summaryrefslogtreecommitdiffstats
path: root/Documentation/devicetree/bindings/fpga
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt13
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt20
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt36
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-passive-serial.txt29
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-pr-ip.txt12
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt19
-rw-r--r--Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt17
-rw-r--r--Documentation/devicetree/bindings/fpga/fpga-bridge.txt13
-rw-r--r--Documentation/devicetree/bindings/fpga/fpga-region.txt496
-rw-r--r--Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt18
-rw-r--r--Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt21
-rw-r--r--Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt29
-rw-r--r--Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt32
-rw-r--r--Documentation/devicetree/bindings/fpga/xilinx-slave-serial.txt51
-rw-r--r--Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.txt19
-rw-r--r--Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.txt25
16 files changed, 850 insertions, 0 deletions
diff --git a/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt
new file mode 100644
index 000000000..5dd0ff0f7
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-fpga2sdram-bridge.txt
@@ -0,0 +1,13 @@
+Altera FPGA To SDRAM Bridge Driver
+
+Required properties:
+- compatible : Should contain "altr,socfpga-fpga2sdram-bridge"
+
+See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
+
+Example:
+ fpga_bridge3: fpga-bridge@ffc25080 {
+ compatible = "altr,socfpga-fpga2sdram-bridge";
+ reg = <0xffc25080 0x4>;
+ bridge-enable = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt
new file mode 100644
index 000000000..8b26fbcff
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-freeze-bridge.txt
@@ -0,0 +1,20 @@
+Altera Freeze Bridge Controller Driver
+
+The Altera Freeze Bridge Controller manages one or more freeze bridges.
+The controller can freeze/disable the bridges which prevents signal
+changes from passing through the bridge. The controller can also
+unfreeze/enable the bridges which allows traffic to pass through the
+bridge normally.
+
+Required properties:
+- compatible : Should contain "altr,freeze-bridge-controller"
+- regs : base address and size for freeze bridge module
+
+See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
+
+Example:
+ freeze-controller@100000450 {
+ compatible = "altr,freeze-bridge-controller";
+ regs = <0x1000 0x10>;
+ bridge-enable = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt b/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt
new file mode 100644
index 000000000..68cce3945
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-hps2fpga-bridge.txt
@@ -0,0 +1,36 @@
+Altera FPGA/HPS Bridge Driver
+
+Required properties:
+- regs : base address and size for AXI bridge module
+- compatible : Should contain one of:
+ "altr,socfpga-lwhps2fpga-bridge",
+ "altr,socfpga-hps2fpga-bridge", or
+ "altr,socfpga-fpga2hps-bridge"
+- resets : Phandle and reset specifier for this bridge's reset
+- clocks : Clocks used by this module.
+
+See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
+
+Example:
+ fpga_bridge0: fpga-bridge@ff400000 {
+ compatible = "altr,socfpga-lwhps2fpga-bridge";
+ reg = <0xff400000 0x100000>;
+ resets = <&rst LWHPS2FPGA_RESET>;
+ clocks = <&l4_main_clk>;
+ bridge-enable = <0>;
+ };
+
+ fpga_bridge1: fpga-bridge@ff500000 {
+ compatible = "altr,socfpga-hps2fpga-bridge";
+ reg = <0xff500000 0x10000>;
+ resets = <&rst HPS2FPGA_RESET>;
+ clocks = <&l4_main_clk>;
+ bridge-enable = <1>;
+ };
+
+ fpga_bridge2: fpga-bridge@ff600000 {
+ compatible = "altr,socfpga-fpga2hps-bridge";
+ reg = <0xff600000 0x100000>;
+ resets = <&rst FPGA2HPS_RESET>;
+ clocks = <&l4_main_clk>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/altera-passive-serial.txt b/Documentation/devicetree/bindings/fpga/altera-passive-serial.txt
new file mode 100644
index 000000000..48478bc07
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-passive-serial.txt
@@ -0,0 +1,29 @@
+Altera Passive Serial SPI FPGA Manager
+
+Altera FPGAs support a method of loading the bitstream over what is
+referred to as "passive serial".
+The passive serial link is not technically SPI, and might require extra
+circuits in order to play nicely with other SPI slaves on the same bus.
