diff options
Diffstat (limited to 'Documentation/networking/dsa/sja1105.rst')
-rw-r--r-- | Documentation/networking/dsa/sja1105.rst | 581 |
1 files changed, 581 insertions, 0 deletions
diff --git a/Documentation/networking/dsa/sja1105.rst b/Documentation/networking/dsa/sja1105.rst new file mode 100644 index 000000000..7395a33ba --- /dev/null +++ b/Documentation/networking/dsa/sja1105.rst @@ -0,0 +1,581 @@ +========================= +NXP SJA1105 switch driver +========================= + +Overview +======== + +The NXP SJA1105 is a family of 6 devices: + +- SJA1105E: First generation, no TTEthernet +- SJA1105T: First generation, TTEthernet +- SJA1105P: Second generation, no TTEthernet, no SGMII +- SJA1105Q: Second generation, TTEthernet, no SGMII +- SJA1105R: Second generation, no TTEthernet, SGMII +- SJA1105S: Second generation, TTEthernet, SGMII + +These are SPI-managed automotive switches, with all ports being gigabit +capable, and supporting MII/RMII/RGMII and optionally SGMII on one port. + +Being automotive parts, their configuration interface is geared towards +set-and-forget use, with minimal dynamic interaction at runtime. They +require a static configuration to be composed by software and packed +with CRC and table headers, and sent over SPI. + +The static configuration is composed of several configuration tables. Each +table takes a number of entries. Some configuration tables can be (partially) +reconfigured at runtime, some not. Some tables are mandatory, some not: + +============================= ================== ============================= +Table Mandatory Reconfigurable +============================= ================== ============================= +Schedule no no +Schedule entry points if Scheduling no +VL Lookup no no +VL Policing if VL Lookup no +VL Forwarding if VL Lookup no +L2 Lookup no no +L2 Policing yes no +VLAN Lookup yes yes +L2 Forwarding yes partially (fully on P/Q/R/S) +MAC Config yes partially (fully on P/Q/R/S) +Schedule Params if Scheduling no +Schedule Entry Points Params if Scheduling no +VL Forwarding Params if VL Forwarding no +L2 Lookup Params no partially (fully on P/Q/R/S) +L2 Forwarding Params yes no +Clock Sync Params no no +AVB Params no no +General Params yes partially +Retagging no yes +xMII Params yes no +SGMII no yes +============================= ================== ============================= + + +Also the configuration is write-only (software cannot read it back from the +switch except for very few exceptions). + +The driver creates a static configuration at probe time, and keeps it at +all times in memory, as a shadow for the hardware state. When required to +change a hardware setting, the static configuration is also updated. +If that changed setting can be transmitted to the switch through the dynamic +reconfiguration interface, it is; otherwise the switch is reset and +reprogrammed with the updated static configuration. + +Traffic support +=============== + +The switches do not have hardware support for DSA tags, except for "slow +protocols" for switch control as STP and PTP. For these, the switches have two +programmable filters for link-local destination MACs. +These are used to trap BPDUs and PTP traffic to the master netdevice, and are +further used to support STP and 1588 ordinary clock/boundary clock +functionality. For frames trapped to the CPU, source port and switch ID +information is encoded by the hardware into the frames. + +But by leveraging ``CONFIG_NET_DSA_TAG_8021Q`` (a software-defined DSA tagging +format based on VLANs), general-purpose traffic termination through the network +stack can be supported under certain circumstances. + +Depending on VLAN awareness state, the following operating modes are possible +with the switch: + +- Mode 1 (VLAN-unaware): a port is in this mode when it is used as a standalone + net device, or when it is enslaved to a bridge with ``vlan_filtering=0``. +- Mode 2 (fully VLAN-aware): a port is in this mode when it is enslaved to a + bridge with ``vlan_filtering=1``. Access to the entire VLAN range is given to + the user through ``bridge vlan`` commands, but general-purpose (anything + other than STP, PTP etc) traffic termination is not possible through the + switch net devices. The other packets can be still by user space processed + through