diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /drivers/spi/spi-bcm2835.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/spi/spi-bcm2835.c')
-rw-r--r-- | drivers/spi/spi-bcm2835.c | 1409 |
1 files changed, 1409 insertions, 0 deletions
diff --git a/drivers/spi/spi-bcm2835.c b/drivers/spi/spi-bcm2835.c new file mode 100644 index 000000000..bb9d8386b --- /dev/null +++ b/drivers/spi/spi-bcm2835.c @@ -0,0 +1,1409 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Driver for Broadcom BCM2835 SPI Controllers + * + * Copyright (C) 2012 Chris Boot + * Copyright (C) 2013 Stephen Warren + * Copyright (C) 2015 Martin Sperl + * + * This driver is inspired by: + * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org> + * spi-atmel.c, Copyright (C) 2006 Atmel Corporation + */ + +#include <linux/clk.h> +#include <linux/completion.h> +#include <linux/debugfs.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/err.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/of_device.h> +#include <linux/gpio/consumer.h> +#include <linux/gpio/machine.h> /* FIXME: using chip internals */ +#include <linux/gpio/driver.h> /* FIXME: using chip internals */ +#include <linux/of_irq.h> +#include <linux/spi/spi.h> + +/* SPI register offsets */ +#define BCM2835_SPI_CS 0x00 +#define BCM2835_SPI_FIFO 0x04 +#define BCM2835_SPI_CLK 0x08 +#define BCM2835_SPI_DLEN 0x0c +#define BCM2835_SPI_LTOH 0x10 +#define BCM2835_SPI_DC 0x14 + +/* Bitfields in CS */ +#define BCM2835_SPI_CS_LEN_LONG 0x02000000 +#define BCM2835_SPI_CS_DMA_LEN 0x01000000 +#define BCM2835_SPI_CS_CSPOL2 0x00800000 +#define BCM2835_SPI_CS_CSPOL1 0x00400000 +#define BCM2835_SPI_CS_CSPOL0 0x00200000 +#define BCM2835_SPI_CS_RXF 0x00100000 +#define BCM2835_SPI_CS_RXR 0x00080000 +#define BCM2835_SPI_CS_TXD 0x00040000 +#define BCM2835_SPI_CS_RXD 0x00020000 +#define BCM2835_SPI_CS_DONE 0x00010000 +#define BCM2835_SPI_CS_LEN 0x00002000 +#define BCM2835_SPI_CS_REN 0x00001000 +#define BCM2835_SPI_CS_ADCS 0x00000800 +#define BCM2835_SPI_CS_INTR 0x00000400 +#define BCM2835_SPI_CS_INTD 0x00000200 +#define BCM2835_SPI_CS_DMAEN 0x00000100 +#define BCM2835_SPI_CS_TA 0x00000080 +#define BCM2835_SPI_CS_CSPOL 0x00000040 +#define BCM2835_SPI_CS_CLEAR_RX 0x00000020 +#define BCM2835_SPI_CS_CLEAR_TX 0x00000010 +#define BCM2835_SPI_CS_CPOL 0x00000008 +#define BCM2835_SPI_CS_CPHA 0x00000004 +#define BCM2835_SPI_CS_CS_10 0x00000002 +#define BCM2835_SPI_CS_CS_01 0x00000001 + +#define BCM2835_SPI_FIFO_SIZE 64 +#define BCM2835_SPI_FIFO_SIZE_3_4 48 +#define BCM2835_SPI_DMA_MIN_LENGTH 96 +#define BCM2835_SPI_NUM_CS 24 /* raise as necessary */ +#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ + | SPI_NO_CS | SPI_3WIRE) + +#define DRV_NAME "spi-bcm2835" + +/* define polling limits */ +static unsigned int polling_limit_us = 30; +module_param(polling_limit_us, uint, 0664); +MODULE_PARM_DESC(polling_limit_us, + "time in us to run a transfer in polling mode\n"); + +/** + * struct bcm2835_spi - BCM2835 SPI controller + * @regs: base address of register map + * @clk: core clock, divided to calculate serial clock + * @clk_hz: core clock cached speed + * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full + * @tfr: SPI transfer currently processed + * @ctlr: SPI controller reverse lookup + * @tx_buf: pointer whence next transmitted byte is read + * @rx_buf: pointer where next received byte is written + * @tx_len: remaining bytes to transmit + * @rx_len: remaining bytes to receive + * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's + * length is not a multiple of 4 (to overcome hardware limitation) + * @rx_prologue: bytes received without DMA if first RX sglist entry's + * length is not a multiple of 4 (to overcome hardware limitation) + * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry + * @prepare_cs: precalculated CS register value for ->prepare_message() + * (uses slave-specific clock polarity and phase settings) + * @debugfs_dir: the debugfs directory - neede to remove debugfs when + * unloading the module + * @count_transfer_polling: count of how often polling mode is used + * @count_transfer_irq: count of how often interrupt mode is used + * @count_transfer_irq_after_polling: count of how often we fall back to + * interrupt mode after starting in polling mode. + * These are counted as well in @count_transfer_polling and + * @count_transfer_irq + * @count_transfer_dma: count how often dma mode is used + * @chip_select: SPI slave currently selected + * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs) + * @tx_dma_active: whether a TX DMA descriptor is in progress + * @rx_dma_active: whether a RX DMA descriptor is in progress + * (used by bcm2835_spi_dma_tx_done() to handle a race) + * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers + * (cyclically copies from zero page to TX FIFO) + * @fill_tx_addr: bus address of zero page + * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers + * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register) + * @clear_rx_addr: bus address of @clear_rx_cs + * @clear_rx_cs: precalculated CS register value to clear RX FIFO + * (uses slave-specific clock polarity and phase settings) + */ +struct bcm2835_spi { + void __iomem *regs; + struct clk *clk; + unsigned long clk_hz; + int