+
+See https://www.altera.com/literature/hb/cyc/cyc_c51013.pdf
+
+Required properties:
+- compatible: Must be one of the following:
+ "altr,fpga-passive-serial",
+ "altr,fpga-arria10-passive-serial"
+- reg: SPI chip select of the FPGA
+- nconfig-gpios: config pin (referred to as nCONFIG in the manual)
+- nstat-gpios: status pin (referred to as nSTATUS in the manual)
+
+Optional properties:
+- confd-gpios: confd pin (referred to as CONF_DONE in the manual)
+
+Example:
+ fpga: fpga@0 {
+ compatible = "altr,fpga-passive-serial";
+ spi-max-frequency = <20000000>;
+ reg = <0>;
+ nconfig-gpios = <&gpio4 9 GPIO_ACTIVE_LOW>;
+ nstat-gpios = <&gpio4 11 GPIO_ACTIVE_LOW>;
+ confd-gpios = <&gpio4 12 GPIO_ACTIVE_LOW>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/altera-pr-ip.txt b/Documentation/devicetree/bindings/fpga/altera-pr-ip.txt
new file mode 100644
index 000000000..52a294cf2
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-pr-ip.txt
@@ -0,0 +1,12 @@
+Altera Arria10 Partial Reconfiguration IP
+
+Required properties:
+- compatible : should contain "altr,a10-pr-ip"
+- reg : base address and size for memory mapped io.
+
+Example:
+
+ fpga_mgr: fpga-mgr@ff20c000 {
+ compatible = "altr,a10-pr-ip";
+ reg = <0xff20c000 0x10>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt
new file mode 100644
index 000000000..2fd8e7a84
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-socfpga-a10-fpga-mgr.txt
@@ -0,0 +1,19 @@
+Altera SOCFPGA Arria10 FPGA Manager
+
+Required properties:
+- compatible : should contain "altr,socfpga-a10-fpga-mgr"
+- reg : base address and size for memory mapped io.
+ - The first index is for FPGA manager register access.
+ - The second index is for writing FPGA configuration data.
+- resets : Phandle and reset specifier for the device's reset.
+- clocks : Clocks used by the device.
+
+Example:
+
+ fpga_mgr: fpga-mgr@ffd03000 {
+ compatible = "altr,socfpga-a10-fpga-mgr";
+ reg = <0xffd03000 0x100
+ 0xffcfe400 0x20>;
+ clocks = <&l4_mp_clk>;
+ resets = <&rst FPGAMGR_RESET>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt
new file mode 100644
index 000000000..d52f33404
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/altera-socfpga-fpga-mgr.txt
@@ -0,0 +1,17 @@
+Altera SOCFPGA FPGA Manager
+
+Required properties:
+- compatible : should contain "altr,socfpga-fpga-mgr"
+- reg : base address and size for memory mapped io.
+ - The first index is for FPGA manager register access.
+ - The second index is for writing FPGA configuration data.
+- interrupts : interrupt for the FPGA Manager device.
+
+Example:
+
+ hps_0_fpgamgr: fpgamgr@ff706000 {
+ compatible = "altr,socfpga-fpga-mgr";
+ reg = <0xFF706000 0x1000
+ 0xFFB90000 0x1000>;
+ interrupts = <0 175 4>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/fpga-bridge.txt b/Documentation/devicetree/bindings/fpga/fpga-bridge.txt
new file mode 100644
index 000000000..72e069172
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/fpga-bridge.txt
@@ -0,0 +1,13 @@
+FPGA Bridge Device Tree Binding
+
+Optional properties:
+- bridge-enable : 0 if driver should disable bridge at startup
+ 1 if driver should enable bridge at startup
+ Default is to leave bridge in current state.
+
+Example:
+ fpga_bridge3: fpga-bridge@ffc25080 {
+ compatible = "altr,socfpga-fpga2sdram-bridge";
+ reg = <0xffc25080 0x4>;
+ bridge-enable = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/fpga-region.txt b/Documentation/devicetree/bindings/fpga/fpga-region.txt
new file mode 100644
index 000000000..e811cf825
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/fpga-region.txt
@@ -0,0 +1,496 @@
+FPGA Region Device Tree Binding
+
+Alan Tull 2016
+
+ CONTENTS
+ - Introduction
+ - Terminology
+ - Sequence
+ - FPGA Region
+ - Supported Use Models
+ - Device Tree Examples
+ - Constraints
+
+
+Introduction
+============
+
+FPGA Regions represent FPGA's and partial reconfiguration regions of FPGA's in
+the Device Tree. FPGA Regions provide a way to program FPGAs under device tree
+control.
