summaryrefslogtreecommitdiffstats
path: root/Documentation/input/multi-touch-protocol.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/input/multi-touch-protocol.rst411
1 files changed, 411 insertions, 0 deletions
diff --git a/Documentation/input/multi-touch-protocol.rst b/Documentation/input/multi-touch-protocol.rst
new file mode 100644
index 000000000..307fe22d9
--- /dev/null
+++ b/Documentation/input/multi-touch-protocol.rst
@@ -0,0 +1,411 @@
+.. include:: <isonum.txt>
+
+=========================
+Multi-touch (MT) Protocol
+=========================
+
+:Copyright: |copy| 2009-2010 Henrik Rydberg <rydberg@euromail.se>
+
+
+Introduction
+------------
+
+In order to utilize the full power of the new multi-touch and multi-user
+devices, a way to report detailed data from multiple contacts, i.e.,
+objects in direct contact with the device surface, is needed. This
+document describes the multi-touch (MT) protocol which allows kernel
+drivers to report details for an arbitrary number of contacts.
+
+The protocol is divided into two types, depending on the capabilities of the
+hardware. For devices handling anonymous contacts (type A), the protocol
+describes how to send the raw data for all contacts to the receiver. For
+devices capable of tracking identifiable contacts (type B), the protocol
+describes how to send updates for individual contacts via event slots.
+
+.. note::
+ MT protocol type A is obsolete, all kernel drivers have been
+ converted to use type B.
+
+Protocol Usage
+--------------
+
+Contact details are sent sequentially as separate packets of ABS_MT
+events. Only the ABS_MT events are recognized as part of a contact
+packet. Since these events are ignored by current single-touch (ST)
+applications, the MT protocol can be implemented on top of the ST protocol
+in an existing driver.
+
+Drivers for type A devices separate contact packets by calling
+input_mt_sync() at the end of each packet. This generates a SYN_MT_REPORT
+event, which instructs the receiver to accept the data for the current
+contact and prepare to receive another.
+
+Drivers for type B devices separate contact packets by calling
+input_mt_slot(), with a slot as argument, at the beginning of each packet.
+This generates an ABS_MT_SLOT event, which instructs the receiver to
+prepare for updates of the given slot.
+
+All drivers mark the end of a multi-touch transfer by calling the usual
+input_sync() function. This instructs the receiver to act upon events
+accumulated since last EV_SYN/SYN_REPORT and prepare to receive a new set
+of events/packets.
+
+The main difference between the stateless type A protocol and the stateful
+type B slot protocol lies in the usage of identifiable contacts to reduce
+the amount of data sent to userspace. The slot protocol requires the use of
+the ABS_MT_TRACKING_ID, either provided by the hardware or computed from
+the raw data [#f5]_.
+
+For type A devices, the kernel driver should generate an arbitrary
+enumeration of the full set of anonymous contacts currently on the
+surface. The order in which the packets appear in the event stream is not
+important. Event filtering and finger tracking is left to user space [#f3]_.
+
+For type B devices, the kernel driver should associate a slot with each
+identified contact, and use that slot to propagate changes for the contact.
+Creation, replacement and destruction of contacts is achieved by modifying
+the ABS_MT_TRACKING_ID of the associated slot. A non-negative tracking id
+is interpreted as a contact, and the value -1 denotes an unused slot. A
+tracking id not previously present is considered new, and a tracking id no
+longer present is considered removed. Since only changes are propagated,
+the full state of each initiated contact has to reside in the receiving
+end. Upon receiving an MT event, one simply updates the appropriate
+attribute of the current slot.
+
+Some devices identify and/or track more contacts than they can report to the
+driver. A driver for such a device should associate one type B slot with each
+contact that is reported by the hardware. Whenever the identity of the
+contact associated with a slot changes, the driver should invalidate that
+slot by changing its ABS_MT_TRACKING_ID. If the hardware signals that it is
+tracking more contacts than it is currently reporting, the driver should use
+a BTN_TOOL_*TAP event to inform userspace of the total number of contacts
+being tracked by the hardware at that moment. The driver should do this by
+explicitly sending the corresponding BTN_TOOL_*TAP event and setting
+use_count to false when calling input_mt_report_pointer_emulation().
+The driver should only advertise as many slots as the hardware can report.
+Userspace can detect that a driver can report more total contacts than slots
+by noting that the largest supported BTN_TOOL_*TAP event is larger than the
+total number of type B slots reported in the absinfo for the ABS_MT_SLOT axis.
