diff options
Diffstat (limited to 'Documentation/driver-api/usb')
18 files changed, 5926 insertions, 0 deletions
diff --git a/Documentation/driver-api/usb/URB.rst b/Documentation/driver-api/usb/URB.rst new file mode 100644 index 000000000..a182c0f5e --- /dev/null +++ b/Documentation/driver-api/usb/URB.rst @@ -0,0 +1,290 @@ +.. _usb-urb: + +USB Request Block (URB) +~~~~~~~~~~~~~~~~~~~~~~~ + +:Revised: 2000-Dec-05 +:Again: 2002-Jul-06 +:Again: 2005-Sep-19 +:Again: 2017-Mar-29 + + +.. note:: + + The USB subsystem now has a substantial section at :ref:`usb-hostside-api` + section, generated from the current source code. + This particular documentation file isn't complete and may not be + updated to the last version; don't rely on it except for a quick + overview. + +Basic concept or 'What is an URB?' +================================== + +The basic idea of the new driver is message passing, the message itself is +called USB Request Block, or URB for short. + +- An URB consists of all relevant information to execute any USB transaction + and deliver the data and status back. + +- Execution of an URB is inherently an asynchronous operation, i.e. the + :c:func:`usb_submit_urb` call returns immediately after it has successfully + queued the requested action. + +- Transfers for one URB can be canceled with :c:func:`usb_unlink_urb` + at any time. + +- Each URB has a completion handler, which is called after the action + has been successfully completed or canceled. The URB also contains a + context-pointer for passing information to the completion handler. + +- Each endpoint for a device logically supports a queue of requests. + You can fill that queue, so that the USB hardware can still transfer + data to an endpoint while your driver handles completion of another. + This maximizes use of USB bandwidth, and supports seamless streaming + of data to (or from) devices when using periodic transfer modes. + + +The URB structure +================= + +Some of the fields in struct urb are:: + + struct urb + { + // (IN) device and pipe specify the endpoint queue + struct usb_device *dev; // pointer to associated USB device + unsigned int pipe; // endpoint information + + unsigned int transfer_flags; // URB_ISO_ASAP, URB_SHORT_NOT_OK, etc. + + // (IN) all urbs need completion routines + void *context; // context for completion routine + usb_complete_t complete; // pointer to completion routine + + // (OUT) status after each completion + int status; // returned status + + // (IN) buffer used for data transfers + void *transfer_buffer; // associated data buffer + u32 transfer_buffer_length; // data buffer length + int number_of_packets; // size of iso_frame_desc + + // (OUT) sometimes only part of CTRL/BULK/INTR transfer_buffer is used + u32 actual_length; // actual data buffer length + + // (IN) setup stage for CTRL (pass a struct usb_ctrlrequest) + unsigned char *setup_packet; // setup packet (control only) + + // Only for PERIODIC transfers (ISO, INTERRUPT) + // (IN/OUT) start_frame is set unless URB_ISO_ASAP isn't set + int start_frame; // start frame + int interval; // polling interval + + // ISO only: packets are only "best effort"; each can have errors + int error_count; // number of errors + struct usb_iso_packet_descriptor iso_frame_desc[0]; + }; + +Your driver must create the "pipe" value using values from the appropriate +endpoint descriptor in an interface that it's claimed. + + +How to get an URB? +================== + +URBs are allocated by calling :c:func:`usb_alloc_urb`:: + + struct urb *usb_alloc_urb(int isoframes, int mem_flags) + +Return value is a pointer to the allocated URB, 0 if allocation failed. +The parameter isoframes specifies the number of isochronous transfer frames +you want to schedule. For CTRL/BULK/INT, use 0. The mem_flags parameter +holds standard memory allocation flags, letting you control (among other +things) whether the underlying code may block or not. + +To free an URB, use :c:func:`usb_free_urb`:: + + void usb_free_urb(struct urb *urb) + +You may free an urb that you've submitted, but which hasn't yet been +returned to you in a completion callback. It will automatically be +deallocated when it is no longer in use. + + +What has to be filled in? +========================= + +Depending on the type of transaction, there are some inline functions +defined in ``linux/usb.h`` to simplify the initialization, such as +:c:func:`usb_fill_control_urb`, :c:func:`usb_fill_bulk_urb` and +:c:func:`usb_fill_int_urb`. In general, they need the usb device pointer, +the pipe (usual format from usb.h), the transfer buffer, the desired transfer +length, the completion handler, and its context. Take a look at the some +existing drivers to see how they're used. + +Flags: + +- For ISO there are two startup behaviors: Specified start_frame or ASAP. +- For ASAP set ``URB_ISO_ASAP`` in transfer_flags. + +If short packets should NOT be tolerated, set ``URB_SHORT_NOT_OK`` in +transfer_flags. + + +How to submit an URB? +===================== + +Just call :c:func:`usb_submit_urb`:: + + int usb_submit_urb(struct urb *urb, int mem_flags) + +The ``mem_flags`` parameter, such as ``GFP_ATOMIC``, controls memory +allocation, such as whether the lower levels may block when memory is tight. + +It immediately returns, either with status 0 (request queued) or some +error code, usually caused by the following: + +- Out of memory (``-ENOMEM``) +- Unplugged device (``-ENODEV``) +- Stalled endpoint (``-EPIPE``) +- Too many queued ISO transfers (``-EAGAIN``) +- Too many requested ISO frames (``-EFBIG``) +- Invalid INT interval (``-EINVAL``) +- More than one packet for INT (``-EINVAL``) + +After submission, ``urb->status`` is ``-EINPROGRESS``; however, you should +never look at that value except in your completion callback. + +For isochronous endpoints, your completion handlers should (re)submit +URBs to the same endpoint with the ``URB_ISO_ASAP`` flag, using +multi-buffering, to get seamless ISO streaming. + + +How to cancel an already running URB? +===================================== + +There are two ways to cancel an URB you've submitted but which hasn't +been returned to your driver yet. For an asynchronous cancel, call +:c:func:`usb_unlink_urb`:: + + int usb_unlink_urb(struct urb *urb) + +It removes the urb from the internal list and frees all allocated +HW descriptors. The status is changed to reflect unlinking. Note +that the URB will not normally have finished when :c:func:`usb_unlink_urb` +returns; you must still wait for the completion handler to be called. + +To cancel an URB synchronously, call :c:func:`usb_kill_urb`:: + + void usb_kill_urb(struct urb *urb) + +It does everything :c:func:`usb_unlink_urb` does, and in addition it waits +until after the URB has been returned and the completion handler +has finished. It also marks the URB as temporarily unusable, so +that if the completion handler or anyone else tries to resubmit it +they will get a ``-EPERM`` error. Thus you can be sure that when +:c:func:`usb_kill_urb` returns, the URB is totally idle. + +There is a lifetime issue to consider. An URB may complete at any +time, and the completion handler may free the URB. If this happens +while :c:func:`usb_unlink_urb` or :c:func:`usb_kill_urb` is running, it will +cause a memory-access violation. The driver is responsible for avoiding this, +which often means some sort of lock will be needed to prevent the URB +from being deallocated while it is still in use. + +On the other hand, since usb_unlink_urb may end up calling the +completion handler, the handler must not take any lock that is held +when usb_unlink_urb is invoked. The general solution to this problem +is to increment the URB's reference count while holding the lock, then +drop the lock and call usb_unlink_urb or usb_kill_urb, and then +decrement the URB's reference count. You increment the reference +count by calling :c:func`usb_get_urb`:: + + struct urb *usb_get_urb(struct urb *urb) + +(ignore the return value; it is the same as the argument) and +decrement the reference count by calling :c:func:`usb_free_urb`. Of course, +none of this is necessary if there's no danger of the URB being freed +by the completion handler. + + +What about the completion handler? +================================== + +The handler is of the following type:: + + typedef void (*usb_complete_t)(struct urb *) + +I.e., it gets the URB that caused the completion call. In the completion +handler, you should have a look at ``urb->status`` to detect any USB errors. +Since the context parameter is included in the URB, you can pass +information to the completion handler. + +Note that even when an error (or unlink) is reported, data may have been +transferred. That's because USB transfers are packetized; it might take +sixteen packets to transfer your 1KByte buffer, and ten of them might +have transferred successfully before the completion was called. + + +.. warning:: + + NEVER SLEEP IN A COMPLETION HANDLER. + + These are often called in atomic context. + +In the current kernel, completion handlers run with local interrupts +disabled, but in the future this will be changed, so don't assume that +local IRQs are always disabled inside completion handlers. + +How to do isochronous (ISO) transfers? +====================================== + +Besides the fields present on a bulk transfer, for ISO, you also +have to set ``urb->interval`` to say how often to make transfers; it's +often one per frame (which is once every microframe for highspeed devices). +The actual interval used will be a power of two that's no bigger than what +you specify. You can use the :c:func:`usb_fill_int_urb` macro to fill +most ISO transfer fields. + +For ISO transfers you also have to fill a :c:type:`usb_iso_packet_descriptor` +structure, allocated at the end of the URB by :c:func:`usb_alloc_urb`, for +each packet you want to schedule. + +The :c:func:`usb_submit_urb` call modifies ``urb->interval`` to the implemented +interval value that is less than or equal to the requested interval value. If +``URB_ISO_ASAP`` scheduling is used, ``urb->start_frame`` is also updated. + +For each entry you have to specify the data offset for this frame (base is +transfer_buffer), and the length you want to write/expect to read. +After completion, actual_length contains the actual transferred length and +status contains the resulting status for the ISO transfer for this frame. +It is allowed to specify a varying length from frame to frame (e.g. for +audio synchronisation/adaptive transfer rates). You can also use the length +0 to omit one or more frames (striping). + +For scheduling you can choose your own start frame or ``URB_ISO_ASAP``. As +explained earlier, if you always keep at least one URB queued and your +completion keeps (re)submitting a later URB, you'll get smooth ISO streaming +(if usb bandwidth utilization allows). + +If you specify your own start frame, make sure it's several frames in advance +of the current frame. You might want this model if you're synchronizing +ISO data with some other event stream. + + +How to start interrupt (INT) transfers? +======================================= + +Interrupt transfers, like isochronous transfers, are periodic, and happen +in intervals that are powers of two (1, 2, 4 etc) units. Units are frames +for full and low speed devices, and microframes for high speed ones. +You can use the :c:func:`usb_fill_int_urb` macro to fill INT transfer fields. + +The :c:func:`usb_submit_urb` call modifies ``urb->interval`` to the implemented +interval value that is less than or equal to the requested interval value. + +In Linux 2.6, unlike earlier versions, interrupt URBs are not automagically +restarted when they complete. They end when the completion handler is +called, just like other URBs. If you want an interrupt URB to be restarted, +your completion handler must resubmit it. +s diff --git a/Documentation/driver-api/usb/anchors.rst b/Documentation/driver-api/usb/anchors.rst new file mode 100644 index 000000000..4b248e691 --- /dev/null +++ b/Documentation/driver-api/usb/anchors.rst @@ -0,0 +1,83 @@ +USB Anchors +~~~~~~~~~~~ + +What is anchor? +=============== + +A USB driver needs to support some callbacks requiring +a driver to cease all IO to an interface. To do so, a +driver has to keep track of the URBs it has submitted +to know they've all completed or to call usb_kill_urb +for them. The anchor is a data structure takes care of +keeping track of URBs and provides methods to deal with +multiple URBs. + +Allocation and Initialisation +============================= + +There's no API to allocate an anchor. It is simply declared +as struct usb_anchor. :c:func:`init_usb_anchor` must be called to +initialise the data structure. + +Deallocation +============ + +Once it has no more URBs associated with it, the anchor can be +freed with normal memory management operations. + +Association and disassociation of URBs with anchors +=================================================== + +An association of URBs to an anchor is made by an explicit +call to :c:func:`usb_anchor_urb`. The association is maintained until +an URB is finished by (successful) completion. Thus disassociation +is automatic. A function is provided to forcibly finish (kill) +all URBs associated with an anchor. +Furthermore, disassociation can be made with :c:func:`usb_unanchor_urb` + +Operations on multitudes of URBs +================================ + +:c:func:`usb_kill_anchored_urbs` +-------------------------------- + +This function kills all URBs associated with an anchor. The URBs +are called in the reverse temporal order they were submitted. +This way no data can be reordered. + +:c:func:`usb_unlink_anchored_urbs` +---------------------------------- + + +This function unlinks all URBs associated with an anchor. The URBs +are processed in the reverse temporal order they were submitted. +This is similar to :c:func:`usb_kill_anchored_urbs`, but it will not sleep. +Therefore no guarantee is made that the URBs have been unlinked when +the call returns. They may be unlinked later but will be unlinked in +finite time. + +:c:func:`usb_scuttle_anchored_urbs` +----------------------------------- + +All URBs of an anchor are unanchored en masse. + +:c:func:`usb_wait_anchor_empty_timeout` +--------------------------------------- + +This function waits for all URBs associated with an anchor to finish +or a timeout, whichever comes first. Its return value will tell you +whether the timeout was reached. + +:c:func:`usb_anchor_empty` +-------------------------- + +Returns true if no URBs are associated with an anchor. Locking +is the caller's responsibility. + +:c:func:`usb_get_from_anchor` +----------------------------- + +Returns the oldest anchored URB of an anchor. The URB is unanchored +and returned with a reference. As you may mix URBs to several +destinations in one anchor you have no guarantee the chronologically +first submitted URB is returned. diff --git a/Documentation/driver-api/usb/bulk-streams.rst b/Documentation/driver-api/usb/bulk-streams.rst new file mode 100644 index 000000000..eeefe582f --- /dev/null +++ b/Documentation/driver-api/usb/bulk-streams.rst @@ -0,0 +1,83 @@ +USB bulk streams +~~~~~~~~~~~~~~~~ + +Background +========== + +Bulk endpoint streams were added in the USB 3.0 specification. Streams allow a +device driver to overload a bulk endpoint so that multiple transfers can be +queued at once. + +Streams are defined in sections 4.4.6.4 and 8.12.1.4 of the Universal Serial Bus +3.0 specification at https://www.usb.org/developers/docs/ The USB Attached SCSI +Protocol, which uses streams to queue multiple SCSI commands, can be found on +the T10 website (https://t10.org/). + + +Device-side implications +======================== + +Once a buffer has been queued to a stream ring, the device is notified (through +an out-of-band mechanism on another endpoint) that data is ready for that stream +ID. The device then tells the host which "stream" it wants to start. The host +can also initiate a transfer on a stream without the device asking, but the +device can refuse that transfer. Devices can switch between streams at any +time. + + +Driver implications +=================== + +:: + + int usb_alloc_streams(struct usb_interface *interface, + struct usb_host_endpoint **eps, unsigned int num_eps, + unsigned int num_streams, gfp_t mem_flags); + +Device drivers will call this API to request that the host controller driver +allocate memory so the driver can use up to num_streams stream IDs. They must +pass an array of usb_host_endpoints that need to be setup with similar stream +IDs. This is to ensure that a UASP driver will be able to use the same stream +ID for the bulk IN and OUT endpoints used in a Bi-directional command sequence. + +The return value is an error condition (if one of the endpoints doesn't support +streams, or the xHCI driver ran out of memory), or the number of streams the +host controller allocated for this endpoint. The xHCI host controller hardware +declares how many stream IDs it can support, and each bulk endpoint on a +SuperSpeed device will say how many stream IDs it can handle. Therefore, +drivers should be able to deal with being allocated less stream IDs than they +requested. + +Do NOT call this function if you have URBs enqueued for any of the endpoints +passed in as arguments. Do not call this function to request less than two +streams. + +Drivers will only be allowed to call this API once for the same endpoint +without calling usb_free_streams(). This is a simplification for the xHCI host +controller driver, and may change in the future. + + +Picking new Stream IDs to use +============================= + +Stream ID 0 is reserved, and should not be used to communicate with devices. If +usb_alloc_streams() returns with a value of N, you may use streams 1 though N. +To queue an URB for a specific stream, set the urb->stream_id value. If the +endpoint does not support streams, an error will be returned. + +Note that new API to choose the next stream ID will have to be added if the xHCI +driver supports secondary stream IDs. + + +Clean up +======== + +If a driver wishes to stop using streams to communicate with the device, it +should call:: + + void usb_free_streams(struct usb_interface *interface, + struct usb_host_endpoint **eps, unsigned int num_eps, + gfp_t mem_flags); + +All stream IDs will be deallocated when the driver releases the interface, to +ensure that drivers that don't support streams will be able to use the endpoint. diff --git a/Documentation/driver-api/usb/callbacks.rst b/Documentation/driver-api/usb/callbacks.rst new file mode 100644 index 000000000..2b80cf54b --- /dev/null +++ b/Documentation/driver-api/usb/callbacks.rst @@ -0,0 +1,157 @@ +USB core callbacks +~~~~~~~~~~~~~~~~~~ + +What callbacks will usbcore do? +=============================== + +Usbcore will call into a driver through callbacks defined in the driver +structure and through the completion handler of URBs a driver submits. +Only the former are in the scope of this document. These two kinds of +callbacks are completely independent of each other. Information on the +completion callback can be found in :ref:`usb-urb`. + +The callbacks defined in the driver structure are: + +1. Hotplugging callbacks: + + - @probe: + Called to see if the driver is willing to manage a particular + interface on a device. + + - @disconnect: + Called when the interface is no longer accessible, usually + because its device has been (or is being) disconnected or the + driver module is being unloaded. + +2. Odd backdoor through usbfs: + + - @ioctl: + Used for drivers that want to talk to userspace through + the "usbfs" filesystem. This lets devices provide ways to + expose information to user space regardless of where they + do (or don't) show up otherwise in the filesystem. + +3. Power management (PM) callbacks: + + - @suspend: + Called when the device is going to be suspended. + + - @resume: + Called when the device is being resumed. + + - @reset_resume: + Called when the suspended device has been reset instead + of being resumed. + +4. Device level operations: + + - @pre_reset: + Called when the device is about to be reset. + + - @post_reset: + Called after the device has been reset + +The ioctl interface (2) should be used only if you have a very good +reason. Sysfs is preferred these days. The PM callbacks are covered +separately in :ref:`usb-power-management`. + +Calling conventions +=================== + +All callbacks are mutually exclusive. There's no need for locking +against other USB callbacks. All callbacks are called from a task +context. You may sleep. However, it is important that all sleeps have a +small fixed upper limit in time. In particular you must not call out to +user space and await results. + +Hotplugging callbacks +===================== + +These callbacks are intended to associate and disassociate a driver with +an interface. A driver's bond to an interface is exclusive. + +The probe() callback +-------------------- + +:: + + int (*probe) (struct usb_interface *intf, + const struct usb_device_id *id); + +Accept or decline an interface. If you accept the device return 0, +otherwise -ENODEV or -ENXIO. Other error codes should be used only if a +genuine error occurred during initialisation which prevented a driver +from accepting a device that would else have been accepted. +You are strongly encouraged to use usbcore's facility, +usb_set_intfdata(), to associate a data structure with an interface, so +that you know which internal state and identity you associate with a +particular interface. The device will not be suspended and you may do IO +to the interface you are called for and endpoint 0 of the device. Device +initialisation that doesn't take too long is a good idea here. + +The disconnect() callback +------------------------- + +:: + + void (*disconnect) (struct usb_interface *intf); + +This callback is a signal to break any connection with an interface. +You are not allowed any IO to a device after returning from this +callback. You also may not do any other operation that may interfere +with another driver bound the interface, eg. a power management +operation. +If you are called due to a physical disconnection, all your URBs will be +killed by usbcore. Note that in this case disconnect will be called some +time after the physical disconnection. Thus your driver must be prepared +to deal with failing IO even prior to the callback. + +Device level callbacks +====================== + +pre_reset +--------- + +:: + + int (*pre_reset)(struct usb_interface *intf); + +A driver or user space is triggering a reset on the device which +contains the interface passed as an argument. Cease IO, wait for all +outstanding URBs to complete, and save any device state you need to +restore. No more URBs may be submitted until the post_reset method +is called. + +If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you +are in atomic context. + +post_reset +---------- + +:: + + int (*post_reset)(struct usb_interface *intf); + +The reset has completed. Restore any saved device state and begin +using the device again. + +If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you +are in atomic context. + +Call sequences +============== + +No callbacks other than probe will be invoked for an interface +that isn't bound to your driver. + +Probe will never be called for an interface bound to a driver. +Hence following a successful probe, disconnect will be called +before there is another probe for the same interface. + +Once your driver is bound to an interface, disconnect can be +called at any time except in between pre_reset and post_reset. +pre_reset is always followed by post_reset, even if the reset +failed or the device has been unplugged. + +suspend is always followed by one of: resume, reset_resume, or +disconnect. diff --git a/Documentation/driver-api/usb/dma.rst b/Documentation/driver-api/usb/dma.rst new file mode 100644 index 000000000..2b3dbd326 --- /dev/null +++ b/Documentation/driver-api/usb/dma.rst @@ -0,0 +1,136 @@ +USB DMA +~~~~~~~ + +In Linux 2.5 kernels (and later), USB device drivers have additional control +over how DMA may be used to perform I/O operations. The APIs are detailed +in the kernel usb programming guide (kerneldoc, from the source code). + +API overview +============ + +The big picture is that USB drivers can continue to ignore most DMA issues, +though they still must provide DMA-ready buffers (see +:doc:`/core-api/dma-api-howto`). That's how they've worked through +the 2.4 (and earlier) kernels, or they can now be DMA-aware. + +DMA-aware usb drivers: + +- New calls enable DMA-aware drivers, letting them allocate dma buffers and + manage dma mappings for existing dma-ready buffers (see below). + +- URBs have an additional "transfer_dma" field, as well as a transfer_flags + bit saying if it's valid. (Control requests also have "setup_dma", but + drivers must not use it.) + +- "usbcore" will map this DMA address, if a DMA-aware driver didn't do + it first and set ``URB_NO_TRANSFER_DMA_MAP``. HCDs + don't manage dma mappings for URBs. + +- There's a new "generic DMA API", parts of which are usable by USB device + drivers. Never use dma_set_mask() on any USB interface or device; that + would potentially break all devices sharing that bus. + +Eliminating copies +================== + +It's good to avoid making CPUs copy data needlessly. The costs can add up, +and effects like cache-trashing can impose subtle penalties. + +- If you're doing lots of small data transfers from the same buffer all + the time, that can really burn up resources on systems which use an + IOMMU to manage the DMA mappings. It can cost MUCH more to set up and + tear down the IOMMU mappings with each request than perform the I/O! + + For those specific cases, USB has primitives to allocate less expensive + memory. They work like kmalloc and kfree versions that give you the right + kind of addresses to store in urb->transfer_buffer and urb->transfer_dma. + You'd also set ``URB_NO_TRANSFER_DMA_MAP`` in urb->transfer_flags:: + + void *usb_alloc_coherent (struct usb_device *dev, size_t size, + int mem_flags, dma_addr_t *dma); + + void usb_free_coherent (struct usb_device *dev, size_t size, + void *addr, dma_addr_t dma); + + Most drivers should **NOT** be using these primitives; they don't need + to use this type of memory ("dma-coherent"), and memory returned from + :c:func:`kmalloc` will work just fine. + + The memory buffer returned is "dma-coherent"; sometimes you might need to + force a consistent memory access ordering by using memory barriers. It's + not using a streaming DMA mapping, so it's good for small transfers on + systems where the I/O would otherwise thrash an IOMMU mapping. (See + :doc:`/core-api/dma-api-howto` for definitions of "coherent" and + "streaming" DMA mappings.) + + Asking for 1/Nth of a page (as well as asking for N pages) is reasonably + space-efficient. + + On most systems the memory returned will be uncached, because the + semantics of dma-coherent memory require either bypassing CPU caches + or using cache hardware with bus-snooping support. While x86 hardware + has such bus-snooping, many other systems use software to flush cache + lines to prevent DMA conflicts. + +- Devices on some EHCI controllers could handle DMA to/from high memory. + + Unfortunately, the current Linux DMA infrastructure doesn't have a sane + way to expose these capabilities ... and in any case, HIGHMEM is mostly a + design wart specific to x86_32. So your best bet is to ensure you never + pass a highmem buffer into a USB driver. That's easy; it's the default + behavior. Just don't override it; e.g. with ``NETIF_F_HIGHDMA``. + + This may force your callers to do some bounce buffering, copying from + high memory to "normal" DMA memory. If you can come up with a good way + to fix this issue (for x86_32 machines with over 1 GByte of memory), + feel free to submit patches. + +Working with existing buffers +============================= + +Existing buffers aren't usable for DMA without first being mapped into the +DMA address space of the device. However, most buffers passed to your +driver can safely be used with such DMA mapping. (See the first section +of :doc:`/core-api/dma-api-howto`, titled "What memory is DMA-able?") + +- When you're using scatterlists, you can map everything at once. On some + systems, this kicks in an IOMMU and turns the scatterlists into single + DMA transactions:: + + int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, + struct scatterlist *sg, int nents); + + void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, + struct scatterlist *sg, int n_hw_ents); + + void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, + struct scatterlist *sg, int n_hw_ents); + + It's probably easier to use the new ``usb_sg_*()`` calls, which do the DMA + mapping and apply other tweaks to make scatterlist i/o be fast. + +- Some drivers may prefer to work with the model that they're mapping large + buffers, synchronizing their safe re-use. (If there's no re-use, then let + usbcore do the map/unmap.) Large periodic transfers make good examples + here, since it's cheaper to just synchronize the buffer than to unmap it + each time an urb completes and then re-map it on during resubmission. + + These calls all work with initialized urbs: ``urb->dev``, ``urb->pipe``, + ``urb->transfer_buffer``, and ``urb->transfer_buffer_length`` must all be + valid when these calls are used (``urb->setup_packet`` must be valid too + if urb is a control request):: + + struct urb *usb_buffer_map (struct urb *urb); + + void usb_buffer_dmasync (struct urb *urb); + + void usb_buffer_unmap (struct urb *urb); + + The calls manage ``urb->transfer_dma`` for you, and set + ``URB_NO_TRANSFER_DMA_MAP`` so that usbcore won't map or unmap the buffer. + They cannot be used for setup_packet buffers in control requests. + +Note that several of those interfaces are currently commented out, since +they don't have current users. See the source code. Other than the dmasync +calls (where the underlying DMA primitives have changed), most of them can +easily be commented back in if you want to use them. diff --git a/Documentation/driver-api/usb/dwc3.rst b/Documentation/driver-api/usb/dwc3.rst new file mode 100644 index 000000000..8b36ff11c --- /dev/null +++ b/Documentation/driver-api/usb/dwc3.rst @@ -0,0 +1,711 @@ +=============================================================== +Synopsys DesignWare Core SuperSpeed USB 3.0 Controller +=============================================================== + +:Author: Felipe Balbi <felipe.balbi@linux.intel.com> +:Date: April 2017 + +Introduction +============ + +The *Synopsys DesignWare Core SuperSpeed USB 3.0 Controller* +(hereinafter referred to as *DWC3*) is a USB SuperSpeed compliant +controller which can be configured in one of 4 ways: + + 1. Peripheral-only configuration + 2. Host-only configuration + 3. Dual-Role configuration + 4. Hub configuration + +Linux currently supports several versions of this controller. In all +likelyhood, the version in your SoC is already supported. At the time +of this writing, known tested versions range from 2.02a to 3.10a. As a +rule of thumb, anything above 2.02a should work reliably well. + +Currently, we have many known users for this driver. In alphabetical +order: + + 1. Cavium + 2. Intel Corporation + 3. Qualcomm + 4. Rockchip + 5. ST + 6. Samsung + 7. Texas Instruments + 8. Xilinx + +Summary of Features +====================== + +For details about features supported by your version of DWC3, consult +your IP team and/or *Synopsys DesignWare Core SuperSpeed USB 3.0 +Controller Databook*. Following is a list of features supported by the +driver at the time of this writing: + + 1. Up to 16 bidirectional endpoints (including the control + pipe - ep0) + 2. Flexible endpoint configuration + 3. Simultaneous IN and OUT transfer support + 4. Scatter-list support + 5. Up to 256 TRBs [#trb]_ per endpoint + 6. Support for all transfer types (*Control*, *Bulk*, + *Interrupt*, and *Isochronous*) + 7. SuperSpeed Bulk Streams + 8. Link Power Management + 9. Trace Events for debugging + 10. DebugFS [#debugfs]_ interface + +These features have all been exercised with many of the **in-tree** +gadget drivers. We have verified both *ConfigFS* [#configfs]_ and +legacy gadget drivers. + +Driver Design +============== + +The DWC3 driver sits on the *drivers/usb/dwc3/* directory. All files +related to this driver are in this one directory. This makes it easy +for new-comers to read the code and understand how it behaves. + +Because of DWC3's configuration flexibility, the driver is a little +complex in some places but it should be rather straightforward to +understand. + +The biggest part of the driver refers to the Gadget API. + +Known Limitations +=================== + +Like any other HW, DWC3 has its own set of limitations. To avoid +constant questions about such problems, we decided to document them +here and have a single location to where we could point users. + +OUT Transfer Size Requirements +--------------------------------- + +According to Synopsys Databook, all OUT transfer TRBs [#trb]_ must +have their *size* field set to a value which is integer divisible by +the endpoint's *wMaxPacketSize*. This means that *e.g.