+
+This device tree binding document hits some of the high points of FPGA usage and
+attempts to include terminology used by both major FPGA manufacturers. This
+document isn't a replacement for any manufacturers specifications for FPGA
+usage.
+
+
+Terminology
+===========
+
+Full Reconfiguration
+ * The entire FPGA is programmed.
+
+Partial Reconfiguration (PR)
+ * A section of an FPGA is reprogrammed while the rest of the FPGA is not
+ affected.
+ * Not all FPGA's support PR.
+
+Partial Reconfiguration Region (PRR)
+ * Also called a "reconfigurable partition"
+ * A PRR is a specific section of a FPGA reserved for reconfiguration.
+ * A base (or static) FPGA image may create a set of PRR's that later may
+ be independently reprogrammed many times.
+ * The size and specific location of each PRR is fixed.
+ * The connections at the edge of each PRR are fixed. The image that is loaded
+ into a PRR must fit and must use a subset of the region's connections.
+ * The busses within the FPGA are split such that each region gets its own
+ branch that may be gated independently.
+
+Persona
+ * Also called a "partial bit stream"
+ * An FPGA image that is designed to be loaded into a PRR. There may be
+ any number of personas designed to fit into a PRR, but only one at at time
+ may be loaded.
+ * A persona may create more regions.
+
+FPGA Bridge
+ * FPGA Bridges gate bus signals between a host and FPGA.
+ * FPGA Bridges should be disabled while the FPGA is being programmed to
+ prevent spurious signals on the cpu bus and to the soft logic.
+ * FPGA bridges may be actual hardware or soft logic on an FPGA.
+ * During Full Reconfiguration, hardware bridges between the host and FPGA
+ will be disabled.
+ * During Partial Reconfiguration of a specific region, that region's bridge
+ will be used to gate the busses. Traffic to other regions is not affected.
+ * In some implementations, the FPGA Manager transparantly handles gating the
+ buses, eliminating the need to show the hardware FPGA bridges in the
+ device tree.
+ * An FPGA image may create a set of reprogrammable regions, each having its
+ own bridge and its own split of the busses in the FPGA.
+
+FPGA Manager
+ * An FPGA Manager is a hardware block that programs an FPGA under the control
+ of a host processor.
+
+Base Image
+ * Also called the "static image"
+ * An FPGA image that is designed to do full reconfiguration of the FPGA.
+ * A base image may set up a set of partial reconfiguration regions that may
+ later be reprogrammed.
+
+ ---------------- ----------------------------------
+ | Host CPU | | FPGA |
+ | | | |
+ | ----| | ----------- -------- |
+ | | H | | |==>| Bridge0 |<==>| PRR0 | |
+ | | W | | | ----------- -------- |
+ | | | | | |
+ | | B |<=====>|<==| ----------- -------- |
+ | | R | | |==>| Bridge1 |<==>| PRR1 | |
+ | | I | | | ----------- -------- |
+ | | D | | | |
+ | | G | | | ----------- -------- |
+ | | E | | |==>| Bridge2 |<==>| PRR2 | |
+ | ----| | ----------- -------- |
+ | | | |
+ ---------------- ----------------------------------
+
+Figure 1: An FPGA set up with a base image that created three regions. Each
+region (PRR0-2) gets its own split of the busses that is independently gated by
+a soft logic bridge (Bridge0-2) in the FPGA. The contents of each PRR can be
+reprogrammed independently while the rest of the system continues to function.
+
+
+Sequence
+========
+
+When a DT overlay that targets a FPGA Region is applied, the FPGA Region will
+do the following:
+
+ 1. Disable appropriate FPGA bridges.
+ 2. Program the FPGA using the FPGA manager.
+ 3. Enable the FPGA bridges.
+ 4. The Device Tree overlay is accepted into the live tree.
+ 5. Child devices are populated.
