summaryrefslogtreecommitdiffstats
path: root/arch/mips/kvm/emulate.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/kvm/emulate.c')
-rw-r--r--arch/mips/kvm/emulate.c3292
1 files changed, 3292 insertions, 0 deletions
diff --git a/arch/mips/kvm/emulate.c b/arch/mips/kvm/emulate.c
new file mode 100644
index 000000000..d70c4f8e1
--- /dev/null
+++ b/arch/mips/kvm/emulate.c
@@ -0,0 +1,3292 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * KVM/MIPS: Instruction/Exception emulation
+ *
+ * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
+ * Authors: Sanjay Lal <sanjayl@kymasys.com>
+ */
+
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/ktime.h>
+#include <linux/kvm_host.h>
+#include <linux/vmalloc.h>
+#include <linux/fs.h>
+#include <linux/memblock.h>
+#include <linux/random.h>
+#include <asm/page.h>
+#include <asm/cacheflush.h>
+#include <asm/cacheops.h>
+#include <asm/cpu-info.h>
+#include <asm/mmu_context.h>
+#include <asm/tlbflush.h>
+#include <asm/inst.h>
+
+#undef CONFIG_MIPS_MT
+#include <asm/r4kcache.h>
+#define CONFIG_MIPS_MT
+
+#include "interrupt.h"
+#include "commpage.h"
+
+#include "trace.h"
+
+/*
+ * Compute the return address and do emulate branch simulation, if required.
+ * This function should be called only in branch delay slot active.
+ */
+static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
+ unsigned long *out)
+{
+ unsigned int dspcontrol;
+ union mips_instruction insn;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ long epc = instpc;
+ long nextpc;
+ int err;
+
+ if (epc & 3) {
+ kvm_err("%s: unaligned epc\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Read the instruction */
+ err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
+ if (err)
+ return err;
+
+ switch (insn.i_format.opcode) {
+ /* jr and jalr are in r_format format. */
+ case spec_op:
+ switch (insn.r_format.func) {
+ case jalr_op:
+ arch->gprs[insn.r_format.rd] = epc + 8;
+ fallthrough;
+ case jr_op:
+ nextpc = arch->gprs[insn.r_format.rs];
+ break;
+ default:
+ return -EINVAL;
+ }
+ break;
+
+ /*
+ * This group contains:
+ * bltz_op, bgez_op, bltzl_op, bgezl_op,
+ * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
+ */
+ case bcond_op:
+ switch (insn.i_format.rt) {
+ case bltz_op:
+ case bltzl_op:
+ if ((long)arch->gprs[insn.i_format.rs] < 0)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ case bgez_op:
+ case bgezl_op:
+ if ((long)arch->gprs[insn.i_format.rs] >= 0)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ case bltzal_op:
+ case bltzall_op:
+ arch->gprs[31] = epc + 8;
+ if ((long)arch->gprs[insn.i_format.rs] < 0)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ case bgezal_op:
+ case bgezall_op:
+ arch->gprs[31] = epc + 8;
+ if ((long)arch->gprs[insn.i_format.rs] >= 0)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+ case bposge32_op:
+ if (!cpu_has_dsp) {
+ kvm_err("%s: DSP branch but not DSP ASE\n",
+ __func__);
+ return -EINVAL;
+ }
+
+ dspcontrol = rddsp(0x01);
+
+ if (dspcontrol >= 32)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+ default:
+ return -EINVAL;
+ }
+ break;
+
+ /* These are unconditional and in j_format. */
+ case jal_op:
+ arch->gprs[31] = instpc + 8;
+ fallthrough;
+ case j_op:
+ epc += 4;
+ epc >>= 28;
+ epc <<= 28;
+ epc |= (insn.j_format.target << 2);
+ nextpc = epc;
+ break;
+
+ /* These are conditional and in i_format. */
+ case beq_op:
+ case beql_op:
+ if (arch->gprs[insn.i_format.rs] ==
+ arch->gprs[insn.i_format.rt])
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ case bne_op:
+ case bnel_op:
+ if (arch->gprs[insn.i_format.rs] !=
+ arch->gprs[insn.i_format.rt])
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ case blez_op: /* POP06 */
+#ifndef CONFIG_CPU_MIPSR6
+ case blezl_op: /* removed in R6 */
+#endif
+ if (insn.i_format.rt != 0)
+ goto compact_branch;
+ if ((long)arch->gprs[insn.i_format.rs] <= 0)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ case bgtz_op: /* POP07 */
+#ifndef CONFIG_CPU_MIPSR6
+ case bgtzl_op: /* removed in R6 */
+#endif
+ if (insn.i_format.rt != 0)
+ goto compact_branch;
+ if ((long)arch->gprs[insn.i_format.rs] > 0)
+ epc = epc + 4 + (insn.i_format.simmediate << 2);
+ else
+ epc += 8;
+ nextpc = epc;
+ break;
+
+ /* And now the FPA/cp1 branch instructions. */
+ case cop1_op:
+ kvm_err("%s: unsupported cop1_op\n", __func__);
+ return -EINVAL;
+
+#ifdef CONFIG_CPU_MIPSR6
+ /* R6 added the following compact branches with forbidden slots */
+ case blezl_op: /* POP26 */
+ case bgtzl_op: /* POP27 */
+ /* only rt == 0 isn't compact branch */
+ if (insn.i_format.rt != 0)
+ goto compact_branch;
+ return -EINVAL;
+ case pop10_op:
+ case pop30_op:
+ /* only rs == rt == 0 is reserved, rest are compact branches */
+ if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
+ goto compact_branch;
+ return -EINVAL;
+ case pop66_op:
+ case pop76_op:
+ /* only rs == 0 isn't compact branch */
+ if (insn.i_format.rs != 0)
+ goto compact_branch;
+ return -EINVAL;
+compact_branch:
+ /*
+ * If we've hit an exception on the forbidden slot, then
+ * the branch must not have been taken.
+ */
+ epc += 8;
+ nextpc = epc;
+ break;
+#else
+compact_branch:
+ /* Fall through - Compact branches not supported before R6 */
+#endif
+ default:
+ return -EINVAL;
+ }
+
+ *out = nextpc;
+ return 0;
+}
+
+enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
+{
+ int err;
+
+ if (cause & CAUSEF_BD) {
+ err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
+ &vcpu->arch.pc);
+ if (err)
+ return EMULATE_FAIL;
+ } else {
+ vcpu->arch.pc += 4;
+ }
+
+ kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
+
+ return EMULATE_DONE;
+}
+
+/**
+ * kvm_get_badinstr() - Get bad instruction encoding.
+ * @opc: Guest pointer to faulting instruction.
+ * @vcpu: KVM VCPU information.
+ *
+ * Gets the instruction encoding of the faulting instruction, using the saved
+ * BadInstr register value if it exists, otherwise falling back to reading guest
+ * memory at @opc.
+ *
+ * Returns: The instruction encoding of the faulting instruction.
+ */
+int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
+{
+ if (cpu_has_badinstr) {
+ *out = vcpu->arch.host_cp0_badinstr;
+ return 0;
+ } else {
+ return kvm_get_inst(opc, vcpu, out);
+ }
+}
+
+/**
+ * kvm_get_badinstrp() - Get bad prior instruction encoding.
+ * @opc: Guest pointer to prior faulting instruction.
+ * @vcpu: KVM VCPU information.
+ *
+ * Gets the instruction encoding of the prior faulting instruction (the branch
+ * containing the delay slot which faulted), using the saved BadInstrP register
+ * value if it exists, otherwise falling back to reading guest memory at @opc.
+ *
+ * Returns: The instruction encoding of the prior faulting instruction.
+ */
+int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
+{
+ if (cpu_has_badinstrp) {
+ *out = vcpu->arch.host_cp0_badinstrp;
+ return 0;
+ } else {
+ return kvm_get_inst(opc, vcpu, out);
+ }
+}
+
+/**
+ * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
+ * @vcpu: Virtual CPU.
+ *
+ * Returns: 1 if the CP0_Count timer is disabled by either the guest
+ * CP0_Cause.DC bit or the count_ctl.DC bit.
+ * 0 otherwise (in which case CP0_Count timer is running).
+ */
+int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+
+ return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
+ (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
+}
+
+/**
+ * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
+ *
+ * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
+ *
+ * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
+ */
+static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
+{
+ s64 now_ns, periods;
+ u64 delta;
+
+ now_ns = ktime_to_ns(now);
+ delta = now_ns + vcpu->arch.count_dyn_bias;
+
+ if (delta >= vcpu->arch.count_period) {
+ /* If delta is out of safe range the bias needs adjusting */
+ periods = div64_s64(now_ns, vcpu->arch.count_period);
+ vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
+ /* Recalculate delta with new bias */
+ delta = now_ns + vcpu->arch.count_dyn_bias;
+ }
+
+ /*
+ * We've ensured that:
+ * delta < count_period
+ *
+ * Therefore the intermediate delta*count_hz will never overflow since
+ * at the boundary condition:
+ * delta = count_period
+ * delta = NSEC_PER_SEC * 2^32 / count_hz
+ * delta * count_hz = NSEC_PER_SEC * 2^32
+ */
+ return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
+}
+
+/**
+ * kvm_mips_count_time() - Get effective current time.
+ * @vcpu: Virtual CPU.
+ *
+ * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
+ * except when the master disable bit is set in count_ctl, in which case it is
+ * count_resume, i.e. the time that the count was disabled.
