summaryrefslogtreecommitdiffstats
path: root/Documentation/networking/dsa/sja1105.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking/dsa/sja1105.rst')
-rw-r--r--Documentation/networking/dsa/sja1105.rst581
1 files changed, 581 insertions, 0 deletions
diff --git a/Documentation/networking/dsa/sja1105.rst b/Documentation/networking/dsa/sja1105.rst
new file mode 100644
index 000000000..7395a33ba
--- /dev/null
+++ b/Documentation/networking/dsa/sja1105.rst
@@ -0,0 +1,581 @@
+=========================
+NXP SJA1105 switch driver
+=========================
+
+Overview
+========
+
+The NXP SJA1105 is a family of 6 devices:
+
+- SJA1105E: First generation, no TTEthernet
+- SJA1105T: First generation, TTEthernet
+- SJA1105P: Second generation, no TTEthernet, no SGMII
+- SJA1105Q: Second generation, TTEthernet, no SGMII
+- SJA1105R: Second generation, no TTEthernet, SGMII
+- SJA1105S: Second generation, TTEthernet, SGMII
+
+These are SPI-managed automotive switches, with all ports being gigabit
+capable, and supporting MII/RMII/RGMII and optionally SGMII on one port.
+
+Being automotive parts, their configuration interface is geared towards
+set-and-forget use, with minimal dynamic interaction at runtime. They
+require a static configuration to be composed by software and packed
+with CRC and table headers, and sent over SPI.
+
+The static configuration is composed of several configuration tables. Each
+table takes a number of entries. Some configuration tables can be (partially)
+reconfigured at runtime, some not. Some tables are mandatory, some not:
+
+============================= ================== =============================
+Table Mandatory Reconfigurable
+============================= ================== =============================
+Schedule no no
+Schedule entry points if Scheduling no
+VL Lookup no no
+VL Policing if VL Lookup no
+VL Forwarding if VL Lookup no
+L2 Lookup no no
+L2 Policing yes no
+VLAN Lookup yes yes
+L2 Forwarding yes partially (fully on P/Q/R/S)
+MAC Config yes partially (fully on P/Q/R/S)
+Schedule Params if Scheduling no
+Schedule Entry Points Params if Scheduling no
+VL Forwarding Params if VL Forwarding no
+L2 Lookup Params no partially (fully on P/Q/R/S)
+L2 Forwarding Params yes no
+Clock Sync Params no no
+AVB Params no no
+General Params yes partially
+Retagging no yes
+xMII Params yes no
+SGMII no yes
+============================= ================== =============================
+
+
+Also the configuration is write-only (software cannot read it back from the
+switch except for very few exceptions).
+
+The driver creates a static configuration at probe time, and keeps it at
+all times in memory, as a shadow for the hardware state. When required to
+change a hardware setting, the static configuration is also updated.
+If that changed setting can be transmitted to the switch through the dynamic
+reconfiguration interface, it is; otherwise the switch is reset and
+reprogrammed with the updated static configuration.
+
+Traffic support
+===============
+
+The switches do not have hardware support for DSA tags, except for "slow
+protocols" for switch control as STP and PTP. For these, the switches have two
+programmable filters for link-local destination MACs.
+These are used to trap BPDUs and PTP traffic to the master netdevice, and are
+further used to support STP and 1588 ordinary clock/boundary clock
+functionality. For frames trapped to the CPU, source port and switch ID
+information is encoded by the hardware into the frames.
+
+But by leveraging ``CONFIG_NET_DSA_TAG_8021Q`` (a software-defined DSA tagging
+format based on VLANs), general-purpose traffic termination through the network
+stack can be supported under certain circumstances.
+
+Depending on VLAN awareness state, the following operating modes are possible
+with the switch:
+
+- Mode 1 (VLAN-unaware): a port is in this mode when it is used as a standalone
+ net device, or when it is enslaved to a bridge with ``vlan_filtering=0``.
+- Mode 2 (fully VLAN-aware): a port is in this mode when it is enslaved to a
+ bridge with ``vlan_filtering=1``. Access to the entire VLAN range is given to
+ the user through ``bridge vlan`` commands, but general-purpose (anything
+ other than STP, PTP etc) traffic termination is not possible through the
+ switch net devices. The other packets can be still by user space processed
+ through the DSA master interface (similar to ``DSA_TAG_PROTO_NONE``).