* in order to +receive a Mass Storage *CBW* [#cbw]_, req->length must either be set +to a value that's divisible by *wMaxPacketSize* (1024 on SuperSpeed, +512 on HighSpeed, etc), or DWC3 driver must add a Chained TRB pointing +to a throw-away buffer for the remaining length. Without this, OUT +transfers will **NOT** start. + +Note that as of this writing, this won't be a problem because DWC3 is +fully capable of appending a chained TRB for the remaining length and +completely hide this detail from the gadget driver. It's still worth +mentioning because this seems to be the largest source of queries +about DWC3 and *non-working transfers*. + +TRB Ring Size Limitation +------------------------- + +We, currently, have a hard limit of 256 TRBs [#trb]_ per endpoint, +with the last TRB being a Link TRB [#link_trb]_ pointing back to the +first. This limit is arbitrary but it has the benefit of adding up to +exactly 4096 bytes, or 1 Page. + +DWC3 driver will try its best to cope with more than 255 requests and, +for the most part, it should work normally. However this is not +something that has been exercised very frequently. If you experience +any problems, see section **Reporting Bugs** below. + +Reporting Bugs +================ + +Whenever you encounter a problem with DWC3, first and foremost you +should make sure that: + + 1. You're running latest tag from `Linus' tree`_ + 2. You can reproduce the error without any out-of-tree changes + to DWC3 + 3. You have checked that it's not a fault on the host machine + +After all these are verified, then here's how to capture enough +information so we can be of any help to you. + +Required Information +--------------------- + +DWC3 relies exclusively on Trace Events for debugging. Everything is +exposed there, with some extra bits being exposed to DebugFS +[#debugfs]_. + +In order to capture DWC3's Trace Events you should run the following +commands **before** plugging the USB cable to a host machine: + +.. code-block:: sh + + # mkdir -p /d + # mkdir -p /t + # mount -t debugfs none /d + # mount -t tracefs none /t + # echo 81920 > /t/buffer_size_kb + # echo 1 > /t/events/dwc3/enable + +After this is done, you can connect your USB cable and reproduce the +problem. As soon as the fault is reproduced, make a copy of files +``trace`` and ``regdump``, like so: + +.. code-block:: sh + + # cp /t/trace /root/trace.txt + # cat /d/*dwc3*/regdump > /root/regdump.txt + +Make sure to compress ``trace.txt`` and ``regdump.txt`` in a tarball +and email it to `me`_ with `linux-usb`_ in Cc. If you want to be extra +sure that I'll help you, write your subject line in the following +format: + + **[BUG REPORT] usb: dwc3: Bug while doing XYZ** + +On the email body, make sure to detail what you doing, which gadget +driver you were using, how to reproduce the problem, what SoC you're +using, which OS (and its version) was running on the Host machine. + +With all this information, we should be able to understand what's +going on and be helpful to you. + +Debugging +=========== + +First and foremost a disclaimer:: + + DISCLAIMER: The information available on DebugFS and/or TraceFS can + change at any time at any Major Linux Kernel Release. If writing + scripts, do **NOT** assume information to be available in the + current format. + +With that out of the way, let's carry on. + +If you're willing to debug your own problem, you deserve a round of +applause :-) + +Anyway, there isn't much to say here other than Trace Events will be +really helpful in figuring out issues with DWC3. Also, access to +Synopsys Databook will be **really** valuable in this case. + +A USB Sniffer can be helpful at times but it's not entirely required, +there's a lot that can be understood without looking at the wire. + +Feel free to email `me`_ and Cc `linux-usb`_ if you need any help. + +``DebugFS`` +------------- + +``DebugFS`` is very good for gathering snapshots of what's going on +with DWC3 and/or any endpoint. + +On DWC3's ``DebugFS`` directory, you will find the following files and +directories: + +``ep[0..15]{in,out}/`` +``link_state`` +``regdump`` +``testmode`` + +``link_state`` +`````````````` + +When read, ``link_state`` will print out one of ``U0``, ``U1``, +``U2``, ``U3``, ``SS.Disabled``, ``RX.Detect``, ``SS.Inactive``, +``Polling``, ``Recovery``, ``Hot Reset``, ``Compliance``, +``Loopback``, ``Reset``, ``Resume`` or ``UNKNOWN link state``. + +This file can also be written to in order to force link to one of the +states above. + +``regdump`` +````````````` + +File name is self-explanatory. When read, ``regdump`` will print out a +register dump of DWC3. Note that this file can be grepped to find the +information you want. + +``testmode`` +`````````````` + +When read, ``testmode`` will print out a name of one of the specified +USB 2.0 Testmodes (``test_j``, ``test_k``, ``test_se0_nak``, +``test_packet``, ``test_force_enable``) or the string ``no test`` in +case no tests are currently being executed. + +In order to start any of these test modes, the same strings can be +written to the file and DWC3 will enter the requested test mode. + + +``ep[0..15]{in,out}`` +`````````````````````` + +For each endpoint we expose one directory following the naming +convention ``ep$num$dir`` *(ep0in, ep0out, ep1in, ...)*. Inside each +of these directories you will find the following files: + +``descriptor_fetch_queue`` +``event_queue`` +``rx_fifo_queue`` +``rx_info_queue`` +``rx_request_queue`` +``transfer_type`` +``trb_ring`` +``tx_fifo_queue`` +``tx_request_queue`` + +With access to Synopsys Databook, you can decode the information on +them. + +``transfer_type`` +~~~~~~~~~~~~~~~~~~ + +When read, ``transfer_type`` will print out one of ``control``, +``bulk``, ``interrupt`` or ``isochronous`` depending on what the +endpoint descriptor says. If the endpoint hasn't been enabled yet, it +will print ``--``. + +``trb_ring`` +~~~~~~~~~~~~~ + +When read, ``trb_ring`` will print out details about all TRBs on the +ring. It will also tell you where our enqueue and dequeue pointers are +located in the ring: + +.. code-block:: sh + + buffer_addr,size,type,ioc,isp_imi,csp,chn,lst,hwo + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c75c000,481,normal,1,0,1,0,0,0 + 000000002c780000,481,normal,1,0,1,0,0,0 + 000000002c784000,481,normal,1,0,1,0,0,0 + 000000002c788000,481,normal,1,0,1,0,0,0 + 000000002c78c000,481,normal,1,0,1,0,0,0 + 000000002c790000,481,normal,1,0,1,0,0,0 + 000000002c754000,481,normal,1,0,1,0,0,0 + 000000002c758000,481,normal,1,0,1,0,0,0 + 000000002c75c000,512,normal,1,0,1,0,0,1 D + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 E + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 0000000000000000,0,UNKNOWN,0,0,0,0,0,0 + 00000000381ab000,0,link,0,0,0,0,0,1 + + +Trace Events +------------- + +DWC3 also provides several trace events which help us gathering +information about the behavior of the driver during runtime. + +In order to use these events, you must enable ``CONFIG_FTRACE`` in +your kernel config. + +For details about how enable DWC3 events, see section **Reporting +Bugs**. + +The following subsections will give details about each Event Class and +each Event defined by DWC3. + +MMIO +``````` + +It is sometimes useful to look at every MMIO access when looking for +bugs. Because of that, DWC3 offers two Trace Events (one for +dwc3_readl() and one for dwc3_writel()). ``TP_printk`` follows:: + + TP_printk("addr %p value %08x", __entry->base + __entry->offset, + __entry->value) + +Interrupt Events +```````````````` + +Every IRQ event can be logged and decoded into a human readable +string. Because every event will be different, we don't give an +example other than the ``TP_printk`` format used:: + + TP_printk("event (%08x): %s", __entry->event, + dwc3_decode_event(__entry->event, __entry->ep0state)) + +Control Request +````````````````` + +Every USB Control Request can be logged to the trace buffer. The +output format is:: + + TP_printk("%s", dwc3_decode_ctrl(__entry->bRequestType, + __entry->bRequest, __entry->wValue, + __entry->wIndex, __entry->wLength) + ) + +Note that Standard Control Requests will be decoded into +human-readable strings with their respective arguments. Class and +Vendor requests will be printed out a sequence of 8 bytes in hex +format. + +Lifetime of a ``struct usb_request`` +``````````````````````````````````````` + +The entire lifetime of a ``struct usb_request`` can be tracked on the +trace buffer. We have one event for each of allocation, free, +queueing, dequeueing, and giveback. Output format is:: + + TP_printk("%s: req %p length %u/%u %s%s%s ==> %d", + __get_str(name), __entry->req, __entry->actual, __entry->length, + __entry->zero ? "Z" : "z", + __entry->short_not_ok ? "S" : "s", + __entry->no_interrupt ? "i" : "I", + __entry->status + ) + +Generic Commands +```````````````````` + +We can log and decode every Generic Command with its completion +code. Format is:: + + TP_printk("cmd '%s' [%x] param %08x --> status: %s", + dwc3_gadget_generic_cmd_string(__entry->cmd), + __entry->cmd, __entry->param, + dwc3_gadget_generic_cmd_status_string(__entry->status) + ) + +Endpoint Commands +```````````````````` + +Endpoints commands can also be logged together with completion +code. Format is:: + + TP_printk("%s: cmd '%s' [%d] params %08x %08x %08x --> status: %s", + __get_str(name), dwc3_gadget_ep_cmd_string(__entry->cmd), + __entry->cmd, __entry->param0, + __entry->param1, __entry->param2, + dwc3_ep_cmd_status_string(__entry->cmd_status) + ) + +Lifetime of a ``TRB`` +`````````````````````` + +A ``TRB`` Lifetime is simple. We are either preparing a ``TRB`` or +completing it. With these two events, we can see how a ``TRB`` changes +over time. Format is:: + + TP_printk("%s: %d/%d trb %p buf %08x%08x size %s%d ctrl %08x (%c%c%c%c:%c%c:%s)", + __get_str(name), __entry->queued, __entry->allocated, + __entry->trb, __entry->bph, __entry->bpl, + ({char *s; + int pcm = ((__entry->size >> 24) & 3) + 1; + switch (__entry->type) { + case USB_ENDPOINT_XFER_INT: + case USB_ENDPOINT_XFER_ISOC: + switch (pcm) { + case 1: + s = "1x "; + break; + case 2: + s = "2x "; + break; + case 3: + s = "3x "; + break; + } + default: + s = ""; + } s; }), + DWC3_TRB_SIZE_LENGTH(__entry->size), __entry->ctrl, + __entry->ctrl & DWC3_TRB_CTRL_HWO ? 'H' : 'h', + __entry->ctrl & DWC3_TRB_CTRL_LST ? 'L' : 'l', + __entry->ctrl & DWC3_TRB_CTRL_CHN ? 'C' : 'c', + __entry->ctrl & DWC3_TRB_CTRL_CSP ? 'S' : 's', + __entry->ctrl & DWC3_TRB_CTRL_ISP_IMI ? 'S' : 's', + __entry->ctrl & DWC3_TRB_CTRL_IOC ? 'C' : 'c', + dwc3_trb_type_string(DWC3_TRBCTL_TYPE(__entry->ctrl)) + ) + +Lifetime of an Endpoint +``````````````````````` + +And endpoint's lifetime is summarized with enable and disable +operations, both of which can be traced. Format is:: + + TP_printk("%s: mps %d/%d streams %d burst %d ring %d/%d flags %c:%c%c%c%c%c:%c:%c", + __get_str(name), __entry->maxpacket, + __entry->maxpacket_limit, __entry->max_streams, + __entry->maxburst, __entry->trb_enqueue, + __entry->trb_dequeue, + __entry->flags & DWC3_EP_ENABLED ? 'E' : 'e', + __entry->flags & DWC3_EP_STALL ? 'S' : 's', + __entry->flags & DWC3_EP_WEDGE ? 'W' : 'w', + __entry->flags & DWC3_EP_TRANSFER_STARTED ? 'B' : 'b', + __entry->flags & DWC3_EP_PENDING_REQUEST ? 'P' : 'p', + __entry->flags & DWC3_EP_END_TRANSFER_PENDING ? 'E' : 'e', + __entry->direction ? '<' : '>' + ) + + +Structures, Methods and Definitions +==================================== + +.. kernel-doc:: drivers/usb/dwc3/core.h + :doc: main data structures + :internal: + +.. kernel-doc:: drivers/usb/dwc3/gadget.h + :doc: gadget-only helpers + :internal: + +.. kernel-doc:: drivers/usb/dwc3/gadget.c + :doc: gadget-side implementation + :internal: + +.. kernel-doc:: drivers/usb/dwc3/core.c + :doc: core driver (probe, PM, etc) + :internal: + +.. [#trb] Transfer Request Block +.. [#link_trb] Transfer Request Block pointing to another Transfer + Request Block. +.. [#debugfs] The Debug File System +.. [#configfs] The Config File System +.. [#cbw] Command Block Wrapper +.. _Linus' tree: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/ +.. _me: felipe.balbi@linux.intel.com +.. _linux-usb: linux-usb@vger.kernel.org diff --git a/Documentation/driver-api/usb/error-codes.rst b/Documentation/driver-api/usb/error-codes.rst new file mode 100644 index 000000000..a3e84bfac --- /dev/null +++ b/Documentation/driver-api/usb/error-codes.rst @@ -0,0 +1,207 @@ +.. _usb-error-codes: + +USB Error codes +~~~~~~~~~~~~~~~ + +:Revised: 2004-Oct-21 + +This is the documentation of (hopefully) all possible error codes (and +their interpretation) that can be returned from usbcore. + +Some of them are returned by the Host Controller Drivers (HCDs), which +device drivers only see through usbcore. As a rule, all the HCDs should +behave the same except for transfer speed dependent behaviors and the +way certain faults are reported. + + +Error codes returned by :c:func:`usb_submit_urb` +================================================ + +Non-USB-specific: + + +=============== =============================================== +0 URB submission went fine + +``-ENOMEM`` no memory for allocation of internal structures +=============== =============================================== + +USB-specific: + +======================= ======================================================= +``-EBUSY`` The URB is already active. + +``-ENODEV`` specified USB-device or bus doesn't exist + +``-ENOENT`` specified interface or endpoint does not exist or + is not enabled + +``-ENXIO`` host controller driver does not support queuing of + this type of urb. (treat as a host controller bug.) + +``-EINVAL`` a) Invalid transfer type specified (or not supported) + b) Invalid or unsupported periodic transfer interval + c) ISO: attempted to change transfer interval + d) ISO: ``number_of_packets`` is < 0 + e) various other cases + +``-EXDEV`` ISO: ``URB_ISO_ASAP`` wasn't specified and all the + frames the URB would be scheduled in have already + expired. + +``-EFBIG`` Host controller driver can't schedule that many ISO + frames. + +``-EPIPE`` The pipe type specified in the URB doesn't match the + endpoint's actual type. + +``-EMSGSIZE`` (a) endpoint maxpacket size is zero; it is not usable + in the current interface altsetting. + (b) ISO packet is larger than the endpoint maxpacket. + (c) requested data transfer length is invalid: negative + or too large for the host controller. + +``-ENOSPC`` This request would overcommit the usb bandwidth reserved + for periodic transfers (interrupt, isochronous). + +``-ESHUTDOWN`` The device or host controller has been disabled due to + some problem that could not be worked around. + +``-EPERM`` Submission failed because ``urb->reject`` was set. + +``-EHOSTUNREACH`` URB was rejected because the device is suspended. + +``-ENOEXEC`` A control URB doesn't contain a Setup packet. +======================= ======================================================= + +Error codes returned by ``in urb->status`` or in ``iso_frame_desc[n].status`` (for ISO) +======================================================================================= + +USB device drivers may only test urb status values in completion handlers. +This is because otherwise there would be a race between HCDs updating +these values on one CPU, and device drivers testing them on another CPU. + +A transfer's actual_length may be positive even when an error has been +reported. That's because transfers often involve several packets, so that +one or more packets could finish before an error stops further endpoint I/O. + +For isochronous URBs, the urb status value is non-zero only if the URB is +unlinked, the device is removed, the host controller is disabled, or the total +transferred length is less than the requested length and the +``URB_SHORT_NOT_OK`` flag is set. Completion handlers for isochronous URBs +should only see ``urb->status`` set to zero, ``-ENOENT``, ``-ECONNRESET``, +``-ESHUTDOWN``, or ``-EREMOTEIO``. Individual frame descriptor status fields +may report more status codes. + + +=============================== =============================================== +0 Transfer completed successfully + +``-ENOENT`` URB was synchronously unlinked by + :c:func:`usb_unlink_urb` + +``-EINPROGRESS`` URB still pending, no results yet + (That is, if drivers see this it's a bug.) + +``-EPROTO`` [#f1]_, [#f2]_ a) bitstuff error + b) no response packet received within the + prescribed bus turn-around time + c) unknown USB error + +``-EILSEQ`` [#f1]_, [#f2]_ a) CRC mismatch + b) no response packet received within the + prescribed bus turn-around time + c) unknown USB error + + Note that often the controller hardware does + not distinguish among cases a), b), and c), so + a driver cannot tell whether there was a + protocol error, a failure to respond (often + caused by device disconnect), or some other + fault. + +``-ETIME`` [#f2]_ No response packet received within the + prescribed bus turn-around time. This error + may instead be reported as + ``-EPROTO`` or ``-EILSEQ``. + +``-ETIMEDOUT`` Synchronous USB message functions use this code + to indicate timeout expired before the transfer + completed, and no other error was reported + by HC. + +``-EPIPE`` [#f2]_ Endpoint stalled. For non-control endpoints, + reset this status with + :c:func:`usb_clear_halt`. + +``-ECOMM`` During an IN transfer, the host controller + received data from an endpoint faster than it + could be written to system memory + +``-ENOSR`` During an OUT transfer, the host controller + could not retrieve data from system memory fast + enough to keep up with the USB data rate + +``-EOVERFLOW`` [#f1]_ The amount of data returned by the endpoint was + greater than either the max packet size of the + endpoint or the remaining buffer size. + "Babble". + +``-EREMOTEIO`` The data read from the endpoint did not fill + the specified buffer, and ``URB_SHORT_NOT_OK`` + was set in ``urb->transfer_flags``. + +``-ENODEV`` Device was removed. Often preceded by a burst + of other errors, since the hub driver doesn't + detect device removal events immediately. + +``-EXDEV`` ISO transfer only partially completed + (only set in ``iso_frame_desc[n].status``, + not ``urb->status``) + +``-EINVAL`` ISO madness, if this happens: Log off and + go home + +``-ECONNRESET`` URB was asynchronously unlinked by + :c:func:`usb_unlink_urb` + +``-ESHUTDOWN`` The device or host controller has been + disabled due to some problem that could not + be worked around, such as a physical + disconnect. +=============================== =============================================== + + +.. [#f1] + + Error codes like ``-EPROTO``, ``-EILSEQ`` and ``-EOVERFLOW`` normally + indicate hardware problems such as bad devices (including firmware) + or cables. + +.. [#f2] + + This is also one of several codes that different kinds of host + controller use to indicate a transfer has failed because of device + disconnect. In the interval before the hub driver starts disconnect + processing, devices may receive such fault reports for every request. + + + +Error codes returned by usbcore-functions +========================================= + +.. note:: expect also other submit and transfer status codes + +:c:func:`usb_register`: + +======================= =================================== +``-EINVAL`` error during registering new driver +======================= =================================== + +``usb_get_*/usb_set_*()``, +:c:func:`usb_control_msg`, +:c:func:`usb_bulk_msg()`: + +======================= ============================================== +``-ETIMEDOUT`` Timeout expired before the transfer completed. +======================= ============================================== diff --git a/Documentation/driver-api/usb/gadget.rst b/Documentation/driver-api/usb/gadget.rst new file mode 100644 index 000000000..09396edd6 --- /dev/null +++ b/Documentation/driver-api/usb/gadget.rst @@ -0,0 +1,510 @@ +======================== +USB Gadget API for Linux +======================== + +:Author: David Brownell +:Date: 20 August 2004 + +Introduction +============ + +This document presents a Linux-USB "Gadget" kernel mode API, for use +within peripherals and other USB devices that embed Linux. It provides +an overview of the API structure, and shows how that fits into a system +development project. This is the first such API released on Linux to +address a number of important problems, including: + +- Supports USB 2.0, for high speed devices which can stream data at + several dozen megabytes per second. + +- Handles devices with dozens of endpoints just as well as ones with + just two fixed-function ones. Gadget drivers can be written so + they're easy to port to new hardware. + +- Flexible enough to expose more complex USB device capabilities such + as multiple configurations, multiple interfaces, composite devices, + and alternate interface settings. + +- USB "On-The-Go" (OTG) support, in conjunction with updates to the + Linux-USB host side. + +- Sharing data structures and API models with the Linux-USB host side + API. This helps the OTG support, and looks forward to more-symmetric + frameworks (where the same I/O model is used by both host and device + side drivers). + +- Minimalist, so it's easier to support new device controller hardware. + I/O processing doesn't imply large demands for memory or CPU + resources. + +Most Linux developers will not be able to use this API, since they have +USB ``host`` hardware in a PC, workstation, or server. Linux users with +embedded systems are more likely to have USB peripheral hardware. To +distinguish drivers running inside such hardware from the more familiar +Linux "USB device drivers", which are host side proxies for the real USB +devices, a different term is used: the drivers inside the peripherals +are "USB gadget drivers". In USB protocol interactions, the device +driver is the master (or "client driver") and the gadget driver is the +slave (or "function driver"). + +The gadget API resembles the host side Linux-USB API in that both use +queues of request objects to package I/O buffers, and those requests may +be submitted or canceled. They share common definitions for the standard +USB *Chapter 9* messages, structures, and constants. Also, both APIs +bind and unbind drivers to devices. The APIs differ in detail, since the +host side's current URB framework exposes a number of implementation +details and assumptions that are inappropriate for a gadget API. While +the model for control transfers and configuration management is +necessarily different (one side is a hardware-neutral master, the other +is a hardware-aware slave), the endpoint I/0 API used here should also +be usable for an overhead-reduced host side API. + +Structure of Gadget Drivers +=========================== + +A system running inside a USB peripheral normally has at least three +layers inside the kernel to handle USB protocol processing, and may have +additional layers in user space code. The ``gadget`` API is used by the +middle layer to interact with the lowest level (which directly handles +hardware). + +In Linux, from the bottom up, these layers are: + +*USB Controller Driver* + This is the lowest software level. It is the only layer that talks + to hardware, through registers, fifos, dma, irqs, and the like. The + ``<linux/usb/gadget.h>`` API abstracts the peripheral controller + endpoint hardware. That hardware is exposed through endpoint + objects, which accept streams of IN/OUT buffers, and through + callbacks that interact with gadget drivers. Since normal USB + devices only have one upstream port, they only have one of these + drivers. The controller driver can support any number of different + gadget drivers, but only one of them can be used at a time. + + Examples of such controller hardware include the PCI-based NetChip + 2280 USB 2.0 high speed controller, the SA-11x0 or PXA-25x UDC + (found within many PDAs), and a variety of other products. + +*Gadget Driver* + The lower boundary of this driver implements hardware-neutral USB + functions, using calls to the controller driver. Because such + hardware varies widely in capabilities and restrictions, and is used + in embedded environments where space is at a premium, the gadget + driver is often configured at compile time to work with endpoints + supported by one particular controller. Gadget drivers may be + portable to several different controllers, using conditional + compilation. (Recent kernels substantially simplify the work + involved in supporting new hardware, by *autoconfiguring* endpoints + automatically for many bulk-oriented drivers.) Gadget driver + responsibilities include: + + - handling setup requests (ep0 protocol responses) possibly + including class-specific functionality + + - returning configuration and string descriptors + + - (re)setting configurations and interface altsettings, including + enabling and configuring endpoints + + - handling life cycle events, such as managing bindings to + hardware, USB suspend/resume, remote wakeup, and disconnection + from the USB host. + + - managing IN and OUT transfers on all currently enabled endpoints + + Such drivers may be modules of proprietary code, although that + approach is discouraged in the Linux community. + +*Upper Level* + Most gadget drivers have an upper boundary that connects to some + Linux driver or framework in Linux. Through that boundary flows the + data which the gadget driver produces and/or consumes through + protocol transfers over USB. Examples include: + + - user mode code, using generic (gadgetfs) or application specific + files in ``/dev`` + + - networking subsystem (for network gadgets, like the CDC Ethernet + Model gadget driver) + + - data capture drivers, perhaps video4Linux or a scanner driver; or + test and measurement hardware. + + - input subsystem (for HID gadgets) + + - sound subsystem (for audio gadgets) + + - file system (for PTP gadgets) + + - block i/o subsystem (for usb-storage gadgets) + + - ... and more + +*Additional Layers* + Other layers may exist. These could include kernel layers, such as + network protocol stacks, as well as user mode applications building + on standard POSIX system call APIs such as ``open()``, ``close()``, + ``read()`` and ``write()``. On newer systems, POSIX Async I/O calls may + be an option. Such user mode code will not necessarily be subject to + the GNU General Public License (GPL). + +OTG-capable systems will also need to include a standard Linux-USB host +side stack, with ``usbcore``, one or more *Host Controller Drivers* +(HCDs), *USB Device Drivers* to support the OTG "Targeted Peripheral +List", and so forth. There will also be an *OTG Controller Driver*, +which is visible to gadget and device driver developers only indirectly. +That helps the host and device side USB controllers implement the two +new OTG protocols (HNP and SRP). Roles switch (host to peripheral, or +vice versa) using HNP during USB suspend processing, and SRP can be +viewed as a more battery-friendly kind of device wakeup protocol. + +Over time, reusable utilities are evolving to help make some gadget +driver tasks simpler. For example, building configuration descriptors +from vectors of descriptors for the configurations interfaces and +endpoints is now automated, and many drivers now use autoconfiguration +to choose hardware endpoints and initialize their descriptors. A +potential example of particular interest is code implementing standard +USB-IF protocols for HID, networking, storage, or audio classes. Some +developers are interested in KDB or KGDB hooks, to let target hardware +be remotely debugged. Most such USB protocol code doesn't need to be +hardware-specific, any more than network protocols like X11, HTTP, or +NFS are. Such gadget-side interface drivers should eventually be +combined, to implement composite devices. + +Kernel Mode Gadget API +====================== + +Gadget drivers declare themselves through a struct +:c:type:`usb_gadget_driver`, which is responsible for most parts of enumeration +for a struct usb_gadget. The response to a set_configuration usually +involves enabling one or more of the struct usb_ep objects exposed by +the gadget, and submitting one or more struct usb_request buffers to +transfer data. Understand those four data types, and their operations, +and you will understand how this API works. + +.. Note:: + + Other than the "Chapter 9" data types, most of the significant data + types and functions are described here. + + However, some relevant information is likely omitted from what you + are reading. One example of such information is endpoint + autoconfiguration. You'll have to read the header file, and use + example source code (such as that for "Gadget Zero"), to fully + understand the API. + + The part of the API implementing some basic driver capabilities is + specific to the version of the Linux kernel that's in use. The 2.6 + and upper kernel versions include a *driver model* framework that has + no analogue on earlier kernels; so those parts of the gadget API are + not fully portable. (They are implemented on 2.4 kernels, but in a + different way.) The driver model state is another part of this API that is + ignored by the kerneldoc tools. + +The core API does not expose every possible hardware feature, only the +most widely available ones. There are significant hardware features, +such as device-to-device DMA (without temporary storage in a memory +buffer) that would be added using hardware-specific APIs. + +This API allows drivers to use conditional compilation to handle +endpoint capabilities of different hardware, but doesn't require that. +Hardware tends to have arbitrary restrictions, relating to transfer +types, addressing, packet sizes, buffering, and availability. As a rule, +such differences only matter for "endpoint zero" logic that handles +device configuration and management. The API supports limited run-time +detection of capabilities, through naming conventions for endpoints. +Many drivers will be able to at least partially autoconfigure +themselves. In particular, driver init sections will often have endpoint +autoconfiguration logic that scans the hardware's list of endpoints to +find ones matching the driver requirements (relying on those +conventions), to eliminate some of the most common reasons for +conditional compilation. + +Like the Linux-USB host side API, this API exposes the "chunky" nature +of USB messages: I/O requests are in terms of one or more "packets", and +packet boundaries are visible to drivers. Compared to RS-232 serial +protocols, USB resembles synchronous protocols like HDLC (N bytes per +frame, multipoint addressing, host as the primary station and devices as +secondary stations) more than asynchronous ones (tty style: 8 data bits +per frame, no parity, one stop bit). So for example the controller +drivers won't buffer two single byte writes into a single two-byte USB +IN packet, although gadget drivers may do so when they implement +protocols where packet boundaries (and "short packets") are not +significant. + +Driver Life Cycle +----------------- + +Gadget drivers make endpoint I/O requests to hardware without needing to +know many details of the hardware, but driver setup/configuration code +needs to handle some differences. Use the API like this: + +1. Register a driver for the particular device side usb controller + hardware, such as the net2280 on PCI (USB 2.0), sa11x0 or pxa25x as + found in Linux PDAs, and so on. At this point the device is logically + in the USB ch9 initial state (``attached``), drawing no power and not + usable (since it does not yet support enumeration). Any host should + not see the device, since it's not activated the data line pullup + used by the host to detect a device, even if VBUS power is available. + +2. Register a gadget driver that implements some higher level device + function. That will then bind() to a :c:type:`usb_gadget`, which activates + the data line pullup sometime after detecting VBUS. + +3. The hardware driver can now start enumerating. The steps it handles + are to accept USB ``power`` and ``set_address`` requests. Other steps are + handled by the gadget driver. If the gadget driver module is unloaded + before the host starts to enumerate, steps before step 7 are skipped. + +4. The gadget driver's ``setup()`` call returns usb descriptors, based both + on what the bus interface hardware provides and on the functionality + being implemented. That can involve alternate settings or + configurations, unless the hardware prevents such operation. For OTG + devices, each configuration descriptor includes an OTG descriptor. + +5. The gadget driver handles the last step of enumeration, when the USB + host issues a ``set_configuration`` call. It enables all endpoints used + in that configuration, with all interfaces in their default settings. + That involves using a list of the hardware's endpoints, enabling each + endpoint according to its descriptor. It may also involve using + ``usb_gadget_vbus_draw`` to let more power be drawn from VBUS, as + allowed by that configuration. For OTG devices, setting a + configuration may also involve reporting HNP capabilities through a + user interface. + +6. Do real work and perform data transfers, possibly involving changes + to interface settings or switching to new configurations, until the + device is disconnect()ed from the host. Queue any number of transfer + requests to each endpoint. It may be suspended and resumed several + times before being disconnected. On disconnect, the drivers go back + to step 3 (above). + +7. When the gadget driver module is being unloaded, the driver unbind() + callback is issued. That lets the controller driver be unloaded. + +Drivers will normally be arranged so that just loading the gadget driver +module (or statically linking it into a Linux kernel) allows the +peripheral device to be enumerated, but some drivers will defer +enumeration until some higher level component (like a user mode daemon) +enables it. Note that at this lowest level there are no policies about +how ep0 configuration logic is implemented, except that it should obey +USB specifications. Such issues are in the domain of gadget drivers, +including knowing about implementation constraints imposed by some USB +controllers or understanding that composite devices might happen to be +built by integrating reusable components. + +Note that the lifecycle above can be slightly different for OTG devices. +Other than providing an additional OTG descriptor in each configuration, +only the HNP-related differences are particularly visible to driver +code. They involve reporting requirements during the ``SET_CONFIGURATION`` +request, and the option to invoke HNP during some suspend callbacks. +Also, SRP changes the semantics of ``usb_gadget_wakeup`` slightly. + +USB 2.0 Chapter 9 Types and Constants +------------------------------------- + +Gadget drivers rely on common USB structures and constants defined in +the :ref:`linux/usb/ch9.h <usb_chapter9>` header file, which is standard in +Linux 2.6+ kernels. These are the same types and constants used by host side +drivers (and usbcore). + +Core Objects and Methods +------------------------ + +These are declared in ``<linux/usb/gadget.h>``, and are used by gadget +drivers to interact with USB peripheral controller drivers. + +.. kernel-doc:: include/linux/usb/gadget.h + :internal: + +Optional Utilities +------------------ + +The core API is sufficient for writing a USB Gadget Driver, but some +optional utilities are provided to simplify common tasks. These +utilities include endpoint autoconfiguration. + +.. kernel-doc:: drivers/usb/gadget/usbstring.c + :export: + +.. kernel-doc:: drivers/usb/gadget/config.c + :export: + +Composite Device Framework +-------------------------- + +The core API is sufficient for writing drivers for composite USB devices +(with more than one function in a given configuration), and also +multi-configuration devices (also more than one function, but not +necessarily sharing a given configuration). There is however an optional +framework which makes it easier to reuse and combine functions. + +Devices using this framework provide a struct usb_composite_driver, +which in turn provides one or more struct usb_configuration +instances. Each such configuration includes at least one struct +:c:type:`usb_function`, which packages a user visible role such as "network +link" or "mass storage device". Management functions may also exist, +such as "Device Firmware Upgrade". + +.. kernel-doc:: include/linux/usb/composite.h + :internal: + +.. kernel-doc:: drivers/usb/gadget/composite.c + :export: + +Composite Device Functions +-------------------------- + +At this writing, a few of the current gadget drivers have been converted +to this framework. Near-term plans include converting all of them, +except for ``gadgetfs``. + +Peripheral Controller Drivers +============================= + +The first hardware supporting this API was the NetChip 2280 controller, +which supports USB 2.0 high speed and is based on PCI. This is the +``net2280`` driver module. The driver supports Linux kernel versions 2.4 +and 2.6; contact NetChip Technologies for development boards and product +information. + +Other hardware working in the ``gadget`` framework includes: Intel's PXA +25x and IXP42x series processors (``pxa2xx_udc``), Toshiba TC86c001 +"Goku-S" (``goku_udc``), Renesas SH7705/7727 (``sh_udc``), MediaQ 11xx +(``mq11xx_udc``), Hynix HMS30C7202 (``h7202_udc``), National 9303/4 +(``n9604_udc``), Texas Instruments OMAP (``omap_udc``), Sharp LH7A40x +(``lh7a40x_udc``), and more. Most of those are full speed controllers. + +At this writing, there are people at work on drivers in this framework +for several other USB device controllers, with plans to make many of +them be widely available. + +A partial USB simulator, the ``dummy_hcd`` driver, is available. It can +act like a net2280, a pxa25x, or an sa11x0 in terms of available +endpoints and device speeds; and it simulates control, bulk, and to some +extent interrupt transfers. That lets you develop some parts of a gadget +driver on a normal PC, without any special hardware, and perhaps with +the assistance of tools such as GDB running with User Mode Linux. At +least one person has expressed interest in adapting that approach, +hooking it up to a simulator for a microcontroller. Such simulators can +help debug subsystems where the runtime hardware is unfriendly to +software development, or is not yet available. + +Support for other controllers is expected to be developed and +contributed over time, as this driver framework evolves. + +Gadget Drivers +============== + +In addition to *Gadget Zero* (used primarily for testing and development +with drivers for usb controller hardware), other gadget drivers exist. + +There's an ``ethernet`` gadget driver, which implements one of the most +useful *Communications Device Class* (CDC) models. One of the standards +for cable modem interoperability even specifies the use of this ethernet +model as one of two mandatory options. Gadgets using this code look to a +USB host as if they're an Ethernet adapter. It provides access to a +network where the gadget's CPU is one host, which could easily be +bridging, routing, or firewalling access to other networks. Since some +hardware can't fully implement the CDC Ethernet requirements, this +driver also implements a "good parts only" subset of CDC Ethernet. (That +subset doesn't advertise itself as CDC Ethernet, to avoid creating +problems.) + +Support for Microsoft's ``RNDIS`` protocol has been contributed by +Pengutronix and Auerswald GmbH. This is like CDC Ethernet, but it runs +on more slightly USB hardware (but less than the CDC subset). However, +its main claim to fame is being able to connect directly to recent +versions of Windows, using drivers that Microsoft bundles and supports, +making it much simpler to network with Windows. + +There is also support for user mode gadget drivers, using ``gadgetfs``. +This provides a *User Mode API* that presents each endpoint as a single +file descriptor. I/O is done using normal ``read()`` and ``read()`` calls. +Familiar tools like GDB and pthreads can be used to develop and debug +user mode drivers, so that once a robust controller driver is available +many applications for it won't require new kernel mode software. Linux +2.6 *Async I/O (AIO)* support is available, so that user mode software +can stream data with only slightly more overhead than a kernel driver. + +There's a USB Mass Storage class driver, which provides a different +solution for interoperability with systems such as MS-Windows and MacOS. +That *Mass Storage* driver uses a file or block device as backing store +for a drive, like the ``loop`` driver. The USB host uses the BBB, CB, or +CBI versions of the mass storage class specification, using transparent +SCSI commands to access the data from the backing store. + +There's a "serial line" driver, useful for TTY style operation over USB. +The latest version of that driver supports CDC ACM style operation, like +a USB modem, and so on most hardware it can interoperate easily with +MS-Windows. One interesting use of that driver is in boot firmware (like +a BIOS), which can sometimes use that model with very small systems +without real serial lines. + +Support for other kinds of gadget is expected to be developed and +contributed over time, as this driver framework evolves. + +USB On-The-GO (OTG) +=================== + +USB OTG support on Linux 2.6 was initially developed by Texas +Instruments for `OMAP <http://www.omap.com>`__ 16xx and 17xx series +processors. Other OTG systems should work in similar ways, but the +hardware level details could be very different. + +Systems need specialized hardware support to implement OTG, notably +including a special *Mini-AB* jack and associated transceiver to support +*Dual-Role* operation: they can act either as a host, using the standard +Linux-USB host side driver stack, or as a peripheral, using this +``gadget`` framework. To do that, the system software relies on small +additions to those programming interfaces, and on a new internal +component (here called an "OTG Controller") affecting which driver stack +connects to the OTG port. In each role, the system can re-use the +existing pool of hardware-neutral drivers, layered on top of the +controller driver interfaces (:c:type:`usb_bus` or :c:type:`usb_gadget`). +Such drivers need at most minor changes, and most of the calls added to +support OTG can also benefit non-OTG products. + +- Gadget drivers test the ``is_otg`` flag, and use it to determine + whether or not to include an OTG descriptor in each of their + configurations. + +- Gadget drivers may need changes to support the two new OTG protocols, + exposed in new gadget attributes such as ``b_hnp_enable`` flag. HNP + support should be reported through a user interface (two LEDs could + suffice), and is triggered in some cases when the host suspends the + peripheral. SRP support can be user-initiated just like remote + wakeup, probably by pressing the same button. + +- On the host side, USB device drivers need to be taught to trigger HNP + at appropriate moments, using ``usb_suspend_device()``. That also + conserves battery power, which is useful even for non-OTG + configurations. + +- Also on the host side, a driver must support the OTG "Targeted + Peripheral List". That's just a whitelist, used to reject peripherals + not supported with a given Linux OTG host. *This whitelist is + product-specific; each product must modify* ``otg_whitelist.h`` *to + match its interoperability specification.* + + Non-OTG Linux hosts, like PCs and workstations, normally have some + solution for adding drivers, so that peripherals that aren't + recognized can eventually be supported. That approach is unreasonable + for consumer products that may never have their firmware upgraded, + and where it's usually unrealistic to expect traditional + PC/workstation/server kinds of support model to work. For example, + it's often impractical to change device firmware once the product has + been distributed, so driver bugs can't normally be fixed if they're + found after shipment. + +Additional changes are needed below those hardware-neutral :c:type:`usb_bus` +and :c:type:`usb_gadget` driver interfaces; those aren't discussed here in any +detail. Those affect the hardware-specific code for each USB Host or +Peripheral controller, and how the HCD initializes (since OTG can be +active only on a single port). They also involve what may be called an +*OTG Controller Driver*, managing the OTG transceiver and the OTG state +machine logic as well as much of the root hub behavior for the OTG port. +The OTG controller driver needs to activate and deactivate USB +controllers depending on the relevant device role. Some related changes +were needed inside usbcore, so that it can identify OTG-capable devices +and respond appropriately to HNP or SRP protocols. diff --git a/Documentation/driver-api/usb/hotplug.rst b/Documentation/driver-api/usb/hotplug.rst new file mode 100644 index 000000000..c1e13107c --- /dev/null +++ b/Documentation/driver-api/usb/hotplug.rst @@ -0,0 +1,154 @@ +USB hotplugging +~~~~~~~~~~~~~~~ + +Linux Hotplugging +================= + + +In hotpluggable busses like USB (and Cardbus PCI), end-users plug devices +into the bus with power on. In most cases, users expect the devices to become +immediately usable. That means the system must do many things, including: + + - Find a driver that can handle the device. That may involve + loading a kernel module; newer drivers can use module-init-tools + to publish their device (and class) support to user utilities. + + - Bind a driver to that device. Bus frameworks do that using a + device driver's probe() routine. + + - Tell other subsystems to configure the new device. Print + queues may need to be enabled, networks brought up, disk + partitions mounted, and so on. In some cases these will + be driver-specific actions. + +This involves a mix of kernel mode and user mode actions. Making devices +be immediately usable means that any user mode actions can't wait for an +administrator to do them: the kernel must trigger them, either passively +(triggering some monitoring daemon to invoke a helper program) or +actively (calling such a user mode helper program directly). + +Those triggered actions must support a system's administrative policies; +such programs are called "policy agents" here. Typically they involve +shell scripts that dispatch to more familiar administration tools. + +Because some of those actions rely on information about drivers (metadata) +that is currently available only when the drivers are dynamically linked, +you get the best hotplugging when you configure a highly modular system. + +Kernel Hotplug Helper (``/sbin/hotplug``) +========================================= + +There is a kernel parameter: ``/proc/sys/kernel/hotplug``, which normally +holds the pathname ``/sbin/hotplug``. That parameter names a program +which the kernel may invoke at various times. + +The /sbin/hotplug program can be invoked by any subsystem as part of its +reaction to a configuration change, from a thread in that subsystem. +Only one parameter is required: the name of a subsystem being notified of +some kernel event. That name is used as the first key for further event +dispatch; any other argument and environment parameters are specified by +the subsystem making that invocation. + +Hotplug software and other resources is available at: + + http://linux-hotplug.sourceforge.net + +Mailing list information is also available at that site. + + +USB Policy Agent +================ + +The USB subsystem currently invokes ``/sbin/hotplug`` when USB devices +are added or removed from system. The invocation is done by the kernel +hub workqueue [hub_wq], or else as part of root hub initialization +(done by init, modprobe, kapmd, etc). Its single command line parameter +is the string "usb", and it passes these environment variables: + +========== ============================================ +ACTION ``add``, ``remove`` +PRODUCT USB vendor, product, and version codes (hex) +TYPE device class codes (decimal) +INTERFACE interface 0 class codes (decimal) +========== ============================================ + +If "usbdevfs" is configured, DEVICE and DEVFS are also passed. DEVICE is +the pathname of the device, and is useful for devices with multiple and/or +alternate interfaces that complicate driver selection. By design, USB +hotplugging is independent of ``usbdevfs``: you can do most essential parts +of USB device setup without using that filesystem, and without running a +user mode daemon to detect changes in system configuration. + +Currently available policy agent implementations can load drivers for +modules, and can invoke driver-specific setup scripts. The newest ones +leverage USB module-init-tools support. Later agents might unload drivers. + + +USB Modutils Support +==================== + +Current versions of module-init-tools will create a ``modules.usbmap`` file +which contains the entries from each driver's ``MODULE_DEVICE_TABLE``. Such +files can be used by various user mode policy agents to make sure all the +right driver modules get loaded, either at boot time or later. + +See ``linux/usb.h`` for full information about such table entries; or look +at existing drivers. Each table entry describes one or more criteria to +be used when matching a driver to a device or class of devices. The +specific criteria are identified by bits set in "match_flags", paired +with field values. You can construct the criteria directly, or with +macros such as these, and use driver_info to store more information:: + + USB_DEVICE (vendorId, productId) + ... matching devices with specified vendor and product ids + USB_DEVICE_VER (vendorId, productId, lo, hi) + ... like USB_DEVICE with lo <= productversion <= hi + USB_INTERFACE_INFO (class, subclass, protocol) + ... matching specified interface class info + USB_DEVICE_INFO (class, subclass, protocol) + ... matching specified device class info + +A short example, for a driver that supports several specific USB devices +and their quirks, might have a MODULE_DEVICE_TABLE like this:: + + static const struct usb_device_id mydriver_id_table[] = { + { USB_DEVICE (0x9999, 0xaaaa), driver_info: QUIRK_X }, + { USB_DEVICE (0xbbbb, 0x8888), driver_info: QUIRK_Y|QUIRK_Z }, + ... + { } /* end with an all-zeroes entry */ + }; + MODULE_DEVICE_TABLE(usb, mydriver_id_table); + +Most USB device drivers should pass these tables to the USB subsystem as +well as to the module management subsystem. Not all, though: some driver +frameworks connect using interfaces layered over USB, and so they won't +need such a struct usb_driver. + +Drivers that connect directly to the USB subsystem should be declared +something like this:: + + static struct usb_driver mydriver = { + .name = "mydriver", + .id_table = mydriver_id_table, + .probe = my_probe, + .disconnect = my_disconnect, + + /* + if using the usb chardev framework: + .minor = MY_USB_MINOR_START, + .fops = my_file_ops, + if exposing any operations through usbdevfs: + .ioctl = my_ioctl, + */ + }; + +When the USB subsystem knows about a driver's device ID table, it's used when +choosing drivers to probe(). The thread doing new device processing checks +drivers' device ID entries from the ``MODULE_DEVICE_TABLE`` against interface +and device descriptors for the device. It will only call ``probe()`` if there +is a match, and the third argument to ``probe()`` will be the entry that +matched. + +If you don't provide an ``id_table`` for your driver, then your driver may get +probed for each new device; the third parameter to ``probe()`` will be +``NULL``. diff --git a/Documentation/driver-api/usb/index.rst b/Documentation/driver-api/usb/index.rst new file mode 100644 index 000000000..cfa8797ea --- /dev/null +++ b/Documentation/driver-api/usb/index.rst @@ -0,0 +1,30 @@ +============= +Linux USB API +============= + +.. toctree:: + + usb + gadget + anchors + bulk-streams + callbacks + dma + URB + power-management + hotplug + persist + error-codes + writing_usb_driver + dwc3 + writing_musb_glue_layer + typec + typec_bus + usb3-debug-port + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/driver-api/usb/persist.rst b/Documentation/driver-api/usb/persist.rst new file mode 100644 index 000000000..08cafc629 --- /dev/null +++ b/Documentation/driver-api/usb/persist.rst @@ -0,0 +1,171 @@ +.. _usb-persist: + +USB device persistence during system suspend +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:Author: Alan Stern <stern@rowland.harvard.edu> +:Date: September 2, 2006 (Updated February 25, 2008) + + +What is the problem? +==================== + +According to the USB specification, when a USB bus is suspended the +bus must continue to supply suspend current (around 1-5 mA). This +is so that devices can maintain their internal state and hubs can +detect connect-change events (devices being plugged in or unplugged). +The technical term is "power session". + +If a USB device's power session is interrupted then the system is +required to behave as though the device has been unplugged. It's a +conservative approach; in the absence of suspend current the computer +has no way to know what has actually happened. Perhaps the same +device is still attached or perhaps it was removed and a different +device plugged into the port. The system must assume the worst. + +By default, Linux behaves according to the spec. If a USB host +controller loses power during a system suspend, then when the system +wakes up all the devices attached to that controller are treated as +though they had disconnected. This is always safe and it is the +"officially correct" thing to do. + +For many sorts of devices this behavior doesn't matter in the least. +If the kernel wants to believe that your USB keyboard was unplugged +while the system was