+ *
+ * Returns: Effective monotonic ktime for CP0_Count.
+ */
+static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
+{
+ if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
+ return vcpu->arch.count_resume;
+
+ return ktime_get();
+}
+
+/**
+ * kvm_mips_read_count_running() - Read the current count value as if running.
+ * @vcpu: Virtual CPU.
+ * @now: Kernel time to read CP0_Count at.
+ *
+ * Returns the current guest CP0_Count register at time @now and handles if the
+ * timer interrupt is pending and hasn't been handled yet.
+ *
+ * Returns: The current value of the guest CP0_Count register.
+ */
+static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ ktime_t expires, threshold;
+ u32 count, compare;
+ int running;
+
+ /* Calculate the biased and scaled guest CP0_Count */
+ count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
+ compare = kvm_read_c0_guest_compare(cop0);
+
+ /*
+ * Find whether CP0_Count has reached the closest timer interrupt. If
+ * not, we shouldn't inject it.
+ */
+ if ((s32)(count - compare) < 0)
+ return count;
+
+ /*
+ * The CP0_Count we're going to return has already reached the closest
+ * timer interrupt. Quickly check if it really is a new interrupt by
+ * looking at whether the interval until the hrtimer expiry time is
+ * less than 1/4 of the timer period.
+ */
+ expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
+ threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
+ if (ktime_before(expires, threshold)) {
+ /*
+ * Cancel it while we handle it so there's no chance of
+ * interference with the timeout handler.
+ */
+ running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
+
+ /* Nothing should be waiting on the timeout */
+ kvm_mips_callbacks->queue_timer_int(vcpu);
+
+ /*
+ * Restart the timer if it was running based on the expiry time
+ * we read, so that we don't push it back 2 periods.
+ */
+ if (running) {
+ expires = ktime_add_ns(expires,
+ vcpu->arch.count_period);
+ hrtimer_start(&vcpu->arch.comparecount_timer, expires,
+ HRTIMER_MODE_ABS);
+ }
+ }
+
+ return count;
+}
+
+/**
+ * kvm_mips_read_count() - Read the current count value.
+ * @vcpu: Virtual CPU.
+ *
+ * Read the current guest CP0_Count value, taking into account whether the timer
+ * is stopped.
+ *
+ * Returns: The current guest CP0_Count value.
+ */
+u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+
+ /* If count disabled just read static copy of count */
+ if (kvm_mips_count_disabled(vcpu))
+ return kvm_read_c0_guest_count(cop0);
+
+ return kvm_mips_read_count_running(vcpu, ktime_get());
+}
+
+/**
+ * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
+ * @vcpu: Virtual CPU.
+ * @count: Output pointer for CP0_Count value at point of freeze.
+ *
+ * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
+ * at the point it was frozen. It is guaranteed that any pending interrupts at
+ * the point it was frozen are handled, and none after that point.
+ *
+ * This is useful where the time/CP0_Count is needed in the calculation of the
+ * new parameters.
+ *
+ * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
+ *
+ * Returns: The ktime at the point of freeze.
+ */
+ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
+{
+ ktime_t now;
+
+ /* stop hrtimer before finding time */
+ hrtimer_cancel(&vcpu->arch.comparecount_timer);
+ now = ktime_get();
+
+ /* find count at this point and handle pending hrtimer */
+ *count = kvm_mips_read_count_running(vcpu, now);
+
+ return now;
+}
+
+/**
+ * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
+ * @vcpu: Virtual CPU.
+ * @now: ktime at point of resume.
+ * @count: CP0_Count at point of resume.
+ *
+ * Resumes the timer and updates the timer expiry based on @now and @count.
+ * This can be used in conjunction with kvm_mips_freeze_timer() when timer
+ * parameters need to be changed.
+ *
+ * It is guaranteed that a timer interrupt immediately after resume will be
+ * handled, but not if CP_Compare is exactly at @count. That case is already
+ * handled by kvm_mips_freeze_timer().
+ *
+ * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
+ */
+static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
+ ktime_t now, u32 count)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ u32 compare;
+ u64 delta;
+ ktime_t expire;
+
+ /* Calculate timeout (wrap 0 to 2^32) */
+ compare = kvm_read_c0_guest_compare(cop0);
+ delta = (u64)(u32)(compare - count - 1) + 1;
+ delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
+ expire = ktime_add_ns(now, delta);
+
+ /* Update hrtimer to use new timeout */
+ hrtimer_cancel(&vcpu->arch.comparecount_timer);
+ hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
+}
+
+/**
+ * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
+ * @vcpu: Virtual CPU.
+ * @before: Time before Count was saved, lower bound of drift calculation.
+ * @count: CP0_Count at point of restore.
+ * @min_drift: Minimum amount of drift permitted before correction.
+ * Must be <= 0.
+ *
+ * Restores the timer from a particular @count, accounting for drift. This can
+ * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
+ * to be used for a period of time, but the exact ktime corresponding to the
+ * final Count that must be restored is not known.
+ *
+ * It is gauranteed that a timer interrupt immediately after restore will be
+ * handled, but not if CP0_Compare is exactly at @count. That case should
+ * already be handled when the hardware timer state is saved.
+ *
+ * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
+ * stopped).
+ *
+ * Returns: Amount of correction to count_bias due to drift.
+ */
+int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
+ u32 count, int min_drift)
+{
+ ktime_t now, count_time;
+ u32 now_count, before_count;
+ u64 delta;
+ int drift, ret = 0;
+
+ /* Calculate expected count at before */
+ before_count = vcpu->arch.count_bias +
+ kvm_mips_ktime_to_count(vcpu, before);
+
+ /*
+ * Detect significantly negative drift, where count is lower than
+ * expected. Some negative drift is expected when hardware counter is
+ * set after kvm_mips_freeze_timer(), and it is harmless to allow the
+ * time to jump forwards a little, within reason. If the drift is too
+ * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
+ */
+ drift = count - before_count;
+ if (drift < min_drift) {
+ count_time = before;
+ vcpu->arch.count_bias += drift;
+ ret = drift;
+ goto resume;
+ }
+
+ /* Calculate expected count right now */
+ now = ktime_get();
+ now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
+
+ /*
+ * Detect positive drift, where count is higher than expected, and
+ * adjust the bias to avoid guest time going backwards.
+ */
+ drift = count - now_count;
+ if (drift > 0) {
+ count_time = now;
+ vcpu->arch.count_bias += drift;
+ ret = drift;
+ goto resume;
+ }
+
+ /* Subtract nanosecond delta to find ktime when count was read */
+ delta = (u64)(u32)(now_count - count);
+ delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
+ count_time = ktime_sub_ns(now, delta);
+
+resume:
+ /* Resume using the calculated ktime */
+ kvm_mips_resume_hrtimer(vcpu, count_time, count);
+ return ret;
+}
+
+/**
+ * kvm_mips_write_count() - Modify the count and update timer.
+ * @vcpu: Virtual CPU.
+ * @count: Guest CP0_Count value to set.
+ *
+ * Sets the CP0_Count value and updates the timer accordingly.
+ */
+void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ ktime_t now;
+
+ /* Calculate bias */
+ now = kvm_mips_count_time(vcpu);
+ vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
+
+ if (kvm_mips_count_disabled(vcpu))
+ /* The timer's disabled, adjust the static count */
+ kvm_write_c0_guest_count(cop0, count);
+ else
+ /* Update timeout */
+ kvm_mips_resume_hrtimer(vcpu, now, count);
+}
+
+/**
+ * kvm_mips_init_count() - Initialise timer.
+ * @vcpu: Virtual CPU.
+ * @count_hz: Frequency of timer.
+ *
+ * Initialise the timer to the specified frequency, zero it, and set it going if
+ * it's enabled.
+ */
+void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
+{
+ vcpu->arch.count_hz = count_hz;
+ vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
+ vcpu->arch.count_dyn_bias = 0;
+
+ /* Starting at 0 */
+ kvm_mips_write_count(vcpu, 0);
+}
+
+/**
+ * kvm_mips_set_count_hz() - Update the frequency of the timer.
+ * @vcpu: Virtual CPU.
+ * @count_hz: Frequency of CP0_Count timer in Hz.
+ *
+ * Change the frequency of the CP0_Count timer. This is done atomically so that
+ * CP0_Count is continuous and no timer interrupt is lost.
+ *
+ * Returns: -EINVAL if @count_hz is out of range.
+ * 0 on success.
+ */
+int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ int dc;
+ ktime_t now;
+ u32 count;
+
+ /* ensure the frequency is in a sensible range... */
+ if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
+ return -EINVAL;
+ /* ... and has actually changed */
+ if (vcpu->arch.count_hz == count_hz)
+ return 0;
+
+ /* Safely freeze timer so we can keep it continuous */
+ dc = kvm_mips_count_disabled(vcpu);
+ if (dc) {
+ now = kvm_mips_count_time(vcpu);
+ count = kvm_read_c0_guest_count(cop0);
+ } else {
+ now = kvm_mips_freeze_hrtimer(vcpu, &count);
+ }
+
+ /* Update the frequency */
+ vcpu->arch.count_hz = count_hz;
+ vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
+ vcpu->arch.count_dyn_bias = 0;
+
+ /* Calculate adjusted bias so dynamic count is unchanged */
+ vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
+
+ /* Update and resume hrtimer */
+ if (!dc)
+ kvm_mips_resume_hrtimer(vcpu, now, count);
+ return 0;
+}
+
+/**
+ * kvm_mips_write_compare() - Modify compare and update timer.