+
+When the overlay is removed, the child nodes will be removed and the FPGA Region
+will disable the bridges.
+
+
+FPGA Region
+===========
+
+FPGA Regions represent FPGA's and FPGA PR regions in the device tree. An FPGA
+Region brings together the elements needed to program on a running system and
+add the child devices:
+
+ * FPGA Manager
+ * FPGA Bridges
+ * image-specific information needed to to the programming.
+ * child nodes
+
+The intended use is that a Device Tree overlay (DTO) can be used to reprogram an
+FPGA while an operating system is running.
+
+An FPGA Region that exists in the live Device Tree reflects the current state.
+If the live tree shows a "firmware-name" property or child nodes under a FPGA
+Region, the FPGA already has been programmed. A DTO that targets a FPGA Region
+and adds the "firmware-name" property is taken as a request to reprogram the
+FPGA. After reprogramming is successful, the overlay is accepted into the live
+tree.
+
+The base FPGA Region in the device tree represents the FPGA and supports full
+reconfiguration. It must include a phandle to an FPGA Manager. The base
+FPGA region will be the child of one of the hardware bridges (the bridge that
+allows register access) between the cpu and the FPGA. If there are more than
+one bridge to control during FPGA programming, the region will also contain a
+list of phandles to the additional hardware FPGA Bridges.
+
+For partial reconfiguration (PR), each PR region will have an FPGA Region.
+These FPGA regions are children of FPGA bridges which are then children of the
+base FPGA region. The "Full Reconfiguration to add PRR's" example below shows
+this.
+
+If an FPGA Region does not specify a FPGA Manager, it will inherit the FPGA
+Manager specified by its ancestor FPGA Region. This supports both the case
+where the same FPGA Manager is used for all of a FPGA as well the case where
+a different FPGA Manager is used for each region.
+
+FPGA Regions do not inherit their ancestor FPGA regions' bridges. This prevents
+shutting down bridges that are upstream from the other active regions while one
+region is getting reconfigured (see Figure 1 above). During PR, the FPGA's
+hardware bridges remain enabled. The PR regions' bridges will be FPGA bridges
+within the static image of the FPGA.
+
+Required properties:
+- compatible : should contain "fpga-region"
+- fpga-mgr : should contain a phandle to an FPGA Manager. Child FPGA Regions
+ inherit this property from their ancestor regions. A fpga-mgr property
+ in a region will override any inherited FPGA manager.
+- #address-cells, #size-cells, ranges : must be present to handle address space
+ mapping for child nodes.
+
+Optional properties:
+- firmware-name : should contain the name of an FPGA image file located on the
+ firmware search path. If this property shows up in a live device tree
+ it indicates that the FPGA has already been programmed with this image.
+ If this property is in an overlay targeting a FPGA region, it is a
+ request to program the FPGA with that image.
+- fpga-bridges : should contain a list of phandles to FPGA Bridges that must be
+ controlled during FPGA programming along with the parent FPGA bridge.
+ This property is optional if the FPGA Manager handles the bridges.
+ If the fpga-region is the child of a fpga-bridge, the list should not
+ contain the parent bridge.
+- partial-fpga-config : boolean, set if partial reconfiguration is to be done,
+ otherwise full reconfiguration is done.
+- external-fpga-config : boolean, set if the FPGA has already been configured
+ prior to OS boot up.
+- encrypted-fpga-config : boolean, set if the bitstream is encrypted
+- region-unfreeze-timeout-us : The maximum time in microseconds to wait for
+ bridges to successfully become enabled after the region has been
+ programmed.
+- region-freeze-timeout-us : The maximum time in microseconds to wait for
+ bridges to successfully become disabled before the region has been
+ programmed.
+- config-complete-timeout-us : The maximum time in microseconds time for the
+ FPGA to go to operating mode after the region has been programmed.
+- child nodes : devices in the FPGA after programming.