+- Mode 3 (best-effort VLAN-aware): a port is in this mode when enslaved to a
+ bridge with ``vlan_filtering=1``, and the devlink property of its parent
+ switch named ``best_effort_vlan_filtering`` is set to ``true``. When
+ configured like this, the range of usable VIDs is reduced (0 to 1023 and 3072
+ to 4094), so is the number of usable VIDs (maximum of 7 non-pvid VLANs per
+ port*), and shared VLAN learning is performed (FDB lookup is done only by
+ DMAC, not also by VID).
+
+To summarize, in each mode, the following types of traffic are supported over
+the switch net devices:
+
++-------------+-----------+--------------+------------+
+| | Mode 1 | Mode 2 | Mode 3 |
++=============+===========+==============+============+
+| Regular | Yes | No | Yes |
+| traffic | | (use master) | |
++-------------+-----------+--------------+------------+
+| Management | Yes | Yes | Yes |
+| traffic | | | |
+| (BPDU, PTP) | | | |
++-------------+-----------+--------------+------------+
+
+To configure the switch to operate in Mode 3, the following steps can be
+followed::
+
+ ip link add dev br0 type bridge
+ # swp2 operates in Mode 1 now
+ ip link set dev swp2 master br0
+ # swp2 temporarily moves to Mode 2
+ ip link set dev br0 type bridge vlan_filtering 1
+ [ 61.204770] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
+ [ 61.239944] sja1105 spi0.1: Disabled switch tagging
+ # swp3 now operates in Mode 3
+ devlink dev param set spi/spi0.1 name best_effort_vlan_filtering value true cmode runtime
+ [ 64.682927] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
+ [ 64.711925] sja1105 spi0.1: Enabled switch tagging
+ # Cannot use VLANs in range 1024-3071 while in Mode 3.
+ bridge vlan add dev swp2 vid 1025 untagged pvid
+ RTNETLINK answers: Operation not permitted
+ bridge vlan add dev swp2 vid 100
+ bridge vlan add dev swp2 vid 101 untagged
+ bridge vlan
+ port vlan ids
+ swp5 1 PVID Egress Untagged
+
+ swp2 1 PVID Egress Untagged
+ 100
+ 101 Egress Untagged
+
+ swp3 1 PVID Egress Untagged
+
+ swp4 1 PVID Egress Untagged
+
+ br0 1 PVID Egress Untagged
+ bridge vlan add dev swp2 vid 102
+ bridge vlan add dev swp2 vid 103
+ bridge vlan add dev swp2 vid 104
+ bridge vlan add dev swp2 vid 105
+ bridge vlan add dev swp2 vid 106
+ bridge vlan add dev swp2 vid 107
+ # Cannot use mode than 7 VLANs per port while in Mode 3.
+ [ 3885.216832] sja1105 spi0.1: No more free subvlans
+
+\* "maximum of 7 non-pvid VLANs per port": Decoding VLAN-tagged packets on the
+CPU in mode 3 is possible through VLAN retagging of packets that go from the
+switch to the CPU. In cross-chip topologies, the port that goes to the CPU
+might also go to other switches. In that case, those other switches will see
+only a retagged packet (which only has meaning for the CPU). So if they are
+interested in this VLAN, they need to apply retagging in the reverse direction,
+to recover the original value from it. This consumes extra hardware resources
+for this switch. There is a maximum of 32 entries in the Retagging Table of
+each switch device.
+
+As an example, consider this cross-chip topology::
+
+ +-------------------------------------------------+
+ | Host SoC |
+ | +-------------------------+ |
+ | | DSA master for embedded | |
+ | | switch (non-sja1105) | |
+ | +--------+-------------------------+--------+ |
+ | | embedded L2 switch | |
+ | | | |
+ | | +--------------+ +--------------+ | |
+ | | |DSA master for| |DSA master for| | |
+ | | | SJA1105 1 | | SJA1105 2 | | |
+ +--+---+--------------+-----+--------------+---+--+
+
+ +-----------------------+ +-----------------------+
+ | SJA1105 switch 1 | | SJA1105 switch 2 |
+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
+ |sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3|
+ +-----+-----+-----+-----+ +-----+-----+-----+-----+
+
+To reach the CPU, SJA1105 switch 1 (spi/spi2.1) uses the same port as is uses
+to reach SJA1105 switch 2 (spi/spi2.2), which would be port 4 (not drawn).
+Similarly for SJA1105 switch 2.