+ * @vcpu: Virtual CPU.
+ * @compare: New CP0_Compare value.
+ * @ack: Whether to acknowledge timer interrupt.
+ *
+ * Update CP0_Compare to a new value and update the timeout.
+ * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
+ * any pending timer interrupt is preserved.
+ */
+void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ int dc;
+ u32 old_compare = kvm_read_c0_guest_compare(cop0);
+ s32 delta = compare - old_compare;
+ u32 cause;
+ ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
+ u32 count;
+
+ /* if unchanged, must just be an ack */
+ if (old_compare == compare) {
+ if (!ack)
+ return;
+ kvm_mips_callbacks->dequeue_timer_int(vcpu);
+ kvm_write_c0_guest_compare(cop0, compare);
+ return;
+ }
+
+ /*
+ * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
+ * too to prevent guest CP0_Count hitting guest CP0_Compare.
+ *
+ * The new GTOffset corresponds to the new value of CP0_Compare, and is
+ * set prior to it being written into the guest context. We disable
+ * preemption until the new value is written to prevent restore of a
+ * GTOffset corresponding to the old CP0_Compare value.
+ */
+ if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
+ preempt_disable();
+ write_c0_gtoffset(compare - read_c0_count());
+ back_to_back_c0_hazard();
+ }
+
+ /* freeze_hrtimer() takes care of timer interrupts <= count */
+ dc = kvm_mips_count_disabled(vcpu);
+ if (!dc)
+ now = kvm_mips_freeze_hrtimer(vcpu, &count);
+
+ if (ack)
+ kvm_mips_callbacks->dequeue_timer_int(vcpu);
+ else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
+ /*
+ * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
+ * preserve guest CP0_Cause.TI if we don't want to ack it.
+ */
+ cause = kvm_read_c0_guest_cause(cop0);
+
+ kvm_write_c0_guest_compare(cop0, compare);
+
+ if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
+ if (delta > 0)
+ preempt_enable();
+
+ back_to_back_c0_hazard();
+
+ if (!ack && cause & CAUSEF_TI)
+ kvm_write_c0_guest_cause(cop0, cause);
+ }
+
+ /* resume_hrtimer() takes care of timer interrupts > count */
+ if (!dc)
+ kvm_mips_resume_hrtimer(vcpu, now, count);
+
+ /*
+ * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
+ * until after the new CP0_Compare is written, otherwise new guest
+ * CP0_Count could hit new guest CP0_Compare.
+ */
+ if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
+ write_c0_gtoffset(compare - read_c0_count());
+}
+
+/**
+ * kvm_mips_count_disable() - Disable count.
+ * @vcpu: Virtual CPU.
+ *
+ * Disable the CP0_Count timer. A timer interrupt on or before the final stop
+ * time will be handled but not after.
+ *
+ * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
+ * count_ctl.DC has been set (count disabled).
+ *
+ * Returns: The time that the timer was stopped.
+ */
+static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ u32 count;
+ ktime_t now;
+
+ /* Stop hrtimer */
+ hrtimer_cancel(&vcpu->arch.comparecount_timer);
+
+ /* Set the static count from the dynamic count, handling pending TI */
+ now = ktime_get();
+ count = kvm_mips_read_count_running(vcpu, now);
+ kvm_write_c0_guest_count(cop0, count);
+
+ return now;
+}
+
+/**
+ * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
+ * @vcpu: Virtual CPU.
+ *
+ * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
+ * before the final stop time will be handled if the timer isn't disabled by
+ * count_ctl.DC, but not after.
+ *
+ * Assumes CP0_Cause.DC is clear (count enabled).
+ */
+void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+
+ kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
+ if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
+ kvm_mips_count_disable(vcpu);
+}
+
+/**
+ * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
+ * @vcpu: Virtual CPU.
+ *
+ * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
+ * the start time will be handled if the timer isn't disabled by count_ctl.DC,
+ * potentially before even returning, so the caller should be careful with
+ * ordering of CP0_Cause modifications so as not to lose it.
+ *
+ * Assumes CP0_Cause.DC is set (count disabled).
+ */
+void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ u32 count;
+
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
+
+ /*
+ * Set the dynamic count to match the static count.
+ * This starts the hrtimer if count_ctl.DC allows it.
+ * Otherwise it conveniently updates the biases.
+ */
+ count = kvm_read_c0_guest_count(cop0);
+ kvm_mips_write_count(vcpu, count);
+}
+
+/**
+ * kvm_mips_set_count_ctl() - Update the count control KVM register.
+ * @vcpu: Virtual CPU.
+ * @count_ctl: Count control register new value.
+ *
+ * Set the count control KVM register. The timer is updated accordingly.
+ *
+ * Returns: -EINVAL if reserved bits are set.
+ * 0 on success.
+ */
+int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ s64 changed = count_ctl ^ vcpu->arch.count_ctl;
+ s64 delta;
+ ktime_t expire, now;
+ u32 count, compare;
+
+ /* Only allow defined bits to be changed */
+ if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
+ return -EINVAL;
+
+ /* Apply new value */
+ vcpu->arch.count_ctl = count_ctl;
+
+ /* Master CP0_Count disable */
+ if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
+ /* Is CP0_Cause.DC already disabling CP0_Count? */
+ if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
+ if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
+ /* Just record the current time */
+ vcpu->arch.count_resume = ktime_get();
+ } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
+ /* disable timer and record current time */
+ vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
+ } else {
+ /*
+ * Calculate timeout relative to static count at resume
+ * time (wrap 0 to 2^32).
+ */
+ count = kvm_read_c0_guest_count(cop0);
+ compare = kvm_read_c0_guest_compare(cop0);
+ delta = (u64)(u32)(compare - count - 1) + 1;
+ delta = div_u64(delta * NSEC_PER_SEC,
+ vcpu->arch.count_hz);
+ expire = ktime_add_ns(vcpu->arch.count_resume, delta);
+
+ /* Handle pending interrupt */
+ now = ktime_get();
+ if (ktime_compare(now, expire) >= 0)
+ /* Nothing should be waiting on the timeout */
+ kvm_mips_callbacks->queue_timer_int(vcpu);
+
+ /* Resume hrtimer without changing bias */
+ count = kvm_mips_read_count_running(vcpu, now);
+ kvm_mips_resume_hrtimer(vcpu, now, count);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * kvm_mips_set_count_resume() - Update the count resume KVM register.
+ * @vcpu: Virtual CPU.
+ * @count_resume: Count resume register new value.
+ *
+ * Set the count resume KVM register.
+ *
+ * Returns: -EINVAL if out of valid range (0..now).
+ * 0 on success.
+ */
+int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
+{
+ /*
+ * It doesn't make sense for the resume time to be in the future, as it
+ * would be possible for the next interrupt to be more than a full
+ * period in the future.
+ */
+ if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
+ return -EINVAL;
+
+ vcpu->arch.count_resume = ns_to_ktime(count_resume);
+ return 0;
+}
+
+/**
+ * kvm_mips_count_timeout() - Push timer forward on timeout.
+ * @vcpu: Virtual CPU.
+ *
+ * Handle an hrtimer event by push the hrtimer forward a period.
+ *
+ * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
+ */
+enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
+{
+ /* Add the Count period to the current expiry time */
+ hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
+ vcpu->arch.count_period);
+ return HRTIMER_RESTART;
+}
+
+enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ enum emulation_result er = EMULATE_DONE;
+
+ if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
+ kvm_clear_c0_guest_status(cop0, ST0_ERL);
+ vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
+ } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
+ kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
+ kvm_read_c0_guest_epc(cop0));
+ kvm_clear_c0_guest_status(cop0, ST0_EXL);
+ vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
+
+ } else {
+ kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
+ vcpu->arch.pc);
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
+{
+ kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
+ vcpu->arch.pending_exceptions);
+
+ ++vcpu->stat.wait_exits;
+ trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
+ if (!vcpu->arch.pending_exceptions) {
+ kvm_vz_lose_htimer(vcpu);
+ vcpu->arch.wait = 1;
+ kvm_vcpu_block(vcpu);
+
+ /*
+ * We we are runnable, then definitely go off to user space to
+ * check if any I/O interrupts are pending.
+ */
+ if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
+ kvm_clear_request(KVM_REQ_UNHALT, vcpu);
+ vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
+ }
+ }
+
+ return EMULATE_DONE;
+}
+
+static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
+ unsigned long entryhi)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
+ int cpu, i;
+ u32 nasid = entryhi & KVM_ENTRYHI_ASID;
+
+ if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
+ trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
+ KVM_ENTRYHI_ASID, nasid);
+
+ /*
+ * Flush entries from the GVA page tables.
+ * Guest user page table will get flushed lazily on re-entry to
+ * guest user if the guest ASID actually changes.
+ */
+ kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
+
+ /*
+ * Regenerate/invalidate kernel MMU context.
+ * The user MMU context will be regenerated lazily on re-entry
+ * to guest user if the guest ASID actually changes.