the DSA master interface (similar to ``DSA_TAG_PROTO_NONE``). +- Mode 3 (best-effort VLAN-aware): a port is in this mode when enslaved to a + bridge with ``vlan_filtering=1``, and the devlink property of its parent + switch named ``best_effort_vlan_filtering`` is set to ``true``. When + configured like this, the range of usable VIDs is reduced (0 to 1023 and 3072 + to 4094), so is the number of usable VIDs (maximum of 7 non-pvid VLANs per + port*), and shared VLAN learning is performed (FDB lookup is done only by + DMAC, not also by VID). + +To summarize, in each mode, the following types of traffic are supported over +the switch net devices: + ++-------------+-----------+--------------+------------+ +| | Mode 1 | Mode 2 | Mode 3 | ++=============+===========+==============+============+ +| Regular | Yes | No | Yes | +| traffic | | (use master) | | ++-------------+-----------+--------------+------------+ +| Management | Yes | Yes | Yes | +| traffic | | | | +| (BPDU, PTP) | | | | ++-------------+-----------+--------------+------------+ + +To configure the switch to operate in Mode 3, the following steps can be +followed:: + + ip link add dev br0 type bridge + # swp2 operates in Mode 1 now + ip link set dev swp2 master br0 + # swp2 temporarily moves to Mode 2 + ip link set dev br0 type bridge vlan_filtering 1 + [ 61.204770] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering + [ 61.239944] sja1105 spi0.1: Disabled switch tagging + # swp3 now operates in Mode 3 + devlink dev param set spi/spi0.1 name best_effort_vlan_filtering value true cmode runtime + [ 64.682927] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering + [ 64.711925] sja1105 spi0.1: Enabled switch tagging + # Cannot use VLANs in range 1024-3071 while in Mode 3. + bridge vlan add dev swp2 vid 1025 untagged pvid + RTNETLINK answers: Operation not permitted + bridge vlan add dev swp2 vid 100 + bridge vlan add dev swp2 vid 101 untagged + bridge vlan + port vlan ids + swp5 1 PVID Egress Untagged + + swp2 1 PVID Egress Untagged + 100 + 101 Egress Untagged + + swp3 1 PVID Egress Untagged + + swp4 1 PVID Egress Untagged + + br0 1 PVID Egress Untagged + bridge vlan add dev swp2 vid 102 + bridge vlan add dev swp2 vid 103 + bridge vlan add dev swp2 vid 104 + bridge vlan add dev swp2 vid 105 + bridge vlan add dev swp2 vid 106 + bridge vlan add dev swp2 vid 107 + # Cannot use mode than 7 VLANs per port while in Mode 3. + [ 3885.216832] sja1105 spi0.1: No more free subvlans + +\* "maximum of 7 non-pvid VLANs per port": Decoding VLAN-tagged packets on the +CPU in mode 3 is possible through VLAN retagging of packets that go from the +switch to the CPU. In cross-chip topologies, the port that goes to the CPU +might also go to other switches. In that case, those other switches will see +only a retagged packet (which only has meaning for the CPU). So if they are +interested in this VLAN, they need to apply retagging in the reverse direction, +to recover the original value from it. This consumes extra hardware resources +for this switch. There is a maximum of 32 entries in the Retagging Table of +each switch device. + +As an example, consider this cross-chip topology:: + + +-------------------------------------------------+ + | Host SoC | + | +-------------------------+ | + | | DSA master for embedded | | + | | switch (non-sja1105) | | + | +--------+-------------------------+--------+ | + | | embedded L2 switch | | + | | | | + | | +--------------+ +--------------+ | | + | | |DSA master for| |DSA master for| | | + | | | SJA1105 1 | | SJA1105 2 | | | + +--+---+--------------+-----+--------------+---+--+ + + +-----------------------+ +-----------------------+ + | SJA1105 switch 1 | | SJA1105 switch 2 | + +-----+-----+-----+-----+ +-----+-----+-----+-----+ + |sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3| + +-----+-----+-----+-----+ +-----+-----+-----+-----+ + +To reach the CPU, SJA1105 switch 1 (spi/spi2.1) uses the same port as is uses +to reach SJA1105 switch 2 (spi/spi2.2), which would be port 4 (not drawn). +Similarly for SJA1105 switch 2. + +Also consider the following commands, that add VLAN 100 to every sja1105 user +port:: + + devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value true cmode runtime + devlink dev param set spi/spi2.2 name best_effort_vlan_filtering