+
+Also consider the following commands, that add VLAN 100 to every sja1105 user
+port::
+
+ devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value true cmode runtime
+ devlink dev param set spi/spi2.2 name best_effort_vlan_filtering value true cmode runtime
+ ip link add dev br0 type bridge
+ for port in sw1p0 sw1p1 sw1p2 sw1p3 \
+ sw2p0 sw2p1 sw2p2 sw2p3; do
+ ip link set dev $port master br0
+ done
+ ip link set dev br0 type bridge vlan_filtering 1
+ for port in sw1p0 sw1p1 sw1p2 sw1p3 \
+ sw2p0 sw2p1 sw2p2; do
+ bridge vlan add dev $port vid 100
+ done
+ ip link add link br0 name br0.100 type vlan id 100 && ip link set dev br0.100 up
+ ip addr add 192.168.100.3/24 dev br0.100
+ bridge vlan add dev br0 vid 100 self
+
+ bridge vlan
+ port vlan ids
+ sw1p0 1 PVID Egress Untagged
+ 100
+
+ sw1p1 1 PVID Egress Untagged
+ 100
+
+ sw1p2 1 PVID Egress Untagged
+ 100
+
+ sw1p3 1 PVID Egress Untagged
+ 100
+
+ sw2p0 1 PVID Egress Untagged
+ 100
+
+ sw2p1 1 PVID Egress Untagged
+ 100
+
+ sw2p2 1 PVID Egress Untagged
+ 100
+
+ sw2p3 1 PVID Egress Untagged
+
+ br0 1 PVID Egress Untagged
+ 100
+
+SJA1105 switch 1 consumes 1 retagging entry for each VLAN on each user port
+towards the CPU. It also consumes 1 retagging entry for each non-pvid VLAN that
+it is also interested in, which is configured on any port of any neighbor
+switch.
+
+In this case, SJA1105 switch 1 consumes a total of 11 retagging entries, as
+follows:
+
+- 8 retagging entries for VLANs 1 and 100 installed on its user ports
+ (``sw1p0`` - ``sw1p3``)
+- 3 retagging entries for VLAN 100 installed on the user ports of SJA1105
+ switch 2 (``sw2p0`` - ``sw2p2``), because it also has ports that are
+ interested in it. The VLAN 1 is a pvid on SJA1105 switch 2 and does not need
+ reverse retagging.
+
+SJA1105 switch 2 also consumes 11 retagging entries, but organized as follows:
+
+- 7 retagging entries for the bridge VLANs on its user ports (``sw2p0`` -
+ ``sw2p3``).
+- 4 retagging entries for VLAN 100 installed on the user ports of SJA1105
+ switch 1 (``sw1p0`` - ``sw1p3``).
+
+Switching features
+==================
+
+The driver supports the configuration of L2 forwarding rules in hardware for
+port bridging. The forwarding, broadcast and flooding domain between ports can
+be restricted through two methods: either at the L2 forwarding level (isolate
+one bridge's ports from another's) or at the VLAN port membership level
+(isolate ports within the same bridge). The final forwarding decision taken by
+the hardware is a logical AND of these two sets of rules.
+
+The hardware tags all traffic internally with a port-based VLAN (pvid), or it
+decodes the VLAN information from the 802.1Q tag. Advanced VLAN classification
+is not possible. Once attributed a VLAN tag, frames are checked against the
+port's membership rules and dropped at ingress if they don't match any VLAN.
+This behavior is available when switch ports are enslaved to a bridge with
+``vlan_filtering 1``.
+
+Normally the hardware is not configurable with respect to VLAN awareness, but
+by changing what TPID the switch searches 802.1Q tags for, the semantics of a
+bridge with ``vlan_filtering 0`` can be kept (accept all traffic, tagged or
+untagged), and therefore this mode is also supported.
+
+Segregating the switch ports in multiple bridges is supported (e.g. 2 + 2), but
+all bridges should have the same level of VLAN awareness (either both have
+``vlan_filtering`` 0, or both 1). Also an inevitable limitation of the fact
+that VLAN awareness is global at the switch level is that once a bridge with
+``vlan_filtering`` enslaves at least one switch port, the other un-bridged
+ports are no longer available for standalone traffic termination.
+
+Topology and loop detection through STP is supported.
+
+L2 FDB manipulation (add/delete/dump) is currently possible for the first
+generation devices. Aging time of FDB entries, as well as enabling fully static
+management (no address learning and no flooding of unknown traffic) is not yet
+configurable in the driver.