irq; + struct spi_transfer *tfr; + struct spi_controller *ctlr; + const u8 *tx_buf; + u8 *rx_buf; + int tx_len; + int rx_len; + int tx_prologue; + int rx_prologue; + unsigned int tx_spillover; + u32 prepare_cs[BCM2835_SPI_NUM_CS]; + + struct dentry *debugfs_dir; + u64 count_transfer_polling; + u64 count_transfer_irq; + u64 count_transfer_irq_after_polling; + u64 count_transfer_dma; + + u8 chip_select; + unsigned int tx_dma_active; + unsigned int rx_dma_active; + struct dma_async_tx_descriptor *fill_tx_desc; + dma_addr_t fill_tx_addr; + struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS]; + dma_addr_t clear_rx_addr; + u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned; +}; + +#if defined(CONFIG_DEBUG_FS) +static void bcm2835_debugfs_create(struct bcm2835_spi *bs, + const char *dname) +{ + char name[64]; + struct dentry *dir; + + /* get full name */ + snprintf(name, sizeof(name), "spi-bcm2835-%s", dname); + + /* the base directory */ + dir = debugfs_create_dir(name, NULL); + bs->debugfs_dir = dir; + + /* the counters */ + debugfs_create_u64("count_transfer_polling", 0444, dir, + &bs->count_transfer_polling); + debugfs_create_u64("count_transfer_irq", 0444, dir, + &bs->count_transfer_irq); + debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir, + &bs->count_transfer_irq_after_polling); + debugfs_create_u64("count_transfer_dma", 0444, dir, + &bs->count_transfer_dma); +} + +static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) +{ + debugfs_remove_recursive(bs->debugfs_dir); + bs->debugfs_dir = NULL; +} +#else +static void bcm2835_debugfs_create(struct bcm2835_spi *bs, + const char *dname) +{ +} + +static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) +{ +} +#endif /* CONFIG_DEBUG_FS */ + +static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg) +{ + return readl(bs->regs + reg); +} + +static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val) +{ + writel(val, bs->regs + reg); +} + +static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs) +{ + u8 byte; + + while ((bs->rx_len) && + (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) { + byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); + if (bs->rx_buf) + *bs->rx_buf++ = byte; + bs->rx_len--; + } +} + +static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs) +{ + u8 byte; + + while ((bs->tx_len) && + (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) { + byte = bs->tx_buf ? *bs->tx_buf++ : 0; + bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); + bs->tx_len--; + } +} + +/** + * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO + * @bs: BCM2835 SPI controller + * @count: bytes to read from RX FIFO + * + * The caller must ensure that @bs->rx_len is greater than or equal to @count, + * that the RX FIFO contains at least @count bytes and that the DMA Enable flag + * in the CS register is set (such that a read from the FIFO register receives + * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL. + */ +static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count) +{ + u32 val; + int len; + + bs->rx_len -= count; + + do { + val = bcm2835_rd(bs, BCM2835_SPI_FIFO); + len = min(count, 4); + memcpy(bs->rx_buf, &val, len); + bs->rx_buf += len; + count -= 4; + } while (count > 0); +} + +/** + * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO + * @bs: BCM2835 SPI controller + * @count: bytes to write to TX FIFO + * + * The caller must ensure that @bs->tx_len is greater than or equal to @count, + * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag + * in the CS register is set (such that a write to the FIFO register transmits + * 32-bit instead of just 8-bit). + */ +static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count) +{ + u32 val; + int len; + + bs->tx_len -= count; + + do { + if (bs->tx_buf) { + len = min(count, 4); + memcpy(&val, bs->tx_buf, len); + bs->tx_buf += len; + } else { + val = 0; + } + bcm2835_wr(bs, BCM2835_SPI_FIFO, val); + count -= 4; + } while (count > 0); +} + +/** + * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty + * @bs: BCM2835 SPI controller + * + * The caller must ensure that the RX FIFO can accommodate as many bytes + * as have been written to the TX FIFO: Transmission is halted once the + * RX FIFO is full, causing this function to spin forever. + */ +static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs) +{ + while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) + cpu_relax(); +} + +/** + * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO + * @bs: BCM2835 SPI controller + * @count: bytes available for reading in RX FIFO + */ +static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count) +{ + u8 val; + + count = min(count, bs->rx_len); + bs->rx_len -= count; + + do { + val = bcm2835_rd(bs, BCM2835_SPI_FIFO); + if (bs->rx_buf) + *bs->rx_buf++ = val; + } while (--count); +} + +/** + * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO + * @bs: BCM2835 SPI controller + * @count: bytes available for writing in TX FIFO + */ +static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count) +{ + u8 val; + + count = min(count, bs->tx_len); + bs->tx_len -= count; + + do { + val = bs->tx_buf ? *bs->tx_buf++ : 0; + bcm2835_wr(bs, BCM2835_SPI_FIFO, val); + } while (--count); +} + +static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs) +{ + u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); + + /* Disable SPI interrupts and transfer */ + cs &= ~(BCM2835_SPI_CS_INTR | + BCM2835_SPI_CS_INTD | + BCM2835_SPI_CS_DMAEN | + BCM2835_SPI_CS_TA); + /* + * Transmission sometimes breaks unless the DONE bit is written at the + * end of every transfer. The spec says it's a RO bit. Either the + * spec is wrong and the bit is actually of type RW1C, or it's a + * hardware erratum. + */ + cs |= BCM2835_SPI_CS_DONE; + /* and reset RX/TX FIFOS */ + cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX; + + /* and reset the SPI_HW */ + bcm2835_wr(bs, BCM2835_SPI_CS, cs); + /* as well as DLEN */ + bcm2835_wr(bs, BCM2835_SPI_DLEN, 0); +} + +static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) +{ + struct bcm2835_spi *bs = dev_id; + u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); + + /* + * An interrupt is signaled either if DONE is set (TX FIFO empty) + * or if RXR is set (RX FIFO >= ¾ full). + */ + if (cs & BCM2835_SPI_CS_RXF) + bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); + else if (cs & BCM2835_SPI_CS_RXR) + bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4); + + if (bs->tx_len && cs & BCM2835_SPI_CS_DONE) + bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); + + /* Read as many bytes as possible from FIFO */ + bcm2835_rd_fifo(bs); + /* Write as many bytes as possible to FIFO */ + bcm2835_wr_fifo(bs); + + if (!bs->rx_len) { + /* Transfer complete - reset SPI HW */ + bcm2835_spi_reset_hw(bs); + /* wake up the framework */ + complete(&bs->ctlr->xfer_completion); + } + + return IRQ_HANDLED; +} + +static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr, + struct spi_device *spi, + struct spi_transfer *tfr, + u32 cs, bool fifo_empty) +{ + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + + /* update usage statistics */ + bs->count_transfer_irq++; + + /* + * Enable HW block, but with interrupts still disabled. + * Otherwise the empty TX FIFO would immediately trigger an interrupt. + */ + bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); + + /* fill TX FIFO as much as possible */ + if (fifo_empty) + bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); + bcm2835_wr_fifo(bs); + + /* enable interrupts */ + cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; + bcm2835_wr(bs, BCM2835_SPI_CS, cs); + + /* signal that we need to wait for completion */ + return 1; +} + +/** + * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA + * @ctlr: SPI master controller + * @tfr: SPI transfer + * @bs: BCM2835 SPI controller + * @cs: CS register + * + * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks. + * Only the final write access is permitted to transmit less than 4 bytes, the + * SPI controller deduces its intended size from the DLEN register. + * + * If a TX or RX sglist contains multiple entries, one per page, and the first + * entry starts in the middle of a page, that first entry's length may not be + * a multiple of 4. Subsequent entries are fine because they span an entire + * page, hence do have a length that's a multiple of 4. + * + * This cannot happen with kmalloc'ed buffers (which is what most clients use) + * because they are contiguous in physical memory and therefore not split on + * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed + * buffers. + * + * The DMA engine is incapable of combining sglist entries into a continuous + * stream of 4 byte chunks, it treats every entry separately: A TX entry is + * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX + * entry is rounded up by throwing away received bytes. + * + * Overcome this limitation by transferring the first few bytes without DMA: + * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42, + * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO. + * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with + * the rest of the first RX sglist entry it makes up a multiple of 4 bytes. + * + * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1, + * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO. + * Caution, the additional 4 bytes spill over to the second TX sglist entry + * if the length of the first is *exactly* 1. + * + * At most 6 bytes are written and at most 3 bytes read. Do we know the + * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH. + * + * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width + * by the DMA engine. Toggling the DMA Enable flag in the CS register switches + * the width but also garbles the FIFO's contents. The prologue must therefore + * be transmitted in 32-bit width to ensure that the following DMA transfer can + * pick up the residue in the RX FIFO in ungarbled form. + */ +static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr, + struct spi_transfer *tfr, + struct bcm2835_spi *bs, + u32 cs) +{ + int tx_remaining; + + bs->tfr = tfr; + bs->tx_prologue = 0; + bs->rx_prologue = 0; + bs->tx_spillover = false; + + if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0])) + bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3; + + if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) { + bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3; + + if (bs->rx_prologue > bs->tx_prologue) { + if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) { + bs->tx_prologue = bs->rx_prologue; + } else { + bs->tx_prologue += 4; + bs->tx_spillover = + !