diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 10:05:51 +0000 |
commit | 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch) | |
tree | a94efe259b9009378be6d90eb30d2b019d95c194 /fs/btrfs/space-info.c | |
parent | Initial commit. (diff) | |
download | linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip |
Adding upstream version 5.10.209.upstream/5.10.209upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/btrfs/space-info.c')
-rw-r--r-- | fs/btrfs/space-info.c | 1478 |
1 files changed, 1478 insertions, 0 deletions
diff --git a/fs/btrfs/space-info.c b/fs/btrfs/space-info.c new file mode 100644 index 000000000..69ab10c92 --- /dev/null +++ b/fs/btrfs/space-info.c @@ -0,0 +1,1478 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include "misc.h" +#include "ctree.h" +#include "space-info.h" +#include "sysfs.h" +#include "volumes.h" +#include "free-space-cache.h" +#include "ordered-data.h" +#include "transaction.h" +#include "block-group.h" + +/* + * HOW DOES SPACE RESERVATION WORK + * + * If you want to know about delalloc specifically, there is a separate comment + * for that with the delalloc code. This comment is about how the whole system + * works generally. + * + * BASIC CONCEPTS + * + * 1) space_info. This is the ultimate arbiter of how much space we can use. + * There's a description of the bytes_ fields with the struct declaration, + * refer to that for specifics on each field. Suffice it to say that for + * reservations we care about total_bytes - SUM(space_info->bytes_) when + * determining if there is space to make an allocation. There is a space_info + * for METADATA, SYSTEM, and DATA areas. + * + * 2) block_rsv's. These are basically buckets for every different type of + * metadata reservation we have. You can see the comment in the block_rsv + * code on the rules for each type, but generally block_rsv->reserved is how + * much space is accounted for in space_info->bytes_may_use. + * + * 3) btrfs_calc*_size. These are the worst case calculations we used based + * on the number of items we will want to modify. We have one for changing + * items, and one for inserting new items. Generally we use these helpers to + * determine the size of the block reserves, and then use the actual bytes + * values to adjust the space_info counters. + * + * MAKING RESERVATIONS, THE NORMAL CASE + * + * We call into either btrfs_reserve_data_bytes() or + * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with + * num_bytes we want to reserve. + * + * ->reserve + * space_info->bytes_may_reserve += num_bytes + * + * ->extent allocation + * Call btrfs_add_reserved_bytes() which does + * space_info->bytes_may_reserve -= num_bytes + * space_info->bytes_reserved += extent_bytes + * + * ->insert reference + * Call btrfs_update_block_group() which does + * space_info->bytes_reserved -= extent_bytes + * space_info->bytes_used += extent_bytes + * + * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) + * + * Assume we are unable to simply make the reservation because we do not have + * enough space + * + * -> __reserve_bytes + * create a reserve_ticket with ->bytes set to our reservation, add it to + * the tail of space_info->tickets, kick async flush thread + * + * ->handle_reserve_ticket + * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set + * on the ticket. + * + * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space + * Flushes various things attempting to free up space. + * + * -> btrfs_try_granting_tickets() + * This is called by anything that either subtracts space from + * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the + * space_info->total_bytes. This loops through the ->priority_tickets and + * then the ->tickets list checking to see if the reservation can be + * completed. If it can the space is added to space_info->bytes_may_use and + * the ticket is woken up. + * + * -> ticket wakeup + * Check if ->bytes == 0, if it does we got our reservation and we can carry + * on, if not return the appropriate error (ENOSPC, but can be EINTR if we + * were interrupted.) + * + * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY + * + * Same as the above, except we add ourselves to the + * space_info->priority_tickets, and we do not use ticket->wait, we simply + * call flush_space() ourselves for the states that are safe for us to call + * without deadlocking and hope for the best. + * + * THE FLUSHING STATES + * + * Generally speaking we will have two cases for each state, a "nice" state + * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to + * reduce the locking over head on the various trees, and even to keep from + * doing any work at all in the case of delayed refs. Each of these delayed + * things however hold reservations, and so letting them run allows us to + * reclaim space so we can make new reservations. + * + * FLUSH_DELAYED_ITEMS + * Every inode has a delayed item to update the inode. Take a simple write + * for example, we would update the inode item at write time to update the + * mtime, and then again at finish_ordered_io() time in order to update the + * isize or bytes. We keep these delayed items to coalesce these operations + * into a single operation done on demand. These are an easy way to reclaim + * metadata space. + * + * FLUSH_DELALLOC + * Look at the delalloc comment to get an idea of how much space is reserved + * for delayed allocation. We can reclaim some of this space simply by + * running delalloc, but usually we need to wait for ordered extents to + * reclaim the bulk of this space. + * + * FLUSH_DELAYED_REFS + * We have a block reserve for the outstanding delayed refs space, and every + * delayed ref operation holds a reservation. Running these is a quick way + * to reclaim space, but we want to hold this until the end because COW can + * churn a lot and we can avoid making some extent tree modifications if we + * are able to delay for as long as possible. + * + * ALLOC_CHUNK + * We will skip this the first time through space reservation, because of + * overcommit and we don't want to have a lot of useless metadata space when + * our worst case reservations will likely never come true. + * + * RUN_DELAYED_IPUTS + * If we're freeing inodes we're likely freeing checksums, file extent + * items, and extent tree items. Loads of space could be freed up by these + * operations, however they won't be usable until the transaction commits. + * + * COMMIT_TRANS + * may_commit_transaction() is the ultimate arbiter on whether we commit the + * transaction or not. In order to avoid constantly churning we do all the + * above flushing first and then commit the transaction as the last resort. + * However we need to take into account things like pinned space that would + * be freed, plus any delayed work we may not have gotten rid of in the case + * of metadata. + * + * OVERCOMMIT + * + * Because we hold so many reservations for metadata we will allow you to + * reserve more space than is currently free in the currently allocate + * metadata space. This only happens with metadata, data does not allow + * overcommitting. + * + * You can see the current logic for when we allow overcommit in + * btrfs_can_overcommit(), but it only applies to unallocated space. If there + * is no unallocated space to be had, all reservations are kept within the + * free space in the allocated metadata chunks. + * + * Because of overcommitting, you generally want to use the + * btrfs_can_overcommit() logic for metadata allocations, as it does the right + * thing with or without extra unallocated space. + */ + +u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, + bool may_use_included) +{ + ASSERT(s_info); + return s_info->bytes_used + s_info->bytes_reserved + + s_info->bytes_pinned + s_info->bytes_readonly + + (may_use_included ? s_info->bytes_may_use : 0); +} + +/* + * after adding space to the filesystem, we need to clear the full flags + * on all the space infos. + */ +void btrfs_clear_space_info_full(struct btrfs_fs_info *info) +{ + struct list_head *head = &info->space_info; + struct btrfs_space_info *found; + + list_for_each_entry(found, head, list) + found->full = 0; +} + +static int create_space_info(struct btrfs_fs_info *info, u64 flags) +{ + + struct btrfs_space_info *space_info; + int i; + int ret; + + space_info = kzalloc(sizeof(*space_info), GFP_NOFS); + if (!space_info) + return -ENOMEM; + + ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, + GFP_KERNEL); + if (ret) { + kfree(space_info); + return ret; + } + + for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) + INIT_LIST_HEAD(&space_info->block_groups[i]); + init_rwsem(&space_info->groups_sem); + spin_lock_init(&space_info->lock); + space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; + space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; + INIT_LIST_HEAD(&space_info->ro_bgs); + INIT_LIST_HEAD(&space_info->tickets); + INIT_LIST_HEAD(&space_info->priority_tickets); + + ret = btrfs_sysfs_add_space_info_type(info, space_info); + if (ret) + return ret; + + list_add(&space_info->list, &info->space_info); + if (flags & BTRFS_BLOCK_GROUP_DATA) + info->data_sinfo = space_info; + + return ret; +} + +int btrfs_init_space_info(struct btrfs_fs_info *fs_info) +{ + struct btrfs_super_block *disk_super; + u64 features; + u64 flags; + int mixed = 0; + int ret; + + disk_super = fs_info->super_copy; + if (!btrfs_super_root(disk_super)) + return -EINVAL; + + features = btrfs_super_incompat_flags(disk_super); + if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) + mixed = 1; + + flags = BTRFS_BLOCK_GROUP_SYSTEM; + ret = create_space_info(fs_info, flags); + if (ret) + goto out; + + if (mixed) { + flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; + ret = create_space_info(fs_info, flags); + } else { + flags = BTRFS_BLOCK_GROUP_METADATA; + ret = create_space_info(fs_info, flags); + if (ret) + goto out; + + flags = BTRFS_BLOCK_GROUP_DATA; + ret = create_space_info(fs_info, flags); + } +out: + return ret; +} + +void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, + u64 total_bytes, u64 bytes_used, + u64 bytes_readonly, + struct btrfs_space_info **space_info) +{ + struct btrfs_space_info *found; + int factor; + + factor = btrfs_bg_type_to_factor(flags); + + found = btrfs_find_space_info(info, flags); + ASSERT(found); + spin_lock(&found->lock); + found->total_bytes += total_bytes; + found->disk_total += total_bytes * factor; + found->bytes_used += bytes_used; + found->disk_used += bytes_used * factor; + found->bytes_readonly += bytes_readonly; + if (total_bytes > 0) + found->full = 0; + btrfs_try_granting_tickets(info, found); + spin_unlock(&found->lock); + *space_info = found; +} + +struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, + u64 flags) +{ + struct list_head *head = &info->space_info; + struct btrfs_space_info *found; + + flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; + + list_for_each_entry(found, head, list) { + if (found->flags & flags) + return found; + } + return NULL; +} + +static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + enum btrfs_reserve_flush_enum flush) +{ + u64 profile; + u64 avail; + int factor; + + if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) + profile = btrfs_system_alloc_profile(fs_info); + else + profile = btrfs_metadata_alloc_profile(fs_info); + + avail = atomic64_read(&fs_info->free_chunk_space); + + /* + * If we have dup, raid1 or raid10 then only half of the free + * space is actually usable. For raid56, the space info used + * doesn't include the parity drive, so we don't have to + * change the math + */ + factor = btrfs_bg_type_to_factor(profile); + avail = div_u64(avail, factor); + + /* + * If we aren't flushing all things, let us overcommit up to + * 1/2th of the space. If we can flush, don't let us overcommit + * too much, let it overcommit up to 1/8 of the space. + */ + if (flush == BTRFS_RESERVE_FLUSH_ALL) + avail >>= 3; + else + avail >>= 1; + return avail; +} + +int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, u64 bytes, + enum btrfs_reserve_flush_enum flush) +{ + u64 avail; + u64 used; + + /* Don't overcommit when in mixed mode */ + if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) + return 0; + + used = btrfs_space_info_used(space_info, true); + avail = calc_available_free_space(fs_info, space_info, flush); + + if (used + bytes < space_info->total_bytes + avail) + return 1; + return 0; +} + +static void remove_ticket(struct btrfs_space_info *space_info, + struct reserve_ticket *ticket) +{ + if (!list_empty(&ticket->list)) { + list_del_init(&ticket->list); + ASSERT(space_info->reclaim_size >= ticket->bytes); + space_info->reclaim_size -= ticket->bytes; + } +} + +/* + * This is for space we already have accounted in space_info->bytes_may_use, so + * basically when we're returning space from block_rsv's. + */ +void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info) +{ + struct list_head *head; + enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; + + lockdep_assert_held(&space_info->lock); + + head = &space_info->priority_tickets; +again: + while (!list_empty(head)) { + struct reserve_ticket *ticket; + u64 used = btrfs_space_info_used(space_info, true); + + ticket = list_first_entry(head, struct reserve_ticket, list); + + /* Check and see if our ticket can be satisified now. */ + if ((used + ticket->bytes <= space_info->total_bytes) || + btrfs_can_overcommit(fs_info, space_info, ticket->bytes, + flush)) { + btrfs_space_info_update_bytes_may_use(fs_info, + space_info, + ticket->bytes); + remove_ticket(space_info, ticket); + ticket->bytes = 0; + space_info->tickets_id++; + wake_up(&ticket->wait); + } else { + break; + } + } + + if (head == &space_info->priority_tickets) { + head = &space_info->tickets; + flush = BTRFS_RESERVE_FLUSH_ALL; + goto again; + } +} + +#define DUMP_BLOCK_RSV(fs_info, rsv_name) \ +do { \ + struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ + spin_lock(&__rsv->lock); \ + btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ + __rsv->size, __rsv->reserved); \ + spin_unlock(&__rsv->lock); \ +} while (0) + +static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *info) +{ + lockdep_assert_held(&info->lock); + + /* The free space could be negative in case of overcommit */ + btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull", + info->flags, + (s64)(info->total_bytes - btrfs_space_info_used(info, true)), + info->full ? "" : "not "); + btrfs_info(fs_info, + "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", + info->total_bytes, info->bytes_used, info->bytes_pinned, + info->bytes_reserved, info->bytes_may_use, + info->bytes_readonly); + + DUMP_BLOCK_RSV(fs_info, global_block_rsv); + DUMP_BLOCK_RSV(fs_info, trans_block_rsv); + DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); + DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); + DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); + +} + +void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *info, u64 bytes, + int dump_block_groups) +{ + struct btrfs_block_group *cache; + int index = 0; + + spin_lock(&info->lock); + __btrfs_dump_space_info(fs_info, info); + spin_unlock(&info->lock); + + if (!dump_block_groups) + return; + + down_read(&info->groups_sem); +again: + list_for_each_entry(cache, &info->block_groups[index], list) { + spin_lock(&cache->lock); + btrfs_info(fs_info, + "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", + cache->start, cache->length, cache->used, cache->pinned, + cache->reserved, cache->ro ? "[readonly]" : ""); + spin_unlock(&cache->lock); + btrfs_dump_free_space(cache, bytes); + } + if (++index < BTRFS_NR_RAID_TYPES) + goto again; + up_read(&info->groups_sem); +} + +static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, + u64 to_reclaim) +{ + u64 bytes; + u64 nr; + + bytes = btrfs_calc_insert_metadata_size(fs_info, 1); + nr = div64_u64(to_reclaim, bytes); + if (!nr) + nr = 1; + return nr; +} + +#define EXTENT_SIZE_PER_ITEM SZ_256K + +/* + * shrink metadata reservation for delalloc + */ +static void shrink_delalloc(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + u64 to_reclaim, bool wait_ordered) +{ + struct btrfs_trans_handle *trans; + u64 delalloc_bytes; + u64 dio_bytes; + u64 items; + long time_left; + int loops; + + /* Calc the number of the pages we need flush for space reservation */ + if (to_reclaim == U64_MAX) { + items = U64_MAX; + } else { + /* + * to_reclaim is set to however much metadata we need to + * reclaim, but reclaiming that much data doesn't really track + * exactly, so increase the amount to reclaim by 2x in order to + * make sure we're flushing enough delalloc to hopefully reclaim + * some metadata reservations. + */ + items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; + to_reclaim = items * EXTENT_SIZE_PER_ITEM; + } + + trans = (struct btrfs_trans_handle *)current->journal_info; + + delalloc_bytes = percpu_counter_sum_positive( + &fs_info->delalloc_bytes); + dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); + if (delalloc_bytes == 0 && dio_bytes == 0) { + if (trans) + return; + if (wait_ordered) + btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); + return; + } + + /* + * If we are doing more ordered than delalloc we need to just wait on + * ordered extents, otherwise we'll waste time trying to flush delalloc + * that likely won't give us the space back we need. + */ + if (dio_bytes > delalloc_bytes) + wait_ordered = true; + + loops = 0; + while ((delalloc_bytes || dio_bytes) && loops < 3) { + u64 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; + + btrfs_start_delalloc_roots(fs_info, nr_pages, true); + + loops++; + if (wait_ordered && !trans) { + btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); + } else { + time_left = schedule_timeout_killable(1); + if (time_left) + break; + } + + spin_lock(&space_info->lock); + if (list_empty(&space_info->tickets) && + list_empty(&space_info->priority_tickets)) { + spin_unlock(&space_info->lock); + break; + } + spin_unlock(&space_info->lock); + + delalloc_bytes = percpu_counter_sum_positive( + &fs_info->delalloc_bytes); + dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); + } +} + +/** + * maybe_commit_transaction - possibly commit the transaction if its ok to + * @root - the root we're allocating for + * @bytes - the number of bytes we want to reserve + * @force - force the commit + * + * This will check to make sure that committing the transaction will actually + * get us somewhere and then commit the transaction if it does. Otherwise it + * will return -ENOSPC. + */ +static int may_commit_transaction(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info) +{ + struct reserve_ticket *ticket = NULL; + struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; + struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; + struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; + struct btrfs_trans_handle *trans; + u64 reclaim_bytes = 0; + u64 bytes_needed = 0; + u64 cur_free_bytes = 0; + + trans = (struct btrfs_trans_handle *)current->journal_info; + if (trans) + return -EAGAIN; + + spin_lock(&space_info->lock); + cur_free_bytes = btrfs_space_info_used(space_info, true); + if (cur_free_bytes < space_info->total_bytes) + cur_free_bytes = space_info->total_bytes - cur_free_bytes; + else + cur_free_bytes = 0; + + if (!list_empty(&space_info->priority_tickets)) + ticket = list_first_entry(&space_info->priority_tickets, + struct reserve_ticket, list); + else if (!list_empty(&space_info->tickets)) + ticket = list_first_entry(&space_info->tickets, + struct reserve_ticket, list); + if (ticket) + bytes_needed = ticket->bytes; + + if (bytes_needed > cur_free_bytes) + bytes_needed -= cur_free_bytes; + else + bytes_needed = 0; + spin_unlock(&space_info->lock); + + if (!bytes_needed) + return 0; + + trans = btrfs_join_transaction(fs_info->extent_root); + if (IS_ERR(trans)) + return PTR_ERR(trans); + + /* + * See if there is enough pinned space to make this reservation, or if + * we have block groups that are going to be freed, allowing us to + * possibly do a chunk allocation the next loop through. + */ + if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || + __percpu_counter_compare(&space_info->total_bytes_pinned, + bytes_needed, + BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) + goto commit; + + /* + * See if there is some space in the delayed insertion reserve for this + * reservation. If the space_info's don't match (like for DATA or + * SYSTEM) then just go enospc, reclaiming this space won't recover any + * space to satisfy those reservations. + */ + if (space_info != delayed_rsv->space_info) + goto enospc; + + spin_lock(&delayed_rsv->lock); + reclaim_bytes += delayed_rsv->reserved; + spin_unlock(&delayed_rsv->lock); + + spin_lock(&delayed_refs_rsv->lock); + reclaim_bytes += delayed_refs_rsv->reserved; + spin_unlock(&delayed_refs_rsv->lock); + + spin_lock(&trans_rsv->lock); + reclaim_bytes += trans_rsv->reserved; + spin_unlock(&trans_rsv->lock); + + if (reclaim_bytes >= bytes_needed) + goto commit; + bytes_needed -= reclaim_bytes; + + if (__percpu_counter_compare(&space_info->total_bytes_pinned, + bytes_needed, + BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) + goto enospc; + +commit: + return btrfs_commit_transaction(trans); +enospc: + btrfs_end_transaction(trans); + return -ENOSPC; +} + +/* + * Try to flush some data based on policy set by @state. This is only advisory + * and may fail for various reasons. The caller is supposed to examine the + * state of @space_info to detect the outcome. + */ +static void flush_space(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, u64 num_bytes, + int state) +{ + struct btrfs_root *root = fs_info->extent_root; + struct btrfs_trans_handle *trans; + int nr; + int ret = 0; + + switch (state) { + case FLUSH_DELAYED_ITEMS_NR: + case FLUSH_DELAYED_ITEMS: + if (state == FLUSH_DELAYED_ITEMS_NR) + nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; + else + nr = -1; + + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + break; + } + ret = btrfs_run_delayed_items_nr(trans, nr); + btrfs_end_transaction(trans); + break; + case FLUSH_DELALLOC: + case FLUSH_DELALLOC_WAIT: + shrink_delalloc(fs_info, space_info, num_bytes, + state == FLUSH_DELALLOC_WAIT); + break; + case FLUSH_DELAYED_REFS_NR: + case FLUSH_DELAYED_REFS: + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + break; + } + if (state == FLUSH_DELAYED_REFS_NR) + nr = calc_reclaim_items_nr(fs_info, num_bytes); + else + nr = 0; + btrfs_run_delayed_refs(trans, nr); + btrfs_end_transaction(trans); + break; + case ALLOC_CHUNK: + case ALLOC_CHUNK_FORCE: + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + break; + } + ret = btrfs_chunk_alloc(trans, + btrfs_get_alloc_profile(fs_info, space_info->flags), + (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : + CHUNK_ALLOC_FORCE); + btrfs_end_transaction(trans); + if (ret > 0 || ret == -ENOSPC) + ret = 0; + break; + case RUN_DELAYED_IPUTS: + /* + * If we have pending delayed iputs then we could free up a + * bunch of pinned space, so make sure we run the iputs before + * we do our pinned bytes check below. + */ + btrfs_run_delayed_iputs(fs_info); + btrfs_wait_on_delayed_iputs(fs_info); + break; + case COMMIT_TRANS: + ret = may_commit_transaction(fs_info, space_info); + break; + default: + ret = -ENOSPC; + break; + } + + trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, + ret); + return; +} + +static inline u64 +btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info) +{ + u64 used; + u64 avail; + u64 expected; + u64 to_reclaim = space_info->reclaim_size; + + lockdep_assert_held(&space_info->lock); + + avail = calc_available_free_space(fs_info, space_info, + BTRFS_RESERVE_FLUSH_ALL); + used = btrfs_space_info_used(space_info, true); + + /* + * We may be flushing because suddenly we have less space than we had + * before, and now we're well over-committed based on our current free + * space. If that's the case add in our overage so we make sure to put + * appropriate pressure on the flushing state machine. + */ + if (space_info->total_bytes + avail < used) + to_reclaim += used - (space_info->total_bytes + avail); + + if (to_reclaim) + return to_reclaim; + + to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); + if (btrfs_can_overcommit(fs_info, space_info, to_reclaim, + BTRFS_RESERVE_FLUSH_ALL)) + return 0; + + used = btrfs_space_info_used(space_info, true); + + if (btrfs_can_overcommit(fs_info, space_info, SZ_1M, + BTRFS_RESERVE_FLUSH_ALL)) + expected = div_factor_fine(space_info->total_bytes, 95); + else + expected = div_factor_fine(space_info->total_bytes, 90); + + if (used > expected) + to_reclaim = used - expected; + else + to_reclaim = 0; + to_reclaim = min(to_reclaim, space_info->bytes_may_use + + space_info->bytes_reserved); + return to_reclaim; +} + +static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + u64 used) +{ + u64 thresh = div_factor_fine(space_info->total_bytes, 98); + + /* If we're just plain full then async reclaim just slows us down. */ + if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) + return 0; + + if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info)) + return 0; + + return (used >= thresh && !btrfs_fs_closing(fs_info) && + !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); +} + +static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + struct reserve_ticket *ticket) +{ + struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; + u64 min_bytes; + + if (global_rsv->space_info != space_info) + return false; + + spin_lock(&global_rsv->lock); + min_bytes = div_factor(global_rsv->size, 1); + if (global_rsv->reserved < min_bytes + ticket->bytes) { + spin_unlock(&global_rsv->lock); + return false; + } + global_rsv->reserved -= ticket->bytes; + remove_ticket(space_info, ticket); + ticket->bytes = 0; + wake_up(&ticket->wait); + space_info->tickets_id++; + if (global_rsv->reserved < global_rsv->size) + global_rsv->full = 0; + spin_unlock(&global_rsv->lock); + + return true; +} + +/* + * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets + * @fs_info - fs_info for this fs + * @space_info - the space info we were flushing + * + * We call this when we've exhausted our flushing ability and haven't made + * progress in satisfying tickets. The reservation code handles tickets in + * order, so if there is a large ticket first and then smaller ones we could + * very well satisfy the smaller tickets. This will attempt to wake up any + * tickets in the list to catch this case. + * + * This function returns true if it was able to make progress by clearing out + * other tickets, or if it stumbles across a ticket that was smaller than the + * first ticket. + */ +static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info) +{ + struct reserve_ticket *ticket; + u64 tickets_id = space_info->tickets_id; + u64 first_ticket_bytes = 0; + + if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { + btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); + __btrfs_dump_space_info(fs_info, space_info); + } + + while (!list_empty(&space_info->tickets) && + tickets_id == space_info->tickets_id) { + ticket = list_first_entry(&space_info->tickets, + struct reserve_ticket, list); + + if (ticket->steal && + steal_from_global_rsv(fs_info, space_info, ticket)) + return true; + + /* + * may_commit_transaction will avoid committing the transaction + * if it doesn't feel like the space reclaimed by the commit + * would result in the ticket succeeding. However if we have a + * smaller ticket in the queue it may be small enough to be + * satisified by committing the transaction, so if any + * subsequent ticket is smaller than the first ticket go ahead + * and send us back for another loop through the enospc flushing + * code. + */ + if (first_ticket_bytes == 0) + first_ticket_bytes = ticket->bytes; + else if (first_ticket_bytes > ticket->bytes) + return true; + + if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) + btrfs_info(fs_info, "failing ticket with %llu bytes", + ticket->bytes); + + remove_ticket(space_info, ticket); + ticket->error = -ENOSPC; + wake_up(&ticket->wait); + + /* + * We're just throwing tickets away, so more flushing may not + * trip over btrfs_try_granting_tickets, so we need to call it + * here to see if we can make progress with the next ticket in + * the list. + */ + btrfs_try_granting_tickets(fs_info, space_info); + } + return (tickets_id != space_info->tickets_id); +} + +/* + * This is for normal flushers, we can wait all goddamned day if we want to. We + * will loop and continuously try to flush as long as we are making progress. + * We count progress as clearing off tickets each time we have to loop. + */ +static void btrfs_async_reclaim_metadata_space(struct work_struct *work) +{ + struct btrfs_fs_info *fs_info; + struct btrfs_space_info *space_info; + u64 to_reclaim; + int flush_state; + int commit_cycles = 0; + u64 