+
+The minimum value of the ABS_MT_SLOT axis must be 0.
+
+Protocol Example A
+------------------
+
+Here is what a minimal event sequence for a two-contact touch would look
+like for a type A device::
+
+ ABS_MT_POSITION_X x[0]
+ ABS_MT_POSITION_Y y[0]
+ SYN_MT_REPORT
+ ABS_MT_POSITION_X x[1]
+ ABS_MT_POSITION_Y y[1]
+ SYN_MT_REPORT
+ SYN_REPORT
+
+The sequence after moving one of the contacts looks exactly the same; the
+raw data for all present contacts are sent between every synchronization
+with SYN_REPORT.
+
+Here is the sequence after lifting the first contact::
+
+ ABS_MT_POSITION_X x[1]
+ ABS_MT_POSITION_Y y[1]
+ SYN_MT_REPORT
+ SYN_REPORT
+
+And here is the sequence after lifting the second contact::
+
+ SYN_MT_REPORT
+ SYN_REPORT
+
+If the driver reports one of BTN_TOUCH or ABS_PRESSURE in addition to the
+ABS_MT events, the last SYN_MT_REPORT event may be omitted. Otherwise, the
+last SYN_REPORT will be dropped by the input core, resulting in no
+zero-contact event reaching userland.
+
+
+Protocol Example B
+------------------
+
+Here is what a minimal event sequence for a two-contact touch would look
+like for a type B device::
+
+ ABS_MT_SLOT 0
+ ABS_MT_TRACKING_ID 45
+ ABS_MT_POSITION_X x[0]
+ ABS_MT_POSITION_Y y[0]
+ ABS_MT_SLOT 1
+ ABS_MT_TRACKING_ID 46
+ ABS_MT_POSITION_X x[1]
+ ABS_MT_POSITION_Y y[1]
+ SYN_REPORT
+
+Here is the sequence after moving contact 45 in the x direction::
+
+ ABS_MT_SLOT 0
+ ABS_MT_POSITION_X x[0]
+ SYN_REPORT
+
+Here is the sequence after lifting the contact in slot 0::
+
+ ABS_MT_TRACKING_ID -1
+ SYN_REPORT
+
+The slot being modified is already 0, so the ABS_MT_SLOT is omitted. The
+message removes the association of slot 0 with contact 45, thereby
+destroying contact 45 and freeing slot 0 to be reused for another contact.
+
+Finally, here is the sequence after lifting the second contact::
+
+ ABS_MT_SLOT 1
+ ABS_MT_TRACKING_ID -1
+ SYN_REPORT
+
+
+Event Usage
+-----------
+
+A set of ABS_MT events with the desired properties is defined. The events
+are divided into categories, to allow for partial implementation. The
+minimum set consists of ABS_MT_POSITION_X and ABS_MT_POSITION_Y, which
+allows for multiple contacts to be tracked. If the device supports it, the
+ABS_MT_TOUCH_MAJOR and ABS_MT_WIDTH_MAJOR may be used to provide the size
+of the contact area and approaching tool, respectively.
+
+The TOUCH and WIDTH parameters have a geometrical interpretation; imagine
+looking through a window at someone gently holding a finger against the
+glass. You will see two regions, one inner region consisting of the part
+of the finger actually touching the glass, and one outer region formed by
+the perimeter of the finger. The center of the touching region (a) is
+ABS_MT_POSITION_X/Y and the center of the approaching finger (b) is
+ABS_MT_TOOL_X/Y. The touch diameter is ABS_MT_TOUCH_MAJOR and the finger
+diameter is ABS_MT_WIDTH_MAJOR. Now imagine the person pressing the finger
+harder against the glass. The touch region will increase, and in general,
+the ratio ABS_MT_TOUCH_MAJOR / ABS_MT_WIDTH_MAJOR, which is always smaller
+than unity, is related to the contact pressure. For pressure-based devices,
+ABS_MT_PRESSURE may be used to provide the pressure on the contact area
+instead. Devices capable of contact hovering can use ABS_MT_DISTANCE to
+indicate the distance between the contact and the surface.
