diff options
Diffstat (limited to 'arch/mips/include/asm/octeon/cvmx-wqe.h')
-rw-r--r-- | arch/mips/include/asm/octeon/cvmx-wqe.h | 658 |
1 files changed, 658 insertions, 0 deletions
diff --git a/arch/mips/include/asm/octeon/cvmx-wqe.h b/arch/mips/include/asm/octeon/cvmx-wqe.h new file mode 100644 index 000000000..9cec2299b --- /dev/null +++ b/arch/mips/include/asm/octeon/cvmx-wqe.h @@ -0,0 +1,658 @@ +/***********************license start*************** + * Author: Cavium Networks + * + * Contact: support@caviumnetworks.com + * This file is part of the OCTEON SDK + * + * Copyright (c) 2003-2008 Cavium Networks + * + * This file is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License, Version 2, as + * published by the Free Software Foundation. + * + * This file is distributed in the hope that it will be useful, but + * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty + * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or + * NONINFRINGEMENT. See the GNU General Public License for more + * details. + * + * You should have received a copy of the GNU General Public License + * along with this file; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * or visit http://www.gnu.org/licenses/. + * + * This file may also be available under a different license from Cavium. + * Contact Cavium Networks for more information + ***********************license end**************************************/ + +/** + * + * This header file defines the work queue entry (wqe) data structure. + * Since this is a commonly used structure that depends on structures + * from several hardware blocks, those definitions have been placed + * in this file to create a single point of definition of the wqe + * format. + * Data structures are still named according to the block that they + * relate to. + * + */ + +#ifndef __CVMX_WQE_H__ +#define __CVMX_WQE_H__ + +#include <asm/octeon/cvmx-packet.h> + + +#define OCT_TAG_TYPE_STRING(x) \ + (((x) == CVMX_POW_TAG_TYPE_ORDERED) ? "ORDERED" : \ + (((x) == CVMX_POW_TAG_TYPE_ATOMIC) ? "ATOMIC" : \ + (((x) == CVMX_POW_TAG_TYPE_NULL) ? "NULL" : \ + "NULL_NULL"))) + +/** + * HW decode / err_code in work queue entry + */ +typedef union { + uint64_t u64; + + /* Use this struct if the hardware determines that the packet is IP */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + /* HW sets this to the number of buffers used by this packet */ + uint64_t bufs:8; + /* HW sets to the number of L2 bytes prior to the IP */ + uint64_t ip_offset:8; + /* set to 1 if we found DSA/VLAN in the L2 */ + uint64_t vlan_valid:1; + /* Set to 1 if the DSA/VLAN tag is stacked */ + uint64_t vlan_stacked:1; + uint64_t unassigned:1; + /* HW sets to the DSA/VLAN CFI flag (valid when vlan_valid) */ + uint64_t vlan_cfi:1; + /* HW sets to the DSA/VLAN_ID field (valid when vlan_valid) */ + uint64_t vlan_id:12; + /* Ring Identifier (if PCIe). Requires PIP_GBL_CTL[RING_EN]=1 */ + uint64_t pr:4; + uint64_t unassigned2:8; + /* the packet needs to be decompressed */ + uint64_t dec_ipcomp:1; + /* the packet is either TCP or UDP */ + uint64_t tcp_or_udp:1; + /* the packet needs to be decrypted (ESP or AH) */ + uint64_t dec_ipsec:1; + /* the packet is IPv6 */ + uint64_t is_v6:1; + + /* + * (rcv_error, not_IP, IP_exc, is_frag, L4_error, + * software, etc.). + */ + + /* + * reserved for software use, hardware will clear on + * packet creation. + */ + uint64_t software:1; + /* exceptional conditions below */ + /* the