diff options
Diffstat (limited to 'Documentation/translations/it_IT/kernel-hacking/hacking.rst')
-rw-r--r-- | Documentation/translations/it_IT/kernel-hacking/hacking.rst | 873 |
1 files changed, 873 insertions, 0 deletions
diff --git a/Documentation/translations/it_IT/kernel-hacking/hacking.rst b/Documentation/translations/it_IT/kernel-hacking/hacking.rst new file mode 100644 index 000000000..3d30b69f1 --- /dev/null +++ b/Documentation/translations/it_IT/kernel-hacking/hacking.rst @@ -0,0 +1,873 @@ +.. include:: ../disclaimer-ita.rst + +.. note:: Per leggere la documentazione originale in inglese: + :ref:`Documentation/kernel-hacking/hacking.rst <kernel_hacking_hack>` + +:Original: :ref:`Documentation/kernel-hacking/hacking.rst <kernel_hacking_hack>` +:Translator: Federico Vaga <federico.vaga@vaga.pv.it> + +.. _it_kernel_hacking_hack: + +================================================= +L'inaffidabile guida all'hacking del kernel Linux +================================================= + +:Author: Rusty Russell + +Introduzione +============ + +Benvenuto, gentile lettore, alla notevole ed inaffidabile guida all'hacking +del kernel Linux ad opera di Rusty. Questo documento descrive le procedure +più usate ed i concetti necessari per scrivere codice per il kernel: lo scopo +è di fornire ai programmatori C più esperti un manuale di base per sviluppo. +Eviterò dettagli implementativi: per questo abbiamo il codice, +ed ignorerò intere parti di alcune procedure. + +Prima di leggere questa guida, sappiate che non ho mai voluto scriverla, +essendo esageratamente sotto qualificato, ma ho sempre voluto leggere +qualcosa di simile, e quindi questa era l'unica via. Spero che possa +crescere e diventare un compendio di buone pratiche, punti di partenza +e generiche informazioni. + +Gli attori +========== + +In qualsiasi momento ognuna delle CPU di un sistema può essere: + +- non associata ad alcun processo, servendo un'interruzione hardware; + +- non associata ad alcun processo, servendo un softirq o tasklet; + +- in esecuzione nello spazio kernel, associata ad un processo + (contesto utente); + +- in esecuzione di un processo nello spazio utente; + +Esiste un ordine fra questi casi. Gli ultimi due possono avvicendarsi (preempt) +l'un l'altro, ma a parte questo esiste una gerarchia rigida: ognuno di questi +può avvicendarsi solo ad uno di quelli sottostanti. Per esempio, mentre un +softirq è in esecuzione su d'una CPU, nessun altro softirq può avvicendarsi +nell'esecuzione, ma un'interruzione hardware può. Ciò nonostante, le altre CPU +del sistema operano indipendentemente. + +Più avanti vedremo alcuni modi in cui dal contesto utente è possibile bloccare +le interruzioni, così da impedirne davvero il diritto di prelazione. + +Contesto utente +--------------- + +Ci si trova nel contesto utente quando si arriva da una chiamata di sistema +od altre eccezioni: come nello spazio utente, altre procedure più importanti, +o le interruzioni, possono far valere il proprio diritto di prelazione sul +vostro processo. Potete sospendere l'esecuzione chiamando :c:func:`schedule()`. + +.. note:: + + Si è sempre in contesto utente quando un modulo viene caricato o rimosso, + e durante le operazioni nello strato dei dispositivi a blocchi + (*block layer*). + +Nel contesto utente, il puntatore ``current`` (il quale indica il processo al +momento in esecuzione) è valido, e :c:func:`in_interrupt()` +(``include/linux/preempt.h``) è falsa. + +.. warning:: + + Attenzione che se avete la prelazione o i softirq disabilitati (vedere + di seguito), :c:func:`in_interrupt()` ritornerà un falso positivo. + +Interruzioni hardware (Hard IRQs) +--------------------------------- + +Temporizzatori, schede di rete e tastiere sono esempi di vero hardware +che possono produrre interruzioni in un qualsiasi momento. Il kernel esegue +i gestori d'interruzione che prestano un servizio all'hardware. Il kernel +garantisce che questi gestori non vengano mai interrotti: se una stessa +interruzione arriva, questa verrà accodata (o scartata). +Dato che durante la loro esecuzione le interruzioni vengono disabilitate, +i gestori d'interruzioni devono essere veloci: spesso si limitano +esclusivamente a notificare la presa in carico dell'interruzione, +programmare una 'interruzione software' per l'esecuzione e quindi terminare. + +Potete dire d'essere in una interruzione hardware perché :c:func:`in_irq()` +ritorna vero. + +.. warning:: + + Attenzione, questa ritornerà un falso positivo se le interruzioni + sono disabilitate (vedere di seguito). + +Contesto d'interruzione software: softirq e tasklet +--------------------------------------------------- + +Quando una chiamata di sistema sta per tornare allo spazio utente, +oppure un gestore d'interruzioni termina, qualsiasi 'interruzione software' +marcata come pendente (solitamente da un'interruzione hardware) viene +eseguita (``kernel/softirq.c``). + +La maggior parte del lavoro utile alla gestione di un'interruzione avviene qui. +All'inizio della transizione ai sistemi multiprocessore, c'erano solo i +cosiddetti 'bottom half' (BH), i quali non traevano alcun vantaggio da questi +sistemi. Non appena abbandonammo i computer raffazzonati con fiammiferi e +cicche, abbandonammo anche questa limitazione e migrammo alle interruzioni +software 'softirqs'. + +Il file ``include/linux/interrupt.h`` elenca i differenti tipi di 'softirq'. +Un tipo di softirq molto importante è il timer (``include/linux/timer.h``): +potete programmarlo per far si che esegua funzioni dopo un determinato +periodo di tempo. + +Dato che i softirq possono essere eseguiti simultaneamente su più di un +processore, spesso diventa estenuante l'averci a che fare. Per questa ragione, +i tasklet (``include/linux/interrupt.h``) vengo usati più di frequente: +possono essere registrati dinamicamente (il che significa che potete averne +quanti ne volete), e garantiscono che un qualsiasi tasklet verrà eseguito +solo su un processore alla volta, sebbene diversi tasklet possono essere +eseguiti simultaneamente. + +.. warning:: + + Il nome 'tasklet' è ingannevole: non hanno niente a che fare + con i 'processi' ('tasks'), e probabilmente hanno più a che vedere + con qualche pessima vodka che Alexey Kuznetsov si fece a quel tempo. + +Potete determinate se siete in un softirq (o tasklet) utilizzando la +macro :c:func:`in_softirq()` (``include/linux/preempt.h``). + +.. warning:: + + State attenti che questa macro ritornerà un falso positivo + se :ref:`botton half lock <it_local_bh_disable>` è bloccato. + +Alcune regole basilari +====================== + +Nessuna protezione della memoria + Se corrompete la memoria, che sia in contesto utente o d'interruzione, + la macchina si pianterà. Siete sicuri che quello che volete fare + non possa essere fatto nello spazio utente? + +Nessun numero in virgola mobile o MMX + Il contesto della FPU non è salvato; anche se siete in contesto utente + lo stato dell'FPU probabilmente non corrisponde a quello del processo + corrente: vi incasinerete con lo stato di qualche altro processo. Se + volete davvero usare la virgola mobile, allora dovrete salvare e recuperare + lo stato dell'FPU (ed evitare cambi di contesto). Generalmente è una + cattiva idea; usate l'aritmetica a virgola fissa. + +Un limite rigido dello stack + A seconda della configurazione del kernel lo stack è fra 3K e 6K per la + maggior parte delle architetture a 32-bit; è di 14K per la maggior + parte di quelle a 64-bit; e spesso è condiviso con le interruzioni, + per cui non si può usare. + Evitare profonde ricorsioni ad enormi array locali nello stack + (allocateli dinamicamente). + +Il kernel Linux è portabile + Quindi mantenetelo tale. Il vostro codice dovrebbe essere a 64-bit ed + indipendente dall'ordine dei byte (endianess) di un processore. Inoltre, + dovreste minimizzare il codice specifico per un processore; per esempio + il codice assembly dovrebbe essere incapsulato in modo pulito e minimizzato + per facilitarne la migrazione. Generalmente questo codice dovrebbe essere + limitato alla parte di kernel specifica per un'architettura. + +ioctl: non scrivere nuove chiamate di sistema +============================================= + +Una chiamata di sistema, generalmente, è scritta così:: + + asmlinkage long sys_mycall(int arg) + { + return 0; + } + +Primo, nella maggior parte dei casi non volete creare nuove chiamate di +sistema. +Create un dispositivo a caratteri ed implementate l'appropriata chiamata ioctl. +Questo meccanismo è molto più flessibile delle chiamate di sistema: esso non +dev'essere dichiarato in tutte le architetture nei file +``include/asm/unistd.h`` e ``arch/kernel/entry.S``; inoltre, è improbabile +che questo venga accettato da Linus. + +Se tutto quello che il vostro codice fa è leggere o scrivere alcuni parametri, +considerate l'implementazione di un'interfaccia :c:func:`sysfs()`. + +All'interno di una ioctl vi trovate nel contesto utente di un processo. Quando +avviene un errore dovete ritornare un valore negativo di errno (consultate +``include/uapi/asm-generic/errno-base.h``, +``include/uapi/asm-generic/errno.h`` e ``include/linux/errno.h``), altrimenti +ritornate 0. + +Dopo aver dormito dovreste verificare se ci