+ */
+ preempt_disable();
+ cpu = smp_processor_id();
+ get_new_mmu_context(kern_mm);
+ for_each_possible_cpu(i)
+ if (i != cpu)
+ set_cpu_context(i, kern_mm, 0);
+ preempt_enable();
+ }
+ kvm_write_c0_guest_entryhi(cop0, entryhi);
+}
+
+enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_mips_tlb *tlb;
+ unsigned long pc = vcpu->arch.pc;
+ int index;
+
+ index = kvm_read_c0_guest_index(cop0);
+ if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
+ /* UNDEFINED */
+ kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
+ index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
+ }
+
+ tlb = &vcpu->arch.guest_tlb[index];
+ kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
+ kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
+ kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
+ kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
+
+ return EMULATE_DONE;
+}
+
+/**
+ * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
+ * @vcpu: VCPU with changed mappings.
+ * @tlb: TLB entry being removed.
+ *
+ * This is called to indicate a single change in guest MMU mappings, so that we
+ * can arrange TLB flushes on this and other CPUs.
+ */
+static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
+ struct kvm_mips_tlb *tlb)
+{
+ struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
+ struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
+ int cpu, i;
+ bool user;
+
+ /* No need to flush for entries which are already invalid */
+ if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
+ return;
+ /* Don't touch host kernel page tables or TLB mappings */
+ if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
+ return;
+ /* User address space doesn't need flushing for KSeg2/3 changes */
+ user = tlb->tlb_hi < KVM_GUEST_KSEG0;
+
+ preempt_disable();
+
+ /* Invalidate page table entries */
+ kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
+
+ /*
+ * Probe the shadow host TLB for the entry being overwritten, if one
+ * matches, invalidate it
+ */
+ kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
+
+ /* Invalidate the whole ASID on other CPUs */
+ cpu = smp_processor_id();
+ for_each_possible_cpu(i) {
+ if (i == cpu)
+ continue;
+ if (user)
+ set_cpu_context(i, user_mm, 0);
+ set_cpu_context(i, kern_mm, 0);
+ }
+
+ preempt_enable();
+}
+
+/* Write Guest TLB Entry @ Index */
+enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ int index = kvm_read_c0_guest_index(cop0);
+ struct kvm_mips_tlb *tlb = NULL;
+ unsigned long pc = vcpu->arch.pc;
+
+ if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
+ kvm_debug("%s: illegal index: %d\n", __func__, index);
+ kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
+ pc, index, kvm_read_c0_guest_entryhi(cop0),
+ kvm_read_c0_guest_entrylo0(cop0),
+ kvm_read_c0_guest_entrylo1(cop0),
+ kvm_read_c0_guest_pagemask(cop0));
+ index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
+ }
+
+ tlb = &vcpu->arch.guest_tlb[index];
+
+ kvm_mips_invalidate_guest_tlb(vcpu, tlb);
+
+ tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
+ tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
+ tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
+ tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
+
+ kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
+ pc, index, kvm_read_c0_guest_entryhi(cop0),
+ kvm_read_c0_guest_entrylo0(cop0),
+ kvm_read_c0_guest_entrylo1(cop0),
+ kvm_read_c0_guest_pagemask(cop0));
+
+ return EMULATE_DONE;
+}
+
+/* Write Guest TLB Entry @ Random Index */
+enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_mips_tlb *tlb = NULL;
+ unsigned long pc = vcpu->arch.pc;
+ int index;
+
+ index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
+ tlb = &vcpu->arch.guest_tlb[index];
+
+ kvm_mips_invalidate_guest_tlb(vcpu, tlb);
+
+ tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
+ tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
+ tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
+ tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
+
+ kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
+ pc, index, kvm_read_c0_guest_entryhi(cop0),
+ kvm_read_c0_guest_entrylo0(cop0),
+ kvm_read_c0_guest_entrylo1(cop0));
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ long entryhi = kvm_read_c0_guest_entryhi(cop0);
+ unsigned long pc = vcpu->arch.pc;
+ int index = -1;
+
+ index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
+
+ kvm_write_c0_guest_index(cop0, index);
+
+ kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
+ index);
+
+ return EMULATE_DONE;
+}
+
+/**
+ * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
+ * @vcpu: Virtual CPU.
+ *
+ * Finds the mask of bits which are writable in the guest's Config1 CP0
+ * register, by userland (currently read-only to the guest).
+ */
+unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
+{
+ unsigned int mask = 0;
+
+ /* Permit FPU to be present if FPU is supported */
+ if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
+ mask |= MIPS_CONF1_FP;
+
+ return mask;
+}
+
+/**
+ * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
+ * @vcpu: Virtual CPU.
+ *
+ * Finds the mask of bits which are writable in the guest's Config3 CP0
+ * register, by userland (currently read-only to the guest).
+ */
+unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
+{
+ /* Config4 and ULRI are optional */
+ unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
+
+ /* Permit MSA to be present if MSA is supported */
+ if (kvm_mips_guest_can_have_msa(&vcpu->arch))
+ mask |= MIPS_CONF3_MSA;
+
+ return mask;
+}
+
+/**
+ * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
+ * @vcpu: Virtual CPU.
+ *
+ * Finds the mask of bits which are writable in the guest's Config4 CP0
+ * register, by userland (currently read-only to the guest).
+ */
+unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
+{
+ /* Config5 is optional */
+ unsigned int mask = MIPS_CONF_M;
+
+ /* KScrExist */
+ mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
+
+ return mask;
+}
+
+/**
+ * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
+ * @vcpu: Virtual CPU.
+ *
+ * Finds the mask of bits which are writable in the guest's Config5 CP0
+ * register, by the guest itself.
+ */
+unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
+{
+ unsigned int mask = 0;
+
+ /* Permit MSAEn changes if MSA supported and enabled */
+ if (kvm_mips_guest_has_msa(&vcpu->arch))
+ mask |= MIPS_CONF5_MSAEN;
+
+ /*
+ * Permit guest FPU mode changes if FPU is enabled and the relevant
+ * feature exists according to FIR register.
+ */
+ if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
+ if (cpu_has_fre)
+ mask |= MIPS_CONF5_FRE;
+ /* We don't support UFR or UFE */
+ }
+
+ return mask;
+}
+
+enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
+ u32 *opc, u32 cause,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ enum emulation_result er = EMULATE_DONE;
+ u32 rt, rd, sel;
+ unsigned long curr_pc;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ if (inst.co_format.co) {
+ switch (inst.co_format.func) {
+ case tlbr_op: /* Read indexed TLB entry */
+ er = kvm_mips_emul_tlbr(vcpu);
+ break;
+ case tlbwi_op: /* Write indexed */
+ er = kvm_mips_emul_tlbwi(vcpu);
+ break;
+ case tlbwr_op: /* Write random */
+ er = kvm_mips_emul_tlbwr(vcpu);
+ break;
+ case tlbp_op: /* TLB Probe */
+ er = kvm_mips_emul_tlbp(vcpu);
+ break;
+ case rfe_op:
+ kvm_err("!!!COP0_RFE!!!\n");
+ break;
+ case eret_op:
+ er = kvm_mips_emul_eret(vcpu);
+ goto dont_update_pc;
+ case wait_op:
+ er = kvm_mips_emul_wait(vcpu);
+ break;
+ case hypcall_op:
+ er = kvm_mips_emul_hypcall(vcpu, inst);
+ break;
+ }
+ } else {
+ rt = inst.c0r_format.rt;
+ rd = inst.c0r_format.rd;
+ sel = inst.c0r_format.sel;
+
+ switch (inst.c0r_format.rs) {
+ case mfc_op:
+#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
+ cop0->stat[rd][sel]++;
+#endif
+ /* Get reg */
+ if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
+ vcpu->arch.gprs[rt] =
+ (s32)kvm_mips_read_count(vcpu);
+ } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
+ vcpu->arch.gprs[rt] = 0x0;
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ kvm_mips_trans_mfc0(inst, opc, vcpu);
+#endif
+ } else {
+ vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
+
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ kvm_mips_trans_mfc0(inst, opc, vcpu);
+#endif
+ }
+
+ trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
+ KVM_TRACE_COP0(rd, sel),
+ vcpu->arch.gprs[rt]);
+ break;
+
+ case dmfc_op:
+ vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
+
+ trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
+ KVM_TRACE_COP0(rd, sel),
+ vcpu->arch.gprs[rt]);
+ break;
+
+ case mtc_op:
+#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
+ cop0->stat[rd][sel]++;
+#endif
+ trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
+ KVM_TRACE_COP0(rd, sel),
+ vcpu->arch.gprs[rt]);
+
+ if ((rd == MIPS_CP0_TLB_INDEX)
+ && (vcpu->arch.gprs[rt] >=
+ KVM_MIPS_GUEST_TLB_SIZE)) {
+ kvm_err("Invalid TLB Index: %ld",
+ vcpu->arch.gprs[rt]);
+ er = EMULATE_FAIL;
+ break;
+ }
+ if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
+ /*
+ * Preserve core number, and keep the exception
+ * base in guest KSeg0.
+ */
+ kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
+ vcpu->arch.gprs[rt]);
+ } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
+ kvm_mips_change_entryhi(vcpu,
+ vcpu->arch.gprs[rt]);
+ }
+ /* Are we writing to COUNT */
+ else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
+ kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
+ goto done;
+ } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
+ /* If we are writing to COMPARE */
+ /* Clear pending timer interrupt, if any */
+ kvm_mips_write_compare(vcpu,
+ vcpu->arch.gprs[rt],
+ true);
+ } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
+ unsigned int old_val, val, change;
+
+ old_val = kvm_read_c0_guest_status(cop0);
+ val = vcpu->arch.gprs[rt];
+ change = val ^ old_val;
+
+ /* Make sure that the NMI bit is never set */
+ val &= ~ST0_NMI;
+
+ /*
+ * Don't allow CU1 or FR to be set unless FPU
+ * capability enabled and exists in guest
+ * configuration.