asleep and a new keyboard was plugged in when the +system woke up, who cares? It'll still work the same when you type on +it. + +Unfortunately problems _can_ arise, particularly with mass-storage +devices. The effect is exactly the same as if the device really had +been unplugged while the system was suspended. If you had a mounted +filesystem on the device, you're out of luck -- everything in that +filesystem is now inaccessible. This is especially annoying if your +root filesystem was located on the device, since your system will +instantly crash. + +Loss of power isn't the only mechanism to worry about. Anything that +interrupts a power session will have the same effect. For example, +even though suspend current may have been maintained while the system +was asleep, on many systems during the initial stages of wakeup the +firmware (i.e., the BIOS) resets the motherboard's USB host +controllers. Result: all the power sessions are destroyed and again +it's as though you had unplugged all the USB devices. Yes, it's +entirely the BIOS's fault, but that doesn't do _you_ any good unless +you can convince the BIOS supplier to fix the problem (lots of luck!). + +On many systems the USB host controllers will get reset after a +suspend-to-RAM. On almost all systems, no suspend current is +available during hibernation (also known as swsusp or suspend-to-disk). +You can check the kernel log after resuming to see if either of these +has happened; look for lines saying "root hub lost power or was reset". + +In practice, people are forced to unmount any filesystems on a USB +device before suspending. If the root filesystem is on a USB device, +the system can't be suspended at all. (All right, it _can_ be +suspended -- but it will crash as soon as it wakes up, which isn't +much better.) + + +What is the solution? +===================== + +The kernel includes a feature called USB-persist. It tries to work +around these issues by allowing the core USB device data structures to +persist across a power-session disruption. + +It works like this. If the kernel sees that a USB host controller is +not in the expected state during resume (i.e., if the controller was +reset or otherwise had lost power) then it applies a persistence check +to each of the USB devices below that controller for which the +"persist" attribute is set. It doesn't try to resume the device; that +can't work once the power session is gone. Instead it issues a USB +port reset and then re-enumerates the device. (This is exactly the +same thing that happens whenever a USB device is reset.) If the +re-enumeration shows that the device now attached to that port has the +same descriptors as before, including the Vendor and Product IDs, then +the kernel continues to use the same device structure. In effect, the +kernel treats the device as though it had merely been reset instead of +unplugged. + +The same thing happens if the host controller is in the expected state +but a USB device was unplugged and then replugged, or if a USB device +fails to carry out a normal resume. + +If no device is now attached to the port, or if the descriptors are +different from what the kernel remembers, then the treatment is what +you would expect. The kernel destroys the old device structure and +behaves as though the old device had been unplugged and a new device +plugged in. + +The end result is that the USB device remains available and usable. +Filesystem mounts and memory mappings are unaffected, and the world is +now a good and happy place. + +Note that the "USB-persist" feature will be applied only to those +devices for which it is enabled. You can enable the feature by doing +(as root):: + + echo 1 >/sys/bus/usb/devices/.../power/persist + +where the "..." should be filled in the with the device's ID. Disable +the feature by writing 0 instead of 1. For hubs the feature is +automatically and permanently enabled and the power/persist file +doesn't even exist, so you only have to worry about setting it for +devices where it really matters. + + +Is this the best solution? +========================== + +Perhaps not. Arguably, keeping track of mounted filesystems and +memory mappings across device disconnects should be handled by a +centralized Logical Volume Manager. Such a solution would allow you +to plug in a USB flash device, create a persistent volume associated +with it, unplug the flash device, plug it back in later, and still +have the same persistent volume associated with the device. As such +it would be more far-reaching than USB-persist. + +On the other hand, writing a persistent volume manager would be a big +job and using it would require significant input from the user. This +solution is much quicker and easier -- and it exists now, a giant +point in its favor! + +Furthermore, the USB-persist feature applies to _all_ USB devices, not +just mass-storage devices. It might turn out to be equally useful for +other device types, such as network interfaces. + + +WARNING: USB-persist can be dangerous!! +======================================= + +When recovering an interrupted power session the kernel does its best +to make sure the USB device hasn't been changed; that is, the same +device is still plugged into the port as before. But the checks +aren't guaranteed to be 100% accurate. + +If you replace one USB device with another of the same type (same +manufacturer, same IDs, and so on) there's an excellent chance the +kernel won't detect the change. The serial number string and other +descriptors are compared with the kernel's stored values, but this +might not help since manufacturers frequently omit serial numbers +entirely in their devices. + +Furthermore it's quite possible to leave a USB device exactly the same +while changing its media. If you replace the flash memory card in a +USB card reader while the system is asleep, the kernel will have no +way to know you did it. The kernel will assume that nothing has +happened and will continue to use the partition tables, inodes, and +memory mappings for the old card. + +If the kernel gets fooled in this way, it's almost certain to cause +data corruption and to crash your system. You'll have no one to blame +but yourself. + +For those devices with avoid_reset_quirk attribute being set, persist +maybe fail because they may morph after reset. + +YOU HAVE BEEN WARNED! USE AT YOUR OWN RISK! + +That having been said, most of the time there shouldn't be any trouble +at all. The USB-persist feature can be extremely useful. Make the +most of it. diff --git a/Documentation/driver-api/usb/power-management.rst b/Documentation/driver-api/usb/power-management.rst new file mode 100644 index 000000000..2525c3622 --- /dev/null +++ b/Documentation/driver-api/usb/power-management.rst @@ -0,0 +1,798 @@ +.. _usb-power-management: + +Power Management for USB +~~~~~~~~~~~~~~~~~~~~~~~~ + +:Author: Alan Stern <stern@rowland.harvard.edu> +:Date: Last-updated: February 2014 + +.. + Contents: + --------- + * What is Power Management? + * What is Remote Wakeup? + * When is a USB device idle? + * Forms of dynamic PM + * The user interface for dynamic PM + * Changing the default idle-delay time + * Warnings + * The driver interface for Power Management + * The driver interface for autosuspend and autoresume + * Other parts of the driver interface + * Mutual exclusion + * Interaction between dynamic PM and system PM + * xHCI hardware link PM + * USB Port Power Control + * User Interface for Port Power Control + * Suggested Userspace Port Power Policy + + +What is Power Management? +------------------------- + +Power Management (PM) is the practice of saving energy by suspending +parts of a computer system when they aren't being used. While a +component is ``suspended`` it is in a nonfunctional low-power state; it +might even be turned off completely. A suspended component can be +``resumed`` (returned to a functional full-power state) when the kernel +needs to use it. (There also are forms of PM in which components are +placed in a less functional but still usable state instead of being +suspended; an example would be reducing the CPU's clock rate. This +document will not discuss those other forms.) + +When the parts being suspended include the CPU and most of the rest of +the system, we speak of it as a "system suspend". When a particular +device is turned off while the system as a whole remains running, we +call it a "dynamic suspend" (also known as a "runtime suspend" or +"selective suspend"). This document concentrates mostly on how +dynamic PM is implemented in the USB subsystem, although system PM is +covered to some extent (see ``Documentation/power/*.rst`` for more +information about system PM). + +System PM support is present only if the kernel was built with +``CONFIG_SUSPEND`` or ``CONFIG_HIBERNATION`` enabled. Dynamic PM support + +for USB is present whenever +the kernel was built with ``CONFIG_PM`` enabled. + +[Historically, dynamic PM support for USB was present only if the +kernel had been built with ``CONFIG_USB_SUSPEND`` enabled (which depended on +``CONFIG_PM_RUNTIME``). Starting with the 3.10 kernel release, dynamic PM +support for USB was present whenever the kernel was built with +``CONFIG_PM_RUNTIME`` enabled. The ``CONFIG_USB_SUSPEND`` option had been +eliminated.] + + +What is Remote Wakeup? +---------------------- + +When a device has been suspended, it generally doesn't resume until +the computer tells it to. Likewise, if the entire computer has been +suspended, it generally doesn't resume until the user tells it to, say +by pressing a power button or opening the cover. + +However some devices have the capability of resuming by themselves, or +asking the kernel to resume them, or even telling the entire computer +to resume. This capability goes by several names such as "Wake On +LAN"; we will refer to it generically as "remote wakeup". When a +device is enabled for remote wakeup and it is suspended, it may resume +itself (or send a request to be resumed) in response to some external +event. Examples include a suspended keyboard resuming when a key is +pressed, or a suspended USB hub resuming when a device is plugged in. + + +When is a USB device idle? +-------------------------- + +A device is idle whenever the kernel thinks it's not busy doing +anything important and thus is a candidate for being suspended. The +exact definition depends on the device's driver; drivers are allowed +to declare that a device isn't idle even when there's no actual +communication taking place. (For example, a hub isn't considered idle +unless all the devices plugged into that hub are already suspended.) +In addition, a device isn't considered idle so long as a program keeps +its usbfs file open, whether or not any I/O is going on. + +If a USB device has no driver, its usbfs file isn't open, and it isn't +being accessed through sysfs, then it definitely is idle. + + +Forms of dynamic PM +------------------- + +Dynamic suspends occur when the kernel decides to suspend an idle +device. This is called ``autosuspend`` for short. In general, a device +won't be autosuspended unless it has been idle for some minimum period +of time, the so-called idle-delay time. + +Of course, nothing the kernel does on its own initiative should +prevent the computer or its devices from working properly. If a +device has been autosuspended and a program tries to use it, the +kernel will automatically resume the device (autoresume). For the +same reason, an autosuspended device will usually have remote wakeup +enabled, if the device supports remote wakeup. + +It is worth mentioning that many USB drivers don't support +autosuspend. In fact, at the time of this writing (Linux 2.6.23) the +only drivers which do support it are the hub driver, kaweth, asix, +usblp, usblcd, and usb-skeleton (which doesn't count). If a +non-supporting driver is bound to a device, the device won't be +autosuspended. In effect, the kernel pretends the device is never +idle. + +We can categorize power management events in two broad classes: +external and internal. External events are those triggered by some +agent outside the USB stack: system suspend/resume (triggered by +userspace), manual dynamic resume (also triggered by userspace), and +remote wakeup (triggered by the device). Internal events are those +triggered within the USB stack: autosuspend and autoresume. Note that +all dynamic suspend events are internal; external agents are not +allowed to issue dynamic suspends. + + +The user interface for dynamic PM +--------------------------------- + +The user interface for controlling dynamic PM is located in the ``power/`` +subdirectory of each USB device's sysfs directory, that is, in +``/sys/bus/usb/devices/.../power/`` where "..." is the device's ID. The +relevant attribute files are: wakeup, control, and +``autosuspend_delay_ms``. (There may also be a file named ``level``; this +file was deprecated as of the 2.6.35 kernel and replaced by the +``control`` file. In 2.6.38 the ``autosuspend`` file will be deprecated +and replaced by the ``autosuspend_delay_ms`` file. The only difference +is that the newer file expresses the delay in milliseconds whereas the +older file uses seconds. Confusingly, both files are present in 2.6.37 +but only ``autosuspend`` works.) + + ``power/wakeup`` + + This file is empty if the device does not support + remote wakeup. Otherwise the file contains either the + word ``enabled`` or the word ``disabled``, and you can + write those words to the file. The setting determines + whether or not remote wakeup will be enabled when the + device is next suspended. (If the setting is changed + while the device is suspended, the change won't take + effect until the following suspend.) + + ``power/control`` + + This file contains one of two words: ``on`` or ``auto``. + You can write those words to the file to change the + device's setting. + + - ``on`` means that the device should be resumed and + autosuspend is not allowed. (Of course, system + suspends are still allowed.) + + - ``auto`` is the normal state in which the kernel is + allowed to autosuspend and autoresume the device. + + (In kernels up to 2.6.32, you could also specify + ``suspend``, meaning that the device should remain + suspended and autoresume was not allowed. This + setting is no longer supported.) + + ``power/autosuspend_delay_ms`` + + This file contains an integer value, which is the + number of milliseconds the device should remain idle + before the kernel will autosuspend it (the idle-delay + time). The default is 2000. 0 means to autosuspend + as soon as the device becomes idle, and negative + values mean never to autosuspend. You can write a + number to the file to change the autosuspend + idle-delay time. + +Writing ``-1`` to ``power/autosuspend_delay_ms`` and writing ``on`` to +``power/control`` do essentially the same thing -- they both prevent the +device from being autosuspended. Yes, this is a redundancy in the +API. + +(In 2.6.21 writing ``0`` to ``power/autosuspend`` would prevent the device +from being autosuspended; the behavior was changed in 2.6.22. The +``power/autosuspend`` attribute did not exist prior to 2.6.21, and the +``power/level`` attribute did not exist prior to 2.6.22. ``power/control`` +was added in 2.6.34, and ``power/autosuspend_delay_ms`` was added in +2.6.37 but did not become functional until 2.6.38.) + + +Changing the default idle-delay time +------------------------------------ + +The default autosuspend idle-delay time (in seconds) is controlled by +a module parameter in usbcore. You can specify the value when usbcore +is loaded. For example, to set it to 5 seconds instead of 2 you would +do:: + + modprobe usbcore autosuspend=5 + +Equivalently, you could add to a configuration file in /etc/modprobe.d +a line saying:: + + options usbcore autosuspend=5 + +Some distributions load the usbcore module very early during the boot +process, by means of a program or script running from an initramfs +image. To alter the parameter value you would have to rebuild that +image. + +If usbcore is compiled into the kernel rather than built as a loadable +module, you can add:: + + usbcore.autosuspend=5 + +to the kernel's boot command line. + +Finally, the parameter value can be changed while the system is +running. If you do:: + + echo 5 >/sys/module/usbcore/parameters/autosuspend + +then each new USB device will have its autosuspend idle-delay +initialized to 5. (The idle-delay values for already existing devices +will not be affected.) + +Setting the initial default idle-delay to -1 will prevent any +autosuspend of any USB device. This has the benefit of allowing you +then to enable autosuspend for selected devices. + + +Warnings +-------- + +The USB specification states that all USB devices must support power +management. Nevertheless, the sad fact is that many devices do not +support it very well. You can suspend them all right, but when you +try to resume them they disconnect themselves from the USB bus or +they stop working entirely. This seems to be especially prevalent +among printers and scanners, but plenty of other types of device have +the same deficiency. + +For this reason, by default the kernel disables autosuspend (the +``power/control`` attribute is initialized to ``on``) for all devices other +than hubs. Hubs, at least, appear to be reasonably well-behaved in +this regard. + +(In 2.6.21 and 2.6.22 this wasn't the case. Autosuspend was enabled +by default for almost all USB devices. A number of people experienced +problems as a result.) + +This means that non-hub devices won't be autosuspended unless the user +or a program explicitly enables it. As of this writing there aren't +any widespread programs which will do this; we hope that in the near +future device managers such as HAL will take on this added +responsibility. In the meantime you can always carry out the +necessary operations by hand or add them to a udev script. You can +also change the idle-delay time; 2 seconds is not the best choice for +every device. + +If a driver knows that its device has proper suspend/resume support, +it can enable autosuspend all by itself. For example, the video +driver for a laptop's webcam might do this (in recent kernels they +do), since these devices are rarely used and so should normally be +autosuspended. + +Sometimes it turns out that even when a device does work okay with +autosuspend there are still problems. For example, the usbhid driver, +which manages keyboards and mice, has autosuspend support. Tests with +a number of keyboards show that typing on a suspended keyboard, while +causing the keyboard to do a remote wakeup all right, will nonetheless +frequently result in lost keystrokes. Tests with mice show that some +of them will issue a remote-wakeup request in response to button +presses but not to motion, and some in response to neither. + +The kernel will not prevent you from enabling autosuspend on devices +that can't handle it. It is even possible in theory to damage a +device by suspending it at the wrong time. (Highly unlikely, but +possible.) Take care. + + +The driver interface for Power Management +----------------------------------------- + +The requirements for a USB driver to support external power management +are pretty modest; the driver need only define:: + + .suspend + .resume + .reset_resume + +methods in its :c:type:`usb_driver` structure, and the ``reset_resume`` method +is optional. The methods' jobs are quite simple: + + - The ``suspend`` method is called to warn the driver that the + device is going to be suspended. If the driver returns a + negative error code, the suspend will be aborted. Normally + the driver will return 0, in which case it must cancel all + outstanding URBs (:c:func:`usb_kill_urb`) and not submit any more. + + - The ``resume`` method is called to tell the driver that the + device has been resumed and the driver can return to normal + operation. URBs may once more be submitted. + + - The ``reset_resume`` method is called to tell the driver that + the device has been resumed and it also has been reset. + The driver should redo any necessary device initialization, + since the device has probably lost most or all of its state + (although the interfaces will be in the same altsettings as + before the suspend). + +If the device is disconnected or powered down while it is suspended, +the ``disconnect`` method will be called instead of the ``resume`` or +``reset_resume`` method. This is also quite likely to happen when +waking up from hibernation, as many systems do not maintain suspend +current to the USB host controllers during hibernation. (It's +possible to work around the hibernation-forces-disconnect problem by +using the USB Persist facility.) + +The ``reset_resume`` method is used by the USB Persist facility (see +:ref:`usb-persist`) and it can also be used under certain +circumstances when ``CONFIG_USB_PERSIST`` is not enabled. Currently, if a +device is reset during a resume and the driver does not have a +``reset_resume`` method, the driver won't receive any notification about +the resume. Later kernels will call the driver's ``disconnect`` method; +2.6.23 doesn't do this. + +USB drivers are bound to interfaces, so their ``suspend`` and ``resume`` +methods get called when the interfaces are suspended or resumed. In +principle one might want to suspend some interfaces on a device (i.e., +force the drivers for those interface to stop all activity) without +suspending the other interfaces. The USB core doesn't allow this; all +interfaces are suspended when the device itself is suspended and all +interfaces are resumed when the device is resumed. It isn't possible +to suspend or resume some but not all of a device's interfaces. The +closest you can come is to unbind the interfaces' drivers. + + +The driver interface for autosuspend and autoresume +--------------------------------------------------- + +To support autosuspend and autoresume, a driver should implement all +three of the methods listed above. In addition, a driver indicates +that it supports autosuspend by setting the ``.supports_autosuspend`` flag +in its usb_driver structure. It is then responsible for informing the +USB core whenever one of its interfaces becomes busy or idle. The +driver does so by calling these six functions:: + + int usb_autopm_get_interface(struct usb_interface *intf); + void usb_autopm_put_interface(struct usb_interface *intf); + int usb_autopm_get_interface_async(struct usb_interface *intf); + void usb_autopm_put_interface_async(struct usb_interface *intf); + void usb_autopm_get_interface_no_resume(struct usb_interface *intf); + void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); + +The functions work by maintaining a usage counter in the +usb_interface's embedded device structure. When the counter is > 0 +then the interface is deemed to be busy, and the kernel will not +autosuspend the interface's device. When the usage counter is = 0 +then the interface is considered to be idle, and the kernel may +autosuspend the device. + +Drivers must be careful to balance their overall changes to the usage +counter. Unbalanced "get"s will remain in effect when a driver is +unbound from its interface, preventing the device from going into +runtime suspend should the interface be bound to a driver again. On +the other hand, drivers are allowed to achieve this balance by calling +the ``usb_autopm_*`` functions even after their ``disconnect`` routine +has returned -- say from within a work-queue routine -- provided they +retain an active reference to the interface (via ``usb_get_intf`` and +``usb_put_intf``). + +Drivers using the async routines are responsible for their own +synchronization and mutual exclusion. + + :c:func:`usb_autopm_get_interface` increments the usage counter and + does an autoresume if the device is suspended. If the + autoresume fails, the counter is decremented back. + + :c:func:`usb_autopm_put_interface` decrements the usage counter and + attempts an autosuspend if the new value is = 0. + + :c:func:`usb_autopm_get_interface_async` and + :c:func:`usb_autopm_put_interface_async` do almost the same things as + their non-async counterparts. The big difference is that they + use a workqueue to do the resume or suspend part of their + jobs. As a result they can be called in an atomic context, + such as an URB's completion handler, but when they return the + device will generally not yet be in the desired state. + + :c:func:`usb_autopm_get_interface_no_resume` and + :c:func:`usb_autopm_put_interface_no_suspend` merely increment or + decrement the usage counter; they do not attempt to carry out + an autoresume or an autosuspend. Hence they can be called in + an atomic context. + +The simplest usage pattern is that a driver calls +:c:func:`usb_autopm_get_interface` in its open routine and +:c:func:`usb_autopm_put_interface` in its close or release routine. But other +patterns are possible. + +The autosuspend attempts mentioned above will often fail for one +reason or another. For example, the ``power/control`` attribute might be +set to ``on``, or another interface in the same device might not be +idle. This is perfectly normal. If the reason for failure was that +the device hasn't been idle for long enough, a timer is scheduled to +carry out the operation automatically when the autosuspend idle-delay +has expired. + +Autoresume attempts also can fail, although failure would mean that +the device is no longer present or operating properly. Unlike +autosuspend, there's no idle-delay for an autoresume. + + +Other parts of the driver interface +----------------------------------- + +Drivers can enable autosuspend for their devices by calling:: + + usb_enable_autosuspend(struct usb_device *udev); + +in their :c:func:`probe` routine, if they know that the device is capable of +suspending and resuming correctly. This is exactly equivalent to +writing ``auto`` to the device's ``power/control`` attribute. Likewise, +drivers can disable autosuspend by calling:: + + usb_disable_autosuspend(struct usb_device *udev); + +This is exactly the same as writing ``on`` to the ``power/control`` attribute. + +Sometimes a driver needs to make sure that remote wakeup is enabled +during autosuspend. For example, there's not much point +autosuspending a keyboard if the user can't cause the keyboard to do a +remote wakeup by typing on it. If the driver sets +``intf->needs_remote_wakeup`` to 1, the kernel won't autosuspend the +device if remote wakeup isn't available. (If the device is already +autosuspended, though, setting this flag won't cause the kernel to +autoresume it. Normally a driver would set this flag in its ``probe`` +method, at which time the device is guaranteed not to be +autosuspended.) + +If a driver does its I/O asynchronously in interrupt context, it +should call :c:func:`usb_autopm_get_interface_async` before starting output and +:c:func:`usb_autopm_put_interface_async` when the output queue drains. When +it receives an input event, it should call:: + + usb_mark_last_busy(struct usb_device *udev); + +in the event handler. This tells the PM core that the device was just +busy and therefore the next autosuspend idle-delay expiration should +be pushed back. Many of the usb_autopm_* routines also make this call, +so drivers need to worry only when interrupt-driven input arrives. + +Asynchronous operation is always subject to races. For example, a +driver may call the :c:func:`usb_autopm_get_interface_async` routine at a time +when the core has just finished deciding the device has been idle for +long enough but not yet gotten around to calling the driver's ``suspend`` +method. The ``suspend`` method must be responsible for synchronizing with +the I/O request routine and the URB completion handler; it should +cause autosuspends to fail with -EBUSY if the driver needs to use the +device. + +External suspend calls should never be allowed to fail in this way, +only autosuspend calls. The driver can tell them apart by applying +the :c:func:`PMSG_IS_AUTO` macro to the message argument to the ``suspend`` +method; it will return True for internal PM events (autosuspend) and +False for external PM events. + + +Mutual exclusion +---------------- + +For external events -- but not necessarily for autosuspend or +autoresume -- the device semaphore (udev->dev.sem) will be held when a +``suspend`` or ``resume`` method is called. This implies that external +suspend/resume events are mutually exclusive with calls to ``probe``, +``disconnect``, ``pre_reset``, and ``post_reset``; the USB core guarantees that +this is true of autosuspend/autoresume events as well. + +If a driver wants to block all suspend/resume calls during some +critical section, the best way is to lock the device and call +:c:func:`usb_autopm_get_interface` (and do the reverse at the end of the +critical section). Holding the device semaphore will block all +external PM calls, and the :c:func:`usb_autopm_get_interface` will prevent any +internal PM calls, even if it fails. (Exercise: Why?) + + +Interaction between dynamic PM and system PM +-------------------------------------------- + +Dynamic power management and system power management can interact in +a couple of ways. + +Firstly, a device may already be autosuspended when a system suspend +occurs. Since system suspends are supposed to be as transparent as +possible, the device should remain suspended following the system +resume. But this theory may not work out well in practice; over time +the kernel's behavior in this regard has changed. As of 2.6.37 the +policy is to resume all devices during a system resume and let them +handle their own runtime suspends afterward. + +Secondly, a dynamic power-management event may occur as a system +suspend is underway. The window for this is short, since system +suspends don't take long (a few seconds usually), but it can happen. +For example, a suspended device may send a remote-wakeup signal while +the system is suspending. The remote wakeup may succeed, which would +cause the system suspend to abort. If the remote wakeup doesn't +succeed, it may still remain active and thus cause the system to +resume as soon as the system suspend is complete. Or the remote +wakeup may fail and get lost. Which outcome occurs depends on timing +and on the hardware and firmware design. + + +xHCI hardware link PM +--------------------- + +xHCI host controller provides hardware link power management to usb2.0 +(xHCI 1.0 feature) and usb3.0 devices which support link PM. By +enabling hardware LPM, the host can automatically put the device into +lower power state(L1 for usb2.0 devices, or U1/U2 for usb3.0 devices), +which state device can enter and resume very quickly. + +The user interface for controlling hardware LPM is located in the +``power/`` subdirectory of each USB device's sysfs directory, that is, in +``/sys/bus/usb/devices/.../power/`` where "..." is the device's ID. The +relevant attribute files are ``usb2_hardware_lpm`` and ``usb3_hardware_lpm``. + + ``power/usb2_hardware_lpm`` + + When a USB2 device which support LPM is plugged to a + xHCI host root hub which support software LPM, the + host will run a software LPM test for it; if the device + enters L1 state and resume successfully and the host + supports USB2 hardware LPM, this file will show up and + driver will enable hardware LPM for the device. You + can write y/Y/1 or n/N/0 to the file to enable/disable + USB2 hardware LPM manually. This is for test purpose mainly. + + ``power/usb3_hardware_lpm_u1`` + ``power/usb3_hardware_lpm_u2`` + + When a USB 3.0 lpm-capable device is plugged in to a + xHCI host which supports link PM, it will check if U1 + and U2 exit latencies have been set in the BOS + descriptor; if the check is passed and the host + supports USB3 hardware LPM, USB3 hardware LPM will be + enabled for the device and these files will be created. + The files hold a string value (enable or disable) + indicating whether or not USB3 hardware LPM U1 or U2 + is enabled for the device. + +USB Port Power Control +---------------------- + +In addition to suspending endpoint devices and enabling hardware +controlled link power management, the USB subsystem also has the +capability to disable power to ports under some conditions. Power is +controlled through ``Set/ClearPortFeature(PORT_POWER)`` requests to a hub. +In the case of a root or platform-internal hub the host controller +driver translates ``PORT_POWER`` requests into platform firmware (ACPI) +method calls to set the port power state. For more background see the +Linux Plumbers Conference 2012 slides [#f1]_ and video [#f2]_: + +Upon receiving a ``ClearPortFeature(PORT_POWER)`` request a USB port is +logically off, and may trigger the actual loss of VBUS to the port [#f3]_. +VBUS may be maintained in the case where a hub gangs multiple ports into +a shared power well causing power to remain until all ports in the gang +are turned off. VBUS may also be maintained by hub ports configured for +a charging application. In any event a logically off port will lose +connection with its device, not respond to hotplug events, and not +respond to remote wakeup events. + +.. warning:: + + turning off a port may result in the inability to hot add a device. + Please see "User Interface for Port Power Control" for details. + +As far as the effect on the device itself it is similar to what a device +goes through during system suspend, i.e. the power session is lost. Any +USB device or driver that misbehaves with system suspend will be +similarly affected by a port power cycle event. For this reason the +implementation shares the same device recovery path (and honors the same +quirks) as the system resume path for the hub. + +.. [#f1] + + http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf + +.. [#f2] + + http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/ + +.. [#f3] + + USB 3.1 Section 10.12 + + wakeup note: if a device is configured to send wakeup events the port + power control implementation will block poweroff attempts on that + port. + + +User Interface for Port Power Control +------------------------------------- + +The port power control mechanism uses the PM runtime system. Poweroff is +requested by clearing the ``power/pm_qos_no_power_off`` flag of the port device +(defaults to 1). If the port is disconnected it will immediately receive a +``ClearPortFeature(PORT_POWER)`` request. Otherwise, it will honor the pm +runtime rules and require the attached child device and all descendants to be +suspended. This mechanism is dependent on the hub advertising port power +switching in its hub descriptor (wHubCharacteristics logical power switching +mode field). + +Note, some interface devices/drivers do not support autosuspend. Userspace may +need to unbind the interface drivers before the :c:type:`usb_device` will +suspend. An unbound interface device is suspended by default. When unbinding, +be careful to unbind interface drivers, not the driver of the parent usb +device. Also, leave hub interface drivers bound. If the driver for the usb +device (not interface) is unbound the kernel is no longer able to resume the +device. If a hub interface driver is unbound, control of its child ports is +lost and all attached child-devices will disconnect. A good rule of thumb is +that if the 'driver/module' link for a device points to +``/sys/module/usbcore`` then unbinding it will interfere with port power +control. + +Example of the relevant files for port power control. Note, in this example +these files are relative to a usb hub device (prefix):: + + prefix=/sys/devices/pci0000:00/0000:00:14.0/usb3/3-1 + + attached child device + + hub port device + | + hub interface device + | | + v v v + $prefix/3-1:1.0/3-1-port1/device + + $prefix/3-1:1.0/3-1-port1/power/pm_qos_no_power_off + $prefix/3-1:1.0/3-1-port1/device/power/control + $prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf0>/driver/unbind + $prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf1>/driver/unbind + ... + $prefix/3-1:1.0/3-1-port1/device/3-1.1:<intfN>/driver/unbind + +In addition to these files some ports may have a 'peer' link to a port on +another hub. The expectation is that all superspeed ports have a +hi-speed peer:: + + $prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1 + ../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.0/3-1-port1 + +Distinct from 'companion ports', or 'ehci/xhci shared switchover ports' +peer ports are simply the hi-speed and superspeed interface pins that +are combined into a single usb3 connector. Peer ports share the same +ancestor XHCI device. + +While a superspeed port is powered off a device may downgrade its +connection and attempt to connect to the hi-speed pins. The +implementation takes steps to prevent this: + +1. Port suspend is sequenced to guarantee that hi-speed ports are powered-off + before their superspeed peer is permitted to power-off. The implication is + that the setting ``pm_qos_no_power_off`` to zero on a superspeed port may + not cause the port to power-off until its highspeed peer has gone to its + runtime suspend state. Userspace must take care to order the suspensions + if it wants to guarantee that a superspeed port will power-off. + +2. Port resume is sequenced to force a superspeed port to power-on prior to its + highspeed peer. + +3. Port resume always triggers an attached child device to resume. After a + power session is lost the device may have been removed, or need reset. + Resuming the child device when the parent port regains power resolves those + states and clamps the maximum port power cycle frequency at the rate the + child device can suspend (autosuspend-delay) and resume (reset-resume + latency). + +Sysfs files relevant for port power control: + + ``<hubdev-portX>/power/pm_qos_no_power_off``: + This writable flag controls the state of an idle port. + Once all children and descendants have suspended the + port may suspend/poweroff provided that + pm_qos_no_power_off is '0'. If pm_qos_no_power_off is + '1' the port will remain active/powered regardless of + the stats of descendants. Defaults to 1. + + ``<hubdev-portX>/power/runtime_status``: + This file reflects whether the port is 'active' (power is on) + or 'suspended' (logically off). There is no indication to + userspace whether VBUS is still supplied. + + ``<hubdev-portX>/connect_type``: + An advisory read-only flag to userspace indicating the + location and connection type of the port. It returns + one of four values 'hotplug', 'hardwired', 'not used', + and 'unknown'. All values, besides unknown, are set by + platform firmware. + + ``hotplug`` indicates an externally connectable/visible + port on the platform. Typically userspace would choose + to keep such a port powered to handle new device + connection events. + + ``hardwired`` refers to a port that is not visible but + connectable. Examples are internal ports for USB + bluetooth that can be disconnected via an external + switch or a port with a hardwired USB camera. It is + expected to be safe to allow these ports to suspend + provided pm_qos_no_power_off is coordinated with any + switch that gates connections. Userspace must arrange + for the device to be connected prior to the port + powering off, or to activate the port prior to enabling + connection via a switch. + + ``not used`` refers to an internal port that is expected + to never have a device connected to it. These may be + empty internal ports, or ports that are not physically + exposed on a platform. Considered safe to be + powered-off at all times. + + ``unknown`` means platform firmware does not provide + information for this port. Most commonly refers to + external hub ports which should be considered 'hotplug' + for policy decisions. + + .. note:: + + - since we are relying on the BIOS to get this ACPI + information correct, the USB port descriptions may + be missing or wrong. + + - Take care in clearing ``pm_qos_no_power_off``. Once + power is off this port will + not respond to new connect events. + + Once a child device is attached additional constraints are + applied before the port is allowed to poweroff. + + ``<child>/power/control``: + Must be ``auto``, and the port will not + power down until ``<child>/power/runtime_status`` + reflects the 'suspended' state. Default + value is controlled by child device driver. + + ``<child>/power/persist``: + This defaults to ``1`` for most devices and indicates if + kernel can persist the device's configuration across a + power session loss (suspend / port-power event). When + this value is ``0`` (quirky devices), port poweroff is + disabled. + + ``<child>/driver/unbind``: + Wakeup capable devices will block port poweroff. At + this time the only mechanism to clear the usb-internal + wakeup-capability for an interface device is to unbind + its driver. + +Summary of poweroff pre-requisite settings relative to a port device:: + + echo 0 > power/pm_qos_no_power_off + echo 0 > peer/power/pm_qos_no_power_off # if it exists + echo auto > power/control # this is the default value + echo auto > <child>/power/control + echo 1 > <child>/power/persist # this is the default value + +Suggested Userspace Port Power Policy +------------------------------------- + +As noted above userspace needs to be careful and deliberate about what +ports are enabled for poweroff. + +The default configuration is that all ports start with +``power/pm_qos_no_power_off`` set to ``1`` causing ports to always remain +active. + +Given confidence in the platform firmware's description of the ports +(ACPI _PLD record for a port populates 'connect_type') userspace can +clear pm_qos_no_power_off for all 'not used' ports. The same can be +done for 'hardwired' ports provided poweroff is coordinated with any +connection switch for the port. + +A more aggressive userspace policy is to enable USB port power off for +all ports (set ``<hubdev-portX>/power/pm_qos_no_power_off`` to ``0``) when +some external factor indicates the user has stopped interacting with the +system. For example, a distro may want to enable power off all USB +ports when the screen blanks, and re-power them when the screen becomes +active. Smart phones and tablets may want to power off USB ports when +the user pushes the power button. diff --git a/Documentation/driver-api/usb/typec.rst b/Documentation/driver-api/usb/typec.rst new file mode 100644 index 000000000..201163d8c --- /dev/null +++ b/Documentation/driver-api/usb/typec.rst @@ -0,0 +1,234 @@ +.. _typec: + +USB Type-C connector class +========================== + +Introduction +------------ + +The typec class is meant for describing the USB Type-C ports in a system to the +user space in unified fashion. The class is designed to provide nothing else +except the user space interface implementation in hope that it can be utilized +on as many platforms as possible. + +The platforms are expected to register every USB Type-C port they have with the +class. In a normal case the registration will be done by a USB Type-C or PD PHY +driver, but it may be a driver for firmware interface such as UCSI, driver for +USB PD controller or even driver for Thunderbolt3 controller. This document +considers the component registering the USB Type-C ports with the class as "port +driver". + +On top of showing the capabilities, the class also offer user space control over +the roles and alternate modes of ports, partners and cable plugs when the port +driver is capable of supporting those features. + +The class provides an API for the port drivers described in this document. The +attributes are described in Documentation/ABI/testing/sysfs-class-typec. + +User space interface +-------------------- +Every port will be presented as its own device under /sys/class/typec/. The +first port will be named "port0", the second "port1" and so on. + +When connected, the partner will be presented also as its own device under +/sys/class/typec/. The parent of the partner device will always be the port it +is attached to. The partner attached to port "port0" will be named +"port0-partner". Full path to the device would be +/sys/class/typec/port0/port0-partner/. + +The cable and the two plugs on it may also be optionally presented as their own +devices under /sys/class/typec/. The cable attached to the port "port0" port +will be named port0-cable and the plug on the SOP Prime end (see USB Power +Delivery Specification ch. 2.4) will be named "port0-plug0" and on the SOP +Double Prime end "port0-plug1". The parent of a cable will always be the port, +and the parent of the cable plugs will always be the cable. + +If the port, partner or cable plug supports Alternate Modes, every supported +Alternate Mode SVID will have their own device describing them. Note that the +Alternate Mode devices will not be attached to the typec class. The parent of an +alternate mode will be the device that supports it, so for example an alternate +mode of port0-partner will be presented under /sys/class/typec/port0-partner/. +Every mode that is supported will have its own group under the Alternate Mode +device named "mode<index>", for example /sys/class/typec/port0/<alternate +mode>/mode1/. The requests for entering/exiting a mode can be done with "active" +attribute file in that group. + +Driver API +---------- + +Registering the ports +~~~~~~~~~~~~~~~~~~~~~ + +The port drivers will describe every Type-C port they control with struct +typec_capability data structure, and register them with the following API: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_register_port typec_unregister_port + +When registering the ports, the prefer_role member in struct typec_capability +deserves special notice. If the port that is being registered does not have +initial role preference, which means the port does not execute Try.SNK or +Try.SRC by default, the member must have value TYPEC_NO_PREFERRED_ROLE. +Otherwise if the port executes Try.SNK by default, the member must have value +TYPEC_DEVICE, and with Try.SRC the value must be TYPEC_HOST. + +Registering Partners +~~~~~~~~~~~~~~~~~~~~ + +After successful connection of a partner, the port driver needs to register the +partner with the class. Details about the partner need to be described in struct +typec_partner_desc. The class copies the details of the partner during +registration. The class offers the following API for registering/unregistering +partners. + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_register_partner typec_unregister_partner + +The class will provide a handle to struct typec_partner if the registration was +successful, or NULL. + +If the partner is USB Power Delivery capable, and the port driver is able to +show the result of Discover Identity command, the partner descriptor structure +should include handle to struct usb_pd_identity instance. The class will then +create a sysfs directory for the identity under the partner device. The result +of Discover Identity command can then be reported with the following API: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_partner_set_identity + +Registering Cables +~~~~~~~~~~~~~~~~~~ + +After successful connection of a cable that supports USB Power Delivery +Structured VDM "Discover Identity", the port driver needs to register the cable +and one or two plugs, depending if there is CC Double Prime controller present +in the cable or not. So a cable capable of SOP Prime communication, but not SOP +Double Prime communication, should only have one plug registered. For more +information about SOP communication, please read chapter about it from the +latest USB Power Delivery specification. + +The plugs are represented as their own devices. The cable is registered first, +followed by registration of the cable plugs. The cable will be the parent device +for the plugs. Details about the cable need to be described in struct +typec_cable_desc and about a plug in struct typec_plug_desc. The class copies +the details during registration. The class offers the following API for +registering/unregistering cables and their plugs: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_register_cable typec_unregister_cable typec_register_plug typec_unregister_plug + +The class will provide a handle to struct typec_cable and struct typec_plug if +the registration is successful, or NULL if it isn't. + +If the cable is USB Power Delivery capable, and the port driver is able to show +the result of Discover Identity command, the cable descriptor structure should +include handle to struct usb_pd_identity instance. The class will then create a +sysfs directory for the identity under the cable device. The result of Discover +Identity command can then be reported with the following API: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_cable_set_identity + +Notifications +~~~~~~~~~~~~~ + +When the partner has executed a role change, or when the default roles change +during connection of a partner or cable, the port driver must use the following +APIs to report it to the class: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_set_data_role typec_set_pwr_role typec_set_vconn_role typec_set_pwr_opmode + +Alternate Modes +~~~~~~~~~~~~~~~ + +USB Type-C ports, partners and cable plugs may support Alternate Modes. Each +Alternate Mode will have identifier called SVID, which is either a Standard ID +given by USB-IF or vendor ID, and each supported SVID can have 1 - 6 modes. The +class provides struct typec_mode_desc for describing individual mode of a SVID, +and struct typec_altmode_desc which is a container for all the supported modes. + +Ports that support Alternate Modes need to register each SVID they support with +the following API: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_port_register_altmode + +If a partner or cable plug provides a list of SVIDs as response to USB Power +Delivery Structured VDM Discover SVIDs message, each SVID needs to be +registered. + +API for the partners: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_partner_register_altmode + +API for the Cable Plugs: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_plug_register_altmode + +So ports, partners and cable plugs will register the alternate modes with their +own functions, but the registration will always return a handle to struct +typec_altmode on success, or NULL. The unregistration will happen with the same +function: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_unregister_altmode + +If a partner or cable plug enters or exits a mode, the port driver needs to +notify the class with the following API: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_altmode_update_active + +Multiplexer/DeMultiplexer Switches +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +USB Type-C connectors may have one or more mux/demux switches behind them. Since +the plugs can be inserted right-side-up or upside-down, a switch is needed to +route the correct data pairs from the connector to the USB controllers. If +Alternate or Accessory Modes are supported, another switch is needed that can +route the pins on the connector to some other component besides USB. USB Type-C +Connector Class supplies an API for registering those switches. + +.. kernel-doc:: drivers/usb/typec/mux.c + :functions: typec_switch_register typec_switch_unregister typec_mux_register typec_mux_unregister + +In most cases the same physical mux will handle both the orientation and mode. +However, as the port drivers will be responsible for the orientation, and the +alternate mode drivers for the mode, the two are always separated into their +own logical components: "mux" for the mode and "switch" for the orientation. + +When a port is registered, USB Type-C Connector Class requests both the mux and +the switch for the port. The drivers can then use the following API for +controlling them: + +.. kernel-doc:: drivers/usb/typec/class.c + :functions: typec_set_orientation typec_set_mode + +If the connector is dual-role capable, there may also be a switch for the data +role. USB Type-C Connector Class does not supply separate API for them. The +port drivers can use USB Role Class API with those. + +Illustration of the muxes behind a connector that supports an alternate mode:: + + ------------------------ + | Connector | + ------------------------ + | | + ------------------------ + \ Orientation / + -------------------- + | + -------------------- + / Mode \ + ------------------------ + / \ + ------------------------ -------------------- + | Alt Mode | / USB Role \ + ------------------------ ------------------------ + / \ + ------------------------ ------------------------ + | USB Host | | USB Device | + ------------------------ ------------------------ diff --git a/Documentation/driver-api/usb/typec_bus.rst b/Documentation/driver-api/usb/typec_bus.rst new file mode 100644 index 000000000..21c890ae1 --- /dev/null +++ b/Documentation/driver-api/usb/typec_bus.rst @@ -0,0 +1,122 @@ + +API for USB Type-C Alternate Mode drivers +========================================= + +Introduction +------------ + +Alternate modes require communication with the partner using Vendor Defined +Messages (VDM) as defined in USB Type-C and USB Power Delivery Specifications. +The communication is SVID (Standard or Vendor ID) specific, i.e. specific for +every alternate mode, so every alternate mode will need a custom driver. + +USB Type-C bus allows binding a driver to the discovered partner alternate +modes by using the SVID and the mode number. + +:ref:`USB Type-C Connector Class <typec>` provides a device for every alternate +mode a port supports, and separate device for every alternate mode the partner +supports. The drivers for the alternate modes are bound to the partner alternate +mode devices, and the port alternate mode devices must be handled by the port +drivers. + +When a new partner alternate mode device is registered, it is linked to the +alternate mode device of the port that the partner is attached to, that has +matching SVID and mode. Communication between the port driver and alternate mode +driver will happen using the same API. + +The port alternate mode devices are used as a proxy between the partner and the +alternate mode drivers, so the port drivers are only expected to pass the SVID +specific commands from the alternate mode drivers to the partner, and from the +partners to the alternate mode drivers. No direct SVID specific communication is +needed from the port drivers, but the port drivers need to provide the operation +callbacks for the port alternate mode devices, just like the alternate mode +drivers need to provide them for the partner alternate mode devices. + +Usage: +------ + +General +~~~~~~~ + +By default, the alternate mode drivers are responsible for entering the mode. +It is also possible to leave the decision about entering the mode to the user +space (See Documentation/ABI/testing/sysfs-class-typec). Port drivers should not +enter any modes on their own. + +``->vdm`` is the most important callback in the operation callbacks vector. It +will be used to deliver all the SVID specific commands from the partner to the +alternate mode driver, and vice versa in case of port drivers. The drivers send +the SVID specific commands to each other using :c:func:`typec_altmode_vdm()`. + +If the communication with the partner using the SVID specific commands results +in need to reconfigure the pins on the connector, the alternate mode driver +needs to notify the bus using :c:func:`typec_altmode_notify()`. The driver +passes the negotiated SVID specific pin configuration value to the function as +parameter. The bus driver will then configure the mux behind the connector using +that value as the state value for the mux. + +NOTE: The SVID specific pin configuration values must always start from +``TYPEC_STATE_MODAL``. USB Type-C specification defines two default states for +the connector: ``TYPEC_STATE_USB`` and ``TYPEC_STATE_SAFE``. These values are +reserved by the bus as the first possible values for the state. When the +alternate mode is entered, the bus will put the connector into +``TYPEC_STATE_SAFE`` before sending Enter or Exit Mode command as defined in USB +Type-C Specification, and also put the connector back to ``TYPEC_STATE_USB`` +after the mode has been exited. + +An example of working definitions for SVID specific pin configurations would +look like this:: + + enum { + ALTMODEX_CONF_A = TYPEC_STATE_MODAL, + ALTMODEX_CONF_B, + ... + }; + +Helper macro ``TYPEC_MODAL_STATE()`` can also be used:: + +#define ALTMODEX_CONF_A = TYPEC_MODAL_STATE(0); +#define ALTMODEX_CONF_B = TYPEC_MODAL_STATE(1); + +Cable plug alternate modes +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The alternate mode drivers are not bound to cable plug alternate mode devices, +only to the partner alternate mode devices. If the alternate mode supports, or +requires, a cable that responds to SOP Prime, and optionally SOP Double Prime +messages, the driver for that alternate mode must request handle to the cable +plug alternate modes using :c:func:`typec_altmode_get_plug()`, and take over +their control. + +Driver API +---------- + +Alternate mode structs +~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: include/linux/usb/typec_altmode.h + :functions: typec_altmode_driver typec_altmode_ops + +Alternate mode driver registering/unregistering +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: include/linux/usb/typec_altmode.h + :functions: typec_altmode_register_driver typec_altmode_unregister_driver + +Alternate mode driver operations +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/usb/typec/bus.c + :functions: typec_altmode_enter typec_altmode_exit typec_altmode_attention typec_altmode_vdm typec_altmode_notify + +API for the port drivers +~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/usb/typec/bus.c + :functions: typec_match_altmode + +Cable Plug operations +~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: drivers/usb/typec/bus.c + :functions: typec_altmode_get_plug typec_altmode_put_plug diff --git a/Documentation/driver-api/usb/usb.rst b/Documentation/driver-api/usb/usb.rst new file mode 100644 index 000000000..078e981e2 --- /dev/null +++ b/Documentation/driver-api/usb/usb.rst @@ -0,0 +1,1045 @@ +.. _usb-hostside-api: + +=========================== +The Linux-USB Host Side API +=========================== + +Introduction to USB on Linux +============================ + +A Universal Serial Bus (USB) is used to connect a host, such as a PC or +workstation, to a number of peripheral devices. USB uses a tree +structure, with the host as the root (the system's master), hubs as +interior nodes, and peripherals as leaves (and slaves). Modern PCs +support several such trees of USB devices, usually +a few USB 3.0 (5 GBit/s) or USB 3.1 (10 GBit/s) and some legacy +USB 2.0 (480 MBit/s) busses just in case. + +That master/slave asymmetry was designed-in for a number of reasons, one +being ease of use. It is not physically possible to mistake upstream and +downstream or it does not matter with a type C plug (or they are built into the +peripheral). Also, the host software doesn't need to deal with +distributed auto-configuration since the pre-designated master node +manages all that. + +Kernel developers added USB support to Linux early in the 2.2 kernel +series and have been developing it further since then. Besides support +for each new generation of USB, various host controllers gained support, +new drivers for peripherals have been added and advanced features for latency +measurement and improved power management introduced. + +Linux can run inside USB devices as well as on the hosts that control +the devices. But USB device drivers running inside those peripherals +don't do the same things as the ones running inside hosts, so they've +been given a different name: *gadget drivers*. This document does not +cover gadget drivers. + +USB Host-Side API Model +======================= + +Host-side drivers for USB devices talk to the "usbcore" APIs. There are +two. One is intended for *general-purpose* drivers (exposed through +driver frameworks), and the other is for drivers that are *part of the +core*. Such core drivers include the *hub* driver (which manages trees +of USB devices) and several different kinds of *host controller +drivers*, which control individual busses. + +The device model seen by USB drivers is relatively complex. + +- USB supports four kinds of data transfers (control, bulk, interrupt, + and isochronous). Two of them (control and bulk) use bandwidth as + it's available, while the other two (interrupt and isochronous) are + scheduled to provide guaranteed bandwidth. + +- The device description model includes one or more "configurations" + per device, only one of which is active at a time. Devices are supposed + to be capable of operating at lower than their top + speeds and may provide a BOS descriptor showing the lowest speed they + remain fully operational at. + +- From USB 3.0 on configurations have one or more "functions", which + provide a common functionality and are grouped together for purposes + of power management. + +- Configurations or functions have one or more "interfaces", each of which may have + "alternate settings". Interfaces may be standardized by USB "Class" + specifications, or may be specific to a vendor or device. + + USB device drivers actually bind to interfaces, not devices. Think of + them as "interface drivers", though you may not see many devices + where the distinction is important. *Most USB devices are simple, + with only one function, one configuration, one interface, and one alternate + setting.