+
+A special comment about bridging with other netdevices (illustrated with an
+example):
+
+A board has eth0, eth1, swp0@eth1, swp1@eth1, swp2@eth1, swp3@eth1.
+The switch ports (swp0-3) are under br0.
+It is desired that eth0 is turned into another switched port that communicates
+with swp0-3.
+
+If br0 has vlan_filtering 0, then eth0 can simply be added to br0 with the
+intended results.
+If br0 has vlan_filtering 1, then a new br1 interface needs to be created that
+enslaves eth0 and eth1 (the DSA master of the switch ports). This is because in
+this mode, the switch ports beneath br0 are not capable of regular traffic, and
+are only used as a conduit for switchdev operations.
+
+Offloads
+========
+
+Time-aware scheduling
+---------------------
+
+The switch supports a variation of the enhancements for scheduled traffic
+specified in IEEE 802.1Q-2018 (formerly 802.1Qbv). This means it can be used to
+ensure deterministic latency for priority traffic that is sent in-band with its
+gate-open event in the network schedule.
+
+This capability can be managed through the tc-taprio offload ('flags 2'). The
+difference compared to the software implementation of taprio is that the latter
+would only be able to shape traffic originated from the CPU, but not
+autonomously forwarded flows.
+
+The device has 8 traffic classes, and maps incoming frames to one of them based
+on the VLAN PCP bits (if no VLAN is present, the port-based default is used).
+As described in the previous sections, depending on the value of
+``vlan_filtering``, the EtherType recognized by the switch as being VLAN can
+either be the typical 0x8100 or a custom value used internally by the driver
+for tagging. Therefore, the switch ignores the VLAN PCP if used in standalone
+or bridge mode with ``vlan_filtering=0``, as it will not recognize the 0x8100
+EtherType. In these modes, injecting into a particular TX queue can only be
+done by the DSA net devices, which populate the PCP field of the tagging header
+on egress. Using ``vlan_filtering=1``, the behavior is the other way around:
+offloaded flows can be steered to TX queues based on the VLAN PCP, but the DSA
+net devices are no longer able to do that. To inject frames into a hardware TX
+queue with VLAN awareness active, it is necessary to create a VLAN
+sub-interface on the DSA master port, and send normal (0x8100) VLAN-tagged
+towards the switch, with the VLAN PCP bits set appropriately.
+
+Management traffic (having DMAC 01-80-C2-xx-xx-xx or 01-19-1B-xx-xx-xx) is the
+notable exception: the switch always treats it with a fixed priority and
+disregards any VLAN PCP bits even if present. The traffic class for management
+traffic has a value of 7 (highest priority) at the moment, which is not
+configurable in the driver.
+
+Below is an example of configuring a 500 us cyclic schedule on egress port
+``swp5``. The traffic class gate for management traffic (7) is open for 100 us,
+and the gates for all other traffic classes are open for 400 us::
+
+ #!/bin/bash
+
+ set -e -u -o pipefail
+
+ NSEC_PER_SEC="1000000000"
+
+ gatemask() {
+ local tc_list="$1"
+ local mask=0
+
+ for tc in ${tc_list}; do
+ mask=$((${mask} | (1 << ${tc})))
+ done
+
+ printf "%02x" ${mask}
+ }
+
+ if ! systemctl is-active --quiet ptp4l; then
+ echo "Please start the ptp4l service"
+ exit
+ fi
+
+ now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }')
+ # Phase-align the base time to the start of the next second.
+ sec=$(echo "${now}" | gawk -F. '{ print $1; }')
+ base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))"
+
+ tc qdisc add dev swp5 parent root handle 100 taprio \
+ num_tc 8 \
+ map 0 1 2 3 5 6 7 \
+ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
+ base-time ${base_time} \
+ sched-entry S $(gatemask 7) 100000 \
+ sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \
+ flags 2
+
+It is possible to apply the tc-taprio offload on multiple egress ports. There
+are hardware restrictions related to the fact that no gate event may trigger
+simultaneously on two ports. The driver checks the consistency of the schedules
+against this restriction and errors out when appropriate. Schedule analysis is
+needed to avoid this, which is outside the scope of the document.
+
+Routing actions (redirect, trap, drop)
+--------------------------------------
+
+The switch is able to offload flow-based redirection of packets to a set of
+destination ports specified by the user. Internally, this is implemented by
+making use of Virtual Links, a TTEthernet concept.