+ */
+ if (!kvm_mips_guest_has_fpu(&vcpu->arch))
+ val &= ~(ST0_CU1 | ST0_FR);
+
+ /*
+ * Also don't allow FR to be set if host doesn't
+ * support it.
+ */
+ if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
+ val &= ~ST0_FR;
+
+
+ /* Handle changes in FPU mode */
+ preempt_disable();
+
+ /*
+ * FPU and Vector register state is made
+ * UNPREDICTABLE by a change of FR, so don't
+ * even bother saving it.
+ */
+ if (change & ST0_FR)
+ kvm_drop_fpu(vcpu);
+
+ /*
+ * If MSA state is already live, it is undefined
+ * how it interacts with FR=0 FPU state, and we
+ * don't want to hit reserved instruction
+ * exceptions trying to save the MSA state later
+ * when CU=1 && FR=1, so play it safe and save
+ * it first.
+ */
+ if (change & ST0_CU1 && !(val & ST0_FR) &&
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
+ kvm_lose_fpu(vcpu);
+
+ /*
+ * Propagate CU1 (FPU enable) changes
+ * immediately if the FPU context is already
+ * loaded. When disabling we leave the context
+ * loaded so it can be quickly enabled again in
+ * the near future.
+ */
+ if (change & ST0_CU1 &&
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
+ change_c0_status(ST0_CU1, val);
+
+ preempt_enable();
+
+ kvm_write_c0_guest_status(cop0, val);
+
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ /*
+ * If FPU present, we need CU1/FR bits to take
+ * effect fairly soon.
+ */
+ if (!kvm_mips_guest_has_fpu(&vcpu->arch))
+ kvm_mips_trans_mtc0(inst, opc, vcpu);
+#endif
+ } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
+ unsigned int old_val, val, change, wrmask;
+
+ old_val = kvm_read_c0_guest_config5(cop0);
+ val = vcpu->arch.gprs[rt];
+
+ /* Only a few bits are writable in Config5 */
+ wrmask = kvm_mips_config5_wrmask(vcpu);
+ change = (val ^ old_val) & wrmask;
+ val = old_val ^ change;
+
+
+ /* Handle changes in FPU/MSA modes */
+ preempt_disable();
+
+ /*
+ * Propagate FRE changes immediately if the FPU
+ * context is already loaded.
+ */
+ if (change & MIPS_CONF5_FRE &&
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
+ change_c0_config5(MIPS_CONF5_FRE, val);
+
+ /*
+ * Propagate MSAEn changes immediately if the
+ * MSA context is already loaded. When disabling
+ * we leave the context loaded so it can be
+ * quickly enabled again in the near future.
+ */
+ if (change & MIPS_CONF5_MSAEN &&
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
+ change_c0_config5(MIPS_CONF5_MSAEN,
+ val);
+
+ preempt_enable();
+
+ kvm_write_c0_guest_config5(cop0, val);
+ } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
+ u32 old_cause, new_cause;
+
+ old_cause = kvm_read_c0_guest_cause(cop0);
+ new_cause = vcpu->arch.gprs[rt];
+ /* Update R/W bits */
+ kvm_change_c0_guest_cause(cop0, 0x08800300,
+ new_cause);
+ /* DC bit enabling/disabling timer? */
+ if ((old_cause ^ new_cause) & CAUSEF_DC) {
+ if (new_cause & CAUSEF_DC)
+ kvm_mips_count_disable_cause(vcpu);
+ else
+ kvm_mips_count_enable_cause(vcpu);
+ }
+ } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
+ u32 mask = MIPS_HWRENA_CPUNUM |
+ MIPS_HWRENA_SYNCISTEP |
+ MIPS_HWRENA_CC |
+ MIPS_HWRENA_CCRES;
+
+ if (kvm_read_c0_guest_config3(cop0) &
+ MIPS_CONF3_ULRI)
+ mask |= MIPS_HWRENA_ULR;
+ cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
+ } else {
+ cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ kvm_mips_trans_mtc0(inst, opc, vcpu);
+#endif
+ }
+ break;
+
+ case dmtc_op:
+ kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
+ vcpu->arch.pc, rt, rd, sel);
+ trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
+ KVM_TRACE_COP0(rd, sel),
+ vcpu->arch.gprs[rt]);
+ er = EMULATE_FAIL;
+ break;
+
+ case mfmc0_op:
+#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
+ cop0->stat[MIPS_CP0_STATUS][0]++;
+#endif
+ if (rt != 0)
+ vcpu->arch.gprs[rt] =
+ kvm_read_c0_guest_status(cop0);
+ /* EI */
+ if (inst.mfmc0_format.sc) {
+ kvm_debug("[%#lx] mfmc0_op: EI\n",
+ vcpu->arch.pc);
+ kvm_set_c0_guest_status(cop0, ST0_IE);
+ } else {
+ kvm_debug("[%#lx] mfmc0_op: DI\n",
+ vcpu->arch.pc);
+ kvm_clear_c0_guest_status(cop0, ST0_IE);
+ }
+
+ break;
+
+ case wrpgpr_op:
+ {
+ u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
+ u32 pss =
+ (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
+ /*
+ * We don't support any shadow register sets, so
+ * SRSCtl[PSS] == SRSCtl[CSS] = 0
+ */
+ if (css || pss) {
+ er = EMULATE_FAIL;
+ break;
+ }
+ kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
+ vcpu->arch.gprs[rt]);
+ vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
+ }
+ break;
+ default:
+ kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
+ vcpu->arch.pc, inst.c0r_format.rs);
+ er = EMULATE_FAIL;
+ break;
+ }
+ }
+
+done:
+ /* Rollback PC only if emulation was unsuccessful */
+ if (er == EMULATE_FAIL)
+ vcpu->arch.pc = curr_pc;
+
+dont_update_pc:
+ /*
+ * This is for special instructions whose emulation
+ * updates the PC, so do not overwrite the PC under
+ * any circumstances
+ */
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
+ u32 cause,
+ struct kvm_vcpu *vcpu)
+{
+ int r;
+ enum emulation_result er;
+ u32 rt;
+ struct kvm_run *run = vcpu->run;
+ void *data = run->mmio.data;
+ unsigned int imme;
+ unsigned long curr_pc;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ rt = inst.i_format.rt;
+
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr);
+ if (run->mmio.phys_addr == KVM_INVALID_ADDR)
+ goto out_fail;
+
+ switch (inst.i_format.opcode) {
+#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
+ case sd_op:
+ run->mmio.len = 8;
+ *(u64 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u64 *)data);
+ break;
+#endif
+
+ case sw_op:
+ run->mmio.len = 4;
+ *(u32 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u32 *)data);
+ break;
+
+ case sh_op:
+ run->mmio.len = 2;
+ *(u16 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u16 *)data);
+ break;
+
+ case sb_op:
+ run->mmio.len = 1;
+ *(u8 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u8 *)data);
+ break;
+
+ case swl_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x3);
+ run->mmio.len = 4;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x3;
+ switch (imme) {
+ case 0:
+ *(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
+ (vcpu->arch.gprs[rt] >> 24);
+ break;
+ case 1:
+ *(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
+ (vcpu->arch.gprs[rt] >> 16);
+ break;
+ case 2:
+ *(u32 *)data = ((*(u32 *)data) & 0xff000000) |
+ (vcpu->arch.gprs[rt] >> 8);
+ break;
+ case 3:
+ *(u32 *)data = vcpu->arch.gprs[rt];
+ break;
+ default:
+ break;
+ }
+
+ kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u32 *)data);
+ break;
+
+ case swr_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x3);
+ run->mmio.len = 4;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x3;
+ switch (imme) {
+ case 0:
+ *(u32 *)data = vcpu->arch.gprs[rt];
+ break;
+ case 1:
+ *(u32 *)data = ((*(u32 *)data) & 0xff) |
+ (vcpu->arch.gprs[rt] << 8);
+ break;
+ case 2:
+ *(u32 *)data = ((*(u32 *)data) & 0xffff) |
+ (vcpu->arch.gprs[rt] << 16);
+ break;
+ case 3:
+ *(u32 *)data = ((*(u32 *)data) & 0xffffff) |
+ (vcpu->arch.gprs[rt] << 24);
+ break;
+ default:
+ break;
+ }
+
+ kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u32 *)data);
+ break;
+
+#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
+ case sdl_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x7);
+
+ run->mmio.len = 8;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x7;
+ switch (imme) {
+ case 0:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
+ ((vcpu->arch.gprs[rt] >> 56) & 0xff);
+ break;
+ case 1:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
+ ((vcpu->arch.gprs[rt] >> 48) & 0xffff);
+ break;
+ case 2:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
+ ((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
+ break;
+ case 3:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
+ ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
+ break;
+ case 4:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
+ ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
+ break;
+ case 5:
+ *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
+ ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
+ break;
+ case 6:
+ *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
+ ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
+ break;
+ case 7:
+ *(u64 *)data = vcpu->arch.gprs[rt];
+ break;
+ default:
+ break;
+ }
+
+ kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u64 *)data);
+ break;
+
+ case sdr_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x7);
+
+ run->mmio.len = 8;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x7;
+ switch (imme) {
+ case 0:
+ *(u64 *)data = vcpu->arch.gprs[rt];
+ break;
+ case 1:
+ *(u64 *)data = ((*(u64 *)data) & 0xff) |
+ (vcpu->arch.gprs[rt] << 8);
+ break;
+ case 2:
+ *(u64 *)data = ((*(u64 *)data) & 0xffff) |
+ (vcpu->arch.gprs[rt] << 16);
+ break;
+ case 3:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffff) |
+ (vcpu->arch.gprs[rt] << 24);
+ break;
+ case 4:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
+ (vcpu->arch.gprs[rt] << 32);
+ break;
+ case 5:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
+ (vcpu->arch.gprs[rt] << 40);
+ break;
+ case 6:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
+ (vcpu->arch.gprs[rt] << 48);
+ break;
+ case 7:
+ *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
+ (vcpu->arch.gprs[rt] << 56);
+ break;
+ default:
+ break;
+ }
+
+ kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u64 *)data);
+ break;
+#endif
+
+#ifdef CONFIG_CPU_LOONGSON64
+ case sdc2_op:
+ rt = inst.loongson3_lsdc2_format.rt;
+ switch (inst.loongson3_lsdc2_format.opcode1) {
+ /*
+ * Loongson-3 overridden sdc2 instructions.