sono stati dei segnali: il modo +Unix/Linux di gestire un segnale è di uscire temporaneamente dalla chiamata +di sistema con l'errore ``-ERESTARTSYS``. La chiamata di sistema ritornerà +al contesto utente, eseguirà il gestore del segnale e poi la vostra chiamata +di sistema riprenderà (a meno che l'utente non l'abbia disabilitata). Quindi, +dovreste essere pronti per continuare l'esecuzione, per esempio nel mezzo +della manipolazione di una struttura dati. + +:: + + if (signal_pending(current)) + return -ERESTARTSYS; + +Se dovete eseguire dei calcoli molto lunghi: pensate allo spazio utente. +Se **davvero** volete farlo nel kernel ricordatevi di verificare periodicamente +se dovete *lasciare* il processore (ricordatevi che, per ogni processore, c'è +un sistema multi-processo senza diritto di prelazione). +Esempio:: + + cond_resched(); /* Will sleep */ + +Una breve nota sulla progettazione delle interfacce: il motto dei sistemi +UNIX è "fornite meccanismi e non politiche" + +La ricetta per uno stallo +========================= + +Non è permesso invocare una procedura che potrebbe dormire, fanno eccezione +i seguenti casi: + +- Siete in un contesto utente. + +- Non trattenete alcun spinlock. + +- Avete abilitato le interruzioni (in realtà, Andy Kleen dice che + lo schedulatore le abiliterà per voi, ma probabilmente questo non è quello + che volete). + +Da tener presente che alcune funzioni potrebbero dormire implicitamente: +le più comuni sono quelle per l'accesso allo spazio utente (\*_user) e +quelle per l'allocazione della memoria senza l'opzione ``GFP_ATOMIC`` + +Dovreste sempre compilare il kernel con l'opzione ``CONFIG_DEBUG_ATOMIC_SLEEP`` +attiva, questa vi avviserà se infrangete una di queste regole. +Se **infrangete** le regole, allora potreste bloccare il vostro scatolotto. + +Veramente. + +Alcune delle procedure più comuni +================================= + +:c:func:`printk()` +------------------ + +Definita in ``include/linux/printk.h`` + +:c:func:`printk()` fornisce messaggi alla console, dmesg, e al demone syslog. +Essa è utile per il debugging o per la notifica di errori; può essere +utilizzata anche all'interno del contesto d'interruzione, ma usatela con +cautela: una macchina che ha la propria console inondata da messaggi diventa +inutilizzabile. La funzione utilizza un formato stringa quasi compatibile con +la printf ANSI C, e la concatenazione di una stringa C come primo argomento +per indicare la "priorità":: + + printk(KERN_INFO "i = %u\n", i); + +Consultate ``include/linux/kern_levels.h`` per gli altri valori ``KERN_``; +questi sono interpretati da syslog come livelli. Un caso speciale: +per stampare un indirizzo IP usate:: + + __be32 ipaddress; + printk(KERN_INFO "my ip: %pI4\n", &ipaddress); + + +:c:func:`printk()` utilizza un buffer interno di 1K e non s'accorge di +eventuali sforamenti. Accertatevi che vi basti. + +.. note:: + + Saprete di essere un vero hacker del kernel quando inizierete a digitare + nei vostri programmi utenti le printf come se fossero printk :) + +.. note:: + + Un'altra nota a parte: la versione originale di Unix 6 aveva un commento + sopra alla funzione printf: "Printf non dovrebbe essere usata per il + chiacchiericcio". Dovreste seguire questo consiglio. + +:c:func:`copy_to_user()` / :c:func:`copy_from_user()` / :c:func:`get_user()` / :c:func:`put_user()` +--------------------------------------------------------------------------------------------------- + +Definite in ``include/linux/uaccess.h`` / ``asm/uaccess.h`` + +**[DORMONO]** + +:c:func:`put_user()` e :c:func:`get_user()` sono usate per ricevere ed +impostare singoli valori (come int, char, o long) da e verso lo spazio utente. +Un puntatore nello spazio utente non dovrebbe mai essere dereferenziato: i dati +dovrebbero essere copiati usando suddette procedure. Entrambe ritornano +``-EFAULT`` oppure 0. + +:c:func:`copy_to_user()` e :c:func:`copy_from_user()` sono più generiche: +esse copiano una quantità arbitraria di dati da e verso lo spazio utente. + +.. warning:: + + Al contrario di:c:func:`put_user()` e :c:func:`get_user()`, queste + funzioni ritornano la quantità di dati copiati (0 è comunque un successo). + +[Sì, questa stupida interfaccia mi imbarazza. La battaglia torna in auge anno +dopo anno. --RR] + +Le funzioni potrebbero dormire implicitamente. Queste non dovrebbero mai essere +invocate fuori dal contesto utente (non ha senso), con le interruzioni +disabilitate, o con uno spinlock trattenuto. + +:c:func:`kmalloc()`/:c:func:`kfree()` +------------------------------------- + +Definite in ``include/linux/slab.h`` + +**[POTREBBERO