value true cmode runtime + ip link add dev br0 type bridge + for port in sw1p0 sw1p1 sw1p2 sw1p3 \ + sw2p0 sw2p1 sw2p2 sw2p3; do + ip link set dev $port master br0 + done + ip link set dev br0 type bridge vlan_filtering 1 + for port in sw1p0 sw1p1 sw1p2 sw1p3 \ + sw2p0 sw2p1 sw2p2; do + bridge vlan add dev $port vid 100 + done + ip link add link br0 name br0.100 type vlan id 100 && ip link set dev br0.100 up + ip addr add 192.168.100.3/24 dev br0.100 + bridge vlan add dev br0 vid 100 self + + bridge vlan + port vlan ids + sw1p0 1 PVID Egress Untagged + 100 + + sw1p1 1 PVID Egress Untagged + 100 + + sw1p2 1 PVID Egress Untagged + 100 + + sw1p3 1 PVID Egress Untagged + 100 + + sw2p0 1 PVID Egress Untagged + 100 + + sw2p1 1 PVID Egress Untagged + 100 + + sw2p2 1 PVID Egress Untagged + 100 + + sw2p3 1 PVID Egress Untagged + + br0 1 PVID Egress Untagged + 100 + +SJA1105 switch 1 consumes 1 retagging entry for each VLAN on each user port +towards the CPU. It also consumes 1 retagging entry for each non-pvid VLAN that +it is also interested in, which is configured on any port of any neighbor +switch. + +In this case, SJA1105 switch 1 consumes a total of 11 retagging entries, as +follows: + +- 8 retagging entries for VLANs 1 and 100 installed on its user ports + (``sw1p0`` - ``sw1p3``) +- 3 retagging entries for VLAN 100 installed on the user ports of SJA1105 + switch 2 (``sw2p0`` - ``sw2p2``), because it also has ports that are + interested in it. The VLAN 1 is a pvid on SJA1105 switch 2 and does not need + reverse retagging. + +SJA1105 switch 2 also consumes 11 retagging entries, but organized as follows: + +- 7 retagging entries for the bridge VLANs on its user ports (``sw2p0`` - + ``sw2p3``). +- 4 retagging entries for VLAN 100 installed on the user ports of SJA1105 + switch 1 (``sw1p0`` - ``sw1p3``). + +Switching features +================== + +The driver supports the configuration of L2 forwarding rules in hardware for +port bridging. The forwarding, broadcast and flooding domain between ports can +be restricted through two methods: either at the L2 forwarding level (isolate +one bridge's ports from another's) or at the VLAN port membership level +(isolate ports within the same bridge). The final forwarding decision taken by +the hardware is a logical AND of these two sets of rules. + +The hardware tags all traffic internally with a port-based VLAN (pvid), or it +decodes the VLAN information from the 802.1Q tag. Advanced VLAN classification +is not possible. Once attributed a VLAN tag, frames are checked against the +port's membership rules and dropped at ingress if they don't match any VLAN. +This behavior is available when switch ports are enslaved to a bridge with +``vlan_filtering 1``. + +Normally the hardware is not configurable with respect to VLAN awareness, but +by changing what TPID the switch searches 802.1Q tags for, the semantics of a +bridge with ``vlan_filtering 0`` can be kept (accept all traffic, tagged or +untagged), and therefore this mode is also supported. + +Segregating the switch ports in multiple bridges is supported (e.g. 2 + 2), but +all bridges should have the same level of VLAN awareness (either both have +``vlan_filtering`` 0, or both 1). Also an inevitable limitation of the fact +that VLAN awareness is global at the switch level is that once a bridge with +``vlan_filtering`` enslaves at least one switch port, the other un-bridged +ports are no longer available for standalone traffic termination. + +Topology and loop detection through STP is supported. + +L2 FDB manipulation (add/delete/dump) is currently possible for the first +generation devices. Aging time of FDB entries, as well as enabling fully static +management (no address learning and no flooding of unknown traffic) is not yet +configurable in the driver. + +A special comment about bridging with other netdevices (illustrated with an +example): + +A board has eth0, eth1, swp0@eth1, swp1@eth1, swp2@eth1, swp3@eth1. +The switch ports (swp0-3) are under br0. +It is desired that eth0 is turned into another switched port that communicates +with swp0-3. + +If br0 has vlan_filtering 0, then eth0 can simply be added to br0 with the +intended results. +If br0 has vlan_filtering 1, then a new br1 interface needs to be created that +enslaves eth0 and eth1 (the DSA