last_tickets_id; + + fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); + space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); + + spin_lock(&space_info->lock); + to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); + if (!to_reclaim) { + space_info->flush = 0; + spin_unlock(&space_info->lock); + return; + } + last_tickets_id = space_info->tickets_id; + spin_unlock(&space_info->lock); + + flush_state = FLUSH_DELAYED_ITEMS_NR; + do { + flush_space(fs_info, space_info, to_reclaim, flush_state); + spin_lock(&space_info->lock); + if (list_empty(&space_info->tickets)) { + space_info->flush = 0; + spin_unlock(&space_info->lock); + return; + } + to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, + space_info); + if (last_tickets_id == space_info->tickets_id) { + flush_state++; + } else { + last_tickets_id = space_info->tickets_id; + flush_state = FLUSH_DELAYED_ITEMS_NR; + if (commit_cycles) + commit_cycles--; + } + + /* + * We don't want to force a chunk allocation until we've tried + * pretty hard to reclaim space. Think of the case where we + * freed up a bunch of space and so have a lot of pinned space + * to reclaim. We would rather use that than possibly create a + * underutilized metadata chunk. So if this is our first run + * through the flushing state machine skip ALLOC_CHUNK_FORCE and + * commit the transaction. If nothing has changed the next go + * around then we can force a chunk allocation. + */ + if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) + flush_state++; + + if (flush_state > COMMIT_TRANS) { + commit_cycles++; + if (commit_cycles > 2) { + if (maybe_fail_all_tickets(fs_info, space_info)) { + flush_state = FLUSH_DELAYED_ITEMS_NR; + commit_cycles--; + } else { + space_info->flush = 0; + } + } else { + flush_state = FLUSH_DELAYED_ITEMS_NR; + } + } + spin_unlock(&space_info->lock); + } while (flush_state <= COMMIT_TRANS); +} + +/* + * FLUSH_DELALLOC_WAIT: + * Space is freed from flushing delalloc in one of two ways. + * + * 1) compression is on and we allocate less space than we reserved + * 2) we are overwriting existing space + * + * For #1 that extra space is reclaimed as soon as the delalloc pages are + * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent + * length to ->bytes_reserved, and subtracts the reserved space from + * ->bytes_may_use. + * + * For #2 this is trickier. Once the ordered extent runs we will drop the + * extent in the range we are overwriting, which creates a delayed ref for + * that freed extent. This however is not reclaimed until the transaction + * commits, thus the next stages. + * + * RUN_DELAYED_IPUTS + * If we are freeing inodes, we want to make sure all delayed iputs have + * completed, because they could have been on an inode with i_nlink == 0, and + * thus have been truncated and freed up space. But again this space is not + * immediately re-usable, it comes in the form of a delayed ref, which must be + * run and then the transaction must be committed. + * + * FLUSH_DELAYED_REFS + * The above two cases generate delayed refs that will affect + * ->total_bytes_pinned. However this counter can be inconsistent with + * reality if there are outstanding delayed refs. This is because we adjust + * the counter based solely on the current set of delayed refs and disregard + * any on-disk state which might include more refs. So for example, if we + * have an extent with 2 references, but we only drop 1, we'll see that there + * is a negative delayed ref count for the extent and assume that the space + * will be freed, and thus increase ->total_bytes_pinned. + * + * Running the delayed refs gives us the actual real view of what will be + * freed at the transaction commit time. This stage will not actually free + * space for us, it just makes sure that may_commit_transaction() has all of + * the information it needs to make the right decision. + * + * COMMIT_TRANS + * This is where we reclaim all of the pinned space generated by the previous + * two stages. We will not commit the transaction if we don't think we're + * likely to satisfy our request, which means if our current free space + + * total_bytes_pinned < reservation we will not commit. This is why the + * previous states are actually important, to make sure we know for sure + * whether committing the transaction will allow us to make progress. + * + * ALLOC_CHUNK_FORCE + * For data we start with alloc chunk force, however we could have been full + * before, and then the transaction commit could have freed new block groups, + * so if we now have space to allocate do the force chunk allocation. + */ +static const enum btrfs_flush_state data_flush_states[] = { + FLUSH_DELALLOC_WAIT, + RUN_DELAYED_IPUTS, + FLUSH_DELAYED_REFS, + COMMIT_TRANS, + ALLOC_CHUNK_FORCE, +}; + +static void btrfs_async_reclaim_data_space(struct work_struct *work) +{ + struct btrfs_fs_info *fs_info; + struct btrfs_space_info *space_info; + u64 last_tickets_id; + int flush_state = 0; + + fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); + space_info = fs_info->data_sinfo; + + spin_lock(&space_info->lock); + if (list_empty(&space_info->tickets)) { + space_info->flush = 0; + spin_unlock(&space_info->lock); + return; + } + last_tickets_id = space_info->tickets_id; + spin_unlock(&space_info->lock); + + while (!space_info->full) { + flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE); + spin_lock(&space_info->lock); + if (list_empty(&space_info->tickets)) { + space_info->flush = 0; + spin_unlock(&space_info->lock); + return; + } + last_tickets_id = space_info->tickets_id; + spin_unlock(&space_info->lock); + } + + while (flush_state < ARRAY_SIZE(data_flush_states)) { + flush_space(fs_info, space_info, U64_MAX, + data_flush_states[flush_state]); + spin_lock(&space_info->lock); + if (list_empty(&space_info->tickets)) { + space_info->flush = 