DORMIRE: LEGGI SOTTO]** + +Queste procedure sono utilizzate per la richiesta dinamica di un puntatore ad +un pezzo di memoria allineato, esattamente come malloc e free nello spazio +utente, ma :c:func:`kmalloc()` ha un argomento aggiuntivo per indicare alcune +opzioni. Le opzioni più importanti sono: + +``GFP_KERNEL`` + Potrebbe dormire per librarare della memoria. L'opzione fornisce il modo + più affidabile per allocare memoria, ma il suo uso è strettamente limitato + allo spazio utente. + +``GFP_ATOMIC`` + Non dorme. Meno affidabile di ``GFP_KERNEL``, ma può essere usata in un + contesto d'interruzione. Dovreste avere **davvero** una buona strategia + per la gestione degli errori in caso di mancanza di memoria. + +``GFP_DMA`` + Alloca memoria per il DMA sul bus ISA nello spazio d'indirizzamento + inferiore ai 16MB. Se non sapete cos'è allora non vi serve. + Molto inaffidabile. + +Se vedete un messaggio d'avviso per una funzione dormiente che viene chiamata +da un contesto errato, allora probabilmente avete usato una funzione +d'allocazione dormiente da un contesto d'interruzione senza ``GFP_ATOMIC``. +Dovreste correggerlo. Sbrigatevi, non cincischiate. + +Se allocate almeno ``PAGE_SIZE``(``asm/page.h`` o ``asm/page_types.h``) byte, +considerate l'uso di :c:func:`__get_free_pages()` (``include/linux/gfp.h``). +Accetta un argomento che definisce l'ordine (0 per per la dimensione di una +pagine, 1 per una doppia pagina, 2 per quattro pagine, eccetra) e le stesse +opzioni d'allocazione viste precedentemente. + +Se state allocando un numero di byte notevolemnte superiore ad una pagina +potete usare :c:func:`vmalloc()`. Essa allocherà memoria virtuale all'interno +dello spazio kernel. Questo è un blocco di memoria fisica non contiguo, ma +la MMU vi darà l'impressione che lo sia (quindi, sarà contiguo solo dal punto +di vista dei processori, non dal punto di vista dei driver dei dispositivi +esterni). +Se per qualche strana ragione avete davvero bisogno di una grossa quantità di +memoria fisica contigua, avete un problema: Linux non ha un buon supporto per +questo caso d'uso perché, dopo un po' di tempo, la frammentazione della memoria +rende l'operazione difficile. Il modo migliore per allocare un simile blocco +all'inizio dell'avvio del sistema è attraverso la procedura +:c:func:`alloc_bootmem()`. + +Prima di inventare la vostra cache per gli oggetti più usati, considerate +l'uso di una cache slab disponibile in ``include/linux/slab.h``. + +:c:func:`current()` +------------------- + +Definita in ``include/asm/current.h`` + +Questa variabile globale (in realtà una macro) contiene un puntatore alla +struttura del processo corrente, quindi è valido solo dal contesto utente. +Per esempio, quando un processo esegue una chiamata di sistema, questo +punterà alla struttura dati del processo chiamate. +Nel contesto d'interruzione in suo valore **non è NULL**. + +:c:func:`mdelay()`/:c:func:`udelay()` +------------------------------------- + +Definite in ``include/asm/delay.h`` / ``include/linux/delay.h`` + +Le funzioni :c:func:`udelay()` e :c:func:`ndelay()` possono essere utilizzate +per brevi pause. Non usate grandi valori perché rischiate d'avere un +overflow - in questo contesto la funzione :c:func:`mdelay()` è utile, +oppure considerate :c:func:`msleep()`. + +:c:func:`cpu_to_be32()`/:c:func:`be32_to_cpu()`/:c:func:`cpu_to_le32()`/:c:func:`le32_to_cpu()` +----------------------------------------------------------------------------------------------- + +Definite in ``include/asm/byteorder.h`` + +La famiglia di funzioni :c:func:`cpu_to_be32()` (dove "32" può essere +sostituito da 64 o 16, e "be" con "le") forniscono un modo generico +per fare conversioni sull'ordine dei byte (endianess): esse ritornano +il valore convertito. Tutte le varianti supportano anche il processo inverso: +:c:func:`be32_to_cpu()`, eccetera. + +Queste funzioni hanno principalmente due varianti: la variante per +puntatori, come :c:func:`cpu_to_be32p()`, che prende un puntatore +ad un tipo, e ritorna il valore convertito. L'altra variante per +la famiglia di conversioni "in-situ", come :c:func:`cpu_to_be32s()`, +che convertono il valore puntato da un puntatore, e ritornano void. + +:c:func:`local_irq_save()`/:c:func:`local_irq_restore()` +-------------------------------------------------------- + +Definite in ``include/linux/irqflags.h`` + +Queste funzioni abilitano e disabilitano le interruzioni hardware +sul processore locale. Entrambe sono rientranti; esse salvano lo stato +precedente nel proprio argomento ``unsigned long flags``. Se sapete +che le interruzioni sono