master of the switch ports). This is because in +this mode, the switch ports beneath br0 are not capable of regular traffic, and +are only used as a conduit for switchdev operations. + +Offloads +======== + +Time-aware scheduling +--------------------- + +The switch supports a variation of the enhancements for scheduled traffic +specified in IEEE 802.1Q-2018 (formerly 802.1Qbv). This means it can be used to +ensure deterministic latency for priority traffic that is sent in-band with its +gate-open event in the network schedule. + +This capability can be managed through the tc-taprio offload ('flags 2'). The +difference compared to the software implementation of taprio is that the latter +would only be able to shape traffic originated from the CPU, but not +autonomously forwarded flows. + +The device has 8 traffic classes, and maps incoming frames to one of them based +on the VLAN PCP bits (if no VLAN is present, the port-based default is used). +As described in the previous sections, depending on the value of +``vlan_filtering``, the EtherType recognized by the switch as being VLAN can +either be the typical 0x8100 or a custom value used internally by the driver +for tagging. Therefore, the switch ignores the VLAN PCP if used in standalone +or bridge mode with ``vlan_filtering=0``, as it will not recognize the 0x8100 +EtherType. In these modes, injecting into a particular TX queue can only be +done by the DSA net devices, which populate the PCP field of the tagging header +on egress. Using ``vlan_filtering=1``, the behavior is the other way around: +offloaded flows can be steered to TX queues based on the VLAN PCP, but the DSA +net devices are no longer able to do that. To inject frames into a hardware TX +queue with VLAN awareness active, it is necessary to create a VLAN +sub-interface on the DSA master port, and send normal (0x8100) VLAN-tagged +towards the switch, with the VLAN PCP bits set appropriately. + +Management traffic (having DMAC 01-80-C2-xx-xx-xx or 01-19-1B-xx-xx-xx) is the +notable exception: the switch always treats it with a fixed priority and +disregards any VLAN PCP bits even if present. The traffic class for management +traffic has a value of 7 (highest priority) at the moment, which is not +configurable in the driver. + +Below is an example of configuring a 500 us cyclic schedule on egress port +``swp5``. The traffic class gate for management traffic (7) is open for 100 us, +and the gates for all other traffic classes are open for 400 us:: + + #!/bin/bash + + set -e -u -o pipefail + + NSEC_PER_SEC="1000000000" + + gatemask() { + local tc_list="$1" + local mask=0 + + for tc in ${tc_list}; do + mask=$((${mask} | (1 << ${tc}))) + done + + printf "%02x" ${mask} + } + + if ! systemctl is-active --quiet ptp4l; then + echo "Please start the ptp4l service" + exit + fi + + now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }') + # Phase-align the base time to the start of the next second. + sec=$(echo "${now}" | gawk -F. '{ print $1; }') + base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))" + + tc qdisc add dev swp5 parent root handle 100 taprio \ + num_tc 8 \ + map 0 1 2 3 5 6 7 \ + queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ + base-time ${base_time} \ + sched-entry S $(gatemask 7) 100000 \ + sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \ + flags 2 + +It is possible to apply the tc-taprio offload on multiple egress ports. There +are hardware restrictions related to the fact that no gate event may trigger +simultaneously on two ports. The driver checks the consistency of the schedules +against this restriction and errors out when appropriate. Schedule analysis is +needed to avoid this, which is outside the scope of the document. + +Routing actions (redirect, trap, drop) +-------------------------------------- + +The switch is able to offload flow-based redirection of packets to a set of +destination ports specified by the user. Internally, this is implemented by +making use of Virtual Links, a TTEthernet concept. + +The driver supports 2 types of keys for Virtual Links: + +- VLAN-aware virtual links: these match on destination MAC address, VLAN ID and + VLAN PCP. +- VLAN-unaware virtual links: these match on destination MAC address only. + +The VLAN awareness state of the bridge (vlan_filtering) cannot