receive interface hardware detected an L4 error + * (only applies if !is_frag) (only applies if + * !rcv_error && !not_IP && !IP_exc && !is_frag) + * failure indicated in err_code below, decode: + * + * - 1 = Malformed L4 + * - 2 = L4 Checksum Error: the L4 checksum value is + * - 3 = UDP Length Error: The UDP length field would + * make the UDP data longer than what remains in + * the IP packet (as defined by the IP header + * length field). + * - 4 = Bad L4 Port: either the source or destination + * TCP/UDP port is 0. + * - 8 = TCP FIN Only: the packet is TCP and only the + * FIN flag set. + * - 9 = TCP No Flags: the packet is TCP and no flags + * are set. + * - 10 = TCP FIN RST: the packet is TCP and both FIN + * and RST are set. + * - 11 = TCP SYN URG: the packet is TCP and both SYN + * and URG are set. + * - 12 = TCP SYN RST: the packet is TCP and both SYN + * and RST are set. + * - 13 = TCP SYN FIN: the packet is TCP and both SYN + * and FIN are set. + */ + uint64_t L4_error:1; + /* set if the packet is a fragment */ + uint64_t is_frag:1; + /* the receive interface hardware detected an IP error + * / exception (only applies if !rcv_error && !not_IP) + * failure indicated in err_code below, decode: + * + * - 1 = Not IP: the IP version field is neither 4 nor + * 6. + * - 2 = IPv4 Header Checksum Error: the IPv4 header + * has a checksum violation. + * - 3 = IP Malformed Header: the packet is not long + * enough to contain the IP header. + * - 4 = IP Malformed: the packet is not long enough + * to contain the bytes indicated by the IP + * header. Pad is allowed. + * - 5 = IP TTL Hop: the IPv4 TTL field or the IPv6 + * Hop Count field are zero. + * - 6 = IP Options + */ + uint64_t IP_exc:1; + /* + * Set if the hardware determined that the packet is a + * broadcast. + */ + uint64_t is_bcast:1; + /* + * St if the hardware determined that the packet is a + * multi-cast. + */ + uint64_t is_mcast:1; + /* + * Set if the packet may not be IP (must be zero in + * this case). + */ + uint64_t not_IP:1; + /* + * The receive interface hardware detected a receive + * error (must be zero in this case). + */ + uint64_t rcv_error:1; + /* lower err_code = first-level descriptor of the + * work */ + /* zero for packet submitted by hardware that isn't on + * the slow path */ + /* type is cvmx_pip_err_t */ + uint64_t err_code:8; +#else + uint64_t err_code:8; + uint64_t rcv_error:1; + uint64_t not_IP:1; + uint64_t is_mcast:1; + uint64_t is_bcast:1; + uint64_t IP_exc:1; + uint64_t is_frag:1; + uint64_t L4_error:1; + uint64_t software:1; + uint64_t is_v6:1; + uint64_t dec_ipsec:1; + uint64_t tcp_or_udp:1; + uint64_t dec_ipcomp:1; + uint64_t unassigned2:4; + uint64_t unassigned2a:4; + uint64_t pr:4; + uint64_t vlan_id:12; + uint64_t vlan_cfi:1; + uint64_t unassigned:1; + uint64_t vlan_stacked:1; + uint64_t vlan_valid:1; + uint64_t ip_offset:8; + uint64_t bufs:8; +#endif + } s; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + uint64_t bufs:8; + uint64_t ip_offset:8; + uint64_t vlan_valid:1; + uint64_t vlan_stacked:1; + uint64_t unassigned:1; + uint64_t vlan_cfi:1; + uint64_t vlan_id:12; + uint64_t port:12; /* MAC/PIP port number. */ + uint64_t dec_ipcomp:1; + uint64_t tcp_or_udp:1; + uint64_t dec_ipsec:1; + uint64_t is_v6:1; + uint64_t software:1; + uint64_t L4_error:1; + uint64_t is_frag:1; + uint64_t IP_exc:1; + uint64_t is_bcast:1; + uint64_t is_mcast:1; + uint64_t not_IP:1; + uint64_t rcv_error:1; + uint64_t