* no heartbeat, but controller gave us a zero. */
+ dev_warn(&h->pdev->dev,
+ "lockup detected after %d but scratchpad register is zero\n",
+ h->heartbeat_sample_interval / HZ);
+ lockup_detected = 0xffffffff;
+ }
+ set_lockup_detected_for_all_cpus(h, lockup_detected);
+ spin_unlock_irqrestore(&h->lock, flags);
+ dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
+ lockup_detected, h->heartbeat_sample_interval / HZ);
+ if (lockup_detected == 0xffff0000) {
+ dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
+ writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
+ }
+ pci_disable_device(h->pdev);
+ fail_all_outstanding_cmds(h);
+}
+
+static int detect_controller_lockup(struct ctlr_info *h)
+{
+ u64 now;
+ u32 heartbeat;
+ unsigned long flags;
+
+ now = get_jiffies_64();
+ /* If we've received an interrupt recently, we're ok. */
+ if (time_after64(h->last_intr_timestamp +
+ (h->heartbeat_sample_interval), now))
+ return false;
+
+ /*
+ * If we've already checked the heartbeat recently, we're ok.
+ * This could happen if someone sends us a signal. We
+ * otherwise don't care about signals in this thread.
+ */
+ if (time_after64(h->last_heartbeat_timestamp +
+ (h->heartbeat_sample_interval), now))
+ return false;
+
+ /* If heartbeat has not changed since we last looked, we're not ok. */
+ spin_lock_irqsave(&h->lock, flags);
+ heartbeat = readl(&h->cfgtable->HeartBeat);
+ spin_unlock_irqrestore(&h->lock, flags);
+ if (h->last_heartbeat == heartbeat) {
+ controller_lockup_detected(h);
+ return true;
+ }
+
+ /* We're ok. */
+ h->last_heartbeat = heartbeat;
+ h->last_heartbeat_timestamp = now;
+ return false;
+}
+
+/*
+ * Set ioaccel status for all ioaccel volumes.
+ *
+ * Called from monitor controller worker (hpsa_event_monitor_worker)
+ *
+ * A Volume (or Volumes that comprise an Array set) may be undergoing a
+ * transformation, so we will be turning off ioaccel for all volumes that
+ * make up the Array.
+ */
+static void hpsa_set_ioaccel_status(struct ctlr_info *h)
+{
+ int rc;
+ int i;
+ u8 ioaccel_status;
+ unsigned char *buf;
+ struct hpsa_scsi_dev_t *device;
+
+ if (!h)
+ return;
+
+ buf = kmalloc(64, GFP_KERNEL);
+ if (!buf)
+ return;
+
+ /*
+ * Run through current device list used during I/O requests.
+ */
+ for (i = 0; i < h->ndevices; i++) {
+ int offload_to_be_enabled = 0;
+ int offload_config = 0;
+
+ device = h->dev[i];
+
+ if (!device)
+ continue;
+ if (!hpsa_vpd_page_supported(h, device->scsi3addr,
+ HPSA_VPD_LV_IOACCEL_STATUS))
+ continue;
+
+ memset(buf, 0, 64);
+
+ rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
+ VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
+ buf, 64);
+ if (rc != 0)
+ continue;
+
+ ioaccel_status = buf[IOACCEL_STATUS_BYTE];
+
+ /*
+ * Check if offload is still configured on
+ */
+ offload_config =
+ !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
+ /*
+ * If offload is configured on, check to see if ioaccel
+ * needs to be enabled.
+ */
+ if (offload_config)
+ offload_to_be_enabled =
+ !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
+
+ /*
+ * If ioaccel is to be re-enabled, re-enable later during the
+ * scan operation so the driver can get a fresh raidmap
+ * before turning ioaccel back on.
+ */
+ if (offload_to_be_enabled)
+ continue;
+
+ /*
+ * Immediately turn off ioaccel for any volume the
+ * controller tells us to. Some of the reasons could be:
+ * transformation - change to the LVs of an Array.
+ * degraded volume - component failure
+ */
+ hpsa_turn_off_ioaccel_for_device(device);
+ }
+
+ kfree(buf);
+}
+
+static void hpsa_ack_ctlr_events(struct ctlr_info *h)
+{
+ char *event_type;
+
+ if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
+ return;
+
+ /* Ask the controller to clear the events we're handling. */
+ if ((h->transMethod & (CFGTBL_Trans_io_accel1
+ | CFGTBL_Trans_io_accel2)) &&
+ (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
+ h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
+
+ if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
+ event_type = "state change";
+ if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
+ event_type = "configuration change";
+ /* Stop sending new RAID offload reqs via the IO accelerator */
+ scsi_block_requests(h->scsi_host);
+ hpsa_set_ioaccel_status(h);
+ hpsa_drain_accel_commands(h);
+ /* Set 'accelerator path config change' bit */
+ dev_warn(&h->pdev->dev,
+ "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
+ h->events, event_type);
+ writel(h->events, &(h->cfgtable->clear_event_notify));
+ /* Set the "clear event notify field update" bit 6 */
+ writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
+ /* Wait until ctlr clears 'clear event notify field', bit 6 */
+ hpsa_wait_for_clear_event_notify_ack(h);
+ scsi_unblock_requests(h->scsi_host);
+ } else {
+ /* Acknowledge controller notification events. */
+ writel(h->events, &(h->cfgtable->clear_event_notify));
+ writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
+ hpsa_wait_for_clear_event_notify_ack(h);
+ }
+ return;
+}
+
+/* Check a register on the controller to see if there are configuration
+ * changes (added/changed/removed logical drives, etc.) which mean that
+ * we should rescan the controller for devices.
+ * Also check flag for driver-initiated rescan.
+ */
+static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
+{
+ if (h->drv_req_rescan) {
+ h->drv_req_rescan = 0;
+ return 1;
+ }
+
+ if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
+ return 0;
+
+ h->events = readl(&(h->cfgtable->event_notify));
+ return h->events & RESCAN_REQUIRED_EVENT_BITS;
+}
+
+/*
+ * Check if any of the offline devices have become ready
+ */
+static int hpsa_offline_devices_ready(struct ctlr_info *h)
+{
+ unsigned long flags;
+ struct offline_device_entry *d;
+ struct list_head *this, *tmp;
+
+ spin_lock_irqsave(&h->offline_device_lock, flags);
+ list_for_each_safe(this, tmp, &h->offline_device_list) {
+ d = list_entry(this, struct offline_device_entry,
+ offline_list);
+ spin_unlock_irqrestore(&h->offline_device_lock, flags);
+ if (!hpsa_volume_offline(h, d->scsi3addr)) {
+ spin_lock_irqsave(&h->offline_device_lock, flags);
+ list_del(&d->offline_list);
+ spin_unlock_irqrestore(&h->offline_device_lock, flags);
+ return 1;
+ }
+ spin_lock_irqsave(&h->offline_device_lock, flags);
+ }
+ spin_unlock_irqrestore(&h->offline_device_lock, flags);
+ return 0;
+}
+
+static int hpsa_luns_changed(struct ctlr_info *h)
+{
+ int rc = 1; /* assume there are changes */
+ struct ReportLUNdata *logdev = NULL;
+
+ /* if we can't find out if lun data has changed,
+ * assume that it has.