be changed while +there are virtual link rules installed. + +Composing multiple actions inside the same rule is supported. When only routing +actions are requested, the driver creates a "non-critical" virtual link. When +the action list also contains tc-gate (more details below), the virtual link +becomes "time-critical" (draws frame buffers from a reserved memory partition, +etc). + +The 3 routing actions that are supported are "trap", "drop" and "redirect". + +Example 1: send frames received on swp2 with a DA of 42:be:24:9b:76:20 to the +CPU and to swp3. This type of key (DA only) when the port's VLAN awareness +state is off:: + + tc qdisc add dev swp2 clsact + tc filter add dev swp2 ingress flower skip_sw dst_mac 42:be:24:9b:76:20 \ + action mirred egress redirect dev swp3 \ + action trap + +Example 2: drop frames received on swp2 with a DA of 42:be:24:9b:76:20, a VID +of 100 and a PCP of 0:: + + tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \ + dst_mac 42:be:24:9b:76:20 vlan_id 100 vlan_prio 0 action drop + +Time-based ingress policing +--------------------------- + +The TTEthernet hardware abilities of the switch can be constrained to act +similarly to the Per-Stream Filtering and Policing (PSFP) clause specified in +IEEE 802.1Q-2018 (formerly 802.1Qci). This means it can be used to perform +tight timing-based admission control for up to 1024 flows (identified by a +tuple composed of destination MAC address, VLAN ID and VLAN PCP). Packets which +are received outside their expected reception window are dropped. + +This capability can be managed through the offload of the tc-gate action. As +routing actions are intrinsic to virtual links in TTEthernet (which performs +explicit routing of time-critical traffic and does not leave that in the hands +of the FDB, flooding etc), the tc-gate action may never appear alone when +asking sja1105 to offload it. One (or more) redirect or trap actions must also +follow along. + +Example: create a tc-taprio schedule that is phase-aligned with a tc-gate +schedule (the clocks must be synchronized by a 1588 application stack, which is +outside the scope of this document). No packet delivered by the sender will be +dropped. Note that the reception window is larger than the transmission window +(and much more so, in this example) to compensate for the packet propagation +delay of the link (which can be determined by the 1588 application stack). + +Receiver (sja1105):: + + tc qdisc add dev swp2 clsact + now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \ + sec=$(echo $now | awk -F. '{print $1}') && \ + base_time="$(((sec + 2) * 1000000000))" && \ + echo "base time ${base_time}" + tc filter add dev swp2 ingress flower skip_sw \ + dst_mac 42:be:24:9b:76:20 \ + action gate base-time ${base_time} \ + sched-entry OPEN 60000 -1 -1 \ + sched-entry CLOSE 40000 -1 -1 \ + action trap + +Sender:: + + now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \ + sec=$(echo $now | awk -F. '{print $1}') && \ + base_time="$(((sec + 2) * 1000000000))" && \ + echo "base time ${base_time}" + tc qdisc add dev eno0 parent root taprio \ + num_tc 8 \ + map 0 1 2 3 4 5 6 7 \ + queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ + base-time ${base_time} \ + sched-entry S 01 50000 \ + sched-entry S 00 50000 \ + flags 2 + +The engine used to schedule the ingress gate operations is the same that the +one used for the tc-taprio offload. Therefore, the restrictions regarding the +fact that no two gate actions (either tc-gate or tc-taprio gates) may fire at +the same time (during the same 200 ns slot) still apply. + +To come in handy, it is possible to share time-triggered virtual links across +more than 1 ingress port, via flow blocks. In this case, the restriction of +firing at the same time does not apply because there is a single schedule in +the system, that of the shared virtual link:: + + tc qdisc add dev swp2 ingress_block 1 clsact + tc qdisc add dev swp3 ingress_block 1 clsact + tc filter add block 1 flower skip_sw dst_mac 42:be:24:9b:76:20 \ + action gate index 2 \ + base-time 0 \ + sched-entry OPEN 50000000 -1 -1 \ + sched-entry CLOSE 50000000 -1 -1 \ + action trap + +Hardware statistics for each flow are also available ("pkts" counts the number +of dropped frames, which is a sum of frames dropped