+
+::
+
+
+ Linux MT Win8
+ __________ _______________________
+ / \ | |
+ / \ | |
+ / ____ \ | |
+ / / \ \ | |
+ \ \ a \ \ | a |
+ \ \____/ \ | |
+ \ \ | |
+ \ b \ | b |
+ \ \ | |
+ \ \ | |
+ \ \ | |
+ \ / | |
+ \ / | |
+ \ / | |
+ \__________/ |_______________________|
+
+
+In addition to the MAJOR parameters, the oval shape of the touch and finger
+regions can be described by adding the MINOR parameters, such that MAJOR
+and MINOR are the major and minor axis of an ellipse. The orientation of
+the touch ellipse can be described with the ORIENTATION parameter, and the
+direction of the finger ellipse is given by the vector (a - b).
+
+For type A devices, further specification of the touch shape is possible
+via ABS_MT_BLOB_ID.
+
+The ABS_MT_TOOL_TYPE may be used to specify whether the touching tool is a
+finger or a pen or something else. Finally, the ABS_MT_TRACKING_ID event
+may be used to track identified contacts over time [#f5]_.
+
+In the type B protocol, ABS_MT_TOOL_TYPE and ABS_MT_TRACKING_ID are
+implicitly handled by input core; drivers should instead call
+input_mt_report_slot_state().
+
+
+Event Semantics
+---------------
+
+ABS_MT_TOUCH_MAJOR
+ The length of the major axis of the contact. The length should be given in
+ surface units. If the surface has an X times Y resolution, the largest
+ possible value of ABS_MT_TOUCH_MAJOR is sqrt(X^2 + Y^2), the diagonal [#f4]_.
+
+ABS_MT_TOUCH_MINOR
+ The length, in surface units, of the minor axis of the contact. If the
+ contact is circular, this event can be omitted [#f4]_.
+
+ABS_MT_WIDTH_MAJOR
+ The length, in surface units, of the major axis of the approaching
+ tool. This should be understood as the size of the tool itself. The
+ orientation of the contact and the approaching tool are assumed to be the
+ same [#f4]_.
+
+ABS_MT_WIDTH_MINOR
+ The length, in surface units, of the minor axis of the approaching
+ tool. Omit if circular [#f4]_.
+
+ The above four values can be used to derive additional information about
+ the contact. The ratio ABS_MT_TOUCH_MAJOR / ABS_MT_WIDTH_MAJOR approximates
+ the notion of pressure. The fingers of the hand and the palm all have
+ different characteristic widths.
+
+ABS_MT_PRESSURE
+ The pressure, in arbitrary units, on the contact area. May be used instead
+ of TOUCH and WIDTH for pressure-based devices or any device with a spatial
+ signal intensity distribution.
+
+ABS_MT_DISTANCE
+ The distance, in surface units, between the contact and the surface. Zero
+ distance means the contact is touching the surface. A positive number means
+ the contact is hovering above the surface.
+
+ABS_MT_ORIENTATION
+ The orientation of the touching ellipse. The value should describe a signed
+ quarter of a revolution clockwise around the touch center. The signed value
+ range is arbitrary, but zero should be returned for an ellipse aligned with
+ the Y axis (north) of the surface, a negative value when the ellipse is
+ turned to the left, and a positive value when the ellipse is turned to the
+ right. When aligned with the X axis in the positive direction, the range
+ max should be returned; when aligned with the X axis in the negative
+ direction, the range -max should be returned.
+
+ Touch ellipsis are symmetrical by default. For devices capable of true 360
+ degree orientation, the reported orientation must exceed the range max to
+ indicate more than a quarter of a revolution. For an upside-down finger,
+ range max * 2 should be returned.
+
+ Orientation can be omitted if the touch area is circular, or if the
+ information is not available in the kernel driver. Partial orientation
+ support is possible if the device can distinguish between the two axis, but
+ not (uniquely) any values in between. In such cases, the range of
+ ABS_MT_ORIENTATION should be [0, 1] [#f4]_.
+
+ABS_MT_POSITION_X
+ The surface X coordinate of the center of the touching ellipse.
+
+ABS_MT_POSITION_Y
+ The surface Y coordinate of the center of the touching ellipse.
+
+ABS_MT_TOOL_X
+ The surface X coordinate of the center of the approaching tool. Omit if
+ the device cannot distinguish between the intended touch point and the
+ tool itself.
+
+ABS_MT_TOOL_Y
+ The surface Y coordinate of the center of the approaching tool. Omit if the
+ device cannot distinguish between the intended touch point and the tool
+ itself.
+
+ The four position values can be used to separate the position of the touch
+ from the position of the tool. If both positions are present, the major
+ tool axis points towards the touch point [#f1]_. Otherwise, the tool axes are
+ aligned with the touch axes.