+ */
+
+ if (!h->lastlogicals)
+ return rc;
+
+ logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
+ if (!logdev)
+ return rc;
+
+ if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
+ dev_warn(&h->pdev->dev,
+ "report luns failed, can't track lun changes.\n");
+ goto out;
+ }
+ if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
+ dev_info(&h->pdev->dev,
+ "Lun changes detected.\n");
+ memcpy(h->lastlogicals, logdev, sizeof(*logdev));
+ goto out;
+ } else
+ rc = 0; /* no changes detected. */
+out:
+ kfree(logdev);
+ return rc;
+}
+
+static void hpsa_perform_rescan(struct ctlr_info *h)
+{
+ struct Scsi_Host *sh = NULL;
+ unsigned long flags;
+
+ /*
+ * Do the scan after the reset
+ */
+ spin_lock_irqsave(&h->reset_lock, flags);
+ if (h->reset_in_progress) {
+ h->drv_req_rescan = 1;
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+ return;
+ }
+ spin_unlock_irqrestore(&h->reset_lock, flags);
+
+ sh = scsi_host_get(h->scsi_host);
+ if (sh != NULL) {
+ hpsa_scan_start(sh);
+ scsi_host_put(sh);
+ h->drv_req_rescan = 0;
+ }
+}
+
+/*
+ * watch for controller events
+ */
+static void hpsa_event_monitor_worker(struct work_struct *work)
+{
+ struct ctlr_info *h = container_of(to_delayed_work(work),
+ struct ctlr_info, event_monitor_work);
+ unsigned long flags;
+
+ spin_lock_irqsave(&h->lock, flags);
+ if (h->remove_in_progress) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return;
+ }
+ spin_unlock_irqrestore(&h->lock, flags);
+
+ if (hpsa_ctlr_needs_rescan(h)) {
+ hpsa_ack_ctlr_events(h);
+ hpsa_perform_rescan(h);
+ }
+
+ spin_lock_irqsave(&h->lock, flags);
+ if (!h->remove_in_progress)
+ queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
+ HPSA_EVENT_MONITOR_INTERVAL);
+ spin_unlock_irqrestore(&h->lock, flags);
+}
+
+static void hpsa_rescan_ctlr_worker(struct work_struct *work)
+{
+ unsigned long flags;
+ struct ctlr_info *h = container_of(to_delayed_work(work),
+ struct ctlr_info, rescan_ctlr_work);
+
+ spin_lock_irqsave(&h->lock, flags);
+ if (h->remove_in_progress) {
+ spin_unlock_irqrestore(&h->lock, flags);
+ return;
+ }
+ spin_unlock_irqrestore(&h->lock, flags);
+
+ if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
+ hpsa_perform_rescan(h);
+ } else if (h->discovery_polling) {
+ if (hpsa_luns_changed(h)) {
+ dev_info(&h->pdev->dev,
+ "driver discovery polling rescan.\n");
+ hpsa_perform_rescan(h);
+ }
+ }
+ spin_lock_irqsave(&h->lock, flags);
+ if (!h->remove_in_progress)
+ queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
+ h->heartbeat_sample_interval);
+ spin_unlock_irqrestore(&h->lock, flags);
+}
+
+static void hpsa_monitor_ctlr_worker(struct work_struct *work)
+{
+ unsigned long flags;
+ struct ctlr_info *h = container_of(to_delayed_work(work),
+ struct ctlr_info, monitor_ctlr_work);
+
+ detect_controller_lockup(h);
+ if (lockup_detected(h))
+ return;
+
+ spin_lock_irqsave(&h->lock, flags);
+ if (!h->remove_in_progress)
+ queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
+ h->heartbeat_sample_interval);
+ spin_unlock_irqrestore(&h->lock, flags);
+}
+
+static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
+ char *name)
+{
+ struct workqueue_struct *wq = NULL;
+
+ wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
+ if (!wq)
+ dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
+
+ return wq;
+}
+
+static void hpda_free_ctlr_info(struct ctlr_info *h)
+{
+ kfree(h->reply_map);
+ kfree(h);
+}
+
+static struct ctlr_info *hpda_alloc_ctlr_info(void)
+{
+ struct ctlr_info *h;
+
+ h = kzalloc(sizeof(*h), GFP_KERNEL);
+ if (!h)
+ return NULL;
+
+ h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
+ if (!h->reply_map) {
+ kfree(h);
+ return NULL;
+ }
+ return h;
+}
+
+static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
+{
+ int dac, rc;
+ struct ctlr_info *h;
+ int try_soft_reset = 0;
+ unsigned long flags;
+ u32 board_id;
+
+ if (number_of_controllers == 0)
+ printk(KERN_INFO DRIVER_NAME "\n");
+
+ rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
+ if (rc < 0) {
+ dev_warn(&pdev->dev, "Board ID not found\n");
+ return rc;
+ }
+
+ rc = hpsa_init_reset_devices(pdev, board_id);
+ if (rc) {
+ if (rc != -ENOTSUPP)
+ return rc;
+ /* If the reset fails in a particular way (it has no way to do
+ * a proper hard reset, so returns -ENOTSUPP) we can try to do
+ * a soft reset once we get the controller configured up to the
+ * point that it can accept a command.
+ */
+ try_soft_reset = 1;
+ rc = 0;
+ }
+
+reinit_after_soft_reset:
+
+ /* Command structures must be aligned on a 32-byte boundary because
+ * the 5 lower bits of the address are used by the hardware. and by
+ * the driver. See comments in hpsa.h for more info.