abilite, potete semplicemente utilizzare +:c:func:`local_irq_disable()` e :c:func:`local_irq_enable()`. + +.. _it_local_bh_disable: + +:c:func:`local_bh_disable()`/:c:func:`local_bh_enable()` +-------------------------------------------------------- + +Definite in ``include/linux/bottom_half.h`` + + +Queste funzioni abilitano e disabilitano le interruzioni software +sul processore locale. Entrambe sono rientranti; se le interruzioni +software erano già state disabilitate in precedenza, rimarranno +disabilitate anche dopo aver invocato questa coppia di funzioni. +Lo scopo è di prevenire l'esecuzione di softirq e tasklet sul processore +attuale. + +:c:func:`smp_processor_id()` +---------------------------- + +Definita in ``include/linux/smp.h`` + +:c:func:`get_cpu()` nega il diritto di prelazione (quindi non potete essere +spostati su un altro processore all'improvviso) e ritorna il numero +del processore attuale, fra 0 e ``NR_CPUS``. Da notare che non è detto +che la numerazione dei processori sia continua. Quando avete terminato, +ritornate allo stato precedente con :c:func:`put_cpu()`. + +Se sapete che non dovete essere interrotti da altri processi (per esempio, +se siete in un contesto d'interruzione, o il diritto di prelazione +è disabilitato) potete utilizzare smp_processor_id(). + + +``__init``/``__exit``/``__initdata`` +------------------------------------ + +Definite in ``include/linux/init.h`` + +Dopo l'avvio, il kernel libera una sezione speciale; le funzioni marcate +con ``__init`` e le strutture dati marcate con ``__initdata`` vengono +eliminate dopo il completamento dell'avvio: in modo simile i moduli eliminano +questa memoria dopo l'inizializzazione. ``__exit`` viene utilizzato per +dichiarare che una funzione verrà utilizzata solo in fase di rimozione: +la detta funzione verrà eliminata quando il file che la contiene non è +compilato come modulo. Guardate l'header file per informazioni. Da notare che +non ha senso avere una funzione marcata come ``__init`` e al tempo stesso +esportata ai moduli utilizzando :c:func:`EXPORT_SYMBOL()` o +:c:func:`EXPORT_SYMBOL_GPL()` - non funzionerà. + + +:c:func:`__initcall()`/:c:func:`module_init()` +---------------------------------------------- + +Definite in ``include/linux/init.h`` / ``include/linux/module.h`` + +Molte parti del kernel funzionano bene come moduli (componenti del kernel +caricabili dinamicamente). L'utilizzo delle macro :c:func:`module_init()` +e :c:func:`module_exit()` semplifica la scrittura di codice che può funzionare +sia come modulo, sia come parte del kernel, senza l'ausilio di #ifdef. + +La macro :c:func:`module_init()` definisce quale funzione dev'essere +chiamata quando il modulo viene inserito (se il file è stato compilato come +tale), o in fase di avvio : se il file non è stato compilato come modulo la +macro :c:func:`module_init()` diventa equivalente a :c:func:`__initcall()`, +la quale, tramite qualche magia del linker, s'assicura che la funzione venga +chiamata durante l'avvio. + +La funzione può ritornare un numero d'errore negativo per scatenare un +fallimento del caricamento (sfortunatamente, questo non ha effetto se il +modulo è compilato come parte integrante del kernel). Questa funzione è chiamata +in contesto utente con le interruzioni abilitate, quindi potrebbe dormire. + + +:c:func:`module_exit()` +----------------------- + + +Definita in ``include/linux/module.h`` + +Questa macro definisce la funzione che dev'essere chiamata al momento della +rimozione (o mai, nel caso in cui il file sia parte integrante del kernel). +Essa verrà chiamata solo quando il contatore d'uso del modulo raggiunge lo +zero. Questa funzione può anche dormire, ma non può fallire: tutto dev'essere +ripulito prima che la funzione ritorni. + +Da notare che questa macro è opzionale: se non presente, il modulo non sarà +removibile (a meno che non usiate 'rmmod -f' ). + + +:c:func:`try_module_get()`/:c:func:`module_put()` +------------------------------------------------- + +Definite in ``include/linux/module.h`` + +Queste funzioni maneggiano il contatore d'uso del modulo per proteggerlo dalla +rimozione (in aggiunta, un modulo non può essere rimosso se un altro modulo +utilizzo uno dei sui simboli esportati: vedere di seguito). Prima di eseguire +codice del modulo, dovreste chiamare :c:func:`try_module_get()` su quel modulo: +se fallisce significa che il modulo è stato rimosso e dovete agire come se +non fosse presente. Altrimenti, potete accedere al modulo in sicurezza, e +chiamare :c:func:`module_put()` quando avete finito. + +La maggior parte delle strutture registrabili