due to timing violations, +lack of destination ports and MTU enforcement checks). Byte-level counters are +not available. + +Device Tree bindings and board design +===================================== + +This section references ``Documentation/devicetree/bindings/net/dsa/sja1105.txt`` +and aims to showcase some potential switch caveats. + +RMII PHY role and out-of-band signaling +--------------------------------------- + +In the RMII spec, the 50 MHz clock signals are either driven by the MAC or by +an external oscillator (but not by the PHY). +But the spec is rather loose and devices go outside it in several ways. +Some PHYs go against the spec and may provide an output pin where they source +the 50 MHz clock themselves, in an attempt to be helpful. +On the other hand, the SJA1105 is only binary configurable - when in the RMII +MAC role it will also attempt to drive the clock signal. To prevent this from +happening it must be put in RMII PHY role. +But doing so has some unintended consequences. +In the RMII spec, the PHY can transmit extra out-of-band signals via RXD[1:0]. +These are practically some extra code words (/J/ and /K/) sent prior to the +preamble of each frame. The MAC does not have this out-of-band signaling +mechanism defined by the RMII spec. +So when the SJA1105 port is put in PHY role to avoid having 2 drivers on the +clock signal, inevitably an RMII PHY-to-PHY connection is created. The SJA1105 +emulates a PHY interface fully and generates the /J/ and /K/ symbols prior to +frame preambles, which the real PHY is not expected to understand. So the PHY +simply encodes the extra symbols received from the SJA1105-as-PHY onto the +100Base-Tx wire. +On the other side of the wire, some link partners might discard these extra +symbols, while others might choke on them and discard the entire Ethernet +frames that follow along. This looks like packet loss with some link partners +but not with others. +The take-away is that in RMII mode, the SJA1105 must be let to drive the +reference clock if connected to a PHY. + +RGMII fixed-link and internal delays +------------------------------------ + +As mentioned in the bindings document, the second generation of devices has +tunable delay lines as part of the MAC, which can be used to establish the +correct RGMII timing budget. +When powered up, these can shift the Rx and Tx clocks with a phase difference +between 73.8 and 101.7 degrees. +The catch is that the delay lines need to lock onto a clock signal with a +stable frequency. This means that there must be at least 2 microseconds of +silence between the clock at the old vs at the new frequency. Otherwise the +lock is lost and the delay lines must be reset (powered down and back up). +In RGMII the clock frequency changes with link speed (125 MHz at 1000 Mbps, 25 +MHz at 100 Mbps and 2.5 MHz at 10 Mbps), and link speed might change during the +AN process. +In the situation where the switch port is connected through an RGMII fixed-link +to a link partner whose link state life cycle is outside the control of Linux +(such as a different SoC), then the delay lines would remain unlocked (and +inactive) until there is manual intervention (ifdown/ifup on the switch port). +The take-away is that in RGMII mode, the switch's internal delays are only +reliable if the link partner never changes link speeds, or if it does, it does +so in a way that is coordinated with the switch port (practically, both ends of +the fixed-link are under control of the same Linux system). +As to why would a fixed-link interface ever change link speeds: there are +Ethernet controllers out there which come out of reset in 100 Mbps mode, and +their driver inevitably needs to change the speed and clock frequency if it's +required to work at gigabit. + +MDIO bus and PHY management +--------------------------- + +The SJA1105 does not have an MDIO bus and does not perform in-band AN either. +Therefore there is no link state notification coming from the switch device. +A board would need to hook up the PHYs connected to the switch to any other +MDIO bus available to Linux within the system (e.g. to the DSA master's MDIO +bus). Link state management then works by the driver manually keeping in sync +(over SPI commands) the MAC link speed with the settings negotiated by the PHY. |