err_code:8; +#else + uint64_t err_code:8; + uint64_t rcv_error:1; + uint64_t not_IP:1; + uint64_t is_mcast:1; + uint64_t is_bcast:1; + uint64_t IP_exc:1; + uint64_t is_frag:1; + uint64_t L4_error:1; + uint64_t software:1; + uint64_t is_v6:1; + uint64_t dec_ipsec:1; + uint64_t tcp_or_udp:1; + uint64_t dec_ipcomp:1; + uint64_t port:12; + uint64_t vlan_id:12; + uint64_t vlan_cfi:1; + uint64_t unassigned:1; + uint64_t vlan_stacked:1; + uint64_t vlan_valid:1; + uint64_t ip_offset:8; + uint64_t bufs:8; +#endif + } s_cn68xx; + + /* use this to get at the 16 vlan bits */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + uint64_t unused1:16; + uint64_t vlan:16; + uint64_t unused2:32; +#else + uint64_t unused2:32; + uint64_t vlan:16; + uint64_t unused1:16; + +#endif + } svlan; + + /* + * use this struct if the hardware could not determine that + * the packet is ip. + */ + struct { +#ifdef __BIG_ENDIAN_BITFIELD + /* + * HW sets this to the number of buffers used by this + * packet. + */ + uint64_t bufs:8; + uint64_t unused:8; + /* set to 1 if we found DSA/VLAN in the L2 */ + uint64_t vlan_valid:1; + /* Set to 1 if the DSA/VLAN tag is stacked */ + uint64_t vlan_stacked:1; + uint64_t unassigned:1; + /* + * HW sets to the DSA/VLAN CFI flag (valid when + * vlan_valid) + */ + uint64_t vlan_cfi:1; + /* + * HW sets to the DSA/VLAN_ID field (valid when + * vlan_valid). + */ + uint64_t vlan_id:12; + /* + * Ring Identifier (if PCIe). Requires + * PIP_GBL_CTL[RING_EN]=1 + */ + uint64_t pr:4; + uint64_t unassigned2:12; + /* + * reserved for software use, hardware will clear on + * packet creation. + */ + uint64_t software:1; + uint64_t unassigned3:1; + /* + * set if the hardware determined that the packet is + * rarp. + */ + uint64_t is_rarp:1; + /* + * set if the hardware determined that the packet is + * arp + */ + uint64_t is_arp:1; + /* + * set if the hardware determined that the packet is a + * broadcast. + */ + uint64_t is_bcast:1; + /* + * set if the hardware determined that the packet is a + * multi-cast + */ + uint64_t is_mcast:1; + /* + * set if the packet may not be IP (must be one in + * this case) + */ + uint64_t not_IP:1; + /* The receive interface hardware detected a receive + * error. Failure indicated in err_code below, + * decode: + * + * - 1 = partial error: a packet was partially + * received, but internal buffering / bandwidth + * was not adequate to receive the entire + * packet. + * - 2 = jabber error: the RGMII packet was too large + * and is truncated. + * - 3 = overrun error: the RGMII packet is longer + * than allowed and had an FCS error. + * - 4 = oversize error: the RGMII packet is longer + * than allowed. + * - 5 = alignment error: the RGMII packet is not an + * integer number of bytes + * and had an FCS error (100M and 10M only). + * - 6 = fragment error: the RGMII packet is shorter + * than allowed and had an FCS error. + * - 7 = GMX FCS error: the RGMII packet had an FCS + * error. + * - 8 = undersize error: the RGMII packet is shorter + * than allowed. + * - 9 = extend error: the RGMII packet had an extend + * error. + * - 10 = length mismatch error: the RGMII packet had + * a length that did not match the length field + * in the L2 HDR. + * - 11 = RGMII RX error/SPI4 DIP4 Error: the RGMII + * packet had one or more data reception errors + * (RXERR) or the SPI4 packet had one or more + * DIP4 errors. + * - 12 = RGMII skip error/SPI4 Abort Error: the RGMII + * packet was not large