0; + spin_unlock(&space_info->lock); + return; + } + + if (last_tickets_id == space_info->tickets_id) { + flush_state++; + } else { + last_tickets_id = space_info->tickets_id; + flush_state = 0; + } + + if (flush_state >= ARRAY_SIZE(data_flush_states)) { + if (space_info->full) { + if (maybe_fail_all_tickets(fs_info, space_info)) + flush_state = 0; + else + space_info->flush = 0; + } else { + flush_state = 0; + } + } + spin_unlock(&space_info->lock); + } +} + +void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) +{ + INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); + INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); +} + +static const enum btrfs_flush_state priority_flush_states[] = { + FLUSH_DELAYED_ITEMS_NR, + FLUSH_DELAYED_ITEMS, + ALLOC_CHUNK, +}; + +static const enum btrfs_flush_state evict_flush_states[] = { + FLUSH_DELAYED_ITEMS_NR, + FLUSH_DELAYED_ITEMS, + FLUSH_DELAYED_REFS_NR, + FLUSH_DELAYED_REFS, + FLUSH_DELALLOC, + FLUSH_DELALLOC_WAIT, + ALLOC_CHUNK, + COMMIT_TRANS, +}; + +static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + struct reserve_ticket *ticket, + const enum btrfs_flush_state *states, + int states_nr) +{ + u64 to_reclaim; + int flush_state; + + spin_lock(&space_info->lock); + to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); + if (!to_reclaim) { + spin_unlock(&space_info->lock); + return; + } + spin_unlock(&space_info->lock); + + flush_state = 0; + do { + flush_space(fs_info, space_info, to_reclaim, states[flush_state]); + flush_state++; + spin_lock(&space_info->lock); + if (ticket->bytes == 0) { + spin_unlock(&space_info->lock); + return; + } + spin_unlock(&space_info->lock); + } while (flush_state < states_nr); +} + +static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + struct reserve_ticket *ticket) +{ + while (!space_info->full) { + flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE); + spin_lock(&space_info->lock); + if (ticket->bytes == 0) { + spin_unlock(&space_info->lock); + return; + } + spin_unlock(&space_info->lock); + } +} + +static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + struct reserve_ticket *ticket) + +{ + DEFINE_WAIT(wait); + int ret = 0; + + spin_lock(&space_info->lock); + while (ticket->bytes > 0 && ticket->error == 0) { + ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); + if (ret) { + /* + * Delete us from the list. After we unlock the space + * info, we don't want the async reclaim job to reserve + * space for this ticket. If that would happen, then the + * ticket's task would not known that space was reserved + * despite getting an error, resulting in a space leak + * (bytes_may_use counter of our space_info). + */ + remove_ticket(space_info, ticket); + ticket->error = -EINTR; + break; + } + spin_unlock(&space_info->lock); + + schedule(); + + finish_wait(&ticket->wait, &wait); + spin_lock(&space_info->lock); + } + spin_unlock(&space_info->lock); +} + +/** + * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket + * @fs_info - the fs + * @space_info - the space_info for the reservation + * @ticket - the ticket for the reservation + * @flush - how much we can flush + * + * This does the work of figuring out how to flush for the ticket, waiting for + * the reservation, and returning the appropriate error if there is one. + */ +static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, + struct reserve_ticket *ticket, + enum btrfs_reserve_flush_enum flush) +{ + int ret; + + switch (flush) { + case BTRFS_RESERVE_FLUSH_DATA: + case BTRFS_RESERVE_FLUSH_ALL: + case BTRFS_RESERVE_FLUSH_ALL_STEAL: + wait_reserve_ticket(fs_info, space_info, ticket); + break; + case BTRFS_RESERVE_FLUSH_LIMIT: + priority_reclaim_metadata_space(fs_info, space_info, ticket, + priority_flush_states, + ARRAY_SIZE(priority_flush_states)); + break; + case BTRFS_RESERVE_FLUSH_EVICT: + priority_reclaim_metadata_space(fs_info, space_info, ticket, + evict_flush_states, + ARRAY_SIZE(evict_flush_states)); + break; + case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: + priority_reclaim_data_space(fs_info, space_info, ticket); + break; + default: + ASSERT(0); + break; + } + + spin_lock(&space_info->lock); + ret = ticket->error; + if (ticket->bytes || ticket->error) { + /* + * We were a priority ticket, so we need to delete ourselves + * from the list. Because we could have other priority tickets + * behind us that require less space, run + * btrfs_try_granting_tickets() to see if their reservations can + * now be made. + */ + if (!list_empty(&ticket->list)) { + remove_ticket(space_info, ticket); + btrfs_try_granting_tickets(fs_info, space_info); + } + + if (!ret) + ret = -ENOSPC; + } + spin_unlock(&space_info->lock); + ASSERT(list_empty(&ticket->list)); + /* + * Check that we can't have an error set if the reservation succeeded, + * as that would confuse tasks and lead them to error out without + * releasing reserved space (if an error happens the expectation is that + * space wasn't reserved at all). + */ + ASSERT(!