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3); + } + } + } + + /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */ + if (!bs->tx_prologue) + return; + + /* Write and read RX prologue. Adjust first entry in RX sglist. */ + if (bs->rx_prologue) { + bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue); + bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA + | BCM2835_SPI_CS_DMAEN); + bcm2835_wr_fifo_count(bs, bs->rx_prologue); + bcm2835_wait_tx_fifo_empty(bs); + bcm2835_rd_fifo_count(bs, bs->rx_prologue); + bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX + | BCM2835_SPI_CS_CLEAR_TX + | BCM2835_SPI_CS_DONE); + + dma_sync_single_for_device(ctlr->dma_rx->device->dev, + sg_dma_address(&tfr->rx_sg.sgl[0]), + bs->rx_prologue, DMA_FROM_DEVICE); + + sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; + sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; + } + + if (!bs->tx_buf) + return; + + /* + * Write remaining TX prologue. Adjust first entry in TX sglist. + * Also adjust second entry if prologue spills over to it. + */ + tx_remaining = bs->tx_prologue - bs->rx_prologue; + if (tx_remaining) { + bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining); + bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA + | BCM2835_SPI_CS_DMAEN); + bcm2835_wr_fifo_count(bs, tx_remaining); + bcm2835_wait_tx_fifo_empty(bs); + bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX + | BCM2835_SPI_CS_DONE); + } + + if (likely(!bs->tx_spillover)) { + sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; + sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; + } else { + sg_dma_len(&tfr->tx_sg.sgl[0]) = 0; + sg_dma_address(&tfr->tx_sg.sgl[1]) += 4; + sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4; + } +} + +/** + * bcm2835_spi_undo_prologue() - reconstruct original sglist state + * @bs: BCM2835 SPI controller + * + * Undo changes which were made to an SPI transfer's sglist when transmitting + * the prologue. This is necessary to ensure the same memory ranges are + * unmapped that were originally mapped. + */ +static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs) +{ + struct spi_transfer *tfr = bs->tfr; + + if (!bs->tx_prologue) + return; + + if (bs->rx_prologue) { + sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; + sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; + } + + if (!bs->tx_buf) + goto out; + + if (likely(!bs->tx_spillover)) { + sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; + sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; + } else { + sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4; + sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4; + sg_dma_len(&tfr->tx_sg.sgl[1]) += 4; + } +out: + bs->tx_prologue = 0; +} + +/** + * bcm2835_spi_dma_rx_done() - callback for DMA RX channel + * @data: SPI master controller + * + * Used for bidirectional and RX-only transfers. + */ +static void bcm2835_spi_dma_rx_done(void *data) +{ + struct spi_controller *ctlr = data; + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + + /* terminate tx-dma as we do not have an irq for it + * because when the rx dma will terminate and this callback + * is called the tx-dma must have finished - can't get to this + * situation otherwise... + */ + dmaengine_terminate_async(ctlr->dma_tx); + bs->tx_dma_active = false; + bs->rx_dma_active = false; + bcm2835_spi_undo_prologue(bs); + + /* reset fifo and HW */ + bcm2835_spi_reset_hw(bs); + + /* and mark as completed */; + complete(&ctlr->xfer_completion); +} + +/** + * bcm2835_spi_dma_tx_done() - callback for DMA TX channel + * @data: SPI master controller + * + * Used for TX-only transfers. + */ +static void bcm2835_spi_dma_tx_done(void *data) +{ + struct spi_controller *ctlr = data; + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + + /* busy-wait for TX FIFO to empty */ + while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) + bcm2835_wr(bs, BCM2835_SPI_CS, + bs->clear_rx_cs[bs->chip_select]); + + bs->tx_dma_active = false; + smp_wmb(); + + /* + * In case of a very short transfer, RX DMA may not have been + * issued yet. The onus is then on bcm2835_spi_transfer_one_dma() + * to terminate it immediately after issuing. + */ + if (cmpxchg(&bs->rx_dma_active, true, false)) + dmaengine_terminate_async(ctlr->dma_rx); + + bcm2835_spi_undo_prologue(bs); + bcm2835_spi_reset_hw(bs); + complete(&ctlr->xfer_completion); +} + +/** + * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist + * @ctlr: SPI master controller + * @spi: SPI slave + * @tfr: SPI transfer + * @bs: BCM2835 SPI controller + * @is_tx: whether to submit DMA descriptor for TX or RX sglist + * + * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr. + * Return 0 on success or a negative error number. + */ +static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr, + struct spi_device *spi, + struct spi_transfer *tfr, + struct bcm2835_spi *bs, + bool is_tx) +{ + struct dma_chan *chan; + struct scatterlist *sgl; + unsigned int nents; + enum dma_transfer_direction dir; + unsigned long