* + +- Interfaces have one or more "endpoints", each of which supports one + type and direction of data transfer such as "bulk out" or "interrupt + in". The entire configuration may have up to sixteen endpoints in + each direction, allocated as needed among all the interfaces. + +- Data transfer on USB is packetized; each endpoint has a maximum + packet size. Drivers must often be aware of conventions such as + flagging the end of bulk transfers using "short" (including zero + length) packets. + +- The Linux USB API supports synchronous calls for control and bulk + messages. It also supports asynchronous calls for all kinds of data + transfer, using request structures called "URBs" (USB Request + Blocks). + +Accordingly, the USB Core API exposed to device drivers covers quite a +lot of territory. You'll probably need to consult the USB 3.0 +specification, available online from www.usb.org at no cost, as well as +class or device specifications. + +The only host-side drivers that actually touch hardware (reading/writing +registers, handling IRQs, and so on) are the HCDs. In theory, all HCDs +provide the same functionality through the same API. In practice, that's +becoming more true, but there are still differences +that crop up especially with fault handling on the less common controllers. +Different controllers don't +necessarily report the same aspects of failures, and recovery from +faults (including software-induced ones like unlinking an URB) isn't yet +fully consistent. Device driver authors should make a point of doing +disconnect testing (while the device is active) with each different host +controller driver, to make sure drivers don't have bugs of their own as +well as to make sure they aren't relying on some HCD-specific behavior. + +.. _usb_chapter9: + +USB-Standard Types +================== + +In ``<linux/usb/ch9.h>`` you will find the USB data types defined in +chapter 9 of the USB specification. These data types are used throughout +USB, and in APIs including this host side API, gadget APIs, usb character +devices and debugfs interfaces. + +.. kernel-doc:: include/linux/usb/ch9.h + :internal: + +.. _usb_header: + +Host-Side Data Types and Macros +=============================== + +The host side API exposes several layers to drivers, some of which are +more necessary than others. These support lifecycle models for host side +drivers and devices, and support passing buffers through usbcore to some +HCD that performs the I/O for the device driver. + +.. kernel-doc:: include/linux/usb.h + :internal: + +USB Core APIs +============= + +There are two basic I/O models in the USB API. The most elemental one is +asynchronous: drivers submit requests in the form of an URB, and the +URB's completion callback handles the next step. All USB transfer types +support that model, although there are special cases for control URBs +(which always have setup and status stages, but may not have a data +stage) and isochronous URBs (which allow large packets and include +per-packet fault reports). Built on top of that is synchronous API +support, where a driver calls a routine that allocates one or more URBs, +submits them, and waits until they complete. There are synchronous +wrappers for single-buffer control and bulk transfers (which are awkward +to use in some driver disconnect scenarios), and for scatterlist based +streaming i/o (bulk or interrupt). + +USB drivers need to provide buffers that can be used for DMA, although +they don't necessarily need to provide the DMA mapping themselves. There +are APIs to use used when allocating DMA buffers, which can prevent use +of bounce buffers on some systems. In some cases, drivers may be able to +rely on 64bit DMA to eliminate another kind of bounce buffer. + +.. kernel-doc:: drivers/usb/core/urb.c + :export: + +.. kernel-doc:: drivers/usb/core/message.c + :export: + +.. kernel-doc:: drivers/usb/core/file.c + :export: + +.. kernel-doc:: drivers/usb/core/driver.c + :export: + +.. kernel-doc:: drivers/usb/core/usb.c + :export: + +.. kernel-doc:: drivers/usb/core/hub.c + :export: + +Host Controller APIs +==================== + +These APIs are only for use by host controller drivers, most of which +implement standard register interfaces such as XHCI, EHCI, OHCI, or UHCI. UHCI +was one of the first interfaces, designed by Intel and also used by VIA; +it doesn't do much in hardware. OHCI was designed later, to have the +hardware do more work (bigger transfers, tracking protocol state, and so +on). EHCI was designed with USB 2.0; its design has features that +resemble OHCI (hardware does much more work) as well as UHCI (some parts +of ISO support, TD list processing). XHCI was designed with USB 3.0. It +continues to shift support for functionality into hardware. + +There are host controllers other than the "big three", although most PCI +based controllers (and a few non-PCI based ones) use one of those +interfaces. Not all host controllers use DMA; some use PIO, and there is +also a simulator and a virtual host controller to pipe USB over the network. + +The same basic APIs are available to drivers for all those controllers. +For historical reasons they are in two layers: :c:type:`struct +usb_bus <usb_bus>` is a rather thin layer that became available +in the 2.2 kernels, while :c:type:`struct usb_hcd <usb_hcd>` +is a more featureful layer +that lets HCDs share common code, to shrink driver size and +significantly reduce hcd-specific behaviors. + +.. kernel-doc:: drivers/usb/core/hcd.c + :export: + +.. kernel-doc:: drivers/usb/core/hcd-pci.c + :export: + +.. kernel-doc:: drivers/usb/core/buffer.c + :internal: + +The USB character device nodes +============================== + +This chapter presents the Linux character device nodes. You may prefer +to avoid writing new kernel code for your USB driver. User mode device +drivers are usually packaged as applications or libraries, and may use +character devices through some programming library that wraps it. +Such libraries include: + + - `libusb <http://libusb.sourceforge.net>`__ for C/C++, and + - `jUSB <http://jUSB.sourceforge.net>`__ for Java. + +Some old information about it can be seen at the "USB Device Filesystem" +section of the USB Guide. The latest copy of the USB Guide can be found +at http://www.linux-usb.org/ + +.. note:: + + - They were used to be implemented via *usbfs*, but this is not part of + the sysfs debug interface. + + - This particular documentation is incomplete, especially with respect + to the asynchronous mode. As of kernel 2.5.66 the code and this + (new) documentation need to be cross-reviewed. + +What files are in "devtmpfs"? +----------------------------- + +Conventionally mounted at ``/dev/bus/usb/``, usbfs features include: + +- ``/dev/bus/usb/BBB/DDD`` ... magic files exposing the each device's + configuration descriptors, and supporting a series of ioctls for + making device requests, including I/O to devices. (Purely for access + by programs.) + +Each bus is given a number (``BBB``) based on when it was enumerated; within +each bus, each device is given a similar number (``DDD``). Those ``BBB/DDD`` +paths are not "stable" identifiers; expect them to change even if you +always leave the devices plugged in to the same hub port. *Don't even +think of saving these in application configuration files.* Stable +identifiers are available, for user mode applications that want to use +them. HID and networking devices expose these stable IDs, so that for +example you can be sure that you told the right UPS to power down its +second server. Pleast note that it doesn't (yet) expose those IDs. + +/dev/bus/usb/BBB/DDD +-------------------- + +Use these files in one of these basic ways: + +- *They can be read,* producing first the device descriptor (18 bytes) and + then the descriptors for the current configuration. See the USB 2.0 spec + for details about those binary data formats. You'll need to convert most + multibyte values from little endian format to your native host byte + order, although a few of the fields in the device descriptor (both of + the BCD-encoded fields, and the vendor and product IDs) will be + byteswapped for you. Note that configuration descriptors include + descriptors for interfaces, altsettings, endpoints, and maybe additional + class descriptors. + +- *Perform USB operations* using *ioctl()* requests to make endpoint I/O + requests (synchronously or asynchronously) or manage the device. These + requests need the ``CAP_SYS_RAWIO`` capability, as well as filesystem + access permissions. Only one ioctl request can be made on one of these + device files at a time. This means that if you are synchronously reading + an endpoint from one thread, you won't be able to write to a different + endpoint from another thread until the read completes. This works for + *half duplex* protocols, but otherwise you'd use asynchronous i/o + requests. + +Each connected USB device has one file. The ``BBB`` indicates the bus +number. The ``DDD`` indicates the device address on that bus. Both +of these numbers are assigned sequentially, and can be reused, so +you can't rely on them for stable access to devices. For example, +it's relatively common for devices to re-enumerate while they are +still connected (perhaps someone jostled their power supply, hub, +or USB cable), so a device might be ``002/027`` when you first connect +it and ``002/048`` sometime later. + +These files can be read as binary data. The binary data consists +of first the device descriptor, then the descriptors for each +configuration of the device. Multi-byte fields in the device descriptor +are converted to host endianness by the kernel. The configuration +descriptors are in bus endian format! The configuration descriptor +are wTotalLength bytes apart. If a device returns less configuration +descriptor data than indicated by wTotalLength there will be a hole in +the file for the missing bytes. This information is also shown +in text form by the ``/sys/kernel/debug/usb/devices`` file, described later. + +These files may also be used to write user-level drivers for the USB +devices. You would open the ``/dev/bus/usb/BBB/DDD`` file read/write, +read its descriptors to make sure it's the device you expect, and then +bind to an interface (or perhaps several) using an ioctl call. You +would issue more ioctls to the device to communicate to it using +control, bulk, or other kinds of USB transfers. The IOCTLs are +listed in the ``<linux/usbdevice_fs.h>`` file, and at this writing the +source code (``linux/drivers/usb/core/devio.c``) is the primary reference +for how to access devices through those files. + +Note that since by default these ``BBB/DDD`` files are writable only by +root, only root can write such user mode drivers. You can selectively +grant read/write permissions to other users by using ``chmod``. Also, +usbfs mount options such as ``devmode=0666`` may be helpful. + + +Life Cycle of User Mode Drivers +------------------------------- + +Such a driver first needs to find a device file for a device it knows +how to handle. Maybe it was told about it because a ``/sbin/hotplug`` +event handling agent chose that driver to handle the new device. Or +maybe it's an application that scans all the ``/dev/bus/usb`` device files, +and ignores most devices. In either case, it should :c:func:`read()` +all the descriptors from the device file, and check them against what it +knows how to handle. It might just reject everything except a particular +vendor and product ID, or need a more complex policy. + +Never assume there will only be one such device on the system at a time! +If your code can't handle more than one device at a time, at least +detect when there's more than one, and have your users choose which +device to use. + +Once your user mode driver knows what device to use, it interacts with +it in either of two styles. The simple style is to make only control +requests; some devices don't need more complex interactions than those. +(An example might be software using vendor-specific control requests for +some initialization or configuration tasks, with a kernel driver for the +rest.) + +More likely, you need a more complex style driver: one using non-control +endpoints, reading or writing data and claiming exclusive use of an +interface. *Bulk* transfers are easiest to use, but only their sibling +*interrupt* transfers work with low speed devices. Both interrupt and +*isochronous* transfers offer service guarantees because their bandwidth +is reserved. Such "periodic" transfers are awkward to use through usbfs, +unless you're using the asynchronous calls. However, interrupt transfers +can also be used in a synchronous "one shot" style. + +Your user-mode driver should never need to worry about cleaning up +request state when the device is disconnected, although it should close +its open file descriptors as soon as it starts seeing the ENODEV errors. + +The ioctl() Requests +-------------------- + +To use these ioctls, you need to include the following headers in your +userspace program:: + + #include <linux/usb.h> + #include <linux/usbdevice_fs.h> + #include <asm/byteorder.h> + +The standard USB device model requests, from "Chapter 9" of the USB 2.0 +specification, are automatically included from the ``<linux/usb/ch9.h>`` +header. + +Unless noted otherwise, the ioctl requests described here will update +the modification time on the usbfs file to which they are applied +(unless they fail). A return of zero indicates success; otherwise, a +standard USB error code is returned (These are documented in +:ref:`usb-error-codes`). + +Each of these files multiplexes access to several I/O streams, one per +endpoint. Each device has one control endpoint (endpoint zero) which +supports a limited RPC style RPC access. Devices are configured by +hub_wq (in the kernel) setting a device-wide *configuration* that +affects things like power consumption and basic functionality. The +endpoints are part of USB *interfaces*, which may have *altsettings* +affecting things like which endpoints are available. Many devices only +have a single configuration and interface, so drivers for them will +ignore configurations and altsettings. + +Management/Status Requests +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +A number of usbfs requests don't deal very directly with device I/O. +They mostly relate to device management and status. These are all +synchronous requests. + +USBDEVFS_CLAIMINTERFACE + This is used to force usbfs to claim a specific interface, which has + not previously been claimed by usbfs or any other kernel driver. The + ioctl parameter is an integer holding the number of the interface + (bInterfaceNumber from descriptor). + + Note that if your driver doesn't claim an interface before trying to + use one of its endpoints, and no other driver has bound to it, then + the interface is automatically claimed by usbfs. + + This claim will be released by a RELEASEINTERFACE ioctl, or by + closing the file descriptor. File modification time is not updated + by this request. + +USBDEVFS_CONNECTINFO + Says whether the device is lowspeed. The ioctl parameter points to a + structure like this:: + + struct usbdevfs_connectinfo { + unsigned int devnum; + unsigned char slow; + }; + + File modification time is not updated by this request. + + *You can't tell whether a "not slow" device is connected at high + speed (480 MBit/sec) or just full speed (12 MBit/sec).* You should + know the devnum value already, it's the DDD value of the device file + name. + +USBDEVFS_GETDRIVER + Returns the name of the kernel driver bound to a given interface (a + string). Parameter is a pointer to this structure, which is + modified:: + + struct usbdevfs_getdriver { + unsigned int interface; + char driver[USBDEVFS_MAXDRIVERNAME + 1]; + }; + + File modification time is not updated by this request. + +USBDEVFS_IOCTL + Passes a request from userspace through to a kernel driver that has + an ioctl entry in the *struct usb_driver* it registered:: + + struct usbdevfs_ioctl { + int ifno; + int ioctl_code; + void *data; + }; + + /* user mode call looks like this. + * 'request' becomes the driver->ioctl() 'code' parameter. + * the size of 'param' is encoded in 'request', and that data + * is copied to or from the driver->ioctl() 'buf' parameter. + */ + static int + usbdev_ioctl (int fd, int ifno, unsigned request, void *param) + { + struct usbdevfs_ioctl wrapper; + + wrapper.ifno = ifno; + wrapper.ioctl_code = request; + wrapper.data = param; + + return ioctl (fd, USBDEVFS_IOCTL, &wrapper); + } + + File modification time is not updated by this request. + + This request lets kernel drivers talk to user mode code through + filesystem operations even when they don't create a character or + block special device. It's also been used to do things like ask + devices what device special file should be used. Two pre-defined + ioctls are used to disconnect and reconnect kernel drivers, so that + user mode code can completely manage binding and configuration of + devices. + +USBDEVFS_RELEASEINTERFACE + This is used to release the claim usbfs made on interface, either + implicitly or because of a USBDEVFS_CLAIMINTERFACE call, before the + file descriptor is closed. The ioctl parameter is an integer holding + the number of the interface (bInterfaceNumber from descriptor); File + modification time is not updated by this request. + + .. warning:: + + *No security check is made to ensure that the task which made + the claim is the one which is releasing it. This means that user + mode driver may interfere other ones.* + +USBDEVFS_RESETEP + Resets the data toggle value for an endpoint (bulk or interrupt) to + DATA0. The ioctl parameter is an integer endpoint number (1 to 15, + as identified in the endpoint descriptor), with USB_DIR_IN added + if the device's endpoint sends data to the host. + + .. Warning:: + + *Avoid using this request. It should probably be removed.* Using + it typically means the device and driver will lose toggle + synchronization. If you really lost synchronization, you likely + need to completely handshake with the device, using a request + like CLEAR_HALT or SET_INTERFACE. + +USBDEVFS_DROP_PRIVILEGES + This is used to relinquish the ability to do certain operations + which are considered to be privileged on a usbfs file descriptor. + This includes claiming arbitrary interfaces, resetting a device on + which there are currently claimed interfaces from other users, and + issuing USBDEVFS_IOCTL calls. The ioctl parameter is a 32 bit mask + of interfaces the user is allowed to claim on this file descriptor. + You may issue this ioctl more than one time to narrow said mask. + +Synchronous I/O Support +~~~~~~~~~~~~~~~~~~~~~~~ + +Synchronous requests involve the kernel blocking until the user mode +request completes, either by finishing successfully or by reporting an +error. In most cases this is the simplest way to use usbfs, although as +noted above it does prevent performing I/O to more than one endpoint at +a time. + +USBDEVFS_BULK + Issues a bulk read or write request to the device. The ioctl + parameter is a pointer to this structure:: + + struct usbdevfs_bulktransfer { + unsigned int ep; + unsigned int len; + unsigned int timeout; /* in milliseconds */ + void *data; + }; + + The ``ep`` value identifies a bulk endpoint number (1 to 15, as + identified in an endpoint descriptor), masked with USB_DIR_IN when + referring to an endpoint which sends data to the host from the + device. The length of the data buffer is identified by ``len``; Recent + kernels support requests up to about 128KBytes. *FIXME say how read + length is returned, and how short reads are handled.*. + +USBDEVFS_CLEAR_HALT + Clears endpoint halt (stall) and resets the endpoint toggle. This is + only meaningful for bulk or interrupt endpoints. The ioctl parameter + is an integer endpoint number (1 to 15, as identified in an endpoint + descriptor), masked with USB_DIR_IN when referring to an endpoint + which sends data to the host from the device. + + Use this on bulk or interrupt endpoints which have stalled, + returning ``-EPIPE`` status to a data transfer request. Do not issue + the control request directly, since that could invalidate the host's + record of the data toggle. + +USBDEVFS_CONTROL + Issues a control request to the device. The ioctl parameter points + to a structure like this:: + + struct usbdevfs_ctrltransfer { + __u8 bRequestType; + __u8 bRequest; + __u16 wValue; + __u16 wIndex; + __u16 wLength; + __u32 timeout; /* in milliseconds */ + void *data; + }; + + The first eight bytes of this structure are the contents of the + SETUP packet to be sent to the device; see the USB 2.0 specification + for details. The bRequestType value is composed by combining a + ``USB_TYPE_*`` value, a ``USB_DIR_*`` value, and a ``USB_RECIP_*`` + value (from ``linux/usb.h``). If wLength is nonzero, it describes + the length of the data buffer, which is either written to the device + (USB_DIR_OUT) or read from the device (USB_DIR_IN). + + At this writing, you can't transfer more than 4 KBytes of data to or + from a device; usbfs has a limit, and some host controller drivers + have a limit. (That's not usually a problem.) *Also* there's no way + to say it's not OK to get a short read back from the device. + +USBDEVFS_RESET + Does a USB level device reset. The ioctl parameter is ignored. After + the reset, this rebinds all device interfaces. File modification + time is not updated by this request. + +.. warning:: + + *Avoid using this call* until some usbcore bugs get fixed, since + it does not fully synchronize device, interface, and driver (not + just usbfs) state. + +USBDEVFS_SETINTERFACE + Sets the alternate setting for an interface. The ioctl parameter is + a pointer to a structure like this:: + + struct usbdevfs_setinterface { + unsigned int interface; + unsigned int altsetting; + }; + + File modification time is not updated by this request. + + Those struct members are from some interface descriptor applying to + the current configuration. The interface number is the + bInterfaceNumber value, and the altsetting number is the + bAlternateSetting value. (This resets each endpoint in the + interface.) + +USBDEVFS_SETCONFIGURATION + Issues the :c:func:`usb_set_configuration()` call for the + device. The parameter is an integer holding the number of a + configuration (bConfigurationValue from descriptor). File + modification time is not updated by this request. + +.. warning:: + + *Avoid using this call* until some usbcore bugs get fixed, since + it does not fully synchronize device, interface, and driver (not + just usbfs) state. + +Asynchronous I/O Support +~~~~~~~~~~~~~~~~~~~~~~~~ + +As mentioned above, there are situations where it may be important to +initiate concurrent operations from user mode code. This is particularly +important for periodic transfers (interrupt and isochronous), but it can +be used for other kinds of USB requests too. In such cases, the +asynchronous requests described here are essential. Rather than +submitting one request and having the kernel block until it completes, +the blocking is separate. + +These requests are packaged into a structure that resembles the URB used +by kernel device drivers. (No POSIX Async I/O support here, sorry.) It +identifies the endpoint type (``USBDEVFS_URB_TYPE_*``), endpoint +(number, masked with USB_DIR_IN as appropriate), buffer and length, +and a user "context" value serving to uniquely identify each request. +(It's usually a pointer to per-request data.) Flags can modify requests +(not as many as supported for kernel drivers). + +Each request can specify a realtime signal number (between SIGRTMIN and +SIGRTMAX, inclusive) to request a signal be sent when the request +completes. + +When usbfs returns these urbs, the status value is updated, and the +buffer may have been modified. Except for isochronous transfers, the +actual_length is updated to say how many bytes were transferred; if the +USBDEVFS_URB_DISABLE_SPD flag is set ("short packets are not OK"), if +fewer bytes were read than were requested then you get an error report:: + + struct usbdevfs_iso_packet_desc { + unsigned int length; + unsigned int actual_length; + unsigned int status; + }; + + struct usbdevfs_urb { + unsigned char type; + unsigned char endpoint; + int status; + unsigned int flags; + void *buffer; + int buffer_length; + int actual_length; + int start_frame; + int number_of_packets; + int error_count; + unsigned int signr; + void *usercontext; + struct usbdevfs_iso_packet_desc iso_frame_desc[]; + }; + +For these asynchronous requests, the file modification time reflects +when the request was initiated. This contrasts with their use with the +synchronous requests, where it reflects when requests complete. + +USBDEVFS_DISCARDURB + *TBS* File modification time is not updated by this request. + +USBDEVFS_DISCSIGNAL + *TBS* File modification time is not updated by this request. + +USBDEVFS_REAPURB + *TBS* File modification time is not updated by this request. + +USBDEVFS_REAPURBNDELAY + *TBS* File modification time is not updated by this request. + +USBDEVFS_SUBMITURB + *TBS* + +The USB devices +=============== + +The USB devices are now exported via debugfs: + +- ``/sys/kernel/debug/usb/devices`` ... a text file showing each of the USB + devices on known to the kernel, and their configuration descriptors. + You can also poll() this to learn about new devices. + +/sys/kernel/debug/usb/devices +----------------------------- + +This file is handy for status viewing tools in user mode, which can scan +the text format and ignore most of it. More detailed device status +(including class and vendor status) is available from device-specific +files. For information about the current format of this file, see below. + +This file, in combination with the poll() system call, can also be used +to detect when devices are added or removed:: + + int fd; + struct pollfd pfd; + + fd = open("/sys/kernel/debug/usb/devices", O_RDONLY); + pfd = { fd, POLLIN, 0 }; + for (;;) { + /* The first time through, this call will return immediately. */ + poll(&pfd, 1, -1); + + /* To see what's changed, compare the file's previous and current + contents or scan the filesystem. (Scanning is more precise.) */ + } + +Note that this behavior is intended to be used for informational and +debug purposes. It would be more appropriate to use programs such as +udev or HAL to initialize a device or start a user-mode helper program, +for instance. + +In this file, each device's output has multiple lines of ASCII output. + +I made it ASCII instead of binary on purpose, so that someone +can obtain some useful data from it without the use of an +auxiliary program. However, with an auxiliary program, the numbers +in the first 4 columns of each ``T:`` line (topology info: +Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram. + +Each line is tagged with a one-character ID for that line:: + + T = Topology (etc.) + B = Bandwidth (applies only to USB host controllers, which are + virtualized as root hubs) + D = Device descriptor info. + P = Product ID info. (from Device descriptor, but they won't fit + together on one line) + S = String descriptors. + C = Configuration descriptor info. (* = active configuration) + I = Interface descriptor info. + E = Endpoint descriptor info. + +/sys/kernel/debug/usb/devices output format +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Legend:: + d = decimal number (may have leading spaces or 0's) + x = hexadecimal number (may have leading spaces or 0's) + s = string + + + +Topology info +^^^^^^^^^^^^^ + +:: + + T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd + | | | | | | | | |__MaxChildren + | | | | | | | |__Device Speed in Mbps + | | | | | | |__DeviceNumber + | | | | | |__Count of devices at this level + | | | | |__Connector/Port on Parent for this device + | | | |__Parent DeviceNumber + | | |__Level in topology for this bus + | |__Bus number + |__Topology info tag + +Speed may be: + + ======= ====================================================== + 1.5 Mbit/s for low speed USB + 12 Mbit/s for full speed USB + 480 Mbit/s for high speed USB (added for USB 2.0); + also used for Wireless USB, which has no fixed speed + 5000 Mbit/s for SuperSpeed USB (added for USB 3.0) + ======= ====================================================== + +For reasons lost in the mists of time, the Port number is always +too low by 1. For example, a device plugged into port 4 will +show up with ``Port=03``. + +Bandwidth info +^^^^^^^^^^^^^^ + +:: + + B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd + | | | |__Number of isochronous requests + | | |__Number of interrupt requests + | |__Total Bandwidth allocated to this bus + |__Bandwidth info tag + +Bandwidth allocation is an approximation of how much of one frame +(millisecond) is in use. It reflects only periodic transfers, which +are the only transfers that reserve bandwidth. Control and bulk +transfers use all other bandwidth, including reserved bandwidth that +is not used for transfers (such as for short packets). + +The percentage is how much of the "reserved" bandwidth is scheduled by +those transfers. For a low or full speed bus (loosely, "USB 1.1"), +90% of the bus bandwidth is reserved. For a high speed bus (loosely, +"USB 2.0") 80% is reserved. + + +Device descriptor info & Product ID info +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:: + + D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd + P: Vendor=xxxx ProdID=xxxx Rev=xx.xx + +where:: + + D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd + | | | | | | |__NumberConfigurations + | | | | | |__MaxPacketSize of Default Endpoint + | | | | |__DeviceProtocol + | | | |__DeviceSubClass + | | |__DeviceClass + | |__Device USB version + |__Device info tag #1 + +where:: + + P: Vendor=xxxx ProdID=xxxx Rev=xx.xx + | | | |__Product revision number + | | |__Product ID code + | |__Vendor ID code + |__Device info tag #2 + + +String descriptor info +^^^^^^^^^^^^^^^^^^^^^^ +:: + + S: Manufacturer=ssss + | |__Manufacturer of this device as read from the device. + | For USB host controller drivers (virtual root hubs) this may + | be omitted, or (for newer drivers) will identify the kernel + | version and the driver which provides this hub emulation. + |__String info tag + + S: Product=ssss + | |__Product description of this device as read from the device. + | For older USB host controller drivers (virtual root hubs) this + | indicates the driver; for newer ones, it's a product (and vendor) + | description that often comes from the kernel's PCI ID database. + |__String info tag + + S: SerialNumber=ssss + | |__Serial Number of this device as read from the device. + | For USB host controller drivers (virtual root hubs) this is + | some unique ID, normally a bus ID (address or slot name) that + | can't be shared with any other device. + |__String info tag + + + +Configuration descriptor info +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA + | | | | | |__MaxPower in mA + | | | | |__Attributes + | | | |__ConfiguratioNumber + | | |__NumberOfInterfaces + | |__ "*" indicates the active configuration (others are " ") + |__Config info tag + +USB devices may have multiple configurations, each of which act +rather differently. For example, a bus-powered configuration +might be much less capable than one that is self-powered. Only +one device configuration can be active at a time; most devices +have only one configuration. + +Each configuration consists of one or more interfaces. Each +interface serves a distinct "function", which is typically bound +to a different USB device driver. One common example is a USB +speaker with an audio interface for playback, and a HID interface +for use with software volume control. + +Interface descriptor info (can be multiple per Config) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss + | | | | | | | | |__Driver name + | | | | | | | | or "(none)" + | | | | | | | |__InterfaceProtocol + | | | | | | |__InterfaceSubClass + | | | | | |__InterfaceClass + | | | | |__NumberOfEndpoints + | | | |__AlternateSettingNumber + | | |__InterfaceNumber + | |__ "*" indicates the active altsetting (others are " ") + |__Interface info tag + +A given interface may have one or more "alternate" settings. +For example, default settings may not use more than a small +amount of periodic bandwidth. To use significant fractions +of bus bandwidth, drivers must select a non-default altsetting. + +Only one setting for an interface may be active at a time, and +only one driver may bind to an interface at a time. Most devices +have only one alternate setting per interface. + + +Endpoint descriptor info (can be multiple per Interface) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:: + + E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss + | | | | |__Interval (max) between transfers + | | | |__EndpointMaxPacketSize + | | |__Attributes(EndpointType) + | |__EndpointAddress(I=In,O=Out) + |__Endpoint info tag + +The interval is nonzero for all periodic (interrupt or isochronous) +endpoints. For high speed endpoints the transfer interval may be +measured in microseconds rather than milliseconds. + +For high speed periodic endpoints, the ``EndpointMaxPacketSize`` reflects +the per-microframe data transfer size. For "high bandwidth" +endpoints, that can reflect two or three packets (for up to +3KBytes every 125 usec) per endpoint. + +With the Linux-USB stack, periodic bandwidth reservations use the +transfer intervals and sizes provided by URBs, which can be less +than those found in endpoint descriptor. + +Usage examples +~~~~~~~~~~~~~~ + +If a user or script is interested only in Topology info, for +example, use something like ``grep ^T: /sys/kernel/debug/usb/devices`` +for only the Topology lines. A command like +``grep -i ^[tdp]: /sys/kernel/debug/usb/devices`` can be used to list +only the lines that begin with the characters in square brackets, +where the valid characters are TDPCIE. With a slightly more able +script, it can display any selected lines (for example, only T, D, +and P lines) and change their output format. (The ``procusb`` +Perl script is the beginning of this idea. It will list only +selected lines [selected from TBDPSCIE] or "All" lines from +``/sys/kernel/debug/usb/devices``.) + +The Topology lines can be used to generate a graphic/pictorial +of the USB devices on a system's root hub. (See more below +on how to do this.) + +The Interface lines can be used to determine what driver is +being used for each device, and which altsetting it activated. + +The Configuration lines could be used to list maximum power +(in milliamps) that a system's USB devices are using. +For example, ``grep ^C: /sys/kernel/debug/usb/devices``. + + +Here's an example, from a system which has a UHCI root hub, +an external hub connected to the root hub, and a mouse and +a serial converter connected to the external hub. + +:: + + T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 + B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0 + D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=0000 ProdID=0000 Rev= 0.00 + S: Product=USB UHCI Root Hub + S: SerialNumber=dce0 + C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA + I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub + E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms + + T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 + D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=0451 ProdID=1446 Rev= 1.00 + C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA + I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub + E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms + + T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 + D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=04b4 ProdID=0001 Rev= 0.00 + C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA + I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse + E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms + + T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 + D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=0565 ProdID=0001 Rev= 1.08 + S: Manufacturer=Peracom Networks, Inc. + S: Product=Peracom USB to Serial Converter + C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA + I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial + E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms + E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms + E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms + + +Selecting only the ``T:`` and ``I:`` lines from this (for example, by using +``procusb ti``), we have + +:: + + T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 + T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 + I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub + T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 + I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse + T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 + I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial + + +Physically this looks like (or could be converted to):: + + +------------------+ + | PC/root_hub (12)| Dev# = 1 + +------------------+ (nn) is Mbps. + Level 0 | CN.0 | CN.1 | [CN = connector/port #] + +------------------+ + / + / + +-----------------------+ + Level 1 | Dev#2: 4-port hub (12)| + +-----------------------+ + |CN.0 |CN.1 |CN.2 |CN.3 | + +-----------------------+ + \ \____________________ + \_____ \ + \ \ + +--------------------+ +--------------------+ + Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)| + +--------------------+ +--------------------+ + + + +Or, in a more tree-like structure (ports [Connectors] without +connections could be omitted):: + + PC: Dev# 1, root hub, 2 ports, 12 Mbps + |_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps + |_ CN.0: Dev #3, mouse, 1.5 Mbps + |_ CN.1: + |_ CN.2: Dev #4, serial, 12 Mbps + |_ CN.3: + |_ CN.1: diff --git a/Documentation/driver-api/usb/usb3-debug-port.rst b/Documentation/driver-api/usb/usb3-debug-port.rst new file mode 100644 index 000000000..b9fd131f4 --- /dev/null +++ b/Documentation/driver-api/usb/usb3-debug-port.rst @@ -0,0 +1,152 @@ +=============== +USB3 debug port +=============== + +:Author: Lu Baolu <baolu.lu@linux.intel.com> +:Date: March 2017 + +GENERAL +======= + +This is a HOWTO for using the USB3 debug port on x86 systems. + +Before using any kernel debugging functionality based on USB3 +debug port, you need to:: + + 1) check whether any USB3 debug port is available in + your system; + 2) check which port is used for debugging purposes; + 3) have a USB 3.0 super-speed A-to-A debugging cable. + +INTRODUCTION +============ + +The xHCI debug capability (DbC) is an optional but standalone +functionality provided by the xHCI host controller. The xHCI +specification describes DbC in the section 7.6. + +When DbC is initialized and enabled, it will present a debug +device through the debug port (normally the first USB3 +super-speed port). The debug device is fully compliant with +the USB framework and provides the equivalent of a very high +performance full-duplex serial link between the debug target +(the system under debugging) and a debug host. + +EARLY PRINTK +============ + +DbC has been designed to log early printk messages. One use for +this feature is kernel debugging. For example, when your machine +crashes very early before the regular console code is initialized. +Other uses include simpler, lockless logging instead of a full- +blown printk console driver and klogd. + +On the debug target system, you need to customize a debugging +kernel with CONFIG_EARLY_PRINTK_USB_XDBC enabled. And, add below +kernel boot parameter:: + + "earlyprintk=xdbc" + +If there are multiple xHCI controllers in your system, you can +append a host contoller index to this kernel parameter. This +index starts from 0. + +Current design doesn't support DbC runtime suspend/resume. As +the result, you'd better disable runtime power management for +USB subsystem by adding below kernel boot parameter:: + + "usbcore.autosuspend=-1" + +Before starting the debug target, you should connect the debug +port to a USB port (root port or port of any external hub) on +the debug host. The cable used to connect these two ports +should be a USB 3.0 super-speed A-to-A debugging cable. + +During early boot of the debug target, DbC will be detected and +initialized. After initialization, the debug host should be able +to enumerate the debug device in debug target. The debug host +will then bind the debug device with the usb_debug driver module +and create the /dev/ttyUSB device. + +If the debug device enumeration goes smoothly, you should be able +to see below kernel messages on the debug host:: + + # tail -f /var/log/kern.log + [ 1815.983374] usb 4-3: new SuperSpeed USB device number 4 using xhci_hcd + [ 1815.999595] usb 4-3: LPM exit latency is zeroed, disabling LPM. + [ 1815.999899] usb 4-3: New USB device found, idVendor=1d6b, idProduct=0004 + [ 1815.999902] usb 4-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3 + [ 1815.999903] usb 4-3: Product: Remote GDB + [ 1815.999904] usb 4-3: Manufacturer: Linux + [ 1815.999905] usb 4-3: SerialNumber: 0001 + [ 1816.000240] usb_debug 4-3:1.0: xhci_dbc converter detected + [ 1816.000360] usb 4-3: xhci_dbc converter now attached to ttyUSB0 + +You can use any communication program, for example minicom, to +read and view the messages. Below simple bash scripts can help +you to check the sanity of the setup. + +.. code-block:: sh + + ===== start of bash scripts ============= + #!/bin/bash + + while true ; do + while [ ! -d /sys/class/tty/ttyUSB0 ] ; do + : + done + cat /dev/ttyUSB0 + done + ===== end of bash scripts =============== + +Serial TTY +========== + +The DbC support has been added to the xHCI driver. You can get a +debug device provided by the DbC at runtime. + +In order to use this, you need to make sure your kernel has been +configured to support USB_XHCI_DBGCAP. A sysfs attribute under +the xHCI device node is used to enable or disable DbC. By default, +DbC is disabled:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc + disabled + +Enable DbC with the following command:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# echo enable > dbc + +You can check the DbC state at anytime:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc + enabled + +Connect the debug target to the debug host with a USB 3.0 super- +speed A-to-A debugging cable. You can see /dev/ttyDBC0 created +on the debug target. You will see below kernel message lines:: + + root@target: tail -f /var/log/kern.log + [ 182.730103] xhci_hcd 0000:00:14.0: DbC connected + [ 191.169420] xhci_hcd 0000:00:14.0: DbC configured + [ 191.169597] xhci_hcd 0000:00:14.0: DbC now attached to /dev/ttyDBC0 + +Accordingly, the DbC state has been brought up to:: + + root@target:/sys/bus/pci/devices/0000:00:14.0# cat dbc + configured + +On the debug host, you will see the debug device has been enumerated. +You will see below kernel message lines:: + + root@host: tail -f /var/log/kern.log + [ 79.454780] usb 2-2.1: new SuperSpeed USB device number 3 using xhci_hcd + [ 79.475003] usb 2-2.1: LPM exit latency is zeroed, disabling LPM. + [ 79.475389] usb 2-2.1: New USB device found, idVendor=1d6b, idProduct=0010 + [ 79.475390] usb 2-2.1: New USB device strings: Mfr=1, Product=2, SerialNumber=3 + [ 79.475391] usb 2-2.1: Product: Linux USB Debug Target + [ 79.475392] usb 2-2.1: Manufacturer: Linux Foundation + [ 79.475393] usb 2-2.1: SerialNumber: 0001 + +The debug device works now. You can use any communication or debugging +program to talk between the host and the target. diff --git a/Documentation/driver-api/usb/writing_musb_glue_layer.rst b/Documentation/driver-api/usb/writing_musb_glue_layer.rst new file mode 100644 index 000000000..10416cc11 --- /dev/null +++ b/Documentation/driver-api/usb/writing_musb_glue_layer.rst @@ -0,0 +1,720 @@ +========================= +Writing a MUSB Glue Layer +========================= + +:Author: Apelete Seketeli + +Introduction +============ + +The Linux MUSB subsystem is part of the larger Linux USB subsystem. It +provides support for embedded USB Device Controllers (UDC) that do not +use Universal Host Controller Interface (UHCI) or Open Host Controller +Interface (OHCI). + +Instead, these embedded UDC rely on the USB On-the-Go (OTG) +specification which they implement at least partially. The silicon +reference design used in most cases is the Multipoint USB Highspeed +Dual-Role Controller (MUSB HDRC) found in the Mentor Graphics Inventra™ +design. + +As a self-taught exercise I have written an MUSB glue layer for the +Ingenic JZ4740 SoC, modelled after the many MUSB glue layers in the +kernel source tree. This layer can be found at +``drivers/usb/musb/jz4740.c``. In this documentation I will walk through the +basics of the ``jz4740.c`` glue layer, explaining the different pieces and +what needs to be done in order to write your own device glue layer. + +.. _musb-basics: + +Linux MUSB Basics +================= + +To get started on the topic, please read USB On-the-Go Basics (see +Resources) which provides an introduction of USB OTG operation at the +hardware level. A couple of wiki pages by Texas Instruments and Analog +Devices also provide an overview of the Linux kernel MUSB configuration, +albeit focused on some specific devices provided by these companies. +Finally, getting acquainted with the USB specification at USB home page +may come in handy, with practical instance provided through the Writing +USB Device Drivers documentation (again, see Resources). + +Linux USB stack is a layered architecture in which the MUSB controller +hardware sits at the lowest. The MUSB controller driver abstract the +MUSB controller hardware to the Linux USB stack:: + + ------------------------ + | | <------- drivers/usb/gadget + | Linux USB Core Stack | <------- drivers/usb/host + | | <------- drivers/usb/core + ------------------------ + ⬍ + -------------------------- + | | <------ drivers/usb/musb/musb_gadget.c + | MUSB Controller driver | <------ drivers/usb/musb/musb_host.c + | | <------ drivers/usb/musb/musb_core.c + -------------------------- + ⬍ + --------------------------------- + | MUSB Platform Specific Driver | + | | <-- drivers/usb/musb/jz4740.c + | aka "Glue Layer" | + --------------------------------- + ⬍ + --------------------------------- + | MUSB Controller Hardware | + --------------------------------- + +As outlined above, the glue layer is actually the platform specific code +sitting in between the controller driver and the controller hardware. + +Just like a Linux USB driver needs to register itself with the Linux USB +subsystem, the MUSB glue layer needs first to register itself with the +MUSB controller driver. This will allow the controller driver to know +about which device the glue layer supports and which functions to call +when a supported device is detected or released; remember we are talking +about an embedded controller chip here, so no insertion or removal at +run-time. + +All of this information is passed to the MUSB controller driver through +a :c:type:`platform_driver` structure defined in the glue layer as:: + + static struct platform_driver jz4740_driver = { + .probe = jz4740_probe, + .remove = jz4740_remove, + .driver = { + .name = "musb-jz4740", + }, + }; + +The probe and remove function pointers are called when a matching device +is detected and, respectively, released. The name string describes the +device supported by this glue layer. In the current case it matches a +platform_device structure declared in ``arch/mips/jz4740/platform.c``. Note +that we are not using device tree bindings here. + +In order to register itself to the controller driver, the glue layer +goes through a few steps, basically allocating the controller hardware +resources and initialising a couple of circuits. To do so, it needs to +keep track of the information used throughout these steps. This is done +by defining a private ``jz4740_glue`` structure:: + + struct jz4740_glue { + struct device *dev; + struct platform_device *musb; + struct clk *clk; + }; + + +The dev and musb members are both device structure variables. The first +one holds generic information about the device, since it's the basic +device structure, and the latter holds information more closely related +to the subsystem the device is registered to. The clk variable keeps +information related to the device clock operation. + +Let's go through the steps of the probe function that leads the glue +layer to register itself to the controller driver. + +.. note:: + + For the sake of readability each function will be split in logical + parts, each part being shown as if it was independent from the others. + +.. code-block:: c + :emphasize-lines: 8,12,18 + + static int jz4740_probe(struct platform_device *pdev) + { + struct platform_device *musb; + struct jz4740_glue *glue; + struct clk *clk; + int ret; + + glue = devm_kzalloc(&pdev->dev, sizeof(*glue), GFP_KERNEL); + if (!glue) + return -ENOMEM; + + musb = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO); + if (!musb) { + dev_err(&pdev->dev, "failed to allocate musb device\n"); + return -ENOMEM; + } + + clk = devm_clk_get(&pdev->dev, "udc"); + if (IS_ERR(clk)) { + dev_err(&pdev->dev, "failed to get clock\n"); + ret = PTR_ERR(clk); + goto err_platform_device_put; + } + + ret = clk_prepare_enable(clk); + if (ret) { + dev_err(&pdev->dev, "failed to enable clock\n"); + goto err_platform_device_put; + } + + musb->dev.parent = &pdev->dev; + + glue->dev = &pdev->dev; + glue->musb = musb; + glue->clk = clk; + + return 0; + + err_platform_device_put: + platform_device_put(musb); + return ret; + } + +The first few lines of the probe function allocate and assign the glue, +musb and clk variables. The ``GFP_KERNEL`` flag (line 8) allows the +allocation process to sleep and wait for memory, thus being usable in a +locking situation. The ``PLATFORM_DEVID_AUTO`` flag (line 12) allows +automatic allocation and management of device IDs in order to avoid +device namespace collisions with explicit IDs. With :c:func:`devm_clk_get` +(line 18) the glue layer allocates the clock -- the ``devm_`` prefix +indicates that :c:func:`clk_get` is managed: it automatically frees the +allocated clock resource data when the device is released -- and enable +it. + + + +Then comes the registration steps: + +.. code-block:: c + :emphasize-lines: 3,5,7,9,16 + + static int jz4740_probe(struct platform_device *pdev) + { + struct musb_hdrc_platform_data *pdata = &jz4740_musb_platform_data; + + pdata->platform_ops = &jz4740_musb_ops; + + platform_set_drvdata(pdev, glue); + + ret = platform_device_add_resources(musb, pdev->resource, + pdev->num_resources); + if (ret) { + dev_err(&pdev->dev, "failed to add resources\n"); + goto err_clk_disable; + } + + ret = platform_device_add_data(musb, pdata, sizeof(*pdata)); + if (ret) { + dev_err(&pdev->dev, "failed to add platform_data\n"); + goto err_clk_disable; + } + + return 0; + + err_clk_disable: + clk_disable_unprepare(clk); + err_platform_device_put: + platform_device_put(musb); + return ret; + } + +The first step is to pass the device data privately held by the glue +layer on to the controller driver through :c:func:`platform_set_drvdata` +(line 7). Next is passing on the device resources information, also privately +held at that point, through :c:func:`platform_device_add_resources` (line 9). + +Finally comes passing on the platform specific data to the controller +driver (line 16). Platform data will be discussed in +:ref:`musb-dev-platform-data`, but here we are looking at the +``platform_ops`` function pointer (line 5) in ``musb_hdrc_platform_data`` +structure (line 3). This function pointer allows the MUSB controller +driver to know which function to call for device operation:: + + static const struct musb_platform_ops jz4740_musb_ops = { + .init = jz4740_musb_init, + .exit = jz4740_musb_exit, + }; + +Here we have the minimal case where only init and exit functions are +called by the controller driver when needed. Fact is the JZ4740 MUSB +controller is a basic controller, lacking some features found in other +controllers, otherwise we may also have pointers to a few other +functions like a power management function or a function to switch +between OTG and non-OTG modes, for instance. + +At that point of the registration process, the controller driver +actually calls the init function: + + .. code-block:: c + :emphasize-lines: 12,14 + + static int jz4740_musb_init(struct musb *musb) + { + musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); + if (!musb->xceiv) { + pr_err("HS UDC: no transceiver configured\n"); + return -ENODEV; + } + + /* Silicon does not implement ConfigData register. + * Set dyn_fifo to avoid reading EP config from hardware. + */ + musb->dyn_fifo = true; + + musb->isr = jz4740_musb_interrupt; + + return 0; + } + +The goal of ``jz4740_musb_init()`` is to get hold of the transceiver +driver data of the MUSB controller hardware and pass it on to the MUSB +controller driver, as usual. The transceiver is the circuitry inside the +controller hardware responsible for sending/receiving the USB data. +Since it is an implementation of the physical layer of the OSI model, +the transceiver is also referred to as PHY. + +Getting hold of the ``MUSB PHY`` driver data is done with ``usb_get_phy()`` +which returns a pointer to the structure containing the driver instance +data. The next couple of instructions (line 12 and 14) are used as a +quirk and to setup IRQ handling respectively. Quirks and IRQ handling +will be discussed later in :ref:`musb-dev-quirks` and +:ref:`musb-handling-irqs`\ :: + + static int jz4740_musb_exit(struct musb *musb) + { + usb_put_phy(musb->xceiv); + + return 0; + } + +Acting as the counterpart of init, the exit function releases the MUSB +PHY driver when the controller hardware itself is about to be released. + +Again, note that init and exit are fairly simple in this case due to the +basic set of features of the JZ4740 controller hardware. When writing an +musb glue layer for a more complex controller hardware, you might need +to take care of more processing in those two functions. + +Returning from the init function, the MUSB controller driver jumps back +into the probe function:: + + static int jz4740_probe(struct platform_device *pdev) + { + ret = platform_device_add(musb); + if (ret) { + dev_err(&pdev->dev, "failed to register musb device\n"); + goto err_clk_disable; + } + + return 0; + + err_clk_disable: + clk_disable_unprepare(clk); + err_platform_device_put: + platform_device_put(musb); + return ret; + } + +This is the last part of the device registration process where the glue +layer adds the controller hardware device to Linux kernel device +hierarchy: at