diff options
Diffstat (limited to '')
-rw-r--r-- | Documentation/admin-guide/README.rst | 415 |
1 files changed, 415 insertions, 0 deletions
diff --git a/Documentation/admin-guide/README.rst b/Documentation/admin-guide/README.rst new file mode 100644 index 000000000..95a28f47a --- /dev/null +++ b/Documentation/admin-guide/README.rst @@ -0,0 +1,415 @@ +.. _readme: + +Linux kernel release 5.x <http://kernel.org/> +============================================= + +These are the release notes for Linux version 5. Read them carefully, +as they tell you what this is all about, explain how to install the +kernel, and what to do if something goes wrong. + +What is Linux? +-------------- + + Linux is a clone of the operating system Unix, written from scratch by + Linus Torvalds with assistance from a loosely-knit team of hackers across + the Net. It aims towards POSIX and Single UNIX Specification compliance. + + It has all the features you would expect in a modern fully-fledged Unix, + including true multitasking, virtual memory, shared libraries, demand + loading, shared copy-on-write executables, proper memory management, + and multistack networking including IPv4 and IPv6. + + It is distributed under the GNU General Public License v2 - see the + accompanying COPYING file for more details. + +On what hardware does it run? +----------------------------- + + Although originally developed first for 32-bit x86-based PCs (386 or higher), + today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and + UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, + IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and + ARC architectures. + + Linux is easily portable to most general-purpose 32- or 64-bit architectures + as long as they have a paged memory management unit (PMMU) and a port of the + GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has + also been ported to a number of architectures without a PMMU, although + functionality is then obviously somewhat limited. + Linux has also been ported to itself. You can now run the kernel as a + userspace application - this is called UserMode Linux (UML). + +Documentation +------------- + + - There is a lot of documentation available both in electronic form on + the Internet and in books, both Linux-specific and pertaining to + general UNIX questions. I'd recommend looking into the documentation + subdirectories on any Linux FTP site for the LDP (Linux Documentation + Project) books. This README is not meant to be documentation on the + system: there are much better sources available. + + - There are various README files in the Documentation/ subdirectory: + these typically contain kernel-specific installation notes for some + drivers for example. Please read the + :ref:`Documentation/process/changes.rst <changes>` file, as it + contains information about the problems, which may result by upgrading + your kernel. + +Installing the kernel source +---------------------------- + + - If you install the full sources, put the kernel tarball in a + directory where you have permissions (e.g. your home directory) and + unpack it:: + + xz -cd linux-5.x.tar.xz | tar xvf - + + Replace "X" with the version number of the latest kernel. + + Do NOT use the /usr/src/linux area! This area has a (usually + incomplete) set of kernel headers that are used by the library header + files. They should match the library, and not get messed up by + whatever the kernel-du-jour happens to be. + + - You can also upgrade between 5.x releases by patching. Patches are + distributed in the xz format. To install by patching, get all the + newer patch files, enter the top level directory of the kernel source + (linux-5.x) and execute:: + + xz -cd ../patch-5.x.xz | patch -p1 + + Replace "x" for all versions bigger than the version "x" of your current + source tree, **in_order**, and you should be ok. You may want to remove + the backup files (some-file-name~ or some-file-name.orig), and make sure + that there are no failed patches (some-file-name# or some-file-name.rej). + If there are, either you or I have made a mistake. + + Unlike patches for the 5.x kernels, patches for the 5.x.y kernels + (also known as the -stable kernels) are not incremental but instead apply + directly to the base 5.x kernel. For example, if your base kernel is 5.0 + and you want to apply the 5.0.3 patch, you must not first apply the 5.0.1 + and 5.0.2 patches. Similarly, if you are running kernel version 5.0.2 and + want to jump to 5.0.3, you must first reverse the 5.0.2 patch (that is, + patch -R) **before** applying the 5.0.3 patch. You can read more on this in + :ref:`Documentation/process/applying-patches.rst <applying_patches>`. + + Alternatively, the script patch-kernel can be used to automate this + process. It determines the current kernel version and applies any + patches found:: + + linux/scripts/patch-kernel linux + + The first argument in the command above is the location of the + kernel source. Patches are applied from the current directory, but + an alternative directory can be specified as the second argument. + + - Make sure you have no stale .o files and dependencies lying around:: + + cd linux + make mrproper + + You should now have the sources correctly installed. + +Software requirements +--------------------- + + Compiling and running the 5.x kernels requires up-to-date + versions of various software packages. Consult + :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers + required and how to get updates for these packages. Beware that using + excessively old versions of these packages can cause indirect + errors that are very difficult to track down, so don't assume that + you can just update packages when obvious problems arise during + build or operation. + +Build directory for the kernel +------------------------------ + + When compiling the kernel, all output files will per default be + stored together with the kernel source code. + Using the