flags; + + struct dma_async_tx_descriptor *desc; + dma_cookie_t cookie; + + if (is_tx) { + dir = DMA_MEM_TO_DEV; + chan = ctlr->dma_tx; + nents = tfr->tx_sg.nents; + sgl = tfr->tx_sg.sgl; + flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT; + } else { + dir = DMA_DEV_TO_MEM; + chan = ctlr->dma_rx; + nents = tfr->rx_sg.nents; + sgl = tfr->rx_sg.sgl; + flags = DMA_PREP_INTERRUPT; + } + /* prepare the channel */ + desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); + if (!desc) + return -EINVAL; + + /* + * Completion is signaled by the RX channel for bidirectional and + * RX-only transfers; else by the TX channel for TX-only transfers. + */ + if (!is_tx) { + desc->callback = bcm2835_spi_dma_rx_done; + desc->callback_param = ctlr; + } else if (!tfr->rx_buf) { + desc->callback = bcm2835_spi_dma_tx_done; + desc->callback_param = ctlr; + bs->chip_select = spi->chip_select; + } + + /* submit it to DMA-engine */ + cookie = dmaengine_submit(desc); + + return dma_submit_error(cookie); +} + +/** + * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine + * @ctlr: SPI master controller + * @spi: SPI slave + * @tfr: SPI transfer + * @cs: CS register + * + * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up + * the TX and RX DMA channel to copy between memory and FIFO register. + * + * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to + * memory is pointless. However not reading the RX FIFO isn't an option either + * because transmission is halted once it's full. As a workaround, cyclically + * clear the RX FIFO by setting the CLEAR_RX bit in the CS register. + * + * The CS register value is precalculated in bcm2835_spi_setup(). Normally + * this is called only once, on slave registration. A DMA descriptor to write + * this value is preallocated in bcm2835_dma_init(). All that's left to do + * when performing a TX-only transfer is to submit this descriptor to the RX + * DMA channel. Latency is thereby minimized. The descriptor does not + * generate any interrupts while running. It must be terminated once the + * TX DMA channel is done. + * + * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted + * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC + * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus + * accesses, whereas clearing it requires only 1 bus access. So an 8-fold + * reduction in bus traffic and thus energy consumption is achieved. + * + * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically + * copying from the zero page. The DMA descriptor to do this is preallocated + * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is + * done and can then be reused. + * + * The BCM2835 DMA driver autodetects when a transaction copies from the zero + * page and utilizes the DMA controller's ability to synthesize zeroes instead + * of copying them from memory. This reduces traffic on the memory bus. The + * feature is not available on so-called "lite" channels, but normally TX DMA + * is backed by a full-featured channel. + * + * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the + * BCM2835 SPI controller continues to assert DREQ even after the DLEN register + * has been counted down to zero (hardware erratum). Thus, when the transfer + * has finished, the DMA engine zero-fills the TX FIFO until it is half full. + * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are + * performed at the end of an RX-only transfer. + */ +static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr, + struct spi_device *spi, + struct spi_transfer *tfr, + u32 cs) +{ + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + dma_cookie_t cookie; + int ret; + + /* update usage statistics */ + bs->count_transfer_dma++; + + /* + * Transfer first few bytes without DMA if length of first TX or RX + * sglist entry is not a multiple of 4 bytes (hardware limitation). + */ + bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs); + + /* setup tx-DMA */ + if (bs->tx_buf) { + ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true); + } else { + cookie = dmaengine_submit(bs->fill_tx_desc); + ret = dma_submit_error(cookie); + } + if (ret) + goto err_reset_hw; + + /* set the DMA length */ + bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len); + + /* start the HW */ + bcm2835_wr(bs, BCM2835_SPI_CS, + cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); + + bs->tx_dma_active = true; + smp_wmb(); + + /* start TX early */ + dma_async_issue_pending(ctlr->dma_tx); + + /* setup rx-DMA late - to run transfers while + * mapping of the rx buffers still takes place + * this saves 10us or more. + */ + if (bs->rx_buf) { + ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false); + } else { + cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]); + ret = dma_submit_error(cookie); + } + if (ret) { + /* need to reset on errors */ + dmaengine_terminate_sync(ctlr->dma_tx); + bs->tx_dma_active = false; + goto err_reset_hw; + } + + /* start rx dma late */ + dma_async_issue_pending(ctlr->dma_rx); + bs->rx_dma_active = true; + smp_mb(); + + /* + * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done() + * may run before RX DMA is issued. Terminate RX DMA if so. + */ + if (!bs->rx_buf && !bs->tx_dma_active && + cmpxchg(&bs->rx_dma_active, true, false)) { + dmaengine_terminate_async(ctlr->dma_rx); + bcm2835_spi_reset_hw(bs); + } + + /* wait for wakeup in framework */ + return 1; + +err_reset_hw: + bcm2835_spi_reset_hw(bs); + bcm2835_spi_undo_prologue(bs); + return ret; +} + +static bool bcm2835_spi_can_dma(struct spi_controller *ctlr, + struct spi_device *spi, + struct spi_transfer *tfr) +{ + /* we start DMA efforts only on bigger transfers */ + if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH) + return false; + + /* return OK */ + return true; +} + +static void bcm2835_dma_release(struct spi_controller *ctlr, + struct bcm2835_spi *bs) +{ + int i; + + if (ctlr->dma_tx) { + dmaengine_terminate_sync(ctlr->dma_tx); + + if (bs->fill_tx_desc) + dmaengine_desc_free(bs->fill_tx_desc); + + if (bs->fill_tx_addr) + dma_unmap_page_attrs(ctlr->dma_tx->device->dev, + bs->fill_tx_addr, sizeof(u32), + DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC); + + dma_release_channel(ctlr->dma_tx); + ctlr->dma_tx = NULL; + } + + if (ctlr->dma_rx) { + dmaengine_terminate_sync(ctlr->dma_rx); + + for (i = 0; i < BCM2835_SPI_NUM_CS; i++) + if (bs->clear_rx_desc[i]) + dmaengine_desc_free(bs->clear_rx_desc[i]); + + if (bs->clear_rx_addr) + dma_unmap_single(ctlr->dma_rx->device->dev, + bs->clear_rx_addr, + sizeof(bs->clear_rx_cs), + DMA_TO_DEVICE); + + dma_release_channel(ctlr->dma_rx); + ctlr->dma_rx = NULL; + } +} + +static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev, + struct bcm2835_spi *bs) +{ + struct dma_slave_config slave_config; + const __be32 *addr; + dma_addr_t dma_reg_base; + int ret, i; + + /* base address in dma-space */ + addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL); + if (!addr) { + dev_err(dev, "could not get DMA-register address - not using dma mode\n"); + /* Fall back to interrupt mode */ + return 0; + } + dma_reg_base = be32_to_cpup(addr); + + /* get tx/rx dma */ + ctlr->dma_tx = dma_request_chan(dev, "tx"); + if (IS_ERR(ctlr->dma_tx)) { + dev_err(dev, "no tx-dma configuration found - not using dma mode\n"); + ret = PTR_ERR(ctlr->dma_tx); + ctlr->dma_tx = NULL; + goto err; + } + ctlr->dma_rx = dma_request_chan(dev, "rx"); + if (IS_ERR(ctlr->dma_rx)) { + dev_err(dev, "no rx-dma configuration found - not using dma mode\n"); + ret = PTR_ERR(ctlr->dma_rx); + ctlr->dma_rx = NULL; + goto err_release; + } + + /* + * The TX DMA channel either copies a transfer's TX buffer to the FIFO + * or, in case of an RX-only transfer, cyclically copies from the zero + * page to the FIFO using a preallocated, reusable descriptor. + */ + slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); + slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + + ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config); + if (ret) + goto err_config; + + bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev, + ZERO_PAGE(0), 0, sizeof(u32), + DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC); + if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) { + dev_err(dev, "cannot map zero page - not using DMA mode\n"); + bs->fill_tx_addr = 0; + ret = -ENOMEM; + goto err_release; + } + + bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx, + bs->fill_tx_addr, + sizeof(u32), 0, + DMA_MEM_TO_DEV, 0); + if (!bs->fill_tx_desc) { + dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n"); + ret = -ENOMEM; + goto err_release; + } + + ret = dmaengine_desc_set_reuse(bs->fill_tx_desc); + if (ret) { + dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n"); + goto err_release; + } + + /* + * The RX DMA channel is used bidirectionally: It either reads the + * RX FIFO or, in case of a TX-only transfer, cyclically writes a + * precalculated value to the CS register to clear the RX FIFO. + */ + slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); + slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS); + slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + + ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config); + if (ret) + goto err_config; + + bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev, + bs->clear_rx_cs, + sizeof(bs->clear_rx_cs), + DMA_TO_DEVICE); + if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) { + dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n"); + bs->clear_rx_addr = 0; + ret = -ENOMEM; + goto err_release; + } + + for (i = 0; i < BCM2835_SPI_NUM_CS; i++) { + bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx, + bs->clear_rx_addr + i * sizeof(u32), + sizeof(u32), 0, + DMA_MEM_TO_DEV, 0); + if (!bs->clear_rx_desc[i]) { + dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n"); + ret = -ENOMEM; + goto err_release; + } + + ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]); + if (ret) { + dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n"); + goto err_release; + } + } + + /* all went well, so set can_dma */ + ctlr->can_dma = bcm2835_spi_can_dma; + + return 0; + +err_config: + dev_err(dev, "issue configuring dma: %d - not using DMA mode\n", + ret); +err_release: + bcm2835_dma_release(ctlr, bs); +err: + /* + * Only report error for deferred probing, otherwise fall back to + * interrupt mode + */ + if (ret != -EPROBE_DEFER) + ret = 0; + + return ret; +} + +static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr, + struct spi_device *spi, + struct