enough to cover the + * skipped bytes or the SPI4 packet was + * terminated with an About EOPS. + * - 13 = RGMII nibble error/SPI4 Port NXA Error: the + * RGMII packet had a studder error (data not + * repeated - 10/100M only) or the SPI4 packet + * was sent to an NXA. + * - 16 = FCS error: a SPI4.2 packet had an FCS error. + * - 17 = Skip error: a packet was not large enough to + * cover the skipped bytes. + * - 18 = L2 header malformed: the packet is not long + * enough to contain the L2. + */ + + uint64_t rcv_error:1; + /* + * lower err_code = first-level descriptor of the + * work + */ + /* + * zero for packet submitted by hardware that isn't on + * the slow path + */ + /* type is cvmx_pip_err_t (union, so can't use directly */ + uint64_t err_code:8; +#else + uint64_t err_code:8; + uint64_t rcv_error:1; + uint64_t not_IP:1; + uint64_t is_mcast:1; + uint64_t is_bcast:1; + uint64_t is_arp:1; + uint64_t is_rarp:1; + uint64_t unassigned3:1; + uint64_t software:1; + uint64_t unassigned2:4; + uint64_t unassigned2a:8; + uint64_t pr:4; + uint64_t vlan_id:12; + uint64_t vlan_cfi:1; + uint64_t unassigned:1; + uint64_t vlan_stacked:1; + uint64_t vlan_valid:1; + uint64_t unused:8; + uint64_t bufs:8; +#endif + } snoip; + +} cvmx_pip_wqe_word2; + +union cvmx_pip_wqe_word0 { + struct { +#ifdef __BIG_ENDIAN_BITFIELD + /** + * raw chksum result generated by the HW + */ + uint16_t hw_chksum; + /** + * Field unused by hardware - available for software + */ + uint8_t unused; + /** + * Next pointer used by hardware for list maintenance. + * May be written/read by HW before the work queue + * entry is scheduled to a PP (Only 36 bits used in + * Octeon 1) + */ + uint64_t next_ptr:40; +#else + uint64_t next_ptr:40; + uint8_t unused; + uint16_t hw_chksum; +#endif + } cn38xx; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + uint64_t l4ptr:8; /* 56..63 */ + uint64_t unused0:8; /* 48..55 */ + uint64_t l3ptr:8; /* 40..47 */ + uint64_t l2ptr:8; /* 32..39 */ + uint64_t unused1:18; /* 14..31 */ + uint64_t bpid:6; /* 8..13 */ + uint64_t unused2:2; /* 6..7 */ + uint64_t pknd:6; /* 0..5 */ +#else + uint64_t pknd:6; /* 0..5 */ + uint64_t unused2:2; /* 6..7 */ + uint64_t bpid:6; /* 8..13 */ + uint64_t unused1:18; /* 14..31 */ + uint64_t l2ptr:8; /* 32..39 */ + uint64_t l3ptr:8; /* 40..47 */ + uint64_t unused0:8; /* 48..55 */ + uint64_t l4ptr:8; /* 56..63 */ +#endif + } cn68xx; +}; + +union cvmx_wqe_word0 { + uint64_t u64; + union cvmx_pip_wqe_word0 pip; +}; + +union cvmx_wqe_word1 { + uint64_t u64; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + uint64_t len:16; + uint64_t varies:14; + /** + * the type of the tag (ORDERED, ATOMIC, NULL) + */ + uint64_t tag_type:2; + uint64_t tag:32; +#else + uint64_t tag:32; + uint64_t tag_type:2; + uint64_t varies:14; + uint64_t len:16; +#endif + }; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + uint64_t len:16; + uint64_t zero_0:1; + /** + * HW sets this to what it thought the priority of + * the input packet was + */ + uint64_t qos:3; + + uint64_t zero_1:1; + /** + * the group that the work queue entry will be scheduled to + */ + uint64_t grp:6; + uint64_t zero_2:3; + uint64_t tag_type:2; + uint64_t tag:32; +#else + uint64_t tag:32; + uint64_t tag_type:2; + uint64_t zero_2:3; + uint64_t grp:6; + uint64_t zero_1:1; + uint64_t qos:3; + uint64_t zero_0:1; + uint64_t len:16; +#endif + } cn68xx; + struct { +#ifdef __BIG_ENDIAN_BITFIELD + /** + * HW sets to the total number of bytes