+ */
+ BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
+ h = hpda_alloc_ctlr_info();
+ if (!h) {
+ dev_err(&pdev->dev, "Failed to allocate controller head\n");
+ return -ENOMEM;
+ }
+
+ h->pdev = pdev;
+
+ h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
+ INIT_LIST_HEAD(&h->offline_device_list);
+ spin_lock_init(&h->lock);
+ spin_lock_init(&h->offline_device_lock);
+ spin_lock_init(&h->scan_lock);
+ spin_lock_init(&h->reset_lock);
+ atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
+
+ /* Allocate and clear per-cpu variable lockup_detected */
+ h->lockup_detected = alloc_percpu(u32);
+ if (!h->lockup_detected) {
+ dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
+ rc = -ENOMEM;
+ goto clean1; /* aer/h */
+ }
+ set_lockup_detected_for_all_cpus(h, 0);
+
+ rc = hpsa_pci_init(h);
+ if (rc)
+ goto clean2; /* lu, aer/h */
+
+ /* relies on h-> settings made by hpsa_pci_init, including
+ * interrupt_mode h->intr */
+ rc = hpsa_scsi_host_alloc(h);
+ if (rc)
+ goto clean2_5; /* pci, lu, aer/h */
+
+ sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
+ h->ctlr = number_of_controllers;
+ number_of_controllers++;
+
+ /* configure PCI DMA stuff */
+ rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
+ if (rc == 0) {
+ dac = 1;
+ } else {
+ rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
+ if (rc == 0) {
+ dac = 0;
+ } else {
+ dev_err(&pdev->dev, "no suitable DMA available\n");
+ goto clean3; /* shost, pci, lu, aer/h */
+ }
+ }
+
+ /* make sure the board interrupts are off */
+ h->access.set_intr_mask(h, HPSA_INTR_OFF);
+
+ rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
+ if (rc)
+ goto clean3; /* shost, pci, lu, aer/h */
+ rc = hpsa_alloc_cmd_pool(h);
+ if (rc)
+ goto clean4; /* irq, shost, pci, lu, aer/h */
+ rc = hpsa_alloc_sg_chain_blocks(h);
+ if (rc)
+ goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
+ init_waitqueue_head(&h->scan_wait_queue);
+ init_waitqueue_head(&h->event_sync_wait_queue);
+ mutex_init(&h->reset_mutex);
+ h->scan_finished = 1; /* no scan currently in progress */
+ h->scan_waiting = 0;
+
+ pci_set_drvdata(pdev, h);
+ h->ndevices = 0;
+
+ spin_lock_init(&h->devlock);
+ rc = hpsa_put_ctlr_into_performant_mode(h);
+ if (rc)
+ goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
+
+ /* create the resubmit workqueue */
+ h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
+ if (!h->rescan_ctlr_wq) {
+ rc = -ENOMEM;
+ goto clean7;
+ }
+
+ h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
+ if (!h->resubmit_wq) {
+ rc = -ENOMEM;
+ goto clean7; /* aer/h */
+ }
+
+ h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
+ if (!h->monitor_ctlr_wq) {
+ rc = -ENOMEM;
+ goto clean7;
+ }
+
+ /*
+ * At this point, the controller is ready to take commands.
+ * Now, if reset_devices and the hard reset didn't work, try
+ * the soft reset and see if that works.
+ */
+ if (try_soft_reset) {
+
+ /* This is kind of gross. We may or may not get a completion
+ * from the soft reset command, and if we do, then the value
+ * from the fifo may or may not be valid. So, we wait 10 secs
+ * after the reset throwing away any completions we get during
+ * that time. Unregister the interrupt handler and register
+ * fake ones to scoop up any residual completions.
+ */
+ spin_lock_irqsave(&h->lock, flags);
+ h->access.set_intr_mask(h, HPSA_INTR_OFF);
+ spin_unlock_irqrestore(&h->lock, flags);
+ hpsa_free_irqs(h);
+ rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
+ hpsa_intx_discard_completions);
+ if (rc) {
+ dev_warn(&h->pdev->dev,
+ "Failed to request_irq after soft reset.\n");
+ /*
+ * cannot goto clean7 or free_irqs will be called
+ * again. Instead, do its work
+ */
+ hpsa_free_performant_mode(h); /* clean7 */
+ hpsa_free_sg_chain_blocks(h); /* clean6 */
+ hpsa_free_cmd_pool(h); /* clean5 */
+ /*
+ * skip hpsa_free_irqs(h) clean4 since that
+ * was just called before request_irqs failed
+ */
+ goto clean3;
+ }
+
+ rc = hpsa_kdump_soft_reset(h);
+ if (rc)
+ /* Neither hard nor soft reset worked, we're hosed. */
+ goto clean7;
+
+ dev_info(&h->pdev->dev, "Board READY.\n");
+ dev_info(&h->pdev->dev,
+ "Waiting for stale completions to drain.\n");
+ h->access.set_intr_mask(h, HPSA_INTR_ON);
+ msleep(10000);
+ h->access.set_intr_mask(h, HPSA_INTR_OFF);
+
+ rc = controller_reset_failed(h->cfgtable);
+ if (rc)
+ dev_info(&h->pdev->dev,
+ "Soft reset appears to have failed.\n");
+
+ /* since the controller's reset, we have to go back and re-init
+ * everything. Easiest to just forget what we've done and do it
+ * all over again.
+ */
+ hpsa_undo_allocations_after_kdump_soft_reset(h);
+ try_soft_reset = 0;
+ if (rc)
+ /* don't goto clean, we already unallocated */
+ return -ENODEV;
+
+ goto reinit_after_soft_reset;
+ }
+
+ /* Enable Accelerated IO path at driver layer */
+ h->acciopath_status = 1;
+ /* Disable discovery polling.*/
+ h->discovery_polling = 0;
+
+
+ /* Turn the interrupts on so we can service requests */
+ h->access.set_intr_mask(h, HPSA_INTR_ON);
+
+ hpsa_hba_inquiry(h);
+
+ h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
+ if (!h->lastlogicals)
+ dev_info(&h->pdev->dev,
+ "Can't track change to report lun data\n");
+
+ /* hook into SCSI subsystem */
+ rc = hpsa_scsi_add_host(h);
+ if (rc)
+ goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
+
+ /* Monitor the controller for firmware lockups */
+ h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
+ INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
+ schedule_delayed_work(&h->monitor_ctlr_work,
+ h->heartbeat_sample_interval);
+ INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
+ queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
+ h->heartbeat_sample_interval);
+ INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
+ schedule_delayed_work(&h->event_monitor_work,
+ HPSA_EVENT_MONITOR_INTERVAL);
+ return 0;
+
+clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
+ kfree(h->lastlogicals);
+clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
+ hpsa_free_performant_mode(h);
+ h->access.set_intr_mask(h, HPSA_INTR_OFF);
+clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
+ hpsa_free_sg_chain_blocks(h);
+clean5: /* cmd, irq, shost, pci, lu, aer/h */
+ hpsa_free_cmd_pool(h);
+clean4: /* irq, shost, pci, lu, aer/h */
+ hpsa_free_irqs(h);
+clean3: /* shost, pci, lu, aer/h */
+ scsi_host_put(h->scsi_host);
+ h->scsi_host = NULL;
+clean2_5: /* pci, lu, aer/h */