+
+The driver supports 2 types of keys for Virtual Links:
+
+- VLAN-aware virtual links: these match on destination MAC address, VLAN ID and
+ VLAN PCP.
+- VLAN-unaware virtual links: these match on destination MAC address only.
+
+The VLAN awareness state of the bridge (vlan_filtering) cannot be changed while
+there are virtual link rules installed.
+
+Composing multiple actions inside the same rule is supported. When only routing
+actions are requested, the driver creates a "non-critical" virtual link. When
+the action list also contains tc-gate (more details below), the virtual link
+becomes "time-critical" (draws frame buffers from a reserved memory partition,
+etc).
+
+The 3 routing actions that are supported are "trap", "drop" and "redirect".
+
+Example 1: send frames received on swp2 with a DA of 42:be:24:9b:76:20 to the
+CPU and to swp3. This type of key (DA only) when the port's VLAN awareness
+state is off::
+
+ tc qdisc add dev swp2 clsact
+ tc filter add dev swp2 ingress flower skip_sw dst_mac 42:be:24:9b:76:20 \
+ action mirred egress redirect dev swp3 \
+ action trap
+
+Example 2: drop frames received on swp2 with a DA of 42:be:24:9b:76:20, a VID
+of 100 and a PCP of 0::
+
+ tc filter add dev swp2 ingress protocol 802.1Q flower skip_sw \
+ dst_mac 42:be:24:9b:76:20 vlan_id 100 vlan_prio 0 action drop
+
+Time-based ingress policing
+---------------------------
+
+The TTEthernet hardware abilities of the switch can be constrained to act
+similarly to the Per-Stream Filtering and Policing (PSFP) clause specified in
+IEEE 802.1Q-2018 (formerly 802.1Qci). This means it can be used to perform
+tight timing-based admission control for up to 1024 flows (identified by a
+tuple composed of destination MAC address, VLAN ID and VLAN PCP). Packets which
+are received outside their expected reception window are dropped.
+
+This capability can be managed through the offload of the tc-gate action. As
+routing actions are intrinsic to virtual links in TTEthernet (which performs
+explicit routing of time-critical traffic and does not leave that in the hands
+of the FDB, flooding etc), the tc-gate action may never appear alone when
+asking sja1105 to offload it. One (or more) redirect or trap actions must also
+follow along.
+
+Example: create a tc-taprio schedule that is phase-aligned with a tc-gate
+schedule (the clocks must be synchronized by a 1588 application stack, which is
+outside the scope of this document). No packet delivered by the sender will be
+dropped. Note that the reception window is larger than the transmission window
+(and much more so, in this example) to compensate for the packet propagation
+delay of the link (which can be determined by the 1588 application stack).
+
+Receiver (sja1105)::
+
+ tc qdisc add dev swp2 clsact
+ now=$(phc_ctl /dev/ptp1 get | awk '/clock time is/ {print $5}') && \
+ sec=$(echo $now | awk -F. '{print $1}') && \
+ base_time="$(((sec + 2) * 1000000000))" && \
+ echo "base time ${base_time}"
+ tc filter add dev swp2 ingress flower skip_sw \
+ dst_mac 42:be:24:9b:76:20 \
+ action gate base-time ${base_time} \
+ sched-entry OPEN 60000 -1 -1 \
+ sched-entry CLOSE 40000 -1 -1 \
+ action trap
+
+Sender::
+
+ now=$(phc_ctl /dev/ptp0 get | awk '/clock time is/ {print $5}') && \
+ sec=$(echo $now | awk -F. '{print $1}') && \
+ base_time="$(((sec + 2) * 1000000000))" && \
+ echo "base time ${base_time}"
+ tc qdisc add dev eno0 parent root taprio \
+ num_tc 8 \
+ map 0 1 2 3 4 5 6 7 \
+ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
+ base-time ${base_time} \
+ sched-entry S 01 50000 \
+ sched-entry S 00 50000 \
+ flags 2
+
+The engine used to schedule the ingress gate operations is the same that the
+one used for the tc-taprio offload. Therefore, the restrictions regarding the
+fact that no two gate actions (either tc-gate or tc-taprio gates) may fire at
+the same time (during the same 200 ns slot) still apply.