in the packet + */ + uint64_t len:16; + /** + * HW sets this to input physical port + */ + uint64_t ipprt:6; + + /** + * HW sets this to what it thought the priority of + * the input packet was + */ + uint64_t qos:3; + + /** + * the group that the work queue entry will be scheduled to + */ + uint64_t grp:4; + /** + * the type of the tag (ORDERED, ATOMIC, NULL) + */ + uint64_t tag_type:3; + /** + * the synchronization/ordering tag + */ + uint64_t tag:32; +#else + uint64_t tag:32; + uint64_t tag_type:2; + uint64_t zero_2:1; + uint64_t grp:4; + uint64_t qos:3; + uint64_t ipprt:6; + uint64_t len:16; +#endif + } cn38xx; +}; + +/** + * Work queue entry format + * + * must be 8-byte aligned + */ +struct cvmx_wqe { + + /***************************************************************** + * WORD 0 + * HW WRITE: the following 64 bits are filled by HW when a packet arrives + */ + union cvmx_wqe_word0 word0; + + /***************************************************************** + * WORD 1 + * HW WRITE: the following 64 bits are filled by HW when a packet arrives + */ + union cvmx_wqe_word1 word1; + + /** + * WORD 2 HW WRITE: the following 64-bits are filled in by + * hardware when a packet arrives This indicates a variety of + * status and error conditions. + */ + cvmx_pip_wqe_word2 word2; + + /** + * Pointer to the first segment of the packet. + */ + union cvmx_buf_ptr packet_ptr; + + /** + * HW WRITE: octeon will fill in a programmable amount from the + * packet, up to (at most, but perhaps less) the amount + * needed to fill the work queue entry to 128 bytes + * + * If the packet is recognized to be IP, the hardware starts + * (except that the IPv4 header is padded for appropriate + * alignment) writing here where the IP header starts. If the + * packet is not recognized to be IP, the hardware starts + * writing the beginning of the packet here. + */ + uint8_t packet_data[96]; + + /** + * If desired, SW can make the work Q entry any length. For the + * purposes of discussion here, Assume 128B always, as this is all that + * the hardware deals with. + * + */ + +} CVMX_CACHE_LINE_ALIGNED; + +static inline int cvmx_wqe_get_port(struct cvmx_wqe *work) +{ + int port; + + if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) + port = work->word2.s_cn68xx.port; + else + port = work->word1.cn38xx.ipprt; + + return port; +} + +static inline void cvmx_wqe_set_port(struct cvmx_wqe *work, int port) +{ + if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) + work->word2.s_cn68xx.port = port; + else + work->word1.cn38xx.ipprt = port; +} + +static inline int cvmx_wqe_get_grp(struct cvmx_wqe *work) +{ + int grp; + + if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) + grp = work->word1.cn68xx.grp; + else + grp = work->word1.cn38xx.grp; + + return grp; +} + +static inline void cvmx_wqe_set_grp(struct cvmx_wqe *work, int grp) +{ + if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) + work->word1.cn68xx.grp = grp; + else + work->word1.cn38xx.grp = grp; +} + +static inline int cvmx_wqe_get_qos(struct cvmx_wqe *work) +{ + int qos; + + if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) + qos = work->word1.cn68xx.qos; + else + qos = work->word1.cn38xx.qos; + + return qos; +} + +static inline void cvmx_wqe_set_qos(struct cvmx_wqe *work, int qos) +{ + if (octeon_has_feature(OCTEON_FEATURE_CN68XX_WQE)) + work->word1.cn68xx.qos = qos; + else + work->word1.cn38xx.qos = qos; +} + +#endif /* __CVMX_WQE_H__ */ |