+ hpsa_free_pci_init(h);
+clean2: /* lu, aer/h */
+ if (h->lockup_detected) {
+ free_percpu(h->lockup_detected);
+ h->lockup_detected = NULL;
+ }
+clean1: /* wq/aer/h */
+ if (h->resubmit_wq) {
+ destroy_workqueue(h->resubmit_wq);
+ h->resubmit_wq = NULL;
+ }
+ if (h->rescan_ctlr_wq) {
+ destroy_workqueue(h->rescan_ctlr_wq);
+ h->rescan_ctlr_wq = NULL;
+ }
+ if (h->monitor_ctlr_wq) {
+ destroy_workqueue(h->monitor_ctlr_wq);
+ h->monitor_ctlr_wq = NULL;
+ }
+ hpda_free_ctlr_info(h);
+ return rc;
+}
+
+static void hpsa_flush_cache(struct ctlr_info *h)
+{
+ char *flush_buf;
+ struct CommandList *c;
+ int rc;
+
+ if (unlikely(lockup_detected(h)))
+ return;
+ flush_buf = kzalloc(4, GFP_KERNEL);
+ if (!flush_buf)
+ return;
+
+ c = cmd_alloc(h);
+
+ if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
+ RAID_CTLR_LUNID, TYPE_CMD)) {
+ goto out;
+ }
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
+ DEFAULT_TIMEOUT);
+ if (rc)
+ goto out;
+ if (c->err_info->CommandStatus != 0)
+out:
+ dev_warn(&h->pdev->dev,
+ "error flushing cache on controller\n");
+ cmd_free(h, c);
+ kfree(flush_buf);
+}
+
+/* Make controller gather fresh report lun data each time we
+ * send down a report luns request
+ */
+static void hpsa_disable_rld_caching(struct ctlr_info *h)
+{
+ u32 *options;
+ struct CommandList *c;
+ int rc;
+
+ /* Don't bother trying to set diag options if locked up */
+ if (unlikely(h->lockup_detected))
+ return;
+
+ options = kzalloc(sizeof(*options), GFP_KERNEL);
+ if (!options)
+ return;
+
+ c = cmd_alloc(h);
+
+ /* first, get the current diag options settings */
+ if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
+ RAID_CTLR_LUNID, TYPE_CMD))
+ goto errout;
+
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if ((rc != 0) || (c->err_info->CommandStatus != 0))
+ goto errout;
+
+ /* Now, set the bit for disabling the RLD caching */
+ *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
+
+ if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
+ RAID_CTLR_LUNID, TYPE_CMD))
+ goto errout;
+
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
+ NO_TIMEOUT);
+ if ((rc != 0) || (c->err_info->CommandStatus != 0))
+ goto errout;
+
+ /* Now verify that it got set: */
+ if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
+ RAID_CTLR_LUNID, TYPE_CMD))
+ goto errout;
+
+ rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
+ NO_TIMEOUT);
+ if ((rc != 0) || (c->err_info->CommandStatus != 0))
+ goto errout;
+
+ if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
+ goto out;
+
+errout:
+ dev_err(&h->pdev->dev,
+ "Error: failed to disable report lun data caching.\n");
+out:
+ cmd_free(h, c);
+ kfree(options);
+}
+
+static void __hpsa_shutdown(struct pci_dev *pdev)
+{
+ struct ctlr_info *h;
+
+ h = pci_get_drvdata(pdev);
+ /* Turn board interrupts off and send the flush cache command
+ * sendcmd will turn off interrupt, and send the flush...
+ * To write all data in the battery backed cache to disks
+ */
+ hpsa_flush_cache(h);
+ h->access.set_intr_mask(h, HPSA_INTR_OFF);
+ hpsa_free_irqs(h); /* init_one 4 */
+ hpsa_disable_interrupt_mode(h); /* pci_init 2 */
+}
+
+static void hpsa_shutdown(struct pci_dev *pdev)
+{
+ __hpsa_shutdown(pdev);
+ pci_disable_device(pdev);
+}
+
+static void hpsa_free_device_info(struct ctlr_info *h)
+{
+ int i;
+
+ for (i = 0; i < h->ndevices; i++) {
+ kfree(h->dev[i]);
+ h->dev[i] = NULL;
+ }
+}
+
+static void hpsa_remove_one(struct pci_dev *pdev)
+{
+ struct ctlr_info *h;
+ unsigned long flags;
+
+ if (pci_get_drvdata(pdev) == NULL) {
+ dev_err(&pdev->dev, "unable to remove device\n");
+ return;
+ }
+ h = pci_get_drvdata(pdev);
+
+ /* Get rid of any controller monitoring work items */
+ spin_lock_irqsave(&h->lock, flags);
+ h->remove_in_progress = 1;
+ spin_unlock_irqrestore(&h->lock, flags);
+ cancel_delayed_work_sync(&h->monitor_ctlr_work);
+ cancel_delayed_work_sync(&h->rescan_ctlr_work);
+ cancel_delayed_work_sync(&h->event_monitor_work);
+ destroy_workqueue(h->rescan_ctlr_wq);
+ destroy_workqueue(h->resubmit_wq);
+ destroy_workqueue(h->monitor_ctlr_wq);
+
+ hpsa_delete_sas_host(h);
+
+ /*
+ * Call before disabling interrupts.
+ * scsi_remove_host can trigger I/O operations especially
+ * when multipath is enabled. There can be SYNCHRONIZE CACHE
+ * operations which cannot complete and will hang the system.
+ */
+ if (h->scsi_host)
+ scsi_remove_host(h->scsi_host); /* init_one 8 */
+ /* includes hpsa_free_irqs - init_one 4 */
+ /* includes hpsa_disable_interrupt_mode - pci_init 2 */
+ __hpsa_shutdown(pdev);
+
+ hpsa_free_device_info(h); /* scan */
+
+ kfree(h->hba_inquiry_data); /* init_one 10 */
+ h->hba_inquiry_data = NULL; /* init_one 10 */
+ hpsa_free_ioaccel2_sg_chain_blocks(h);
+ hpsa_free_performant_mode(h); /* init_one 7 */
+ hpsa_free_sg_chain_blocks(h); /* init_one 6 */
+ hpsa_free_cmd_pool(h); /* init_one 5 */
+ kfree(h->lastlogicals);
+
+ /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
+
+ scsi_host_put(h->scsi_host); /* init_one 3 */
+ h->scsi_host = NULL; /* init_one 3 */
+
+ /* includes hpsa_disable_interrupt_mode - pci_init 2 */
+ hpsa_free_pci_init(h); /* init_one 2.5 */
+
+ free_percpu(h->lockup_detected); /* init_one 2 */
+ h->lockup_detected = NULL; /* init_one 2 */
+ /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
+
+ hpda_free_ctlr_info(h); /* init_one 1 */
+}
+
+static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
+ __attribute__((unused)) pm_message_t state)
+{
+ return -ENOSYS;
+}
+
+static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
+{
+ return -ENOSYS;
+}
+
+static struct pci_driver hpsa_pci_driver = {
+ .name = HPSA,
+ .probe = hpsa_init_one,
+ .remove = hpsa_remove_one,
+ .id_table = hpsa_pci_device_id, /* id_table */
+ .shutdown = hpsa_shutdown,
+ .suspend = hpsa_suspend,
+ .resume = hpsa_resume,
+};
+
+/* Fill in bucket_map[], given nsgs (the max number of
+ * scatter gather elements supported) and bucket[],
+ * which is an array of 8 integers. The bucket[] array
+ * contains 8 different DMA transfer sizes (in 16
+ * byte increments) which the controller uses to fetch
+ * commands. This function fills in bucket_map[], which
+ * maps a given number of scatter gather elements to one of
+ * the 8 DMA transfer sizes. The point of it is to allow the
+ * controller to only do as much DMA as needed to fetch the
+ * command, with the DMA transfer size encoded in the lower
+ * bits of the command address.