spi_transfer *tfr, + u32 cs) +{ + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + unsigned long timeout; + + /* update usage statistics */ + bs->count_transfer_polling++; + + /* enable HW block without interrupts */ + bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); + + /* fill in the fifo before timeout calculations + * if we are interrupted here, then the data is + * getting transferred by the HW while we are interrupted + */ + bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); + + /* set the timeout to at least 2 jiffies */ + timeout = jiffies + 2 + HZ * polling_limit_us / 1000000; + + /* loop until finished the transfer */ + while (bs->rx_len) { + /* fill in tx fifo with remaining data */ + bcm2835_wr_fifo(bs); + + /* read from fifo as much as possible */ + bcm2835_rd_fifo(bs); + + /* if there is still data pending to read + * then check the timeout + */ + if (bs->rx_len && time_after(jiffies, timeout)) { + dev_dbg_ratelimited(&spi->dev, + "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", + jiffies - timeout, + bs->tx_len, bs->rx_len); + /* fall back to interrupt mode */ + + /* update usage statistics */ + bs->count_transfer_irq_after_polling++; + + return bcm2835_spi_transfer_one_irq(ctlr, spi, + tfr, cs, false); + } + } + + /* Transfer complete - reset SPI HW */ + bcm2835_spi_reset_hw(bs); + /* and return without waiting for completion */ + return 0; +} + +static int bcm2835_spi_transfer_one(struct spi_controller *ctlr, + struct spi_device *spi, + struct spi_transfer *tfr) +{ + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + unsigned long spi_hz, cdiv; + unsigned long hz_per_byte, byte_limit; + u32 cs = bs->prepare_cs[spi->chip_select]; + + /* set clock */ + spi_hz = tfr->speed_hz; + + if (spi_hz >= bs->clk_hz / 2) { + cdiv = 2; /* clk_hz/2 is the fastest we can go */ + } else if (spi_hz) { + /* CDIV must be a multiple of two */ + cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz); + cdiv += (cdiv % 2); + + if (cdiv >= 65536) + cdiv = 0; /* 0 is the slowest we can go */ + } else { + cdiv = 0; /* 0 is the slowest we can go */ + } + tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536); + bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); + + /* handle all the 3-wire mode */ + if (spi->mode & SPI_3WIRE && tfr->rx_buf) + cs |= BCM2835_SPI_CS_REN; + + /* set transmit buffers and length */ + bs->tx_buf = tfr->tx_buf; + bs->rx_buf = tfr->rx_buf; + bs->tx_len = tfr->len; + bs->rx_len = tfr->len; + + /* Calculate the estimated time in us the transfer runs. Note that + * there is 1 idle clocks cycles after each byte getting transferred + * so we have 9 cycles/byte. This is used to find the number of Hz + * per byte per polling limit. E.g., we can transfer 1 byte in 30 us + * per 300,000 Hz of bus clock. + */ + hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0; + byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1; + + /* run in polling mode for short transfers */ + if (tfr->len < byte_limit) + return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs); + + /* run in dma mode if conditions are right + * Note that unlike poll or interrupt mode DMA mode does not have + * this 1 idle clock cycle pattern but runs the spi clock without gaps + */ + if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr)) + return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs); + + /* run in interrupt-mode */ + return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true); +} + +static int bcm2835_spi_prepare_message(struct spi_controller *ctlr, + struct spi_message *msg) +{ + struct spi_device *spi = msg->spi; + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + int ret; + + if (ctlr->can_dma) { + /* + * DMA transfers are limited to 16 bit (0 to 65535 bytes) by + * the SPI HW due to DLEN. Split up transfers (32-bit FIFO + * aligned) if the limit is exceeded. + */ + ret = spi_split_transfers_maxsize(ctlr, msg, 65532, + GFP_KERNEL | GFP_DMA); + if (ret) + return ret; + } + + /* + * Set up clock polarity before spi_transfer_one_message() asserts + * chip select to avoid a gratuitous clock signal edge. + */ + bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]); + + return 0; +} + +static void bcm2835_spi_handle_err(struct spi_controller *ctlr, + struct spi_message *msg) +{ + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + + /* if an error occurred and we have an active dma, then terminate */ + if (ctlr->dma_tx) { + dmaengine_terminate_sync(ctlr->dma_tx); + bs->tx_dma_active = false; + } + if (ctlr->dma_rx) { + dmaengine_terminate_sync(ctlr->dma_rx); + bs->rx_dma_active = false; + } + bcm2835_spi_undo_prologue(bs); + + /* and reset */ + bcm2835_spi_reset_hw(bs); +} + +static int chip_match_name(struct gpio_chip *chip, void *data) +{ + return !strcmp(chip->label, data); +} + +static int bcm2835_spi_setup(struct spi_device *spi) +{ + struct spi_controller *ctlr = spi->controller; + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + struct gpio_chip *chip; + u32 cs; + + if (spi->chip_select >= BCM2835_SPI_NUM_CS) { + dev_err(&spi->dev, "only %d chip-selects supported\n", + BCM2835_SPI_NUM_CS - 1); + return -EINVAL; + } + + /* + * Precalculate SPI slave's CS register value for ->prepare_message(): + * The