this stage, all known information about the device is +passed on to the Linux USB core stack: + + .. code-block:: c + :emphasize-lines: 5,6 + + static int jz4740_remove(struct platform_device *pdev) + { + struct jz4740_glue *glue = platform_get_drvdata(pdev); + + platform_device_unregister(glue->musb); + clk_disable_unprepare(glue->clk); + + return 0; + } + +Acting as the counterpart of probe, the remove function unregister the +MUSB controller hardware (line 5) and disable the clock (line 6), +allowing it to be gated. + +.. _musb-handling-irqs: + +Handling IRQs +============= + +Additionally to the MUSB controller hardware basic setup and +registration, the glue layer is also responsible for handling the IRQs: + + .. code-block:: c + :emphasize-lines: 7,9-11,14,24 + + static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci) + { + unsigned long flags; + irqreturn_t retval = IRQ_NONE; + struct musb *musb = __hci; + + spin_lock_irqsave(&musb->lock, flags); + + musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); + musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); + musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); + + /* + * The controller is gadget only, the state of the host mode IRQ bits is + * undefined. Mask them to make sure that the musb driver core will + * never see them set + */ + musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME | + MUSB_INTR_RESET | MUSB_INTR_SOF; + + if (musb->int_usb || musb->int_tx || musb->int_rx) + retval = musb_interrupt(musb); + + spin_unlock_irqrestore(&musb->lock, flags); + + return retval; + } + +Here the glue layer mostly has to read the relevant hardware registers +and pass their values on to the controller driver which will handle the +actual event that triggered the IRQ. + +The interrupt handler critical section is protected by the +:c:func:`spin_lock_irqsave` and counterpart :c:func:`spin_unlock_irqrestore` +functions (line 7 and 24 respectively), which prevent the interrupt +handler code to be run by two different threads at the same time. + +Then the relevant interrupt registers are read (line 9 to 11): + +- ``MUSB_INTRUSB``: indicates which USB interrupts are currently active, + +- ``MUSB_INTRTX``: indicates which of the interrupts for TX endpoints are + currently active, + +- ``MUSB_INTRRX``: indicates which of the interrupts for TX endpoints are + currently active. + +Note that :c:func:`musb_readb` is used to read 8-bit registers at most, while +:c:func:`musb_readw` allows us to read at most 16-bit registers. There are +other functions that can be used depending on the size of your device +registers. See ``musb_io.h`` for more information. + +Instruction on line 18 is another quirk specific to the JZ4740 USB +device controller, which will be discussed later in :ref:`musb-dev-quirks`. + +The glue layer still needs to register the IRQ handler though. Remember +the instruction on line 14 of the init function:: + + static int jz4740_musb_init(struct musb *musb) + { + musb->isr = jz4740_musb_interrupt; + + return 0; + } + +This instruction sets a pointer to the glue layer IRQ handler function, +in order for the controller hardware to call the handler back when an +IRQ comes from the controller hardware. The interrupt handler is now +implemented and registered. + +.. _musb-dev-platform-data: + +Device Platform Data +==================== + +In order to write an MUSB glue layer, you need to have some data +describing the hardware capabilities of your controller hardware, which +is called the platform data. + +Platform data is specific to your hardware, though it may cover a broad +range of devices, and is generally found somewhere in the ``arch/`` +directory, depending on your device architecture. + +For instance, platform data for the JZ4740 SoC is found in +``arch/mips/jz4740/platform.c``. In the ``platform.c`` file each device of the +JZ4740 SoC is described through a set of structures. + +Here is the part of ``arch/mips/jz4740/platform.c`` that covers the USB +Device Controller (UDC): + + .. code-block:: c + :emphasize-lines: 2,7,14-17,21,22,25,26,28,29 + + /* USB Device Controller */ + struct platform_device jz4740_udc_xceiv_device = { + .name = "usb_phy_gen_xceiv", + .id = 0, + }; + + static struct resource jz4740_udc_resources[] = { + [0] = { + .start = JZ4740_UDC_BASE_ADDR, + .end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1, + .flags = IORESOURCE_MEM, + }, + [1] = { + .start = JZ4740_IRQ_UDC, + .end = JZ4740_IRQ_UDC, + .flags = IORESOURCE_IRQ, + .name = "mc", + }, + }; + + struct platform_device jz4740_udc_device = { + .name = "musb-jz4740", + .id = -1, + .dev = { + .dma_mask = &jz4740_udc_device.dev.coherent_dma_mask, + .coherent_dma_mask = DMA_BIT_MASK(32), + }, + .num_resources = ARRAY_SIZE(jz4740_udc_resources), + .resource = jz4740_udc_resources, + }; + +The ``jz4740_udc_xceiv_device`` platform device structure (line 2) +describes the UDC transceiver with a name and id number. + +At the time of this writing, note that ``usb_phy_gen_xceiv`` is the +specific name to be used for all transceivers that are either built-in +with reference USB IP or autonomous and doesn't require any PHY +programming. You will need to set ``CONFIG_NOP_USB_XCEIV=y`` in the +kernel configuration to make use of the corresponding transceiver +driver. The id field could be set to -1 (equivalent to +``PLATFORM_DEVID_NONE``), -2 (equivalent to ``PLATFORM_DEVID_AUTO``) or +start with 0 for the first device of this kind if we want a specific id +number. + +The ``jz4740_udc_resources`` resource structure (line 7) defines the UDC +registers base addresses. + +The first array (line 9 to 11) defines the UDC registers base memory +addresses: start points to the first register memory address, end points +to the last register memory address and the flags member defines the +type of resource we are dealing with. So ``IORESOURCE_MEM`` is used to +define the registers memory addresses. The second array (line 14 to 17) +defines the UDC IRQ registers addresses. Since there is only one IRQ +register available for the JZ4740 UDC, start and end point at the same +address. The ``IORESOURCE_IRQ`` flag tells that we are dealing with IRQ +resources, and the name ``mc`` is in fact hard-coded in the MUSB core in +order for the controller driver to retrieve this IRQ resource by +querying it by its name. + +Finally, the ``jz4740_udc_device`` platform device structure (line 21) +describes the UDC itself. + +The ``musb-jz4740`` name (line 22) defines the MUSB driver that is used +for this device; remember this is in fact the name that we used in the +``jz4740_driver`` platform driver structure in :ref:`musb-basics`. +The id field (line 23) is set to -1 (equivalent to ``PLATFORM_DEVID_NONE``) +since we do not need an id for the device: the MUSB controller driver was +already set to allocate an automatic id in :ref:`musb-basics`. In the dev field +we care for DMA related information here. The ``dma_mask`` field (line 25) +defines the width of the DMA mask that is going to be used, and +``coherent_dma_mask`` (line 26) has the same purpose but for the +``alloc_coherent`` DMA mappings: in both cases we are using a 32 bits mask. +Then the resource field (line 29) is simply a pointer to the resource +structure defined before, while the ``num_resources`` field (line 28) keeps +track of the number of arrays defined in the resource structure (in this +case there were two resource arrays defined before). + +With this quick overview of the UDC platform data at the ``arch/`` level now +done, let's get back to the MUSB glue layer specific platform data in +``drivers/usb/musb/jz4740.c``: + + .. code-block:: c + :emphasize-lines: 3,5,7-9,11 + + static struct musb_hdrc_config jz4740_musb_config = { + /* Silicon does not implement USB OTG. */ + .multipoint = 0, + /* Max EPs scanned, driver will decide which EP can be used. */ + .num_eps = 4, + /* RAMbits needed to configure EPs from table */ + .ram_bits = 9, + .fifo_cfg = jz4740_musb_fifo_cfg, + .fifo_cfg_size = ARRAY_SIZE(jz4740_musb_fifo_cfg), + }; + + static struct musb_hdrc_platform_data jz4740_musb_platform_data = { + .mode = MUSB_PERIPHERAL, + .config = &jz4740_musb_config, + }; + +First the glue layer configures some aspects of the controller driver +operation related to the controller hardware specifics. This is done +through the ``jz4740_musb_config`` :c:type:`musb_hdrc_config` structure. + +Defining the OTG capability of the controller hardware, the multipoint +member (line 3) is set to 0 (equivalent to false) since the JZ4740 UDC +is not OTG compatible. Then ``num_eps`` (line 5) defines the number of USB +endpoints of the controller hardware, including endpoint 0: here we have +3 endpoints + endpoint 0. Next is ``ram_bits`` (line 7) which is the width +of the RAM address bus for the MUSB controller hardware. This +information is needed when the controller driver cannot automatically +configure endpoints by reading the relevant controller hardware +registers. This issue will be discussed when we get to device quirks in +:ref:`musb-dev-quirks`. Last two fields (line 8 and 9) are also +about device quirks: ``fifo_cfg`` points to the USB endpoints configuration +table and ``fifo_cfg_size`` keeps track of the size of the number of +entries in that configuration table. More on that later in +:ref:`musb-dev-quirks`. + +Then this configuration is embedded inside ``jz4740_musb_platform_data`` +:c:type:`musb_hdrc_platform_data` structure (line 11): config is a pointer to +the configuration structure itself, and mode tells the controller driver +if the controller hardware may be used as ``MUSB_HOST`` only, +``MUSB_PERIPHERAL`` only or ``MUSB_OTG`` which is a dual mode. + +Remember that ``jz4740_musb_platform_data`` is then used to convey +platform data information as we have seen in the probe function in +:ref:`musb-basics`. + +.. _musb-dev-quirks: + +Device Quirks +============= + +Completing the platform data specific to your device, you may also need +to write some code in the glue layer to work around some device specific +limitations. These quirks may be due to some hardware bugs, or simply be +the result of an incomplete implementation of the USB On-the-Go +specification. + +The JZ4740 UDC exhibits such quirks, some of which we will discuss here +for the sake of insight even though these might not be found in the +controller hardware you are working on. + +Let's get back to the init function first: + + .. code-block:: c + :emphasize-lines: 12 + + static int jz4740_musb_init(struct musb *musb) + { + musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); + if (!musb->xceiv) { + pr_err("HS UDC: no transceiver configured\n"); + return -ENODEV; + } + + /* Silicon does not implement ConfigData register. + * Set dyn_fifo to avoid reading EP config from hardware. + */ + musb->dyn_fifo = true; + + musb->isr = jz4740_musb_interrupt; + + return 0; + } + +Instruction on line 12 helps the MUSB controller driver to work around +the fact that the controller hardware is missing registers that are used +for USB endpoints configuration. + +Without these registers, the controller driver is unable to read the +endpoints configuration from the hardware, so we use line 12 instruction +to bypass reading the configuration from silicon, and rely on a +hard-coded table that describes the endpoints configuration instead:: + + static struct musb_fifo_cfg jz4740_musb_fifo_cfg[] = { + { .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, }, + { .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, }, + { .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 64, }, + }; + +Looking at the configuration table above, we see that each endpoints is +described by three fields: ``hw_ep_num`` is the endpoint number, style is +its direction (either ``FIFO_TX`` for the controller driver to send packets +in the controller hardware, or ``FIFO_RX`` to receive packets from +hardware), and maxpacket defines the maximum size of each data packet +that can be transmitted over that endpoint. Reading from the table, the +controller driver knows that endpoint 1 can be used to send and receive +USB data packets of 512 bytes at once (this is in fact a bulk in/out +endpoint), and endpoint 2 can be used to send data packets of 64 bytes +at once (this is in fact an interrupt endpoint). + +Note that there is no information about endpoint 0 here: that one is +implemented by default in every silicon design, with a predefined +configuration according to the USB specification. For more examples of +endpoint configuration tables, see ``musb_core.c``. + +Let's now get back to the interrupt handler function: + + .. code-block:: c + :emphasize-lines: 18-19 + + static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci) + { + unsigned long flags; + irqreturn_t retval = IRQ_NONE; + struct musb *musb = __hci; + + spin_lock_irqsave(&musb->lock, flags); + + musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); + musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); + musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); + + /* + * The controller is gadget only, the state of the host mode IRQ bits is + * undefined. Mask them to make sure that the musb driver core will + * never see them set + */ + musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME | + MUSB_INTR_RESET | MUSB_INTR_SOF; + + if (musb->int_usb || musb->int_tx || musb->int_rx) + retval = musb_interrupt(musb); + + spin_unlock_irqrestore(&musb->lock, flags); + + return retval; + } + +Instruction on line 18 above is a way for the controller driver to work +around the fact that some interrupt bits used for USB host mode +operation are missing in the ``MUSB_INTRUSB`` register, thus left in an +undefined hardware state, since this MUSB controller hardware is used in +peripheral mode only. As a consequence, the glue layer masks these +missing bits out to avoid parasite interrupts by doing a logical AND +operation between the value read from ``MUSB_INTRUSB`` and the bits that +are actually implemented in the register. + +These are only a couple of the quirks found in the JZ4740 USB device +controller. Some others were directly addressed in the MUSB core since +the fixes were generic enough to provide a better handling of the issues +for others controller hardware eventually. + +Conclusion +========== + +Writing a Linux MUSB glue layer should be a more accessible task, as +this documentation tries to show the ins and outs of this exercise. + +The JZ4740 USB device controller being fairly simple, I hope its glue +layer serves as a good example for the curious mind. Used with the +current MUSB glue layers, this documentation should provide enough +guidance to get started; should anything gets out of hand, the linux-usb +mailing list archive is another helpful resource to browse through. + +Acknowledgements +================ + +Many thanks to Lars-Peter Clausen and Maarten ter Huurne for answering +my questions while I was writing the JZ4740 glue layer and for helping +me out getting the code in good shape. + +I would also like to thank the Qi-Hardware community at large for its +cheerful guidance and support. + +Resources +========= + +USB Home Page: https://www.usb.org + +linux-usb Mailing List Archives: https://marc.info/?l=linux-usb + +USB On-the-Go Basics: +https://www.maximintegrated.com/app-notes/index.mvp/id/1822 + +:ref:`Writing USB Device Drivers <writing-usb-driver>` + +Texas Instruments USB Configuration Wiki Page: +http://processors.wiki.ti.com/index.php/Usbgeneralpage diff --git a/Documentation/driver-api/usb/writing_usb_driver.rst b/Documentation/driver-api/usb/writing_usb_driver.rst new file mode 100644 index 000000000..2176297e5 --- /dev/null +++ b/Documentation/driver-api/usb/writing_usb_driver.rst @@ -0,0 +1,323 @@ +.. _writing-usb-driver: + +========================== +Writing USB Device Drivers +========================== + +:Author: Greg Kroah-Hartman + +Introduction +============ + +The Linux USB subsystem has grown from supporting only two different +types of devices in the 2.2.7 kernel (mice and keyboards), to over 20 +different types of devices in the 2.4 kernel. Linux currently supports +almost all USB class devices (standard types of devices like keyboards, +mice, modems, printers and speakers) and an ever-growing number of +vendor-specific devices (such as USB to serial converters, digital +cameras, Ethernet devices and MP3 players). For a full list of the +different USB devices currently supported, see Resources. + +The remaining kinds of USB devices that do not have support on Linux are +almost all vendor-specific devices. Each vendor decides to implement a +custom protocol to talk to their device, so a custom driver usually +needs to be created. Some vendors are open with their USB protocols and +help with the creation of Linux drivers, while others do not publish +them, and developers are forced to reverse-engineer. See Resources for +some links to handy reverse-engineering tools. + +Because each different protocol causes a new driver to be created, I +have written a generic USB driver skeleton, modelled after the +pci-skeleton.c file in the kernel source tree upon which many PCI +network drivers have been based. This USB skeleton can be found at +drivers/usb/usb-skeleton.c in the kernel source tree. In this article I +will walk through the basics of the skeleton driver, explaining the +different pieces and what needs to be done to customize it to your +specific device. + +Linux USB Basics +================ + +If you are going to write a Linux USB driver, please become familiar +with the USB protocol specification. It can be found, along with many +other useful documents, at the USB home page (see Resources). An +excellent introduction to the Linux USB subsystem can be found at the +USB Working Devices List (see Resources). It explains how the Linux USB +subsystem is structured and introduces the reader to the concept of USB +urbs (USB Request Blocks), which are essential to USB drivers. + +The first thing a Linux USB driver needs to do is register itself with +the Linux USB subsystem, giving it some information about which devices +the driver supports and which functions to call when a device supported +by the driver is inserted or removed from the system. All of this +information is passed to the USB subsystem in the :c:type:`usb_driver` +structure. The skeleton driver declares a :c:type:`usb_driver` as:: + + static struct usb_driver skel_driver = { + .name = "skeleton", + .probe = skel_probe, + .disconnect = skel_disconnect, + .fops = &skel_fops, + .minor = USB_SKEL_MINOR_BASE, + .id_table = skel_table, + }; + + +The variable name is a string that describes the driver. It is used in +informational messages printed to the system log. The probe and +disconnect function pointers are called when a device that matches the +information provided in the ``id_table`` variable is either seen or +removed. + +The fops and minor variables are optional. Most USB drivers hook into +another kernel subsystem, such as the SCSI, network or TTY subsystem. +These types of drivers register themselves with the other kernel +subsystem, and any user-space interactions are provided through that +interface. But for drivers that do not have a matching kernel subsystem, +such as MP3 players or scanners, a method of interacting with user space +is needed. The USB subsystem provides a way to register a minor device +number and a set of :c:type:`file_operations` function pointers that enable +this user-space interaction. The skeleton driver needs this kind of +interface, so it provides a minor starting number and a pointer to its +:c:type:`file_operations` functions. + +The USB driver is then registered with a call to :c:func:`usb_register`, +usually in the driver's init function, as shown here:: + + static int __init usb_skel_init(void) + { + int result; + + /* register this driver with the USB subsystem */ + result = usb_register(&skel_driver); + if (result < 0) { + err("usb_register failed for the "__FILE__ "driver." + "Error number %d", result); + return -1; + } + + return 0; + } + module_init(usb_skel_init); + + +When the driver is unloaded from the system, it needs to deregister +itself with the USB subsystem. This is done with the :c:func:`usb_deregister` +function:: + + static void __exit usb_skel_exit(void) + { + /* deregister this driver with the USB subsystem */ + usb_deregister(&skel_driver); + } + module_exit(usb_skel_exit); + + +To enable the linux-hotplug system to load the driver automatically when +the device is plugged in, you need to create a ``MODULE_DEVICE_TABLE``. +The following code tells the hotplug scripts that this module supports a +single device with a specific vendor and product ID:: + + /* table of devices that work with this driver */ + static struct usb_device_id skel_table [] = { + { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) }, + { } /* Terminating entry */ + }; + MODULE_DEVICE_TABLE (usb, skel_table); + + +There are other macros that can be used in describing a struct +:c:type:`usb_device_id` for drivers that support a whole class of USB +drivers. See :ref:`usb.h <usb_header>` for more information on this. + +Device operation +================ + +When a device is plugged into the USB bus that matches the device ID +pattern that your driver registered with the USB core, the probe +function is called. The :c:type:`usb_device` structure, interface number and +the interface ID are passed to the function:: + + static int skel_probe(struct usb_interface *interface, + const struct usb_device_id *id) + + +The driver now needs to verify that this device is actually one that it +can accept. If so, it returns 0. If not, or if any error occurs during +initialization, an errorcode (such as ``-ENOMEM`` or ``-ENODEV``) is +returned from the probe function. + +In the skeleton driver, we determine what end points are marked as +bulk-in and bulk-out. We create buffers to hold the data that will be +sent and received from the device, and a USB urb to write data to the +device is initialized. + +Conversely, when the device is removed from the USB bus, the disconnect +function is called with the device pointer. The driver needs to clean +any private data that has been allocated at this time and to shut down +any pending urbs that are in the USB system. + +Now that the device is plugged into the system and the driver is bound +to the device, any of the functions in the :c:type:`file_operations` structure +that were passed to the USB subsystem will be called from a user program +trying to talk to the device. The first function called will be open, as +the program tries to open the device for I/O. We increment our private +usage count and save a pointer to our internal structure in the file +structure. This is done so that future calls to file operations will +enable the driver to determine which device the user is addressing. All +of this is done with the following code:: + + /* increment our usage count for the module */ + ++skel->open_count; + + /* save our object in the file's private structure */ + file->private_data = dev; + + +After the open function is called, the read and write functions are +called to receive and send data to the device. In the ``skel_write`` +function, we receive a pointer to some data that the user wants to send +to the device and the size of the data. The function determines how much +data it can send to the device based on the size of the write urb it has +created (this size depends on the size of the bulk out end point that +the device has). Then it copies the data from user space to kernel +space, points the urb to the data and submits the urb to the USB +subsystem. This can be seen in the following code:: + + /* we can only write as much as 1 urb will hold */ + bytes_written = (count > skel->bulk_out_size) ? skel->bulk_out_size : count; + + /* copy the data from user space into our urb */ + copy_from_user(skel->write_urb->transfer_buffer, buffer, bytes_written); + + /* set up our urb */ + usb_fill_bulk_urb(skel->write_urb, + skel->dev, + usb_sndbulkpipe(skel->dev, skel->bulk_out_endpointAddr), + skel->write_urb->transfer_buffer, + bytes_written, + skel_write_bulk_callback, + skel); + + /* send the data out the bulk port */ + result = usb_submit_urb(skel->write_urb); + if (result) { + err("Failed submitting write urb, error %d", result); + } + + +When the write urb is filled up with the proper information using the +:c:func:`usb_fill_bulk_urb` function, we point the urb's completion callback +to call our own ``skel_write_bulk_callback`` function. This function is +called when the urb is finished by the USB subsystem. The callback +function is called in interrupt context, so caution must be taken not to +do very much processing at that time. Our implementation of +``skel_write_bulk_callback`` merely reports if the urb was completed +successfully or not and then returns. + +The read function works a bit differently from the write function in +that we do not use an urb to transfer data from the device to the +driver. Instead we call the :c:func:`usb_bulk_msg` function, which can be used +to send or receive data from a device without having to create urbs and +handle urb completion callback functions. We call the :c:func:`usb_bulk_msg` +function, giving it a buffer into which to place any data received from +the device and a timeout value. If the timeout period expires without +receiving any data from the device, the function will fail and return an +error message. This can be shown with the following code:: + + /* do an immediate bulk read to get data from the device */ + retval = usb_bulk_msg (skel->dev, + usb_rcvbulkpipe (skel->dev, + skel->bulk_in_endpointAddr), + skel->bulk_in_buffer, + skel->bulk_in_size, + &count, HZ*10); + /* if the read was successful, copy the data to user space */ + if (!retval) { + if (copy_to_user (buffer, skel->bulk_in_buffer, count)) + retval = -EFAULT; + else + retval = count; + } + + +The :c:func:`usb_bulk_msg` function can be very useful for doing single reads +or writes to a device; however, if you need to read or write constantly to +a device, it is recommended to set up your own urbs and submit them to +the USB subsystem. + +When the user program releases the file handle that it has been using to +talk to the device, the release function in the driver is called. In +this function we decrement our private usage count and wait for possible +pending writes:: + + /* decrement our usage count for the device */ + --skel->open_count; + + +One of the more difficult problems that USB drivers must be able to +handle smoothly is the fact that the USB device may be removed from the +system at any point in time, even if a program is currently talking to +it. It needs to be able to shut down any current reads and writes and +notify the user-space programs that the device is no longer there. The +following code (function ``skel_delete``) is an example of how to do +this:: + + static inline void skel_delete (struct usb_skel *dev) + { + kfree (dev->bulk_in_buffer); + if (dev->bulk_out_buffer != NULL) + usb_free_coherent (dev->udev, dev->bulk_out_size, + dev->bulk_out_buffer, + dev->write_urb->transfer_dma); + usb_free_urb (dev->write_urb); + kfree (dev); + } + + +If a program currently has an open handle to the device, we reset the +flag ``device_present``. For every read, write, release and other +functions that expect a device to be present, the driver first checks +this flag to see if the device is still present. If not, it releases +that the device has disappeared, and a ``-ENODEV`` error is returned to the +user-space program. When the release function is eventually called, it +determines if there is no device and if not, it does the cleanup that +the ``skel_disconnect`` function normally does if there are no open files +on the device (see Listing 5). + +Isochronous Data +================ + +This usb-skeleton driver does not have any examples of interrupt or +isochronous data being sent to or from the device. Interrupt data is +sent almost exactly as bulk data is, with a few minor exceptions. +Isochronous data works differently with continuous streams of data being +sent to or from the device. The audio and video camera drivers are very +good examples of drivers that handle isochronous data and will be useful +if you also need to do this. + +Conclusion +========== + +Writing Linux USB device drivers is not a difficult task as the +usb-skeleton driver shows. This driver, combined with the other current +USB drivers, should provide enough examples to help a beginning author +create a working driver in a minimal amount of time. The linux-usb-devel +mailing list archives also contain a lot of helpful information. + +Resources +========= + +The Linux USB Project: +http://www.linux-usb.org/ + +Linux Hotplug Project: +http://linux-hotplug.sourceforge.net/ + +linux-usb Mailing List Archives: +https://lore.kernel.org/linux-usb/ + +Programming Guide for Linux USB Device Drivers: +https://lmu.web.psi.ch/docu/manuals/software_manuals/linux_sl/usb_linux_programming_guide.pdf + +USB Home Page: https://www.usb.org |