option ``make O=output/dir`` allows you to specify an alternate + place for the output files (including .config). + Example:: + + kernel source code: /usr/src/linux-5.x + build directory: /home/name/build/kernel + + To configure and build the kernel, use:: + + cd /usr/src/linux-5.x + make O=/home/name/build/kernel menuconfig + make O=/home/name/build/kernel + sudo make O=/home/name/build/kernel modules_install install + + Please note: If the ``O=output/dir`` option is used, then it must be + used for all invocations of make. + +Configuring the kernel +---------------------- + + Do not skip this step even if you are only upgrading one minor + version. New configuration options are added in each release, and + odd problems will turn up if the configuration files are not set up + as expected. If you want to carry your existing configuration to a + new version with minimal work, use ``make oldconfig``, which will + only ask you for the answers to new questions. + + - Alternative configuration commands are:: + + "make config" Plain text interface. + + "make menuconfig" Text based color menus, radiolists & dialogs. + + "make nconfig" Enhanced text based color menus. + + "make xconfig" Qt based configuration tool. + + "make gconfig" GTK+ based configuration tool. + + "make oldconfig" Default all questions based on the contents of + your existing ./.config file and asking about + new config symbols. + + "make olddefconfig" + Like above, but sets new symbols to their default + values without prompting. + + "make defconfig" Create a ./.config file by using the default + symbol values from either arch/$ARCH/defconfig + or arch/$ARCH/configs/${PLATFORM}_defconfig, + depending on the architecture. + + "make ${PLATFORM}_defconfig" + Create a ./.config file by using the default + symbol values from + arch/$ARCH/configs/${PLATFORM}_defconfig. + Use "make help" to get a list of all available + platforms of your architecture. + + "make allyesconfig" + Create a ./.config file by setting symbol + values to 'y' as much as possible. + + "make allmodconfig" + Create a ./.config file by setting symbol + values to 'm' as much as possible. + + "make allnoconfig" Create a ./.config file by setting symbol + values to 'n' as much as possible. + + "make randconfig" Create a ./.config file by setting symbol + values to random values. + + "make localmodconfig" Create a config based on current config and + loaded modules (lsmod). Disables any module + option that is not needed for the loaded modules. + + To create a localmodconfig for another machine, + store the lsmod of that machine into a file + and pass it in as a LSMOD parameter. + + Also, you can preserve modules in certain folders + or kconfig files by specifying their paths in + parameter LMC_KEEP. + + target$ lsmod > /tmp/mylsmod + target$ scp /tmp/mylsmod host:/tmp + + host$ make LSMOD=/tmp/mylsmod \ + LMC_KEEP="drivers/usb:drivers/gpu:fs" \ + localmodconfig + + The above also works when cross compiling. + + "make localyesconfig" Similar to localmodconfig, except it will convert + all module options to built in (=y) options. You can + also preserve modules by LMC_KEEP. + + "make kvmconfig" Enable additional options for kvm guest kernel support. + + "make xenconfig" Enable additional options for xen dom0 guest kernel + support. + + "make tinyconfig" Configure the tiniest possible kernel. + + You can find more information on using the Linux kernel config tools + in Documentation/kbuild/kconfig.rst. + + - NOTES on ``make config``: + + - Having unnecessary drivers will make the kernel bigger, and can + under some circumstances lead to problems: probing for a + nonexistent controller card may confuse your other controllers. + + - A kernel with math-emulation compiled in will still use the + coprocessor if one is present: the math emulation will just + never get used in that case. The kernel will be slightly larger, + but will work on different machines regardless of whether they + have a math coprocessor or not. + + - The "kernel hacking" configuration details usually result in a + bigger or slower kernel (or both), and can even make the kernel + less stable by configuring some routines to actively try to + break bad code to find kernel problems (kmalloc()). Thus you + should probably answer 'n' to the questions for "development", + "experimental", or "debugging" features. + +Compiling the kernel +-------------------- + + - Make sure you have at least gcc 4.9 available. + For more information, refer to :ref:`Documentation/process/changes.rst <changes>`. + + Please note that you can still run a.out user programs with this kernel. + + - Do a ``make`` to create a compressed kernel image. It is also + possible to do ``make install`` if you have lilo installed to suit the + kernel makefiles, but you may want to check your particular lilo setup first. + + To do the actual install, you have to be root, but none of the normal + build should require that. Don't take the name of root in vain. + + - If you configured any of the parts of the kernel as ``modules``, you + will also have to do ``make modules_install``. + + - Verbose kernel compile/build output: + + Normally, the kernel build system runs in a fairly quiet mode (but not + totally silent). However, sometimes you or other kernel developers need + to see compile, link, or other commands exactly as they are executed. + For this, use "verbose" build mode. This is done by passing + ``V=1`` to the ``make`` command, e.g.:: + + make V=1 all + + To have the build system also tell the reason for the rebuild of each + target, use ``V=2``. The default is ``V=0``. + + - Keep a backup kernel handy in case something goes wrong. This is + especially true for the development releases, since each new release + contains new code which has not been debugged. Make sure you keep a + backup of the modules corresponding to that kernel, as well. If you + are installing a new kernel with the same version number