summaryrefslogtreecommitdiffstats
path: root/Documentation/locking/mutex-design.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/locking/mutex-design.rst')
-rw-r--r--Documentation/locking/mutex-design.rst152
1 files changed, 152 insertions, 0 deletions
diff --git a/Documentation/locking/mutex-design.rst b/Documentation/locking/mutex-design.rst
new file mode 100644
index 000000000..78540cd7f
--- /dev/null
+++ b/Documentation/locking/mutex-design.rst
@@ -0,0 +1,152 @@
+=======================
+Generic Mutex Subsystem
+=======================
+
+started by Ingo Molnar <mingo@redhat.com>
+
+updated by Davidlohr Bueso <davidlohr@hp.com>
+
+What are mutexes?
+-----------------
+
+In the Linux kernel, mutexes refer to a particular locking primitive
+that enforces serialization on shared memory systems, and not only to
+the generic term referring to 'mutual exclusion' found in academia
+or similar theoretical text books. Mutexes are sleeping locks which
+behave similarly to binary semaphores, and were introduced in 2006[1]
+as an alternative to these. This new data structure provided a number
+of advantages, including simpler interfaces, and at that time smaller
+code (see Disadvantages).
+
+[1] https://lwn.net/Articles/164802/
+
+Implementation
+--------------
+
+Mutexes are represented by 'struct mutex', defined in include/linux/mutex.h
+and implemented in kernel/locking/mutex.c. These locks use an atomic variable
+(->owner) to keep track of the lock state during its lifetime. Field owner
+actually contains `struct task_struct *` to the current lock owner and it is
+therefore NULL if not currently owned. Since task_struct pointers are aligned
+to at least L1_CACHE_BYTES, low bits (3) are used to store extra state (e.g.,
+if waiter list is non-empty). In its most basic form it also includes a
+wait-queue and a spinlock that serializes access to it. Furthermore,
+CONFIG_MUTEX_SPIN_ON_OWNER=y systems use a spinner MCS lock (->osq), described
+below in (ii).
+
+When acquiring a mutex, there are three possible paths that can be
+taken, depending on the state of the lock:
+
+(i) fastpath: tries to atomically acquire the lock by cmpxchg()ing the owner with
+ the current task. This only works in the uncontended case (cmpxchg() checks
+ against 0UL, so all 3 state bits above have to be 0). If the lock is
+ contended it goes to the next possible path.
+
+(ii) midpath: aka optimistic spinning, tries to spin for acquisition
+ while the lock owner is running and there are no other tasks ready
+ to run that have higher priority (need_resched). The rationale is
+ that if the lock owner is running, it is likely to release the lock
+ soon. The mutex spinners are queued up using MCS lock so that only
+ one spinner can compete for the mutex.
+
+ The MCS lock (proposed by Mellor-Crummey and Scott) is a simple spinlock
+ with the desirable properties of being fair and with each cpu trying
+ to acquire the lock spinning on a local variable. It avoids expensive
+ cacheline bouncing that common test-and-set spinlock implementations
+ incur. An MCS-like lock is specially tailored for optimistic spinning
+ for sleeping lock implementation. An important feature of the customized
+ MCS lock is that it has the extra property that spinners are able to exit
+ the MCS spinlock queue when they need to reschedule. This further helps
+ avoid situations where MCS spinners that need to reschedule would continue
+ waiting to spin on mutex owner, only to go directly to slowpath upon
+ obtaining the MCS lock.
+
+
+(iii) slowpath: last resort, if the lock is still unable to be acquired,
+ the task is added to the wait-queue and sleeps until woken up by the
+ unlock path. Under normal circumstances it blocks as TASK_UNINTERRUPTIBLE.
+
+While formally kernel mutexes are sleepable locks, it is path (ii) that
+makes them more practically a hybrid type. By simply not interrupting a
+task and busy-waiting for a few cycles instead of immediately sleeping,
+the performance of this lock has been seen to significantly improve a
+number of workloads. Note that this technique is also used for rw-semaphores.
+
+Semantics
+---------
+
+The mutex subsystem checks and enforces the following rules:
+
+ - Only one task can hold the mutex at a time.
+ - Only the owner can unlock the mutex.
+ - Multiple unlocks are not permitted.
+ - Recursive locking/unlocking is not permitted.
+ - A mutex must only be initialized via the API (see below).
+ - A task may not exit with a mutex held.
+ - Memory areas where held locks reside must not be freed.
+ - Held mutexes must not be reinitialized.
+ - Mutexes may not be used in hardware or software interrupt
+ contexts such as tasklets and timers.
+
+These semantics are fully enforced when CONFIG DEBUG_MUTEXES is enabled.
+In addition, the mutex debugging code also implements a number of other
+features that make lock debugging easier and faster:
+
+ - Uses symbolic names of mutexes, whenever they are printed
+ in debug output.
+ - Point-of-acquire tracking, symbolic lookup of function names,
+ list of all locks held in the system, printout of them.
+ - Owner tracking.
+ - Detects self-recursing locks and prints out all relevant info.
+ - Detects multi-task circular deadlocks and prints out all affected
+ locks and tasks (and only those tasks).
+
+
+Interfaces
+----------
+Statically define the mutex::
+
+ DEFINE_MUTEX(name);
+
+Dynamically initialize the mutex::
+
+ mutex_init(mutex);
+
+Acquire the mutex, uninterruptible::
+
+ void mutex_lock(struct mutex *lock);
+ void mutex_lock_nested(struct mutex *lock, unsigned int subclass);
+ int mutex_trylock(struct mutex *lock);
+
+Acquire the mutex, interruptible::
+
+ int mutex_lock_interruptible_nested(struct mutex *lock,
+ unsigned int subclass);
+ int mutex_lock_interruptible(struct mutex *lock);
+
+Acquire the mutex, interruptible, if dec to 0::
+
+ int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);
+
+Unlock the mutex::
+
+ void mutex_unlock(struct mutex *lock);
+
+Test if the mutex is taken::
+
+ int mutex_is_locked(struct mutex *lock);
+
+Disadvantages
+-------------
+
+Unlike its original design and purpose, 'struct mutex' is among the largest
+locks in the kernel. E.g: on x86-64 it is 32 bytes, where 'struct semaphore'
+is 24 bytes and rw_semaphore is 40 bytes. Larger structure sizes mean more CPU
+cache and memory footprint.
+
+When to use mutexes
+-------------------
+
+Unless the strict semantics of mutexes are unsuitable and/or the critical
+region prevents the lock from being shared, always prefer them to any other
+locking primitive.