(ticket->bytes == 0 && ticket->error)); + return ret; +} + +/* + * This returns true if this flush state will go through the ordinary flushing + * code. + */ +static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) +{ + return (flush == BTRFS_RESERVE_FLUSH_ALL) || + (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); +} + +/** + * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space + * @root - the root we're allocating for + * @space_info - the space info we want to allocate from + * @orig_bytes - the number of bytes we want + * @flush - whether or not we can flush to make our reservation + * + * This will reserve orig_bytes number of bytes from the space info associated + * with the block_rsv. If there is not enough space it will make an attempt to + * flush out space to make room. It will do this by flushing delalloc if + * possible or committing the transaction. If flush is 0 then no attempts to + * regain reservations will be made and this will fail if there is not enough + * space already. + */ +static int __reserve_bytes(struct btrfs_fs_info *fs_info, + struct btrfs_space_info *space_info, u64 orig_bytes, + enum btrfs_reserve_flush_enum flush) +{ + struct work_struct *async_work; + struct reserve_ticket ticket; + u64 used; + int ret = 0; + bool pending_tickets; + + ASSERT(orig_bytes); + ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); + + if (flush == BTRFS_RESERVE_FLUSH_DATA) + async_work = &fs_info->async_data_reclaim_work; + else + async_work = &fs_info->async_reclaim_work; + + spin_lock(&space_info->lock); + ret = -ENOSPC; + used = btrfs_space_info_used(space_info, true); + + /* + * We don't want NO_FLUSH allocations to jump everybody, they can + * generally handle ENOSPC in a different way, so treat them the same as + * normal flushers when it comes to skipping pending tickets. + */ + if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) + pending_tickets = !list_empty(&space_info->tickets) || + !list_empty(&space_info->priority_tickets); + else + pending_tickets = !list_empty(&space_info->priority_tickets); + + /* + * Carry on if we have enough space (short-circuit) OR call + * can_overcommit() to ensure we can overcommit to continue. + */ + if (!pending_tickets && + ((used + orig_bytes <= space_info->total_bytes) || + btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { + btrfs_space_info_update_bytes_may_use(fs_info, space_info, + orig_bytes); + ret = 0; + } + + /* + * If we couldn't make a reservation then setup our reservation ticket + * and kick the async worker if it's not already running. + * + * If we are a priority flusher then we just need to add our ticket to + * the list and we will do our own flushing further down. + */ + if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { + ticket.bytes = orig_bytes; + ticket.error = 0; + space_info->reclaim_size += ticket.bytes; + init_waitqueue_head(&ticket.wait); + ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); + if (flush == BTRFS_RESERVE_FLUSH_ALL || + flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || + flush == BTRFS_RESERVE_FLUSH_DATA) { + list_add_tail(&ticket.list, &space_info->tickets); + if (!space_info->flush) { + space_info->flush = 1; + trace_btrfs_trigger_flush(fs_info, + space_info->flags, + orig_bytes, flush, + "enospc"); + queue_work(system_unbound_wq, async_work); + } + } else { + list_add_tail(&ticket.list, + &space_info->priority_tickets); + } + } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { + used += orig_bytes; + /* + * We will do the space reservation dance during log replay, + * which means we won't have fs_info->fs_root set, so don't do + * the async reclaim as we will panic. + */ + if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && + need_do_async_reclaim(fs_info, space_info, used) && + !work_busy(&fs_info->async_reclaim_work)) { + trace_btrfs_trigger_flush(fs_info, space_info->flags, + orig_bytes, flush, "preempt"); + queue_work(system_unbound_wq, + &fs_info->async_reclaim_work); + } + } + spin_unlock(&space_info->lock); + if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) + return ret; + + return handle_reserve_ticket(fs_info, space_info, &ticket, flush); +} + +/** + * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space + * @root - the root we're allocating for + * @block_rsv - the block_rsv we're allocating for + * @orig_bytes - the number of bytes we want + * @flush - whether or not we can flush to make our reservation + * + * This will reserve orig_bytes number of bytes from the space info associated + * with the block_rsv. If there is not enough space it will make an attempt to + * flush out space to make room. It will do this by flushing delalloc if + * possible or committing the transaction. If flush is 0 then no attempts to + * regain reservations will be made and this will fail if there is not enough + * space already. + */ +int btrfs_reserve_metadata_bytes(struct btrfs_root *root, + struct btrfs_block_rsv *block_rsv, + u64 orig_bytes, + enum btrfs_reserve_flush_enum flush) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; + int ret; + + ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); + if (ret == -ENOSPC && + unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { + if (block_rsv != global_rsv && + !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) + ret = 0; + } + if (ret == -ENOSPC) { + trace_btrfs_space_reservation(fs_info, "space_info:enospc", + block_rsv->space_info->flags, + orig_bytes, 1); + + if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) + btrfs_dump_space_info(fs_info, block_rsv->space_info, + orig_bytes, 0); + } + return ret; +} + +/** + * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation + * @fs_info - the filesystem + * @bytes - the number of bytes we need + * @flush - how we are allowed to flush + * + * This will reserve bytes from the data space info. If there is not enough + * space then we will attempt to flush space as specified by flush. + */ +int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, + enum btrfs_reserve_flush_enum flush) +{ + struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; + int ret; + + ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || + flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE); + ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); + + ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); + if (ret == -ENOSPC) { + trace_btrfs_space_reservation(fs_info, "space_info:enospc", + data_sinfo->flags, bytes, 1); + if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) + btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); + } + return ret; +} |