driver always uses software-controlled GPIO chip select, hence + * set the hardware-controlled native chip select to an invalid value + * to prevent it from interfering. + */ + cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01; + if (spi->mode & SPI_CPOL) + cs |= BCM2835_SPI_CS_CPOL; + if (spi->mode & SPI_CPHA) + cs |= BCM2835_SPI_CS_CPHA; + bs->prepare_cs[spi->chip_select] = cs; + + /* + * Precalculate SPI slave's CS register value to clear RX FIFO + * in case of a TX-only DMA transfer. + */ + if (ctlr->dma_rx) { + bs->clear_rx_cs[spi->chip_select] = cs | + BCM2835_SPI_CS_TA | + BCM2835_SPI_CS_DMAEN | + BCM2835_SPI_CS_CLEAR_RX; + dma_sync_single_for_device(ctlr->dma_rx->device->dev, + bs->clear_rx_addr, + sizeof(bs->clear_rx_cs), + DMA_TO_DEVICE); + } + + /* + * sanity checking the native-chipselects + */ + if (spi->mode & SPI_NO_CS) + return 0; + /* + * The SPI core has successfully requested the CS GPIO line from the + * device tree, so we are done. + */ + if (spi->cs_gpiod) + return 0; + if (spi->chip_select > 1) { + /* error in the case of native CS requested with CS > 1 + * officially there is a CS2, but it is not documented + * which GPIO is connected with that... + */ + dev_err(&spi->dev, + "setup: only two native chip-selects are supported\n"); + return -EINVAL; + } + + /* + * Translate native CS to GPIO + * + * FIXME: poking around in the gpiolib internals like this is + * not very good practice. Find a way to locate the real problem + * and fix it. Why is the GPIO descriptor in spi->cs_gpiod + * sometimes not assigned correctly? Erroneous device trees? + */ + + /* get the gpio chip for the base */ + chip = gpiochip_find("pinctrl-bcm2835", chip_match_name); + if (!chip) + return 0; + + spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select, + DRV_NAME, + GPIO_LOOKUP_FLAGS_DEFAULT, + GPIOD_OUT_LOW); + if (IS_ERR(spi->cs_gpiod)) + return PTR_ERR(spi->cs_gpiod); + + /* and set up the "mode" and level */ + dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n", + spi->chip_select); + + return 0; +} + +static int bcm2835_spi_probe(struct platform_device *pdev) +{ + struct spi_controller *ctlr; + struct bcm2835_spi *bs; + int err; + + ctlr = devm_spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs), + dma_get_cache_alignment())); + if (!ctlr) + return -ENOMEM; + + platform_set_drvdata(pdev, ctlr); + + ctlr->use_gpio_descriptors = true; + ctlr->mode_bits = BCM2835_SPI_MODE_BITS; + ctlr->bits_per_word_mask = SPI_BPW_MASK(8); + ctlr->num_chipselect = 3; + ctlr->setup = bcm2835_spi_setup; + ctlr->transfer_one = bcm2835_spi_transfer_one; + ctlr->handle_err = bcm2835_spi_handle_err; + ctlr->prepare_message = bcm2835_spi_prepare_message; + ctlr->dev.of_node = pdev->dev.of_node; + + bs = spi_controller_get_devdata(ctlr); + bs->ctlr = ctlr; + + bs->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(bs->regs)) + return PTR_ERR(bs->regs); + + bs->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(bs->clk)) + return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk), + "could not get clk\n"); + + bs->irq = platform_get_irq(pdev, 0); + if (bs->irq <= 0) + return bs->irq ? bs->irq : -ENODEV; + + clk_prepare_enable(bs->clk); + bs->clk_hz = clk_get_rate(bs->clk); + + err = bcm2835_dma_init(ctlr, &pdev->dev, bs); + if (err) + goto out_clk_disable; + + /* initialise the hardware with the default polarities */ + bcm2835_wr(bs, BCM2835_SPI_CS, + BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); + + err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, + dev_name(&pdev->dev), bs); + if (err) { + dev_err(&pdev->dev, "could not request IRQ: %d\n", err); + goto out_dma_release; + } + + err = spi_register_controller(ctlr); + if (err) { + dev_err(&pdev->dev, "could not register SPI controller: %d\n", + err); + goto out_dma_release; + } + + bcm2835_debugfs_create(bs, dev_name(&pdev->dev)); + + return 0; + +out_dma_release: + bcm2835_dma_release(ctlr, bs); +out_clk_disable: + clk_disable_unprepare(bs->clk); + return err; +} + +static int bcm2835_spi_remove(struct platform_device *pdev) +{ + struct spi_controller *ctlr = platform_get_drvdata(pdev); + struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); + + bcm2835_debugfs_remove(bs); + + spi_unregister_controller(ctlr); + + bcm2835_dma_release(ctlr, bs); + + /* Clear FIFOs, and disable the HW block */ + bcm2835_wr(bs, BCM2835_SPI_CS, + BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); + + clk_disable_unprepare(bs->clk); + + return 0; +} + +static void bcm2835_spi_shutdown(struct platform_device *pdev) +{ + int ret; + + ret = bcm2835_spi_remove(pdev); + if (ret) + dev_err(&pdev->dev, "failed to shutdown\n"); +} + +static const struct of_device_id bcm2835_spi_match[] = { + { .compatible = "brcm,bcm2835-spi", }, + {} +}; +MODULE_DEVICE_TABLE(of, bcm2835_spi_match); + +static struct platform_driver bcm2835_spi_driver = { + .driver = { + .name = DRV_NAME, + .of_match_table = bcm2835_spi_match, + }, + .probe = bcm2835_spi_probe, + .remove = bcm2835_spi_remove, + .shutdown = bcm2835_spi_shutdown, +}; +module_platform_driver(bcm2835_spi_driver); + +MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835"); +MODULE_AUTHOR("Chris Boot <bootc@bootc.net>"); +MODULE_LICENSE("GPL"); |