+
+ABS_MT_TOOL_TYPE
+ The type of approaching tool. A lot of kernel drivers cannot distinguish
+ between different tool types, such as a finger or a pen. In such cases, the
+ event should be omitted. The protocol currently mainly supports
+ MT_TOOL_FINGER, MT_TOOL_PEN, and MT_TOOL_PALM [#f2]_.
+ For type B devices, this event is handled by input core; drivers should
+ instead use input_mt_report_slot_state(). A contact's ABS_MT_TOOL_TYPE may
+ change over time while still touching the device, because the firmware may
+ not be able to determine which tool is being used when it first appears.
+
+ABS_MT_BLOB_ID
+ The BLOB_ID groups several packets together into one arbitrarily shaped
+ contact. The sequence of points forms a polygon which defines the shape of
+ the contact. This is a low-level anonymous grouping for type A devices, and
+ should not be confused with the high-level trackingID [#f5]_. Most type A
+ devices do not have blob capability, so drivers can safely omit this event.
+
+ABS_MT_TRACKING_ID
+ The TRACKING_ID identifies an initiated contact throughout its life cycle
+ [#f5]_. The value range of the TRACKING_ID should be large enough to ensure
+ unique identification of a contact maintained over an extended period of
+ time. For type B devices, this event is handled by input core; drivers
+ should instead use input_mt_report_slot_state().
+
+
+Event Computation
+-----------------
+
+The flora of different hardware unavoidably leads to some devices fitting
+better to the MT protocol than others. To simplify and unify the mapping,
+this section gives recipes for how to compute certain events.
+
+For devices reporting contacts as rectangular shapes, signed orientation
+cannot be obtained. Assuming X and Y are the lengths of the sides of the
+touching rectangle, here is a simple formula that retains the most
+information possible::
+
+ ABS_MT_TOUCH_MAJOR := max(X, Y)
+ ABS_MT_TOUCH_MINOR := min(X, Y)
+ ABS_MT_ORIENTATION := bool(X > Y)
+
+The range of ABS_MT_ORIENTATION should be set to [0, 1], to indicate that
+the device can distinguish between a finger along the Y axis (0) and a
+finger along the X axis (1).
+
+For win8 devices with both T and C coordinates, the position mapping is::
+
+ ABS_MT_POSITION_X := T_X
+ ABS_MT_POSITION_Y := T_Y
+ ABS_MT_TOOL_X := C_X
+ ABS_MT_TOOL_Y := C_Y
+
+Unfortunately, there is not enough information to specify both the touching
+ellipse and the tool ellipse, so one has to resort to approximations. One
+simple scheme, which is compatible with earlier usage, is::
+
+ ABS_MT_TOUCH_MAJOR := min(X, Y)
+ ABS_MT_TOUCH_MINOR := <not used>
+ ABS_MT_ORIENTATION := <not used>
+ ABS_MT_WIDTH_MAJOR := min(X, Y) + distance(T, C)
+ ABS_MT_WIDTH_MINOR := min(X, Y)
+
+Rationale: We have no information about the orientation of the touching
+ellipse, so approximate it with an inscribed circle instead. The tool
+ellipse should align with the vector (T - C), so the diameter must
+increase with distance(T, C). Finally, assume that the touch diameter is
+equal to the tool thickness, and we arrive at the formulas above.
+
+Finger Tracking
+---------------
+
+The process of finger tracking, i.e., to assign a unique trackingID to each
+initiated contact on the surface, is a Euclidian Bipartite Matching
+problem. At each event synchronization, the set of actual contacts is
+matched to the set of contacts from the previous synchronization. A full
+implementation can be found in [#f3]_.
+
+
+Gestures
+--------
+
+In the specific application of creating gesture events, the TOUCH and WIDTH
+parameters can be used to, e.g., approximate finger pressure or distinguish
+between index finger and thumb. With the addition of the MINOR parameters,
+one can also distinguish between a sweeping finger and a pointing finger,
+and with ORIENTATION, one can detect twisting of fingers.
+
+
+Notes
+-----
+
+In order to stay compatible with existing applications, the data reported
+in a finger packet must not be recognized as single-touch events.
+
+For type A devices, all finger data bypasses input filtering, since
+subsequent events of the same type refer to different fingers.
+
+.. [#f1] Also, the difference (TOOL_X - POSITION_X) can be used to model tilt.
+.. [#f2] The list can of course be extended.
+.. [#f3] The mtdev project: http://bitmath.org/code/mtdev/.
+.. [#f4] See the section on event computation.
+.. [#f5] See the section on finger tracking.