+
+In the example below, when an overlay is applied targeting fpga-region0,
+fpga_mgr is used to program the FPGA. Two bridges are controlled during
+programming: the parent fpga_bridge0 and fpga_bridge1. Because the region is
+the child of fpga_bridge0, only fpga_bridge1 needs to be specified in the
+fpga-bridges property. During programming, these bridges are disabled, the
+firmware specified in the overlay is loaded to the FPGA using the FPGA manager
+specified in the region. If FPGA programming succeeds, the bridges are
+reenabled and the overlay makes it into the live device tree. The child devices
+are then populated. If FPGA programming fails, the bridges are left disabled
+and the overlay is rejected. The overlay's ranges property maps the lwhps
+bridge's region (0xff200000) and the hps bridge's region (0xc0000000) for use by
+the two child devices.
+
+Example:
+Base tree contains:
+
+ fpga_mgr: fpga-mgr@ff706000 {
+ compatible = "altr,socfpga-fpga-mgr";
+ reg = <0xff706000 0x1000
+ 0xffb90000 0x20>;
+ interrupts = <0 175 4>;
+ };
+
+ fpga_bridge0: fpga-bridge@ff400000 {
+ compatible = "altr,socfpga-lwhps2fpga-bridge";
+ reg = <0xff400000 0x100000>;
+ resets = <&rst LWHPS2FPGA_RESET>;
+ clocks = <&l4_main_clk>;
+
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ fpga_region0: fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&fpga_mgr>;
+ };
+ };
+
+ fpga_bridge1: fpga-bridge@ff500000 {
+ compatible = "altr,socfpga-hps2fpga-bridge";
+ reg = <0xff500000 0x10000>;
+ resets = <&rst HPS2FPGA_RESET>;
+ clocks = <&l4_main_clk>;
+ };
+
+Overlay contains:
+
+/dts-v1/ /plugin/;
+/ {
+ fragment@0 {
+ target = <&fpga_region0>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ __overlay__ {
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ firmware-name = "soc_system.rbf";
+ fpga-bridges = <&fpga_bridge1>;
+ ranges = <0x20000 0xff200000 0x100000>,
+ <0x0 0xc0000000 0x20000000>;
+
+ gpio@10040 {
+ compatible = "altr,pio-1.0";
+ reg = <0x10040 0x20>;
+ altr,ngpio = <4>;
+ #gpio-cells = <2>;
+ clocks = <2>;
+ gpio-controller;
+ };
+
+ onchip-memory {
+ device_type = "memory";
+ compatible = "altr,onchipmem-15.1";
+ reg = <0x0 0x10000>;
+ };
+ };
+ };
+};
+
+
+Supported Use Models
+====================
+
+In all cases the live DT must have the FPGA Manager, FPGA Bridges (if any), and
+a FPGA Region. The target of the Device Tree Overlay is the FPGA Region. Some
+uses are specific to a FPGA device.
+
+ * No FPGA Bridges
+ In this case, the FPGA Manager which programs the FPGA also handles the
+ bridges behind the scenes. No FPGA Bridge devices are needed for full
+ reconfiguration.
+
+ * Full reconfiguration with hardware bridges
+ In this case, there are hardware bridges between the processor and FPGA that
+ need to be controlled during full reconfiguration. Before the overlay is
+ applied, the live DT must include the FPGA Manager, FPGA Bridges, and a
+ FPGA Region. The FPGA Region is the child of the bridge that allows
+ register access to the FPGA. Additional bridges may be listed in a
+ fpga-bridges property in the FPGA region or in the device tree overlay.
+
+ * Partial reconfiguration with bridges in the FPGA
+ In this case, the FPGA will have one or more PRR's that may be programmed
+ separately while the rest of the FPGA can remain active. To manage this,
+ bridges need to exist in the FPGA that can gate the buses going to each FPGA
+ region while the buses are enabled for other sections. Before any partial
+ reconfiguration can be done, a base FPGA image must be loaded which includes
+ PRR's with FPGA bridges. The device tree should have a FPGA region for each
+ PRR.
+
+Device Tree Examples
+====================
+
+The intention of this section is to give some simple examples, focusing on
+the placement of the elements detailed above, especially:
+ * FPGA Manager
+ * FPGA Bridges
+ * FPGA Region
+ * ranges
+ * target-path or target
+
+For the purposes of this section, I'm dividing the Device Tree into two parts,
+each with its own requirements. The two parts are:
+ * The live DT prior to the overlay being added
+ * The DT overlay
+
+The live Device Tree must contain an FPGA Region, an FPGA Manager, and any FPGA
+Bridges. The FPGA Region's "fpga-mgr" property specifies the manager by phandle
+to handle programming the FPGA. If the FPGA Region is the child of another FPGA
+Region, the parent's FPGA Manager is used. If FPGA Bridges need to be involved,
+they are specified in the FPGA Region by the "fpga-bridges" property. During
+FPGA programming, the FPGA Region will disable the bridges that are in its
+"fpga-bridges" list and will re-enable them after FPGA programming has
+succeeded.