hanno un campo owner +(proprietario), come nella struttura +:c:type:`struct file_operations <file_operations>`. +Impostate questo campo al valore della macro ``THIS_MODULE``. + + +Code d'attesa ``include/linux/wait.h`` +====================================== + +**[DORMONO]** + +Una coda d'attesa è usata per aspettare che qualcuno vi attivi quando una +certa condizione s'avvera. Per evitare corse critiche, devono essere usate +con cautela. Dichiarate una :c:type:`wait_queue_head_t`, e poi i processi +che vogliono attendere il verificarsi di quella condizione dichiareranno +una :c:type:`wait_queue_entry_t` facendo riferimento a loro stessi, poi +metteranno questa in coda. + +Dichiarazione +------------- + +Potere dichiarare una ``wait_queue_head_t`` utilizzando la macro +:c:func:`DECLARE_WAIT_QUEUE_HEAD()` oppure utilizzando la procedura +:c:func:`init_waitqueue_head()` nel vostro codice d'inizializzazione. + +Accodamento +----------- + +Mettersi in una coda d'attesa è piuttosto complesso, perché dovete +mettervi in coda prima di verificare la condizione. Esiste una macro +a questo scopo: :c:func:`wait_event_interruptible()` (``include/linux/wait.h``). +Il primo argomento è la testa della coda d'attesa, e il secondo è +un'espressione che dev'essere valutata; la macro ritorna 0 quando questa +espressione è vera, altrimenti ``-ERESTARTSYS`` se è stato ricevuto un segnale. +La versione :c:func:`wait_event()` ignora i segnali. + +Svegliare una procedura in coda +------------------------------- + +Chiamate :c:func:`wake_up()` (``include/linux/wait.h``); questa attiverà tutti +i processi in coda. Ad eccezione se uno di questi è impostato come +``TASK_EXCLUSIVE``, in questo caso i rimanenti non verranno svegliati. +Nello stesso header file esistono altre varianti di questa funzione. + +Operazioni atomiche +=================== + +Certe operazioni sono garantite come atomiche su tutte le piattaforme. +Il primo gruppo di operazioni utilizza :c:type:`atomic_t` +(``include/asm/atomic.h``); questo contiene un intero con segno (minimo 32bit), +e dovete utilizzare queste funzione per modificare o leggere variabili di tipo +:c:type:`atomic_t`. :c:func:`atomic_read()` e :c:func:`atomic_set()` leggono ed +impostano il contatore, :c:func:`atomic_add()`, :c:func:`atomic_sub()`, +:c:func:`atomic_inc()`, :c:func:`atomic_dec()`, e +:c:func:`atomic_dec_and_test()` (ritorna vero se raggiunge zero dopo essere +stata decrementata). + +Sì. Ritorna vero (ovvero != 0) se la variabile atomica è zero. + +Da notare che queste funzioni sono più lente rispetto alla normale aritmetica, +e quindi non dovrebbero essere usate a sproposito. + +Il secondo gruppo di operazioni atomiche sono definite in +``include/linux/bitops.h`` ed agiscono sui bit d'una variabile di tipo +``unsigned long``. Queste operazioni prendono come argomento un puntatore +alla variabile, e un numero di bit dove 0 è quello meno significativo. +:c:func:`set_bit()`, :c:func:`clear_bit()` e :c:func:`change_bit()` +impostano, cancellano, ed invertono il bit indicato. +:c:func:`test_and_set_bit()`, :c:func:`test_and_clear_bit()` e +:c:func:`test_and_change_bit()` fanno la stessa cosa, ad eccezione che +ritornano vero se il bit era impostato; queste sono particolarmente +utili quando si vuole impostare atomicamente dei flag. + +Con queste operazioni è possibile utilizzare indici di bit che eccedono +il valore ``BITS_PER_LONG``. Il comportamento è strano sulle piattaforme +big-endian quindi è meglio evitarlo. + +Simboli +======= + +All'interno del kernel, si seguono le normali regole del linker (ovvero, +a meno che un simbolo non venga dichiarato con visibilita limitata ad un +file con la parola chiave ``static``, esso può essere utilizzato in qualsiasi +parte del kernel). Nonostante ciò, per i moduli, esiste una tabella dei +simboli esportati che limita i punti di accesso al kernel. Anche i moduli +possono esportare simboli. + +:c:func:`EXPORT_SYMBOL()` +------------------------- + +Definita in ``include/linux/export.h`` + +Questo è il classico metodo per esportare un simbolo: i moduli caricati +dinamicamente potranno utilizzare normalmente il simbolo. + +:c:func:`EXPORT_SYMBOL_GPL()` +----------------------------- + +Definita in ``include/linux/export.h`` + +Essa è simile a :c:func:`EXPORT_SYMBOL()` ad eccezione del fatto che i +simboli esportati con :c:func:`EXPORT_SYMBOL_GPL()` possono essere +utilizzati solo dai moduli che hanno dichiarato una licenza compatibile +con la GPL attraverso :c:func:`MODULE_LICENSE()`. Questo implica che la +funzione esportata è considerata interna, e non una vera e propria