diff options
Diffstat (limited to 'Documentation/driver-api/dma-buf.rst')
-rw-r--r-- | Documentation/driver-api/dma-buf.rst | 250 |
1 files changed, 250 insertions, 0 deletions
diff --git a/Documentation/driver-api/dma-buf.rst b/Documentation/driver-api/dma-buf.rst new file mode 100644 index 000000000..4144b669e --- /dev/null +++ b/Documentation/driver-api/dma-buf.rst @@ -0,0 +1,250 @@ +Buffer Sharing and Synchronization +================================== + +The dma-buf subsystem provides the framework for sharing buffers for +hardware (DMA) access across multiple device drivers and subsystems, and +for synchronizing asynchronous hardware access. + +This is used, for example, by drm "prime" multi-GPU support, but is of +course not limited to GPU use cases. + +The three main components of this are: (1) dma-buf, representing a +sg_table and exposed to userspace as a file descriptor to allow passing +between devices, (2) fence, which provides a mechanism to signal when +one device has finished access, and (3) reservation, which manages the +shared or exclusive fence(s) associated with the buffer. + +Shared DMA Buffers +------------------ + +This document serves as a guide to device-driver writers on what is the dma-buf +buffer sharing API, how to use it for exporting and using shared buffers. + +Any device driver which wishes to be a part of DMA buffer sharing, can do so as +either the 'exporter' of buffers, or the 'user' or 'importer' of buffers. + +Say a driver A wants to use buffers created by driver B, then we call B as the +exporter, and A as buffer-user/importer. + +The exporter + + - implements and manages operations in :c:type:`struct dma_buf_ops + <dma_buf_ops>` for the buffer, + - allows other users to share the buffer by using dma_buf sharing APIs, + - manages the details of buffer allocation, wrapped in a :c:type:`struct + dma_buf <dma_buf>`, + - decides about the actual backing storage where this allocation happens, + - and takes care of any migration of scatterlist - for all (shared) users of + this buffer. + +The buffer-user + + - is one of (many) sharing users of the buffer. + - doesn't need to worry about how the buffer is allocated, or where. + - and needs a mechanism to get access to the scatterlist that makes up this + buffer in memory, mapped into its own address space, so it can access the + same area of memory. This interface is provided by :c:type:`struct + dma_buf_attachment <dma_buf_attachment>`. + +Any exporters or users of the dma-buf buffer sharing framework must have a +'select DMA_SHARED_BUFFER' in their respective Kconfigs. + +Userspace Interface Notes +~~~~~~~~~~~~~~~~~~~~~~~~~ + +Mostly a DMA buffer file descriptor is simply an opaque object for userspace, +and hence the generic interface exposed is very minimal. There's a few things to +consider though: + +- Since kernel 3.12 the dma-buf FD supports the llseek system call, but only + with offset=0 and whence=SEEK_END|SEEK_SET. SEEK_SET is supported to allow + the usual size discover pattern size = SEEK_END(0); SEEK_SET(0). Every other + llseek operation will report -EINVAL. + + If llseek on dma-buf FDs isn't support the kernel will report -ESPIPE for all + cases. Userspace can use this to detect support for discovering the dma-buf + size using llseek. + +- In order to avoid fd leaks on exec, the FD_CLOEXEC flag must be set + on the file descriptor. This is not just a resource leak, but a + potential security hole. It could give the newly exec'd application + access to buffers, via the leaked fd, to which it should otherwise + not be permitted access. + + The problem with doing this via a separate fcntl() call, versus doing it + atomically when the fd is created, is that this is inherently racy in a + multi-threaded app[3]. The issue is made worse when it is library code + opening/creating the file descriptor, as the application may not even be + aware of the fd's. + + To avoid this problem, userspace must have a way to request O_CLOEXEC + flag be set when the dma-buf fd is created. So any API provided by + the exporting driver to create a dmabuf fd must provide a way to let + userspace control setting of O_CLOEXEC flag passed in to dma_buf_fd(). + +- Memory mapping the contents of the DMA buffer is also supported. See the + discussion below on `CPU Access to DMA Buffer Objects`_ for the full details. + +- The DMA buffer FD is also pollable, see `Implicit Fence Poll Support`_ below for + details. + +Basic Operation and Device DMA Access +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-buf.c + :doc: dma buf device access + +CPU Access to DMA Buffer Objects +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-buf.c + :doc: cpu access + +Implicit Fence Poll Support +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-buf.c + :doc: implicit fence polling + +Kernel Functions and Structures Reference +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-buf.c + :export: + +.. kernel-doc:: include/linux/dma-buf.h + :internal: + +Reservation Objects +------------------- + +.. kernel-doc:: drivers/dma-buf/dma-resv.c + :doc: Reservation Object Overview + +.. kernel-doc:: drivers/dma-buf/dma-resv.c + :export: + +.. kernel-doc:: include/linux/dma-resv.h + :internal: + +DMA Fences +---------- + +.. kernel-doc:: drivers/dma-buf/dma-fence.c + :doc: DMA fences overview + +DMA Fence Cross-Driver Contract +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-fence.c + :doc: fence cross-driver contract + +DMA Fence Signalling Annotations +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-fence.c + :doc: fence signalling annotation + +DMA Fences Functions Reference +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-fence.c + :export: + +.. kernel-doc:: include/linux/dma-fence.h + :internal: + +Seqno Hardware Fences +~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: include/linux/seqno-fence.h + :internal: + +DMA Fence Array +~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/dma-fence-array.c + :export: + +.. kernel-doc:: include/linux/dma-fence-array.h + :internal: + +DMA Fence uABI/Sync File +~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/dma-buf/sync_file.c + :export: + +.. kernel-doc:: include/linux/sync_file.h + :internal: + +Indefinite DMA Fences +~~~~~~~~~~~~~~~~~~~~~ + +At various times &dma_fence with an indefinite time until dma_fence_wait() +finishes have been proposed. Examples include: + +* Future fences, used in HWC1 to signal when a buffer isn't used by the display + any longer, and created with the screen update that makes the buffer visible. + The time this fence completes is entirely under userspace's control. + +* Proxy fences, proposed to handle &drm_syncobj for which the fence has not yet + been set. Used to asynchronously delay command submission. + +* Userspace fences or gpu futexes, fine-grained locking within a command buffer + that userspace uses for synchronization across engines or with the CPU, which + are then imported as a DMA fence for integration into existing winsys + protocols. + +* Long-running compute command buffers, while still using traditional end of + batch DMA fences for memory management instead of context preemption DMA + fences which get reattached when the compute job is rescheduled. + +Common to all these schemes is that userspace controls the dependencies of these +fences and controls when they fire. Mixing indefinite fences with normal +in-kernel DMA fences does not work, even when a fallback timeout is included to +protect against malicious userspace: + +* Only the kernel knows about all DMA fence dependencies, userspace is not aware + of dependencies injected due to memory management or scheduler decisions. + +* Only userspace knows about all dependencies in indefinite fences and when + exactly they will complete, the kernel has no visibility. + +Furthermore the kernel has to be able to hold up userspace command submission +for memory management needs, which means we must support indefinite fences being +dependent upon DMA fences. If the kernel also support indefinite fences in the +kernel like a DMA fence, like any of the above proposal would, there is the +potential for deadlocks. + +.. kernel-render:: DOT + :alt: Indefinite Fencing Dependency Cycle + :caption: Indefinite Fencing Dependency Cycle + + digraph "Fencing Cycle" { + node [shape=box bgcolor=grey style=filled] + kernel [label="Kernel DMA Fences"] + userspace [label="userspace controlled fences"] + kernel -> userspace [label="memory management"] + userspace -> kernel [label="Future fence, fence proxy, ..."] + + { rank=same; kernel userspace } + } + +This means that the kernel might accidentally create deadlocks +through memory management dependencies which userspace is unaware of, which +randomly hangs workloads until the timeout kicks in. Workloads, which from +userspace's perspective, do not contain a deadlock. In such a mixed fencing +architecture there is no single entity with knowledge of all dependencies. +Thefore preventing such deadlocks from within the kernel is not possible. + +The only solution to avoid dependencies loops is by not allowing indefinite +fences in the kernel. This means: + +* No future fences, proxy fences or userspace fences imported as DMA fences, + with or without a timeout. + +* No DMA fences that signal end of batchbuffer for command submission where + userspace is allowed to use userspace fencing or long running compute + workloads. This also means no implicit fencing for shared buffers in these + cases. |