+
+To come in handy, it is possible to share time-triggered virtual links across
+more than 1 ingress port, via flow blocks. In this case, the restriction of
+firing at the same time does not apply because there is a single schedule in
+the system, that of the shared virtual link::
+
+ tc qdisc add dev swp2 ingress_block 1 clsact
+ tc qdisc add dev swp3 ingress_block 1 clsact
+ tc filter add block 1 flower skip_sw dst_mac 42:be:24:9b:76:20 \
+ action gate index 2 \
+ base-time 0 \
+ sched-entry OPEN 50000000 -1 -1 \
+ sched-entry CLOSE 50000000 -1 -1 \
+ action trap
+
+Hardware statistics for each flow are also available ("pkts" counts the number
+of dropped frames, which is a sum of frames dropped due to timing violations,
+lack of destination ports and MTU enforcement checks). Byte-level counters are
+not available.
+
+Device Tree bindings and board design
+=====================================
+
+This section references ``Documentation/devicetree/bindings/net/dsa/sja1105.txt``
+and aims to showcase some potential switch caveats.
+
+RMII PHY role and out-of-band signaling
+---------------------------------------
+
+In the RMII spec, the 50 MHz clock signals are either driven by the MAC or by
+an external oscillator (but not by the PHY).
+But the spec is rather loose and devices go outside it in several ways.
+Some PHYs go against the spec and may provide an output pin where they source
+the 50 MHz clock themselves, in an attempt to be helpful.
+On the other hand, the SJA1105 is only binary configurable - when in the RMII
+MAC role it will also attempt to drive the clock signal. To prevent this from
+happening it must be put in RMII PHY role.
+But doing so has some unintended consequences.
+In the RMII spec, the PHY can transmit extra out-of-band signals via RXD[1:0].
+These are practically some extra code words (/J/ and /K/) sent prior to the
+preamble of each frame. The MAC does not have this out-of-band signaling
+mechanism defined by the RMII spec.
+So when the SJA1105 port is put in PHY role to avoid having 2 drivers on the
+clock signal, inevitably an RMII PHY-to-PHY connection is created. The SJA1105
+emulates a PHY interface fully and generates the /J/ and /K/ symbols prior to
+frame preambles, which the real PHY is not expected to understand. So the PHY
+simply encodes the extra symbols received from the SJA1105-as-PHY onto the
+100Base-Tx wire.
+On the other side of the wire, some link partners might discard these extra
+symbols, while others might choke on them and discard the entire Ethernet
+frames that follow along. This looks like packet loss with some link partners
+but not with others.
+The take-away is that in RMII mode, the SJA1105 must be let to drive the
+reference clock if connected to a PHY.
+
+RGMII fixed-link and internal delays
+------------------------------------
+
+As mentioned in the bindings document, the second generation of devices has
+tunable delay lines as part of the MAC, which can be used to establish the
+correct RGMII timing budget.
+When powered up, these can shift the Rx and Tx clocks with a phase difference
+between 73.8 and 101.7 degrees.
+The catch is that the delay lines need to lock onto a clock signal with a
+stable frequency. This means that there must be at least 2 microseconds of
+silence between the clock at the old vs at the new frequency. Otherwise the
+lock is lost and the delay lines must be reset (powered down and back up).
+In RGMII the clock frequency changes with link speed (125 MHz at 1000 Mbps, 25
+MHz at 100 Mbps and 2.5 MHz at 10 Mbps), and link speed might change during the
+AN process.
+In the situation where the switch port is connected through an RGMII fixed-link
+to a link partner whose link state life cycle is outside the control of Linux
+(such as a different SoC), then the delay lines would remain unlocked (and
+inactive) until there is manual intervention (ifdown/ifup on the switch port).
+The take-away is that in RGMII mode, the switch's internal delays are only
+reliable if the link partner never changes link speeds, or if it does, it does
+so in a way that is coordinated with the switch port (practically, both ends of
+the fixed-link are under control of the same Linux system).
+As to why would a fixed-link interface ever change link speeds: there are
+Ethernet controllers out there which come out of reset in 100 Mbps mode, and
+their driver inevitably needs to change the speed and clock frequency if it's
+required to work at gigabit.
+
+MDIO bus and PHY management
+---------------------------
+
+The SJA1105 does not have an MDIO bus and does not perform in-band AN either.
+Therefore there is no link state notification coming from the switch device.
+A board would need to hook up the PHYs connected to the switch to any other
+MDIO bus available to Linux within the system (e.g. to the DSA master's MDIO
+bus). Link state management then works by the driver manually keeping in sync
+(over SPI commands) the MAC link speed with the settings negotiated by the PHY.