+ * opcode1 instruction
+ * 0x0 gssbx: store 1 bytes from GPR
+ * 0x1 gsshx: store 2 bytes from GPR
+ * 0x2 gsswx: store 4 bytes from GPR
+ * 0x3 gssdx: store 8 bytes from GPR
+ */
+ case 0x0:
+ run->mmio.len = 1;
+ *(u8 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u8 *)data);
+ break;
+ case 0x1:
+ run->mmio.len = 2;
+ *(u16 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u16 *)data);
+ break;
+ case 0x2:
+ run->mmio.len = 4;
+ *(u32 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u32 *)data);
+ break;
+ case 0x3:
+ run->mmio.len = 8;
+ *(u64 *)data = vcpu->arch.gprs[rt];
+
+ kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
+ vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
+ vcpu->arch.gprs[rt], *(u64 *)data);
+ break;
+ default:
+ kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
+ inst.word);
+ break;
+ }
+ break;
+#endif
+ default:
+ kvm_err("Store not yet supported (inst=0x%08x)\n",
+ inst.word);
+ goto out_fail;
+ }
+
+ vcpu->mmio_needed = 1;
+ run->mmio.is_write = 1;
+ vcpu->mmio_is_write = 1;
+
+ r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
+ run->mmio.phys_addr, run->mmio.len, data);
+
+ if (!r) {
+ vcpu->mmio_needed = 0;
+ return EMULATE_DONE;
+ }
+
+ return EMULATE_DO_MMIO;
+
+out_fail:
+ /* Rollback PC if emulation was unsuccessful */
+ vcpu->arch.pc = curr_pc;
+ return EMULATE_FAIL;
+}
+
+enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
+ u32 cause, struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ int r;
+ enum emulation_result er;
+ unsigned long curr_pc;
+ u32 op, rt;
+ unsigned int imme;
+
+ rt = inst.i_format.rt;
+ op = inst.i_format.opcode;
+
+ /*
+ * Find the resume PC now while we have safe and easy access to the
+ * prior branch instruction, and save it for
+ * kvm_mips_complete_mmio_load() to restore later.
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+ vcpu->arch.io_pc = vcpu->arch.pc;
+ vcpu->arch.pc = curr_pc;
+
+ vcpu->arch.io_gpr = rt;
+
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr);
+ if (run->mmio.phys_addr == KVM_INVALID_ADDR)
+ return EMULATE_FAIL;
+
+ vcpu->mmio_needed = 2; /* signed */
+ switch (op) {
+#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
+ case ld_op:
+ run->mmio.len = 8;
+ break;
+
+ case lwu_op:
+ vcpu->mmio_needed = 1; /* unsigned */
+ fallthrough;
+#endif
+ case lw_op:
+ run->mmio.len = 4;
+ break;
+
+ case lhu_op:
+ vcpu->mmio_needed = 1; /* unsigned */
+ fallthrough;
+ case lh_op:
+ run->mmio.len = 2;
+ break;
+
+ case lbu_op:
+ vcpu->mmio_needed = 1; /* unsigned */
+ fallthrough;
+ case lb_op:
+ run->mmio.len = 1;
+ break;
+
+ case lwl_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x3);
+
+ run->mmio.len = 4;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x3;
+ switch (imme) {
+ case 0:
+ vcpu->mmio_needed = 3; /* 1 byte */
+ break;
+ case 1:
+ vcpu->mmio_needed = 4; /* 2 bytes */
+ break;
+ case 2:
+ vcpu->mmio_needed = 5; /* 3 bytes */
+ break;
+ case 3:
+ vcpu->mmio_needed = 6; /* 4 bytes */
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case lwr_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x3);
+
+ run->mmio.len = 4;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x3;
+ switch (imme) {
+ case 0:
+ vcpu->mmio_needed = 7; /* 4 bytes */
+ break;
+ case 1:
+ vcpu->mmio_needed = 8; /* 3 bytes */
+ break;
+ case 2:
+ vcpu->mmio_needed = 9; /* 2 bytes */
+ break;
+ case 3:
+ vcpu->mmio_needed = 10; /* 1 byte */
+ break;
+ default:
+ break;
+ }
+ break;
+
+#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
+ case ldl_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x7);
+
+ run->mmio.len = 8;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x7;
+ switch (imme) {
+ case 0:
+ vcpu->mmio_needed = 11; /* 1 byte */
+ break;
+ case 1:
+ vcpu->mmio_needed = 12; /* 2 bytes */
+ break;
+ case 2:
+ vcpu->mmio_needed = 13; /* 3 bytes */
+ break;
+ case 3:
+ vcpu->mmio_needed = 14; /* 4 bytes */
+ break;
+ case 4:
+ vcpu->mmio_needed = 15; /* 5 bytes */
+ break;
+ case 5:
+ vcpu->mmio_needed = 16; /* 6 bytes */
+ break;
+ case 6:
+ vcpu->mmio_needed = 17; /* 7 bytes */
+ break;
+ case 7:
+ vcpu->mmio_needed = 18; /* 8 bytes */
+ break;
+ default:
+ break;
+ }
+ break;
+
+ case ldr_op:
+ run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
+ vcpu->arch.host_cp0_badvaddr) & (~0x7);
+
+ run->mmio.len = 8;
+ imme = vcpu->arch.host_cp0_badvaddr & 0x7;
+ switch (imme) {
+ case 0:
+ vcpu->mmio_needed = 19; /* 8 bytes */
+ break;
+ case 1:
+ vcpu->mmio_needed = 20; /* 7 bytes */
+ break;
+ case 2:
+ vcpu->mmio_needed = 21; /* 6 bytes */
+ break;
+ case 3:
+ vcpu->mmio_needed = 22; /* 5 bytes */
+ break;
+ case 4:
+ vcpu->mmio_needed = 23; /* 4 bytes */
+ break;
+ case 5:
+ vcpu->mmio_needed = 24; /* 3 bytes */
+ break;
+ case 6:
+ vcpu->mmio_needed = 25; /* 2 bytes */
+ break;
+ case 7:
+ vcpu->mmio_needed = 26; /* 1 byte */
+ break;
+ default:
+ break;
+ }
+ break;
+#endif
+
+#ifdef CONFIG_CPU_LOONGSON64
+ case ldc2_op:
+ rt = inst.loongson3_lsdc2_format.rt;
+ switch (inst.loongson3_lsdc2_format.opcode1) {
+ /*
+ * Loongson-3 overridden ldc2 instructions.
+ * opcode1 instruction
+ * 0x0 gslbx: store 1 bytes from GPR
+ * 0x1 gslhx: store 2 bytes from GPR
+ * 0x2 gslwx: store 4 bytes from GPR
+ * 0x3 gsldx: store 8 bytes from GPR
+ */
+ case 0x0:
+ run->mmio.len = 1;
+ vcpu->mmio_needed = 27; /* signed */
+ break;
+ case 0x1:
+ run->mmio.len = 2;
+ vcpu->mmio_needed = 28; /* signed */
+ break;
+ case 0x2:
+ run->mmio.len = 4;
+ vcpu->mmio_needed = 29; /* signed */
+ break;
+ case 0x3:
+ run->mmio.len = 8;
+ vcpu->mmio_needed = 30; /* signed */
+ break;
+ default:
+ kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
+ inst.word);
+ break;
+ }
+ break;
+#endif
+
+ default:
+ kvm_err("Load not yet supported (inst=0x%08x)\n",
+ inst.word);
+ vcpu->mmio_needed = 0;
+ return EMULATE_FAIL;
+ }
+
+ run->mmio.is_write = 0;
+ vcpu->mmio_is_write = 0;
+
+ r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
+ run->mmio.phys_addr, run->mmio.len, run->mmio.data);
+
+ if (!r) {
+ kvm_mips_complete_mmio_load(vcpu);
+ vcpu->mmio_needed = 0;
+ return EMULATE_DONE;
+ }
+
+ return EMULATE_DO_MMIO;
+}
+
+#ifndef CONFIG_KVM_MIPS_VZ
+static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
+ unsigned long curr_pc,
+ unsigned long addr,
+ struct kvm_vcpu *vcpu,
+ u32 cause)
+{
+ int err;
+
+ for (;;) {
+ /* Carefully attempt the cache operation */
+ kvm_trap_emul_gva_lockless_begin(vcpu);
+ err = fn(addr);
+ kvm_trap_emul_gva_lockless_end(vcpu);
+
+ if (likely(!err))
+ return EMULATE_DONE;
+
+ /*
+ * Try to handle the fault and retry, maybe we just raced with a
+ * GVA invalidation.