as your + working kernel, make a backup of your modules directory before you + do a ``make modules_install``. + + Alternatively, before compiling, use the kernel config option + "LOCALVERSION" to append a unique suffix to the regular kernel version. + LOCALVERSION can be set in the "General Setup" menu. + + - In order to boot your new kernel, you'll need to copy the kernel + image (e.g. .../linux/arch/x86/boot/bzImage after compilation) + to the place where your regular bootable kernel is found. + + - Booting a kernel directly from a floppy without the assistance of a + bootloader such as LILO, is no longer supported. + + If you boot Linux from the hard drive, chances are you use LILO, which + uses the kernel image as specified in the file /etc/lilo.conf. The + kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or + /boot/bzImage. To use the new kernel, save a copy of the old image + and copy the new image over the old one. Then, you MUST RERUN LILO + to update the loading map! If you don't, you won't be able to boot + the new kernel image. + + Reinstalling LILO is usually a matter of running /sbin/lilo. + You may wish to edit /etc/lilo.conf to specify an entry for your + old kernel image (say, /vmlinux.old) in case the new one does not + work. See the LILO docs for more information. + + After reinstalling LILO, you should be all set. Shutdown the system, + reboot, and enjoy! + + If you ever need to change the default root device, video mode, + etc. in the kernel image, use your bootloader's boot options + where appropriate. No need to recompile the kernel to change + these parameters. + + - Reboot with the new kernel and enjoy. + +If something goes wrong +----------------------- + + - If you have problems that seem to be due to kernel bugs, please check + the file MAINTAINERS to see if there is a particular person associated + with the part of the kernel that you are having trouble with. If there + isn't anyone listed there, then the second best thing is to mail + them to me (torvalds@linux-foundation.org), and possibly to any other + relevant mailing-list or to the newsgroup. + + - In all bug-reports, *please* tell what kernel you are talking about, + how to duplicate the problem, and what your setup is (use your common + sense). If the problem is new, tell me so, and if the problem is + old, please try to tell me when you first noticed it. + + - If the bug results in a message like:: + + unable to handle kernel paging request at address C0000010 + Oops: 0002 + EIP: 0010:XXXXXXXX + eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx + esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx + ds: xxxx es: xxxx fs: xxxx gs: xxxx + Pid: xx, process nr: xx + xx xx xx xx xx xx xx xx xx xx + + or similar kernel debugging information on your screen or in your + system log, please duplicate it *exactly*. The dump may look + incomprehensible to you, but it does contain information that may + help debugging the problem. The text above the dump is also + important: it tells something about why the kernel dumped code (in + the above example, it's due to a bad kernel pointer). More information + on making sense of the dump is in Documentation/admin-guide/bug-hunting.rst + + - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump + as is, otherwise you will have to use the ``ksymoops`` program to make + sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). + This utility can be downloaded from + https://www.kernel.org/pub/linux/utils/kernel/ksymoops/ . + Alternatively, you can do the dump lookup by hand: + + - In debugging dumps like the above, it helps enormously if you can + look up what the EIP value means. The hex value as such doesn't help + me or anybody else very much: it will depend on your particular + kernel setup. What you should do is take the hex value from the EIP + line (ignore the ``0010:``), and look it up in the kernel namelist to + see which kernel function contains the offending address. + + To find out the kernel function name, you'll need to find the system + binary associated with the kernel that exhibited the symptom. This is + the file 'linux/vmlinux'. To extract the namelist and match it against + the EIP from the kernel crash, do:: + + nm vmlinux | sort | less + + This will give you a list of kernel addresses sorted in ascending + order, from which it is simple to find the function that contains the + offending address. Note that the address given by the kernel + debugging messages will not necessarily match exactly with the + function addresses (in fact, that is very unlikely), so you can't + just 'grep' the list: the list will, however, give you the starting + point of each kernel function, so by looking for the function that + has a starting address lower than the one you are searching for but + is followed by a function with a higher address you will find the one + you want. In fact, it may be a good idea to include a bit of + "context" in your problem report, giving a few lines around the + interesting one. + + If you for some reason cannot do the above (you have a pre-compiled + kernel image or similar), telling me as much about your setup as + possible will help. Please read the :ref:`admin-guide/reporting-bugs.rst <reportingbugs>` + document for details. + + - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you + cannot change values or set break points.) To do this, first compile the + kernel with -g; edit arch/x86/Makefile appropriately, then do a ``make + clean``. You'll also need to enable CONFIG_PROC_FS (via ``make config``). + + After you've rebooted with the new kernel, do ``gdb vmlinux /proc/kcore``. + You can now use all the usual gdb commands. The command to look up the + point where your system crashed is ``l *0xXXXXXXXX``. (Replace the XXXes + with the EIP value.) + + gdb'ing a non-running kernel currently fails because ``gdb`` (wrongly) + disregards the starting offset for which the kernel is compiled. |