+
+The Device Tree Overlay will contain:
+ * "target-path" or "target"
+ The insertion point where the the contents of the overlay will go into the
+ live tree. target-path is a full path, while target is a phandle.
+ * "ranges"
+ The address space mapping from processor to FPGA bus(ses).
+ * "firmware-name"
+ Specifies the name of the FPGA image file on the firmware search
+ path. The search path is described in the firmware class documentation.
+ * "partial-fpga-config"
+ This binding is a boolean and should be present if partial reconfiguration
+ is to be done.
+ * child nodes corresponding to hardware that will be loaded in this region of
+ the FPGA.
+
+Device Tree Example: Full Reconfiguration without Bridges
+=========================================================
+
+Live Device Tree contains:
+ fpga_mgr0: fpga-mgr@f8007000 {
+ compatible = "xlnx,zynq-devcfg-1.0";
+ reg = <0xf8007000 0x100>;
+ interrupt-parent = <&intc>;
+ interrupts = <0 8 4>;
+ clocks = <&clkc 12>;
+ clock-names = "ref_clk";
+ syscon = <&slcr>;
+ };
+
+ fpga_region0: fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&fpga_mgr0>;
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ ranges;
+ };
+
+DT Overlay contains:
+/dts-v1/ /plugin/;
+/ {
+fragment@0 {
+ target = <&fpga_region0>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ __overlay__ {
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ firmware-name = "zynq-gpio.bin";
+
+ gpio1: gpio@40000000 {
+ compatible = "xlnx,xps-gpio-1.00.a";
+ reg = <0x40000000 0x10000>;
+ gpio-controller;
+ #gpio-cells = <0x2>;
+ xlnx,gpio-width= <0x6>;
+ };
+ };
+};
+
+Device Tree Example: Full Reconfiguration to add PRR's
+======================================================
+
+The base FPGA Region is specified similar to the first example above.
+
+This example programs the FPGA to have two regions that can later be partially
+configured. Each region has its own bridge in the FPGA fabric.
+
+DT Overlay contains:
+/dts-v1/ /plugin/;
+/ {
+ fragment@0 {
+ target = <&fpga_region0>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ __overlay__ {
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ firmware-name = "base.rbf";
+
+ fpga-bridge@4400 {
+ compatible = "altr,freeze-bridge-controller";
+ reg = <0x4400 0x10>;
+
+ fpga_region1: fpga-region1 {
+ compatible = "fpga-region";
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ ranges;
+ };
+ };
+
+ fpga-bridge@4420 {
+ compatible = "altr,freeze-bridge-controller";
+ reg = <0x4420 0x10>;
+
+ fpga_region2: fpga-region2 {
+ compatible = "fpga-region";
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ ranges;
+ };
+ };
+ };
+ };
+};
+
+Device Tree Example: Partial Reconfiguration
+============================================
+
+This example reprograms one of the PRR's set up in the previous example.
+
+The sequence that occurs when this overlay is similar to the above, the only
+differences are that the FPGA is partially reconfigured due to the
+"partial-fpga-config" boolean and the only bridge that is controlled during
+programming is the FPGA based bridge of fpga_region1.
+
+/dts-v1/ /plugin/;
+/ {
+ fragment@0 {
+ target = <&fpga_region1>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ __overlay__ {
+ #address-cells = <1>;
+ #size-cells = <1>;
+
+ firmware-name = "soc_image2.rbf";
+ partial-fpga-config;
+
+ gpio@10040 {
+ compatible = "altr,pio-1.0";
+ reg = <0x10040 0x20>;
+ clocks = <0x2>;
+ altr,ngpio = <0x4>;
+ #gpio-cells = <0x2>;
+ gpio-controller;
+ };
+ };
+ };
+};
+
+Constraints
+===========
+
+It is beyond the scope of this document to fully describe all the FPGA design
+constraints required to make partial reconfiguration work[1] [2] [3], but a few
+deserve quick mention.