+ */
+ switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
+ case KVM_MIPS_GVA:
+ case KVM_MIPS_GPA:
+ /* bad virtual or physical address */
+ return EMULATE_FAIL;
+ case KVM_MIPS_TLB:
+ /* no matching guest TLB */
+ vcpu->arch.host_cp0_badvaddr = addr;
+ vcpu->arch.pc = curr_pc;
+ kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu);
+ return EMULATE_EXCEPT;
+ case KVM_MIPS_TLBINV:
+ /* invalid matching guest TLB */
+ vcpu->arch.host_cp0_badvaddr = addr;
+ vcpu->arch.pc = curr_pc;
+ kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu);
+ return EMULATE_EXCEPT;
+ default:
+ break;
+ }
+ }
+}
+
+enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
+ u32 *opc, u32 cause,
+ struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er = EMULATE_DONE;
+ u32 cache, op_inst, op, base;
+ s16 offset;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ unsigned long va;
+ unsigned long curr_pc;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ base = inst.i_format.rs;
+ op_inst = inst.i_format.rt;
+ if (cpu_has_mips_r6)
+ offset = inst.spec3_format.simmediate;
+ else
+ offset = inst.i_format.simmediate;
+ cache = op_inst & CacheOp_Cache;
+ op = op_inst & CacheOp_Op;
+
+ va = arch->gprs[base] + offset;
+
+ kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
+ cache, op, base, arch->gprs[base], offset);
+
+ /*
+ * Treat INDEX_INV as a nop, basically issued by Linux on startup to
+ * invalidate the caches entirely by stepping through all the
+ * ways/indexes
+ */
+ if (op == Index_Writeback_Inv) {
+ kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
+ vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
+ arch->gprs[base], offset);
+
+ if (cache == Cache_D) {
+#ifdef CONFIG_CPU_R4K_CACHE_TLB
+ r4k_blast_dcache();
+#else
+ switch (boot_cpu_type()) {
+ case CPU_CAVIUM_OCTEON3:
+ /* locally flush icache */
+ local_flush_icache_range(0, 0);
+ break;
+ default:
+ __flush_cache_all();
+ break;
+ }
+#endif
+ } else if (cache == Cache_I) {
+#ifdef CONFIG_CPU_R4K_CACHE_TLB
+ r4k_blast_icache();
+#else
+ switch (boot_cpu_type()) {
+ case CPU_CAVIUM_OCTEON3:
+ /* locally flush icache */
+ local_flush_icache_range(0, 0);
+ break;
+ default:
+ flush_icache_all();
+ break;
+ }
+#endif
+ } else {
+ kvm_err("%s: unsupported CACHE INDEX operation\n",
+ __func__);
+ return EMULATE_FAIL;
+ }
+
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ kvm_mips_trans_cache_index(inst, opc, vcpu);
+#endif
+ goto done;
+ }
+
+ /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
+ if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
+ /*
+ * Perform the dcache part of icache synchronisation on the
+ * guest's behalf.
+ */
+ er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
+ curr_pc, va, vcpu, cause);
+ if (er != EMULATE_DONE)
+ goto done;
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ /*
+ * Replace the CACHE instruction, with a SYNCI, not the same,
+ * but avoids a trap
+ */
+ kvm_mips_trans_cache_va(inst, opc, vcpu);
+#endif
+ } else if (op_inst == Hit_Invalidate_I) {
+ /* Perform the icache synchronisation on the guest's behalf */
+ er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
+ curr_pc, va, vcpu, cause);
+ if (er != EMULATE_DONE)
+ goto done;
+ er = kvm_mips_guest_cache_op(protected_flush_icache_line,
+ curr_pc, va, vcpu, cause);
+ if (er != EMULATE_DONE)
+ goto done;
+
+#ifdef CONFIG_KVM_MIPS_DYN_TRANS
+ /* Replace the CACHE instruction, with a SYNCI */
+ kvm_mips_trans_cache_va(inst, opc, vcpu);
+#endif
+ } else {
+ kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
+ cache, op, base, arch->gprs[base], offset);
+ er = EMULATE_FAIL;
+ }
+
+done:
+ /* Rollback PC only if emulation was unsuccessful */
+ if (er == EMULATE_FAIL)
+ vcpu->arch.pc = curr_pc;
+ /* Guest exception needs guest to resume */
+ if (er == EMULATE_EXCEPT)
+ er = EMULATE_DONE;
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ union mips_instruction inst;
+ enum emulation_result er = EMULATE_DONE;
+ int err;
+
+ /* Fetch the instruction. */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err)
+ return EMULATE_FAIL;
+
+ switch (inst.r_format.opcode) {
+ case cop0_op:
+ er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu);
+ break;
+
+#ifndef CONFIG_CPU_MIPSR6
+ case cache_op:
+ ++vcpu->stat.cache_exits;
+ trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
+ er = kvm_mips_emulate_cache(inst, opc, cause, vcpu);
+ break;
+#else
+ case spec3_op:
+ switch (inst.spec3_format.func) {
+ case cache6_op:
+ ++vcpu->stat.cache_exits;
+ trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
+ er = kvm_mips_emulate_cache(inst, opc, cause,
+ vcpu);
+ break;
+ default:
+ goto unknown;
+ }
+ break;
+unknown:
+#endif
+
+ default:
+ kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
+ inst.word);
+ kvm_arch_vcpu_dump_regs(vcpu);
+ er = EMULATE_FAIL;
+ break;
+ }
+
+ return er;
+}
+#endif /* CONFIG_KVM_MIPS_VZ */
+
+/**
+ * kvm_mips_guest_exception_base() - Find guest exception vector base address.
+ *
+ * Returns: The base address of the current guest exception vector, taking
+ * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
+ */
+long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+
+ if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
+ return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
+ else
+ return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
+}
+
+enum emulation_result kvm_mips_emulate_syscall(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_SYS << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
+ (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+
+ /* set pc to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
+
+ } else {
+ kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+ }
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_TLBL << CAUSEB_EXCCODE));
+
+ /* setup badvaddr, context and entryhi registers for the guest */
+ kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
+ /* XXXKYMA: is the context register used by linux??? */
+ kvm_write_c0_guest_entryhi(cop0, entryhi);
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ unsigned long entryhi =
+ (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
+ (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
+ arch->pc);
+ } else {
+ kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+ }
+
+ /* set pc to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_TLBL << CAUSEB_EXCCODE));
+
+ /* setup badvaddr, context and entryhi registers for the guest */
+ kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
+ /* XXXKYMA: is the context register used by linux??? */
+ kvm_write_c0_guest_entryhi(cop0, entryhi);
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
+ (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
+ } else {
+ kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+ }
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_TLBS << CAUSEB_EXCCODE));
+
+ /* setup badvaddr, context and entryhi registers for the guest */
+ kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
+ /* XXXKYMA: is the context register used by linux??? */
+ kvm_write_c0_guest_entryhi(cop0, entryhi);
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
+ (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+ } else {
+ kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
+ arch->pc);
+ }
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_TLBS << CAUSEB_EXCCODE));
+
+ /* setup badvaddr, context and entryhi registers for the guest */
+ kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
+ /* XXXKYMA: is the context register used by linux??? */
+ kvm_write_c0_guest_entryhi(cop0, entryhi);
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
+ (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
+ arch->pc);
+ } else {
+ kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
+ arch->pc);
+ }
+
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_MOD << CAUSEB_EXCCODE));
+
+ /* setup badvaddr, context and entryhi registers for the guest */
+ kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
+ /* XXXKYMA: is the context register used by linux??? */
+ kvm_write_c0_guest_entryhi(cop0, entryhi);
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ }
+
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_CPU << CAUSEB_EXCCODE));
+ kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
+
+ return EMULATE_DONE;
+}
+
+enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_RI << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver RI when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_BP << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver BP when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_TR << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver TRAP when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_FPE << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver FPE when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (EXCCODE_MSADIS << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+
+ } else {
+ kvm_err("Trying to deliver MSADIS when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+ unsigned long curr_pc;
+ union mips_instruction inst;
+ int err;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ /* Fetch the instruction. */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err) {
+ kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
+ return EMULATE_FAIL;
+ }
+
+ if (inst.r_format.opcode == spec3_op &&
+ inst.r_format.func == rdhwr_op &&
+ inst.r_format.rs == 0 &&
+ (inst.r_format.re >> 3) == 0) {
+ int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
+ int rd = inst.r_format.rd;
+ int rt = inst.r_format.rt;
+ int sel = inst.r_format.re & 0x7;
+
+ /* If usermode, check RDHWR rd is allowed by guest HWREna */
+ if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
+ kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
+ rd, opc);
+ goto emulate_ri;
+ }
+ switch (rd) {
+ case MIPS_HWR_CPUNUM: /* CPU number */
+ arch->gprs[rt] = vcpu->vcpu_id;
+ break;
+ case MIPS_HWR_SYNCISTEP: /* SYNCI length */
+ arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
+ current_cpu_data.icache.linesz);
+ break;
+ case MIPS_HWR_CC: /* Read count register */
+ arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
+ break;
+ case MIPS_HWR_CCRES: /* Count register resolution */
+ switch (current_cpu_data.cputype) {
+ case CPU_20KC:
+ case CPU_25KF:
+ arch->gprs[rt] = 1;
+ break;
+ default:
+ arch->gprs[rt] = 2;
+ }
+ break;
+ case MIPS_HWR_ULR: /* Read UserLocal register */
+ arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
+ break;
+
+ default:
+ kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
+ goto emulate_ri;
+ }
+
+ trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
+ vcpu->arch.gprs[rt]);
+ } else {
+ kvm_debug("Emulate RI not supported @ %p: %#x\n",
+ opc, inst.word);
+ goto emulate_ri;
+ }
+
+ return EMULATE_DONE;
+
+emulate_ri:
+ /*
+ * Rollback PC (if in branch delay slot then the PC already points to
+ * branch target), and pass the RI exception to the guest OS.