+ */
+static void calc_bucket_map(int bucket[], int num_buckets,
+ int nsgs, int min_blocks, u32 *bucket_map)
+{
+ int i, j, b, size;
+
+ /* Note, bucket_map must have nsgs+1 entries. */
+ for (i = 0; i <= nsgs; i++) {
+ /* Compute size of a command with i SG entries */
+ size = i + min_blocks;
+ b = num_buckets; /* Assume the biggest bucket */
+ /* Find the bucket that is just big enough */
+ for (j = 0; j < num_buckets; j++) {
+ if (bucket[j] >= size) {
+ b = j;
+ break;
+ }
+ }
+ /* for a command with i SG entries, use bucket b. */
+ bucket_map[i] = b;
+ }
+}
+
+/*
+ * return -ENODEV on err, 0 on success (or no action)
+ * allocates numerous items that must be freed later
+ */
+static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
+{
+ int i;
+ unsigned long register_value;
+ unsigned long transMethod = CFGTBL_Trans_Performant |
+ (trans_support & CFGTBL_Trans_use_short_tags) |
+ CFGTBL_Trans_enable_directed_msix |
+ (trans_support & (CFGTBL_Trans_io_accel1 |
+ CFGTBL_Trans_io_accel2));
+ struct access_method access = SA5_performant_access;
+
+ /* This is a bit complicated. There are 8 registers on
+ * the controller which we write to to tell it 8 different
+ * sizes of commands which there may be. It's a way of
+ * reducing the DMA done to fetch each command. Encoded into
+ * each command's tag are 3 bits which communicate to the controller
+ * which of the eight sizes that command fits within. The size of
+ * each command depends on how many scatter gather entries there are.
+ * Each SG entry requires 16 bytes. The eight registers are programmed
+ * with the number of 16-byte blocks a command of that size requires.
+ * The smallest command possible requires 5 such 16 byte blocks.
+ * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
+ * blocks. Note, this only extends to the SG entries contained
+ * within the command block, and does not extend to chained blocks
+ * of SG elements. bft[] contains the eight values we write to
+ * the registers. They are not evenly distributed, but have more
+ * sizes for small commands, and fewer sizes for larger commands.
+ */
+ int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
+#define MIN_IOACCEL2_BFT_ENTRY 5
+#define HPSA_IOACCEL2_HEADER_SZ 4
+ int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18, 19,
+ HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
+ BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
+ BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
+ BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
+ 16 * MIN_IOACCEL2_BFT_ENTRY);
+ BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
+ BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
+ /* 5 = 1 s/g entry or 4k
+ * 6 = 2 s/g entry or 8k
+ * 8 = 4 s/g entry or 16k
+ * 10 = 6 s/g entry or 24k
+ */
+
+ /* If the controller supports either ioaccel method then
+ * we can also use the RAID stack submit path that does not
+ * perform the superfluous readl() after each command submission.
+ */
+ if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
+ access = SA5_performant_access_no_read;
+
+ /* Controller spec: zero out this buffer. */
+ for (i = 0; i < h->nreply_queues; i++)
+ memset(h->reply_queue[i].head, 0, h->reply_queue_size);
+
+ bft[7] = SG_ENTRIES_IN_CMD + 4;
+ calc_bucket_map(bft, ARRAY_SIZE(bft),
+ SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
+ for (i = 0; i < 8; i++)
+ writel(bft[i], &h->transtable->BlockFetch[i]);
+
+ /* size of controller ring buffer */
+ writel(h->max_commands, &h->transtable->RepQSize);
+ writel(h->nreply_queues, &h->transtable->RepQCount);
+ writel(0, &h->transtable->RepQCtrAddrLow32);
+ writel(0, &h->transtable->RepQCtrAddrHigh32);
+
+ for (i = 0; i < h->nreply_queues; i++) {
+ writel(0, &h->transtable->RepQAddr[i].upper);
+ writel(h->reply_queue[i].busaddr,
+ &h->transtable->RepQAddr[i].lower);
+ }
+
+ writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
+ writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
+ /*
+ * enable outbound interrupt coalescing in accelerator mode;
+ */
+ if (trans_support & CFGTBL_Trans_io_accel1) {
+ access = SA5_ioaccel_mode1_access;
+ writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
+ writel(4, &h->cfgtable->HostWrite.CoalIntCount);
+ } else
+ if (trans_support & CFGTBL_Trans_io_accel2)
+ access = SA5_ioaccel_mode2_access;
+ writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+ if (hpsa_wait_for_mode_change_ack(h)) {
+ dev_err(&h->pdev->dev,
+ "performant mode problem - doorbell timeout\n");
+ return -ENODEV;
+ }
+ register_value = readl(&(h->cfgtable->TransportActive));
+ if (!(register_value & CFGTBL_Trans_Performant)) {
+ dev_err(&h->pdev->dev,
+ "performant mode problem - transport not active\n");
+ return -ENODEV;
+ }
+ /* Change the access methods to the performant access methods */
+ h->access = access;
+ h->transMethod = transMethod;
+
+ if (!((trans_support & CFGTBL_Trans_io_accel1) ||
+ (trans_support & CFGTBL_Trans_io_accel2)))
+ return 0;
+
+ if (trans_support & CFGTBL_Trans_io_accel1) {
+ /* Set up I/O accelerator mode */
+ for (i = 0; i < h->nreply_queues; i++) {
+ writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
+ h->reply_queue[i].current_entry =
+ readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
+ }
+ bft[7] = h->ioaccel_maxsg + 8;
+ calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
+ h->ioaccel1_blockFetchTable);
+
+ /* initialize all reply queue entries to unused */
+ for (i = 0; i < h->nreply_queues; i++)
+ memset(h->reply_queue[i].head,
+ (u8) IOACCEL_MODE1_REPLY_UNUSED,
+ h->reply_queue_size);
+
+ /* set all the constant fields in the accelerator command
+ * frames once at init time to save CPU cycles later.
+ */
+ for (i = 0; i < h->nr_cmds; i++) {
+ struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
+
+ cp->function = IOACCEL1_FUNCTION_SCSIIO;
+ cp->err_info = (u32) (h->errinfo_pool_dhandle +
+ (i * sizeof(struct ErrorInfo)));
+ cp->err_info_len = sizeof(struct ErrorInfo);
+ cp->sgl_offset = IOACCEL1_SGLOFFSET;
+ cp->host_context_flags =
+ cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
+ cp->timeout_sec = 0;
+ cp->ReplyQueue = 0;
+ cp->tag =
+ cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
+ cp->host_addr =
+ cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
+ (i * sizeof(struct io_accel1_cmd)));
+ }
+ } else if (trans_support & CFGTBL_Trans_io_accel2) {
+ u64 cfg_offset, cfg_base_addr_index;
+ u32 bft2_offset, cfg_base_addr;
+ int rc;
+
+ rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
+ &cfg_base_addr_index, &cfg_offset);
+ BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
+ bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
+ calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
+ 4, h->ioaccel2_blockFetchTable);
+ bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
+ BUILD_BUG_ON(offsetof(struct CfgTable,
+ io_accel_request_size_offset) != 0xb8);
+ h->ioaccel2_bft2_regs =
+ remap_pci_mem(pci_resource_start(h->pdev,
+ cfg_base_addr_index) +
+ cfg_offset + bft2_offset,
+ ARRAY_SIZE(bft2) *
+ sizeof(*h->ioaccel2_bft2_regs));
+ for (i = 0; i < ARRAY_SIZE(bft2); i++)
+ writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
+ }
+ writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
+ if (hpsa_wait_for_mode_change_ack(h)) {
+ dev_err(&h->pdev->dev,
+ "performant mode problem - enabling ioaccel mode\n");
+ return -ENODEV;
+ }
+ return 0;
+}
+
+/* Free ioaccel1 mode command blocks and block fetch table */
+static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
+{
+ if (h->ioaccel_cmd_pool) {
+ dma_free_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
+ h->ioaccel_cmd_pool,
+ h->ioaccel_cmd_pool_dhandle);
+ h->ioaccel_cmd_pool = NULL;
+ h->ioaccel_cmd_pool_dhandle = 0;
+ }
+ kfree(h->ioaccel1_blockFetchTable);
+ h->ioaccel1_blockFetchTable = NULL;
+}
+
+/* Allocate ioaccel1 mode command blocks and block fetch table */
+static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
+{
+ h->ioaccel_maxsg =
+ readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
+ if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
+ h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
+
+ /* Command structures must be aligned on a 128-byte boundary
+ * because the 7 lower bits of the address are used by the
+ * hardware.