interfaccia. +Alcuni manutentori e sviluppatori potrebbero comunque richiedere +:c:func:`EXPORT_SYMBOL_GPL()` quando si aggiungono nuove funzionalità o +interfacce. + +:c:func:`EXPORT_SYMBOL_NS()` +---------------------------- + +Definita in ``include/linux/export.h`` + +Questa è una variate di `EXPORT_SYMBOL()` che permette di specificare uno +spazio dei nomi. Lo spazio dei nomi è documentato in +:doc:`../core-api/symbol-namespaces` + +:c:func:`EXPORT_SYMBOL_NS_GPL()` +-------------------------------- + +Definita in ``include/linux/export.h`` + +Questa è una variate di `EXPORT_SYMBOL_GPL()` che permette di specificare uno +spazio dei nomi. Lo spazio dei nomi è documentato in +:doc:`../core-api/symbol-namespaces` + +Procedure e convenzioni +======================= + +Liste doppiamente concatenate ``include/linux/list.h`` +------------------------------------------------------ + +Un tempo negli header del kernel c'erano tre gruppi di funzioni per +le liste concatenate, ma questa è stata la vincente. Se non avete particolari +necessità per una semplice lista concatenata, allora questa è una buona scelta. + +In particolare, :c:func:`list_for_each_entry()` è utile. + +Convenzione dei valori di ritorno +--------------------------------- + +Per codice chiamato in contesto utente, è molto comune sfidare le convenzioni +C e ritornare 0 in caso di successo, ed un codice di errore negativo +(eg. ``-EFAULT``) nei casi fallimentari. Questo potrebbe essere controintuitivo +a prima vista, ma è abbastanza diffuso nel kernel. + +Utilizzate :c:func:`ERR_PTR()` (``include/linux/err.h``) per codificare +un numero d'errore negativo in un puntatore, e :c:func:`IS_ERR()` e +:c:func:`PTR_ERR()` per recuperarlo di nuovo: così si evita d'avere un +puntatore dedicato per il numero d'errore. Da brividi, ma in senso positivo. + +Rompere la compilazione +----------------------- + +Linus e gli altri sviluppatori a volte cambiano i nomi delle funzioni e +delle strutture nei kernel in sviluppo; questo non è solo per tenere +tutti sulle spine: questo riflette cambiamenti fondamentati (eg. la funzione +non può più essere chiamata con le funzioni attive, o fa controlli aggiuntivi, +o non fa più controlli che venivano fatti in precedenza). Solitamente a questo +s'accompagna un'adeguata e completa nota sulla lista di discussone +linux-kernel; cercate negli archivi. +Solitamente eseguire una semplice sostituzione su tutto un file rendere +le cose **peggiori**. + +Inizializzazione dei campi d'una struttura +------------------------------------------ + +Il metodo preferito per l'inizializzazione delle strutture è quello +di utilizzare gli inizializzatori designati, come definiti nello +standard ISO C99, eg:: + + static struct block_device_operations opt_fops = { + .open = opt_open, + .release = opt_release, + .ioctl = opt_ioctl, + .check_media_change = opt_media_change, + }; + +Questo rende più facile la ricerca con grep, e rende più chiaro quale campo +viene impostato. Dovreste fare così perché si mostra meglio. + +Estensioni GNU +-------------- + +Le estensioni GNU sono esplicitamente permesse nel kernel Linux. Da notare +che alcune delle più complesse non sono ben supportate, per via dello scarso +sviluppo, ma le seguenti sono da considerarsi la norma (per maggiori dettagli, +leggete la sezione "C Extensions" nella pagina info di GCC - Sì, davvero +la pagina info, la pagina man è solo un breve riassunto delle cose nella +pagina info). + +- Funzioni inline + +- Istruzioni in espressioni (ie. il costrutto ({ and }) ). + +- Dichiarate attributi di una funzione / variabile / tipo + (__attribute__) + +- typeof + +- Array con lunghezza zero + +- Macro varargs + +- Aritmentica sui puntatori void + +- Inizializzatori non costanti + +- Istruzioni assembler (non al di fuori di 'arch/' e 'include/asm/') + +- Nomi delle funzioni come stringhe (__func__). + +- __builtin_constant_p() + +Siate sospettosi quando utilizzate long long nel kernel, il codice generato +da gcc è orribile ed anche peggio: le divisioni e le moltiplicazioni non +funzionano sulle piattaforme i386 perché le rispettive funzioni di runtime +di GCC non sono incluse nell'ambiente del kernel. + +C++ +--- + +Solitamente utilizzare il C++ nel kernel è una cattiva idea perché +il kernel non fornisce il necessario ambiente di runtime e gli header file +non sono stati verificati. Rimane comunque possibile, ma non consigliato. +Se davvero volete usarlo, almeno evitate le eccezioni. + +NUMif +----- + +Viene generalmente considerato più pulito l'uso delle macro negli header file +(o all'inizio dei file .c) per astrarre funzioni piuttosto