+ */
+ vcpu->arch.pc = curr_pc;
+ return kvm_mips_emulate_ri_exc(cause, opc, vcpu);
+}
+
+enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
+ enum emulation_result er = EMULATE_DONE;
+
+ if (run->mmio.len > sizeof(*gpr)) {
+ kvm_err("Bad MMIO length: %d", run->mmio.len);
+ er = EMULATE_FAIL;
+ goto done;
+ }
+
+ /* Restore saved resume PC */
+ vcpu->arch.pc = vcpu->arch.io_pc;
+
+ switch (run->mmio.len) {
+ case 8:
+ switch (vcpu->mmio_needed) {
+ case 11:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
+ (((*(s64 *)run->mmio.data) & 0xff) << 56);
+ break;
+ case 12:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
+ (((*(s64 *)run->mmio.data) & 0xffff) << 48);
+ break;
+ case 13:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
+ (((*(s64 *)run->mmio.data) & 0xffffff) << 40);
+ break;
+ case 14:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
+ (((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
+ break;
+ case 15:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
+ (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
+ break;
+ case 16:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
+ (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
+ break;
+ case 17:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
+ (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
+ break;
+ case 18:
+ case 19:
+ *gpr = *(s64 *)run->mmio.data;
+ break;
+ case 20:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
+ ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
+ break;
+ case 21:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
+ ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
+ break;
+ case 22:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
+ ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
+ break;
+ case 23:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
+ ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
+ break;
+ case 24:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
+ ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
+ break;
+ case 25:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
+ ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
+ break;
+ case 26:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
+ ((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
+ break;
+ default:
+ *gpr = *(s64 *)run->mmio.data;
+ }
+ break;
+
+ case 4:
+ switch (vcpu->mmio_needed) {
+ case 1:
+ *gpr = *(u32 *)run->mmio.data;
+ break;
+ case 2:
+ *gpr = *(s32 *)run->mmio.data;
+ break;
+ case 3:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
+ (((*(s32 *)run->mmio.data) & 0xff) << 24);
+ break;
+ case 4:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
+ (((*(s32 *)run->mmio.data) & 0xffff) << 16);
+ break;
+ case 5:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
+ (((*(s32 *)run->mmio.data) & 0xffffff) << 8);
+ break;
+ case 6:
+ case 7:
+ *gpr = *(s32 *)run->mmio.data;
+ break;
+ case 8:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
+ ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
+ break;
+ case 9:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
+ ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
+ break;
+ case 10:
+ *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
+ ((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
+ break;
+ default:
+ *gpr = *(s32 *)run->mmio.data;
+ }
+ break;
+
+ case 2:
+ if (vcpu->mmio_needed == 1)
+ *gpr = *(u16 *)run->mmio.data;
+ else
+ *gpr = *(s16 *)run->mmio.data;
+
+ break;
+ case 1:
+ if (vcpu->mmio_needed == 1)
+ *gpr = *(u8 *)run->mmio.data;
+ else
+ *gpr = *(s8 *)run->mmio.data;
+ break;
+ }
+
+done:
+ return er;
+}
+
+static enum emulation_result kvm_mips_emulate_exc(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ enum emulation_result er = EMULATE_DONE;
+
+ if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
+ /* save old pc */
+ kvm_write_c0_guest_epc(cop0, arch->pc);
+ kvm_set_c0_guest_status(cop0, ST0_EXL);
+
+ if (cause & CAUSEF_BD)
+ kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
+ else
+ kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
+
+ kvm_change_c0_guest_cause(cop0, (0xff),
+ (exccode << CAUSEB_EXCCODE));
+
+ /* Set PC to the exception entry point */
+ arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
+ kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
+
+ kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
+ exccode, kvm_read_c0_guest_epc(cop0),
+ kvm_read_c0_guest_badvaddr(cop0));
+ } else {
+ kvm_err("Trying to deliver EXC when EXL is already set\n");
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+enum emulation_result kvm_mips_check_privilege(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er = EMULATE_DONE;
+ u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
+ unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
+
+ int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
+
+ if (usermode) {
+ switch (exccode) {
+ case EXCCODE_INT:
+ case EXCCODE_SYS:
+ case EXCCODE_BP:
+ case EXCCODE_RI:
+ case EXCCODE_TR:
+ case EXCCODE_MSAFPE:
+ case EXCCODE_FPE:
+ case EXCCODE_MSADIS:
+ break;
+
+ case EXCCODE_CPU:
+ if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
+ er = EMULATE_PRIV_FAIL;
+ break;
+
+ case EXCCODE_MOD:
+ break;
+
+ case EXCCODE_TLBL:
+ /*
+ * We we are accessing Guest kernel space, then send an
+ * address error exception to the guest
+ */
+ if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
+ kvm_debug("%s: LD MISS @ %#lx\n", __func__,
+ badvaddr);
+ cause &= ~0xff;
+ cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
+ er = EMULATE_PRIV_FAIL;
+ }
+ break;
+
+ case EXCCODE_TLBS:
+ /*
+ * We we are accessing Guest kernel space, then send an
+ * address error exception to the guest
+ */
+ if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
+ kvm_debug("%s: ST MISS @ %#lx\n", __func__,
+ badvaddr);
+ cause &= ~0xff;
+ cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
+ er = EMULATE_PRIV_FAIL;
+ }
+ break;
+
+ case EXCCODE_ADES:
+ kvm_debug("%s: address error ST @ %#lx\n", __func__,
+ badvaddr);
+ if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
+ cause &= ~0xff;
+ cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
+ }
+ er = EMULATE_PRIV_FAIL;
+ break;
+ case EXCCODE_ADEL:
+ kvm_debug("%s: address error LD @ %#lx\n", __func__,
+ badvaddr);
+ if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
+ cause &= ~0xff;
+ cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
+ }
+ er = EMULATE_PRIV_FAIL;
+ break;
+ default:
+ er = EMULATE_PRIV_FAIL;
+ break;
+ }
+ }
+
+ if (er == EMULATE_PRIV_FAIL)
+ kvm_mips_emulate_exc(cause, opc, vcpu);
+
+ return er;
+}
+
+/*
+ * User Address (UA) fault, this could happen if
+ * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
+ * case we pass on the fault to the guest kernel and let it handle it.
+ * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
+ * case we inject the TLB from the Guest TLB into the shadow host TLB
+ */
+enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu,
+ bool write_fault)
+{
+ enum emulation_result er = EMULATE_DONE;
+ u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
+ unsigned long va = vcpu->arch.host_cp0_badvaddr;
+ int index;
+
+ kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
+ vcpu->arch.host_cp0_badvaddr);
+
+ /*
+ * KVM would not have got the exception if this entry was valid in the
+ * shadow host TLB. Check the Guest TLB, if the entry is not there then
+ * send the guest an exception. The guest exc handler should then inject
+ * an entry into the guest TLB.
+ */
+ index = kvm_mips_guest_tlb_lookup(vcpu,
+ (va & VPN2_MASK) |
+ (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
+ KVM_ENTRYHI_ASID));
+ if (index < 0) {
+ if (exccode == EXCCODE_TLBL) {
+ er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu);
+ } else if (exccode == EXCCODE_TLBS) {
+ er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu);
+ } else {
+ kvm_err("%s: invalid exc code: %d\n", __func__,
+ exccode);
+ er = EMULATE_FAIL;
+ }
+ } else {
+ struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
+
+ /*
+ * Check if the entry is valid, if not then setup a TLB invalid
+ * exception to the guest
+ */
+ if (!TLB_IS_VALID(*tlb, va)) {
+ if (exccode == EXCCODE_TLBL) {
+ er = kvm_mips_emulate_tlbinv_ld(cause, opc,
+ vcpu);
+ } else if (exccode == EXCCODE_TLBS) {
+ er = kvm_mips_emulate_tlbinv_st(cause, opc,
+ vcpu);
+ } else {
+ kvm_err("%s: invalid exc code: %d\n", __func__,
+ exccode);
+ er = EMULATE_FAIL;
+ }
+ } else {
+ kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
+ tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
+ /*
+ * OK we have a Guest TLB entry, now inject it into the
+ * shadow host TLB
+ */
+ if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
+ write_fault)) {
+ kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
+ __func__, va, index, vcpu,
+ read_c0_entryhi());
+ er = EMULATE_FAIL;
+ }
+ }
+ }
+
+ return er;
+}