+
+A persona must have boundary connections that line up with those of the partion
+or region it is designed to go into.
+
+During programming, transactions through those connections must be stopped and
+the connections must be held at a fixed logic level. This can be achieved by
+FPGA Bridges that exist on the FPGA fabric prior to the partial reconfiguration.
+
+--
+[1] www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_partrecon.pdf
+[2] tspace.library.utoronto.ca/bitstream/1807/67932/1/Byma_Stuart_A_201411_MAS_thesis.pdf
+[3] https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf
diff --git a/Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt
new file mode 100644
index 000000000..0f874137c
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/intel-stratix10-soc-fpga-mgr.txt
@@ -0,0 +1,18 @@
+Intel Stratix10 SoC FPGA Manager
+
+Required properties:
+The fpga_mgr node has the following mandatory property, must be located under
+firmware/svc node.
+
+- compatible : should contain "intel,stratix10-soc-fpga-mgr" or
+ "intel,agilex-soc-fpga-mgr"
+
+Example:
+
+ firmware {
+ svc {
+ fpga_mgr: fpga-mgr {
+ compatible = "intel,stratix10-soc-fpga-mgr";
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt
new file mode 100644
index 000000000..4dc412437
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/lattice-ice40-fpga-mgr.txt
@@ -0,0 +1,21 @@
+Lattice iCE40 FPGA Manager
+
+Required properties:
+- compatible: Should contain "lattice,ice40-fpga-mgr"
+- reg: SPI chip select
+- spi-max-frequency: Maximum SPI frequency (>=1000000, <=25000000)
+- cdone-gpios: GPIO input connected to CDONE pin
+- reset-gpios: Active-low GPIO output connected to CRESET_B pin. Note
+ that unless the GPIO is held low during startup, the
+ FPGA will enter Master SPI mode and drive SCK with a
+ clock signal potentially jamming other devices on the
+ bus until the firmware is loaded.
+
+Example:
+ fpga: fpga@0 {
+ compatible = "lattice,ice40-fpga-mgr";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ cdone-gpios = <&gpio 24 GPIO_ACTIVE_HIGH>;
+ reset-gpios = <&gpio 22 GPIO_ACTIVE_LOW>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt
new file mode 100644
index 000000000..a8c362eb1
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt
@@ -0,0 +1,29 @@
+Lattice MachXO2 Slave SPI FPGA Manager
+
+Lattice MachXO2 FPGAs support a method of loading the bitstream over
+'slave SPI' interface.
+
+See 'MachXO2ProgrammingandConfigurationUsageGuide.pdf' on www.latticesemi.com
+
+Required properties:
+- compatible: should contain "lattice,machxo2-slave-spi"
+- reg: spi chip select of the FPGA
+
+Example for full FPGA configuration:
+
+ fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&fpga_mgr_spi>;
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ };
+
+ spi1: spi@2000 {
+ ...
+
+ fpga_mgr_spi: fpga-mgr@0 {
+ compatible = "lattice,machxo2-slave-spi";
+ spi-max-frequency = <8000000>;
+ reg = <0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt b/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt
new file mode 100644
index 000000000..4284d293f
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/xilinx-pr-decoupler.txt
@@ -0,0 +1,32 @@
+Xilinx LogiCORE Partial Reconfig Decoupler Softcore
+
+The Xilinx LogiCORE Partial Reconfig Decoupler manages one or more
+decouplers / fpga bridges.
+The controller can decouple/disable the bridges which prevents signal
+changes from passing through the bridge. The controller can also
+couple / enable the bridges which allows traffic to pass through the
+bridge normally.
+
+The Driver supports only MMIO handling. A PR region can have multiple
+PR Decouplers which can be handled independently or chained via decouple/
+decouple_status signals.