che utlizzare +l'istruzione di pre-processore \`#if' all'interno del codice sorgente. + +Mettere le vostre cose nel kernel +================================= + +Al fine d'avere le vostre cose in ordine per l'inclusione ufficiale, o +anche per avere patch pulite, c'è del lavoro amministrativo da fare: + +- Trovare di chi è lo stagno in cui state pisciando. Guardare in cima + ai file sorgenti, all'interno del file ``MAINTAINERS``, ed alla fine + di tutti nel file ``CREDITS``. Dovreste coordinarvi con queste persone + per evitare di duplicare gli sforzi, o provare qualcosa che è già stato + rigettato. + + Assicuratevi di mettere il vostro nome ed indirizzo email in cima a + tutti i file che create o che mangeggiate significativamente. Questo è + il primo posto dove le persone guarderanno quando troveranno un baco, + o quando **loro** vorranno fare una modifica. + +- Solitamente vorrete un'opzione di configurazione per la vostra modifica + al kernel. Modificate ``Kconfig`` nella cartella giusta. Il linguaggio + Config è facile con copia ed incolla, e c'è una completa documentazione + nel file ``Documentation/kbuild/kconfig-language.rst``. + + Nella descrizione della vostra opzione, assicuratevi di parlare sia agli + utenti esperti sia agli utente che non sanno nulla del vostro lavoro. + Menzionate qui le incompatibilità ed i problemi. Chiaramente la + descrizione deve terminare con “if in doubt, say N” (se siete in dubbio, + dite N) (oppure, occasionalmente, \`Y'); questo è per le persone che non + hanno idea di che cosa voi stiate parlando. + +- Modificate il file ``Makefile``: le variabili CONFIG sono esportate qui, + quindi potete solitamente aggiungere una riga come la seguete + "obj-$(CONFIG_xxx) += xxx.o". La sintassi è documentata nel file + ``Documentation/kbuild/makefiles.rst``. + +- Aggiungete voi stessi in ``CREDITS`` se avete fatto qualcosa di notevole, + solitamente qualcosa che supera il singolo file (comunque il vostro nome + dovrebbe essere all'inizio dei file sorgenti). ``MAINTAINERS`` significa + che volete essere consultati quando vengono fatte delle modifiche ad un + sottosistema, e quando ci sono dei bachi; questo implica molto di più + di un semplice impegno su una parte del codice. + +- Infine, non dimenticatevi di leggere + ``Documentation/process/submitting-patches.rst`` e possibilmente anche + ``Documentation/process/submitting-drivers.rst``. + +Trucchetti del kernel +===================== + +Dopo una rapida occhiata al codice, questi sono i preferiti. Sentitevi liberi +di aggiungerne altri. + +``arch/x86/include/asm/delay.h``:: + + #define ndelay(n) (__builtin_constant_p(n) ? \ + ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \ + __ndelay(n)) + + +``include/linux/fs.h``:: + + /* + * Kernel pointers have redundant information, so we can use a + * scheme where we can return either an error code or a dentry + * pointer with the same return value. + * + * This should be a per-architecture thing, to allow different + * error and pointer decisions. + */ + #define ERR_PTR(err) ((void *)((long)(err))) + #define PTR_ERR(ptr) ((long)(ptr)) + #define IS_ERR(ptr) ((unsigned long)(ptr) > (unsigned long)(-1000)) + +``arch/x86/include/asm/uaccess_32.h:``:: + + #define copy_to_user(to,from,n) \ + (__builtin_constant_p(n) ? \ + __constant_copy_to_user((to),(from),(n)) : \ + __generic_copy_to_user((to),(from),(n))) + + +``arch/sparc/kernel/head.S:``:: + + /* + * Sun people can't spell worth damn. "compatability" indeed. + * At least we *know* we can't spell, and use a spell-checker. + */ + + /* Uh, actually Linus it is I who cannot spell. Too much murky + * Sparc assembly will do this to ya. + */ + C_LABEL(cputypvar): + .asciz "compatibility" + + /* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */ + .align 4 + C_LABEL(cputypvar_sun4m): + .asciz "compatible" + + +``arch/sparc/lib/checksum.S:``:: + + /* Sun, you just can't beat me, you just can't. Stop trying, + * give up. I'm serious, I am going to kick the living shit + * out of you, game over, lights out. + */ + + +Ringraziamenti +============== + +Ringrazio Andi Kleen per le sue idee, le risposte alle mie domande, +le correzioni dei miei errori, l'aggiunta di contenuti, eccetera. +Philipp Rumpf per l'ortografia e per aver reso più chiaro il testo, e +per alcuni eccellenti punti tutt'altro che ovvi. Werner Almesberger +per avermi fornito un ottimo riassunto di :c:func:`disable_irq()`, +e Jes Sorensen e Andrea Arcangeli per le precisazioni. Michael Elizabeth +Chastain per aver verificato ed aggiunto la sezione configurazione. +Telsa Gwynne per avermi insegnato DocBook. |