+ */
+ BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
+ IOACCEL1_COMMANDLIST_ALIGNMENT);
+ h->ioaccel_cmd_pool =
+ dma_alloc_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
+ &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
+
+ h->ioaccel1_blockFetchTable =
+ kmalloc(((h->ioaccel_maxsg + 1) *
+ sizeof(u32)), GFP_KERNEL);
+
+ if ((h->ioaccel_cmd_pool == NULL) ||
+ (h->ioaccel1_blockFetchTable == NULL))
+ goto clean_up;
+
+ memset(h->ioaccel_cmd_pool, 0,
+ h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
+ return 0;
+
+clean_up:
+ hpsa_free_ioaccel1_cmd_and_bft(h);
+ return -ENOMEM;
+}
+
+/* Free ioaccel2 mode command blocks and block fetch table */
+static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
+{
+ hpsa_free_ioaccel2_sg_chain_blocks(h);
+
+ if (h->ioaccel2_cmd_pool) {
+ dma_free_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
+ h->ioaccel2_cmd_pool,
+ h->ioaccel2_cmd_pool_dhandle);
+ h->ioaccel2_cmd_pool = NULL;
+ h->ioaccel2_cmd_pool_dhandle = 0;
+ }
+ kfree(h->ioaccel2_blockFetchTable);
+ h->ioaccel2_blockFetchTable = NULL;
+}
+
+/* Allocate ioaccel2 mode command blocks and block fetch table */
+static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
+{
+ int rc;
+
+ /* Allocate ioaccel2 mode command blocks and block fetch table */
+
+ h->ioaccel_maxsg =
+ readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
+ if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
+ h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
+
+ BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
+ IOACCEL2_COMMANDLIST_ALIGNMENT);
+ h->ioaccel2_cmd_pool =
+ dma_alloc_coherent(&h->pdev->dev,
+ h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
+ &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
+
+ h->ioaccel2_blockFetchTable =
+ kmalloc(((h->ioaccel_maxsg + 1) *
+ sizeof(u32)), GFP_KERNEL);
+
+ if ((h->ioaccel2_cmd_pool == NULL) ||
+ (h->ioaccel2_blockFetchTable == NULL)) {
+ rc = -ENOMEM;
+ goto clean_up;
+ }
+
+ rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
+ if (rc)
+ goto clean_up;
+
+ memset(h->ioaccel2_cmd_pool, 0,
+ h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
+ return 0;
+
+clean_up:
+ hpsa_free_ioaccel2_cmd_and_bft(h);
+ return rc;
+}
+
+/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
+static void hpsa_free_performant_mode(struct ctlr_info *h)
+{
+ kfree(h->blockFetchTable);
+ h->blockFetchTable = NULL;
+ hpsa_free_reply_queues(h);
+ hpsa_free_ioaccel1_cmd_and_bft(h);
+ hpsa_free_ioaccel2_cmd_and_bft(h);
+}
+
+/* return -ENODEV on error, 0 on success (or no action)
+ * allocates numerous items that must be freed later
+ */
+static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
+{
+ u32 trans_support;
+ unsigned long transMethod = CFGTBL_Trans_Performant |
+ CFGTBL_Trans_use_short_tags;
+ int i, rc;
+
+ if (hpsa_simple_mode)
+ return 0;
+
+ trans_support = readl(&(h->cfgtable->TransportSupport));
+ if (!(trans_support & PERFORMANT_MODE))
+ return 0;
+
+ /* Check for I/O accelerator mode support */
+ if (trans_support & CFGTBL_Trans_io_accel1) {
+ transMethod |= CFGTBL_Trans_io_accel1 |
+ CFGTBL_Trans_enable_directed_msix;
+ rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
+ if (rc)
+ return rc;
+ } else if (trans_support & CFGTBL_Trans_io_accel2) {
+ transMethod |= CFGTBL_Trans_io_accel2 |
+ CFGTBL_Trans_enable_directed_msix;
+ rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
+ if (rc)
+ return rc;
+ }
+
+ h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
+ hpsa_get_max_perf_mode_cmds(h);
+ /* Performant mode ring buffer and supporting data structures */
+ h->reply_queue_size = h->max_commands * sizeof(u64);
+
+ for (i = 0; i < h->nreply_queues; i++) {
+ h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
+ h->reply_queue_size,
+ &h->reply_queue[i].busaddr,
+ GFP_KERNEL);
+ if (!h->reply_queue[i].head) {
+ rc = -ENOMEM;
+ goto clean1; /* rq, ioaccel */
+ }
+ h->reply_queue[i].size = h->max_commands;
+ h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
+ h->reply_queue[i].current_entry = 0;
+ }
+
+ /* Need a block fetch table for performant mode */
+ h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
+ sizeof(u32)), GFP_KERNEL);
+ if (!h->blockFetchTable) {
+ rc = -ENOMEM;
+ goto clean1; /* rq, ioaccel */
+ }
+
+ rc = hpsa_enter_performant_mode(h, trans_support);
+ if (rc)
+ goto clean2; /* bft, rq, ioaccel */
+ return 0;
+
+clean2: /* bft, rq, ioaccel */
+ kfree(h->blockFetchTable);
+ h->blockFetchTable = NULL;
+clean1: /* rq, ioaccel */
+ hpsa_free_reply_queues(h);
+ hpsa_free_ioaccel1_cmd_and_bft(h);
+ hpsa_free_ioaccel2_cmd_and_bft(h);
+ return rc;
+}
+
+static int is_accelerated_cmd(struct CommandList *c)
+{
+ return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
+}
+
+static void hpsa_drain_accel_commands(struct ctlr_info *h)
+{
+ struct CommandList *c = NULL;
+ int i, accel_cmds_out;
+ int refcount;
+
+ do { /* wait for all outstanding ioaccel commands to drain out */
+ accel_cmds_out = 0;
+ for (i = 0; i < h->nr_cmds; i++) {
+ c = h->cmd_pool + i;
+ refcount = atomic_inc_return(&c->refcount);
+ if (refcount > 1) /* Command is allocated */
+ accel_cmds_out += is_accelerated_cmd(c);
+ cmd_free(h, c);
+ }
+ if (accel_cmds_out <= 0)
+ break;
+ msleep(100);
+ } while (1);
+}
+
+static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
+ struct hpsa_sas_port *hpsa_sas_port)
