summaryrefslogtreecommitdiffstats
path: root/Documentation/core-api/dma-attributes.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/core-api/dma-attributes.rst')
-rw-r--r--Documentation/core-api/dma-attributes.rst132
1 files changed, 132 insertions, 0 deletions
diff --git a/Documentation/core-api/dma-attributes.rst b/Documentation/core-api/dma-attributes.rst
new file mode 100644
index 000000000..1887d92e8
--- /dev/null
+++ b/Documentation/core-api/dma-attributes.rst
@@ -0,0 +1,132 @@
+==============
+DMA attributes
+==============
+
+This document describes the semantics of the DMA attributes that are
+defined in linux/dma-mapping.h.
+
+DMA_ATTR_WEAK_ORDERING
+----------------------
+
+DMA_ATTR_WEAK_ORDERING specifies that reads and writes to the mapping
+may be weakly ordered, that is that reads and writes may pass each other.
+
+Since it is optional for platforms to implement DMA_ATTR_WEAK_ORDERING,
+those that do not will simply ignore the attribute and exhibit default
+behavior.
+
+DMA_ATTR_WRITE_COMBINE
+----------------------
+
+DMA_ATTR_WRITE_COMBINE specifies that writes to the mapping may be
+buffered to improve performance.
+
+Since it is optional for platforms to implement DMA_ATTR_WRITE_COMBINE,
+those that do not will simply ignore the attribute and exhibit default
+behavior.
+
+DMA_ATTR_NO_KERNEL_MAPPING
+--------------------------
+
+DMA_ATTR_NO_KERNEL_MAPPING lets the platform to avoid creating a kernel
+virtual mapping for the allocated buffer. On some architectures creating
+such mapping is non-trivial task and consumes very limited resources
+(like kernel virtual address space or dma consistent address space).
+Buffers allocated with this attribute can be only passed to user space
+by calling dma_mmap_attrs(). By using this API, you are guaranteeing
+that you won't dereference the pointer returned by dma_alloc_attr(). You
+can treat it as a cookie that must be passed to dma_mmap_attrs() and
+dma_free_attrs(). Make sure that both of these also get this attribute
+set on each call.
+
+Since it is optional for platforms to implement
+DMA_ATTR_NO_KERNEL_MAPPING, those that do not will simply ignore the
+attribute and exhibit default behavior.
+
+DMA_ATTR_SKIP_CPU_SYNC
+----------------------
+
+By default dma_map_{single,page,sg} functions family transfer a given
+buffer from CPU domain to device domain. Some advanced use cases might
+require sharing a buffer between more than one device. This requires
+having a mapping created separately for each device and is usually
+performed by calling dma_map_{single,page,sg} function more than once
+for the given buffer with device pointer to each device taking part in
+the buffer sharing. The first call transfers a buffer from 'CPU' domain
+to 'device' domain, what synchronizes CPU caches for the given region
+(usually it means that the cache has been flushed or invalidated
+depending on the dma direction). However, next calls to
+dma_map_{single,page,sg}() for other devices will perform exactly the
+same synchronization operation on the CPU cache. CPU cache synchronization
+might be a time consuming operation, especially if the buffers are
+large, so it is highly recommended to avoid it if possible.
+DMA_ATTR_SKIP_CPU_SYNC allows platform code to skip synchronization of
+the CPU cache for the given buffer assuming that it has been already
+transferred to 'device' domain. This attribute can be also used for
+dma_unmap_{single,page,sg} functions family to force buffer to stay in
+device domain after releasing a mapping for it. Use this attribute with
+care!
+
+DMA_ATTR_FORCE_CONTIGUOUS
+-------------------------
+
+By default DMA-mapping subsystem is allowed to assemble the buffer
+allocated by dma_alloc_attrs() function from individual pages if it can
+be mapped as contiguous chunk into device dma address space. By
+specifying this attribute the allocated buffer is forced to be contiguous
+also in physical memory.
+
+DMA_ATTR_ALLOC_SINGLE_PAGES
+---------------------------
+
+This is a hint to the DMA-mapping subsystem that it's probably not worth
+the time to try to allocate memory to in a way that gives better TLB
+efficiency (AKA it's not worth trying to build the mapping out of larger
+pages). You might want to specify this if:
+
+- You know that the accesses to this memory won't thrash the TLB.
+ You might know that the accesses are likely to be sequential or
+ that they aren't sequential but it's unlikely you'll ping-pong
+ between many addresses that are likely to be in different physical
+ pages.
+- You know that the penalty of TLB misses while accessing the
+ memory will be small enough to be inconsequential. If you are
+ doing a heavy operation like decryption or decompression this
+ might be the case.
+- You know that the DMA mapping is fairly transitory. If you expect
+ the mapping to have a short lifetime then it may be worth it to
+ optimize allocation (avoid coming up with large pages) instead of
+ getting the slight performance win of larger pages.
+
+Setting this hint doesn't guarantee that you won't get huge pages, but it
+means that we won't try quite as hard to get them.
+
+.. note:: At the moment DMA_ATTR_ALLOC_SINGLE_PAGES is only implemented on ARM,
+ though ARM64 patches will likely be posted soon.
+
+DMA_ATTR_NO_WARN
+----------------
+
+This tells the DMA-mapping subsystem to suppress allocation failure reports
+(similarly to __GFP_NOWARN).
+
+On some architectures allocation failures are reported with error messages
+to the system logs. Although this can help to identify and debug problems,
+drivers which handle failures (eg, retry later) have no problems with them,
+and can actually flood the system logs with error messages that aren't any
+problem at all, depending on the implementation of the retry mechanism.
+
+So, this provides a way for drivers to avoid those error messages on calls
+where allocation failures are not a problem, and shouldn't bother the logs.
+
+.. note:: At the moment DMA_ATTR_NO_WARN is only implemented on PowerPC.
+
+DMA_ATTR_PRIVILEGED
+-------------------
+
+Some advanced peripherals such as remote processors and GPUs perform
+accesses to DMA buffers in both privileged "supervisor" and unprivileged
+"user" modes. This attribute is used to indicate to the DMA-mapping
+subsystem that the buffer is fully accessible at the elevated privilege
+level (and ideally inaccessible or at least read-only at the
+lesser-privileged levels).