+
+Required properties:
+- compatible : Should contain "xlnx,pr-decoupler-1.00" followed by
+ "xlnx,pr-decoupler"
+- regs : base address and size for decoupler module
+- clocks : input clock to IP
+- clock-names : should contain "aclk"
+
+See Documentation/devicetree/bindings/fpga/fpga-region.txt and
+Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
+
+Example:
+ fpga-bridge@100000450 {
+ compatible = "xlnx,pr-decoupler-1.00",
+ "xlnx-pr-decoupler";
+ regs = <0x10000045 0x10>;
+ clocks = <&clkc 15>;
+ clock-names = "aclk";
+ bridge-enable = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/xilinx-slave-serial.txt b/Documentation/devicetree/bindings/fpga/xilinx-slave-serial.txt
new file mode 100644
index 000000000..5ef659c13
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/xilinx-slave-serial.txt
@@ -0,0 +1,51 @@
+Xilinx Slave Serial SPI FPGA Manager
+
+Xilinx Spartan-6 and 7 Series FPGAs support a method of loading the
+bitstream over what is referred to as "slave serial" interface.
+The slave serial link is not technically SPI, and might require extra
+circuits in order to play nicely with other SPI slaves on the same bus.
+
+See:
+- https://www.xilinx.com/support/documentation/user_guides/ug380.pdf
+- https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
+- https://www.xilinx.com/support/documentation/application_notes/xapp583-fpga-configuration.pdf
+
+Required properties:
+- compatible: should contain "xlnx,fpga-slave-serial"
+- reg: spi chip select of the FPGA
+- prog_b-gpios: config pin (referred to as PROGRAM_B in the manual)
+- done-gpios: config status pin (referred to as DONE in the manual)
+
+Optional properties:
+- init-b-gpios: initialization status and configuration error pin
+ (referred to as INIT_B in the manual)
+
+Example for full FPGA configuration:
+
+ fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&fpga_mgr_spi>;
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ };
+
+ spi1: spi@10680 {
+ compatible = "marvell,armada-xp-spi", "marvell,orion-spi";
+ pinctrl-0 = <&spi0_pins>;
+ pinctrl-names = "default";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ cell-index = <1>;
+ interrupts = <92>;
+ clocks = <&coreclk 0>;
+
+ fpga_mgr_spi: fpga-mgr@0 {
+ compatible = "xlnx,fpga-slave-serial";
+ spi-max-frequency = <60000000>;
+ spi-cpha;
+ reg = <0>;
+ prog_b-gpios = <&gpio0 29 GPIO_ACTIVE_LOW>;
+ init-b-gpios = <&gpio0 28 GPIO_ACTIVE_LOW>;
+ done-gpios = <&gpio0 9 GPIO_ACTIVE_HIGH>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.txt b/Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.txt
new file mode 100644
index 000000000..7018aa896
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/xilinx-zynq-fpga-mgr.txt
@@ -0,0 +1,19 @@
+Xilinx Zynq FPGA Manager
+
+Required properties:
+- compatible: should contain "xlnx,zynq-devcfg-1.0"
+- reg: base address and size for memory mapped io
+- interrupts: interrupt for the FPGA manager device
+- clocks: phandle for clocks required operation
+- clock-names: name for the clock, should be "ref_clk"
+- syscon: phandle for access to SLCR registers
+
+Example:
+ devcfg: devcfg@f8007000 {
+ compatible = "xlnx,zynq-devcfg-1.0";
+ reg = <0xf8007000 0x100>;
+ interrupts = <0 8 4>;
+ clocks = <&clkc 12>;
+ clock-names = "ref_clk";
+ syscon = <&slcr>;
+ };
diff --git a/Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.txt b/Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.txt
new file mode 100644
index 000000000..3052bf619
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/xlnx,zynqmp-pcap-fpga.txt
@@ -0,0 +1,25 @@
+Devicetree bindings for Zynq Ultrascale MPSoC FPGA Manager.
+The ZynqMP SoC uses the PCAP (Processor configuration Port) to configure the
+Programmable Logic (PL). The configuration uses the firmware interface.
+
+Required properties:
+- compatible: should contain "xlnx,zynqmp-pcap-fpga"
+
+Example for full FPGA configuration:
+
+ fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&zynqmp_pcap>;
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ };
+
+ firmware {
+ zynqmp_firmware: zynqmp-firmware {
+ compatible = "xlnx,zynqmp-firmware";
+ method = "smc";
+ zynqmp_pcap: pcap {
+ compatible = "xlnx,zynqmp-pcap-fpga";
+ };
+ };
+ };