+{
+ struct hpsa_sas_phy *hpsa_sas_phy;
+ struct sas_phy *phy;
+
+ hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
+ if (!hpsa_sas_phy)
+ return NULL;
+
+ phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
+ hpsa_sas_port->next_phy_index);
+ if (!phy) {
+ kfree(hpsa_sas_phy);
+ return NULL;
+ }
+
+ hpsa_sas_port->next_phy_index++;
+ hpsa_sas_phy->phy = phy;
+ hpsa_sas_phy->parent_port = hpsa_sas_port;
+
+ return hpsa_sas_phy;
+}
+
+static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
+{
+ struct sas_phy *phy = hpsa_sas_phy->phy;
+
+ sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
+ if (hpsa_sas_phy->added_to_port)
+ list_del(&hpsa_sas_phy->phy_list_entry);
+ sas_phy_delete(phy);
+ kfree(hpsa_sas_phy);
+}
+
+static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
+{
+ int rc;
+ struct hpsa_sas_port *hpsa_sas_port;
+ struct sas_phy *phy;
+ struct sas_identify *identify;
+
+ hpsa_sas_port = hpsa_sas_phy->parent_port;
+ phy = hpsa_sas_phy->phy;
+
+ identify = &phy->identify;
+ memset(identify, 0, sizeof(*identify));
+ identify->sas_address = hpsa_sas_port->sas_address;
+ identify->device_type = SAS_END_DEVICE;
+ identify->initiator_port_protocols = SAS_PROTOCOL_STP;
+ identify->target_port_protocols = SAS_PROTOCOL_STP;
+ phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
+ phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
+ phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
+ phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
+ phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
+
+ rc = sas_phy_add(hpsa_sas_phy->phy);
+ if (rc)
+ return rc;
+
+ sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
+ list_add_tail(&hpsa_sas_phy->phy_list_entry,
+ &hpsa_sas_port->phy_list_head);
+ hpsa_sas_phy->added_to_port = true;
+
+ return 0;
+}
+
+static int
+ hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
+ struct sas_rphy *rphy)
+{
+ struct sas_identify *identify;
+
+ identify = &rphy->identify;
+ identify->sas_address = hpsa_sas_port->sas_address;
+ identify->initiator_port_protocols = SAS_PROTOCOL_STP;
+ identify->target_port_protocols = SAS_PROTOCOL_STP;
+
+ return sas_rphy_add(rphy);
+}
+
+static struct hpsa_sas_port
+ *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
+ u64 sas_address)
+{
+ int rc;
+ struct hpsa_sas_port *hpsa_sas_port;
+ struct sas_port *port;
+
+ hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
+ if (!hpsa_sas_port)
+ return NULL;
+
+ INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
+ hpsa_sas_port->parent_node = hpsa_sas_node;
+
+ port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
+ if (!port)
+ goto free_hpsa_port;
+
+ rc = sas_port_add(port);
+ if (rc)
+ goto free_sas_port;
+
+ hpsa_sas_port->port = port;
+ hpsa_sas_port->sas_address = sas_address;
+ list_add_tail(&hpsa_sas_port->port_list_entry,
+ &hpsa_sas_node->port_list_head);
+
+ return hpsa_sas_port;
+
+free_sas_port:
+ sas_port_free(port);
+free_hpsa_port:
+ kfree(hpsa_sas_port);
+
+ return NULL;
+}
+
+static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
+{
+ struct hpsa_sas_phy *hpsa_sas_phy;
+ struct hpsa_sas_phy *next;
+
+ list_for_each_entry_safe(hpsa_sas_phy, next,
+ &hpsa_sas_port->phy_list_head, phy_list_entry)
+ hpsa_free_sas_phy(hpsa_sas_phy);
+
+ sas_port_delete(hpsa_sas_port->port);
+ list_del(&hpsa_sas_port->port_list_entry);
+ kfree(hpsa_sas_port);
+}
+
+static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
+{
+ struct hpsa_sas_node *hpsa_sas_node;
+
+ hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
+ if (hpsa_sas_node) {
+ hpsa_sas_node->parent_dev = parent_dev;
+ INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
+ }
+
+ return hpsa_sas_node;
+}
+
+static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
+{
+ struct hpsa_sas_port *hpsa_sas_port;
+ struct hpsa_sas_port *next;
+
+ if (!hpsa_sas_node)
+ return;
+
+ list_for_each_entry_safe(hpsa_sas_port, next,
+ &hpsa_sas_node->port_list_head, port_list_entry)
+ hpsa_free_sas_port(hpsa_sas_port);
+
+ kfree(hpsa_sas_node);
+}
+
+static struct hpsa_scsi_dev_t
+ *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
+ struct sas_rphy *rphy)
+{
+ int i;
+ struct hpsa_scsi_dev_t *device;
+
+ for (i = 0; i < h->ndevices; i++) {
+ device = h->dev[i];
+ if (!device->sas_port)
+ continue;
+ if (device->sas_port->rphy == rphy)
+ return device;
+ }
+
+ return NULL;
+}
+
+static int hpsa_add_sas_host(struct ctlr_info *h)
+{
+ int rc;
+ struct device *parent_dev;
+ struct hpsa_sas_node *hpsa_sas_node;
+ struct hpsa_sas_port *hpsa_sas_port;
+ struct hpsa_sas_phy *hpsa_sas_phy;
+
+ parent_dev = &h->scsi_host->shost_dev;
+
+ hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
+ if (!hpsa_sas_node)
+ return -ENOMEM;
+
+ hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
+ if (!hpsa_sas_port) {
+ rc = -ENODEV;
+ goto free_sas_node;
+ }
+
+ hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
+ if (!hpsa_sas_phy) {
+ rc = -ENODEV;
+ goto free_sas_port;
+ }
+
+ rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
+ if (rc)
+ goto free_sas_phy;
+
+ h->sas_host = hpsa_sas_node;
+
+ return 0;
+
+free_sas_phy:
+ sas_phy_free(hpsa_sas_phy->phy);
+ kfree(hpsa_sas_phy);
+free_sas_port:
+ hpsa_free_sas_port(hpsa_sas_port);
+free_sas_node:
+ hpsa_free_sas_node(hpsa_sas_node);
+
+ return rc;
+}
+
+static void hpsa_delete_sas_host(struct ctlr_info *h)
+{
+ hpsa_free_sas_node(h->sas_host);
+}
+
+static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
+ struct hpsa_scsi_dev_t *device)
+{
+ int rc;
+ struct hpsa_sas_port *hpsa_sas_port;
+ struct sas_rphy *rphy;
+
+ hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
+ if (!hpsa_sas_port)
+ return -ENOMEM;
+
+ rphy = sas_end_device_alloc(hpsa_sas_port->port);
+ if (!rphy) {
+ rc = -ENODEV;
+ goto free_sas_port;
+ }
+
+ hpsa_sas_port->rphy = rphy;
+ device->sas_port = hpsa_sas_port;
+
+ rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
+ if (rc)
+ goto free_sas_rphy;
+
+ return 0;
+
+free_sas_rphy:
+ sas_rphy_free(rphy);
+free_sas_port:
+ hpsa_free_sas_port(hpsa_sas_port);
+ device->sas_port = NULL;
+
+ return rc;
+}
+
+static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
+{
+ if (device->sas_port) {
+ hpsa_free_sas_port(device->sas_port);
+ device->sas_port = NULL;
+ }
+}
+
+static int
+hpsa_sas_get_linkerrors(struct sas_phy *phy)
+{
+ return 0;
+}
+
+static int
+hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
+{
+ struct Scsi_Host *shost = phy_to_shost(rphy);
+ struct ctlr_info *h;
+ struct hpsa_scsi_dev_t *sd;
+
+ if (!shost)
+ return -ENXIO;
+
+ h = shost_to_hba(shost);
+
+ if (!h)
+ return -ENXIO;
+
+ sd = hpsa_find_device_by_sas_rphy(h, rphy);
+ if (!sd)
+ return -ENXIO;
+
+ *identifier = sd->eli;
+
+ return 0;
+}
+
+static int
+hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
+{
+ return -ENXIO;
+}
+
+static int
+hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
+{
+ return 0;
+}
+
+static int
+hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
+{
+ return 0;
+}
+
+static int
+hpsa_sas_phy_setup(struct sas_phy *phy)
+{
+ return 0;
+}
+
+static void
+hpsa_sas_phy_release(struct sas_phy *phy)
+{
+}
+
+static int
+hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
+{
+ return -EINVAL;
+}
+
+static struct sas_function_template hpsa_sas_transport_functions = {
+ .get_linkerrors = hpsa_sas_get_linkerrors,
+ .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
+ .get_bay_identifier = hpsa_sas_get_bay_identifier,
+ .phy_reset = hpsa_sas_phy_reset,
+ .phy_enable = hpsa_sas_phy_enable,
+ .phy_setup = hpsa_sas_phy_setup,
+ .phy_release = hpsa_sas_phy_release,
+ .set_phy_speed = hpsa_sas_phy_speed,
+};
+
+/*
+ * This is it. Register the PCI driver information for the cards we control
+ * the OS will call our registered routines when it finds one of our cards.
+ */
+static int __init hpsa_init(void)
+{
+ int rc;
+
+ hpsa_sas_transport_template =
+ sas_attach_transport(&hpsa_sas_transport_functions);
+ if (!hpsa_sas_transport_template)
+ return -ENODEV;
+
+ rc = pci_register_driver(&hpsa_pci_driver);
+
+ if (rc)
+ sas_release_transport(hpsa_sas_transport_template);
+
+ return rc;
+}
+
+static void __exit hpsa_cleanup(void)
+{
+ pci_unregister_driver(&hpsa_pci_driver);
+ sas_release_transport(hpsa_sas_transport_template);
+}
+
+static void __attribute__((unused)) verify_offsets(void)
+{
+#define VERIFY_OFFSET(member, offset) \
+ BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
+
+ VERIFY_OFFSET(structure_size, 0);
+ VERIFY_OFFSET(volume_blk_size, 4);
+ VERIFY_OFFSET(volume_blk_cnt, 8);
+ VERIFY_OFFSET(phys_blk_shift, 16);
+ VERIFY_OFFSET(parity_rotation_shift, 17);
+ VERIFY_OFFSET(strip_size, 18);
+ VERIFY_OFFSET(disk_starting_blk, 20);
+ VERIFY_OFFSET(disk_blk_cnt, 28);
+ VERIFY_OFFSET(data_disks_per_row, 36);
+ VERIFY_OFFSET(metadata_disks_per_row, 38);
+ VERIFY_OFFSET(row_cnt, 40);
+ VERIFY_OFFSET(layout_map_count, 42);
+ VERIFY_OFFSET(flags, 44);
+ VERIFY_OFFSET(dekindex, 46);
+ /* VERIFY_OFFSET(reserved, 48 */
+ VERIFY_OFFSET(data, 64);
+
+#undef VERIFY_OFFSET
+
+#define VERIFY_OFFSET(member, offset) \
+ BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
+
+ VERIFY_OFFSET(IU_type, 0);
+ VERIFY_OFFSET(direction, 1);
+ VERIFY_OFFSET(reply_queue, 2);
+ /* VERIFY_OFFSET(reserved1, 3); */
+ VERIFY_OFFSET(scsi_nexus, 4);
+ VERIFY_OFFSET(Tag, 8);
+ VERIFY_OFFSET(cdb, 16);
+ VERIFY_OFFSET(cciss_lun, 32);
+ VERIFY_OFFSET(data_len, 40);
+ VERIFY_OFFSET(cmd_priority_task_attr, 44);
+ VERIFY_OFFSET(sg_count, 45);
+ /* VERIFY_OFFSET(reserved3 */
+ VERIFY_OFFSET(err_ptr, 48);
+ VERIFY_OFFSET(err_len, 56);
+ /* VERIFY_OFFSET(reserved4 */
+ VERIFY_OFFSET(sg, 64);
+
+#undef VERIFY_OFFSET
+
+#define VERIFY_OFFSET(member, offset) \
+ BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
+
+ VERIFY_OFFSET(dev_handle, 0x00);
+ VERIFY_OFFSET(reserved1, 0x02);
+ VERIFY_OFFSET(function, 0x03);
+ VERIFY_OFFSET(reserved2, 0x04);
+ VERIFY_OFFSET(err_info, 0x0C);
+ VERIFY_OFFSET(reserved3, 0x10);
+ VERIFY_OFFSET(err_info_len, 0x12);
+ VERIFY_OFFSET(reserved4, 0x13);
+ VERIFY_OFFSET(sgl_offset, 0x14);
+ VERIFY_OFFSET(reserved5, 0x15);
+ VERIFY_OFFSET(transfer_len, 0x1C);
+ VERIFY_OFFSET(reserved6, 0x20);
+ VERIFY_OFFSET(io_flags, 0x24);
+ VERIFY_OFFSET(reserved7, 0x26);
+ VERIFY_OFFSET(LUN, 0x34);
+ VERIFY_OFFSET(control, 0x3C);
+ VERIFY_OFFSET(CDB, 0x40);
+ VERIFY_OFFSET(reserved8, 0x50);
+ VERIFY_OFFSET(host_context_flags, 0x60);
+ VERIFY_OFFSET(timeout_sec, 0x62);
+ VERIFY_OFFSET(ReplyQueue, 0x64);
+ VERIFY_OFFSET(reserved9, 0x65);
+ VERIFY_OFFSET(tag, 0x68);
+ VERIFY_OFFSET(host_addr, 0x70);
+ VERIFY_OFFSET(CISS_LUN, 0x78);
+ VERIFY_OFFSET(SG, 0x78 + 8);
+#undef VERIFY_OFFSET
+}
+
+module_init(hpsa_init);
+module_exit(hpsa_cleanup);