diff options
Diffstat (limited to 'arch/powerpc/include/asm/smu.h')
-rw-r--r-- | arch/powerpc/include/asm/smu.h | 694 |
1 files changed, 694 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/smu.h b/arch/powerpc/include/asm/smu.h new file mode 100644 index 000000000..4b30a0205 --- /dev/null +++ b/arch/powerpc/include/asm/smu.h @@ -0,0 +1,694 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _SMU_H +#define _SMU_H + +/* + * Definitions for talking to the SMU chip in newer G5 PowerMacs + */ +#ifdef __KERNEL__ +#include <linux/list.h> +#endif +#include <linux/types.h> + +/* + * Known SMU commands + * + * Most of what is below comes from looking at the Open Firmware driver, + * though this is still incomplete and could use better documentation here + * or there... + */ + + +/* + * Partition info commands + * + * These commands are used to retrieve the sdb-partition-XX datas from + * the SMU. The length is always 2. First byte is the subcommand code + * and second byte is the partition ID. + * + * The reply is 6 bytes: + * + * - 0..1 : partition address + * - 2 : a byte containing the partition ID + * - 3 : length (maybe other bits are rest of header ?) + * + * The data must then be obtained with calls to another command: + * SMU_CMD_MISC_ee_GET_DATABLOCK_REC (described below). + */ +#define SMU_CMD_PARTITION_COMMAND 0x3e +#define SMU_CMD_PARTITION_LATEST 0x01 +#define SMU_CMD_PARTITION_BASE 0x02 +#define SMU_CMD_PARTITION_UPDATE 0x03 + + +/* + * Fan control + * + * This is a "mux" for fan control commands. The command seem to + * act differently based on the number of arguments. With 1 byte + * of argument, this seem to be queries for fans status, setpoint, + * etc..., while with 0xe arguments, we will set the fans speeds. + * + * Queries (1 byte arg): + * --------------------- + * + * arg=0x01: read RPM fans status + * arg=0x02: read RPM fans setpoint + * arg=0x11: read PWM fans status + * arg=0x12: read PWM fans setpoint + * + * the "status" queries return the current speed while the "setpoint" ones + * return the programmed/target speed. It _seems_ that the result is a bit + * mask in the first byte of active/available fans, followed by 6 words (16 + * bits) containing the requested speed. + * + * Setpoint (14 bytes arg): + * ------------------------ + * + * first arg byte is 0 for RPM fans and 0x10 for PWM. Second arg byte is the + * mask of fans affected by the command. Followed by 6 words containing the + * setpoint value for selected fans in the mask (or 0 if mask value is 0) + */ +#define SMU_CMD_FAN_COMMAND 0x4a + + +/* + * Battery access + * + * Same command number as the PMU, could it be same syntax ? + */ +#define SMU_CMD_BATTERY_COMMAND 0x6f +#define SMU_CMD_GET_BATTERY_INFO 0x00 + +/* + * Real time clock control + * + * This is a "mux", first data byte contains the "sub" command. + * The "RTC" part of the SMU controls the date, time, powerup + * timer, but also a PRAM + * + * Dates are in BCD format on 7 bytes: + * [sec] [min] [hour] [weekday] [month day] [month] [year] + * with month being 1 based and year minus 100 + */ +#define SMU_CMD_RTC_COMMAND 0x8e +#define SMU_CMD_RTC_SET_PWRUP_TIMER 0x00 /* i: 7 bytes date */ +#define SMU_CMD_RTC_GET_PWRUP_TIMER 0x01 /* o: 7 bytes date */ +#define SMU_CMD_RTC_STOP_PWRUP_TIMER 0x02 +#define SMU_CMD_RTC_SET_PRAM_BYTE_ACC 0x20 /* i: 1 byte (address?) */ +#define SMU_CMD_RTC_SET_PRAM_AUTOINC 0x21 /* i: 1 byte (data?) */ +#define SMU_CMD_RTC_SET_PRAM_LO_BYTES 0x22 /* i: 10 bytes */ +#define SMU_CMD_RTC_SET_PRAM_HI_BYTES 0x23 /* i: 10 bytes */ +#define SMU_CMD_RTC_GET_PRAM_BYTE 0x28 /* i: 1 bytes (address?) */ +#define SMU_CMD_RTC_GET_PRAM_LO_BYTES 0x29 /* o: 10 bytes */ +#define SMU_CMD_RTC_GET_PRAM_HI_BYTES 0x2a /* o: 10 bytes */ +#define SMU_CMD_RTC_SET_DATETIME 0x80 /* i: 7 bytes date */ +#define SMU_CMD_RTC_GET_DATETIME 0x81 /* o: 7 bytes date */ + + /* + * i2c commands + * + * To issue an i2c command, first is to send a parameter block to + * the SMU. This is a command of type 0x9a with 9 bytes of header + * eventually followed by data for a write: + * + * 0: bus number (from device-tree usually, SMU has lots of busses !) + * 1: transfer type/format (see below) + * 2: device address. For combined and combined4 type transfers, this + * is the "write" version of the address (bit 0x01 cleared) + * 3: subaddress length (0..3) + * 4: subaddress byte 0 (or only byte for subaddress length 1) + * 5: subaddress byte 1 + * 6: subaddress byte 2 + * 7: combined address (device address for combined mode data phase) + * 8: data length + * + * The transfer types are the same good old Apple ones it seems, + * that is: + * - 0x00: Simple transfer + * - 0x01: Subaddress transfer (addr write + data tx, no restart) + * - 0x02: Combined transfer (addr write + restart + data tx) + * + * This is then followed by actual data for a write. + * + * At this point, the OF driver seems to have a limitation on transfer + * sizes of 0xd bytes on reads and 0x5 bytes on writes. I do not know + * whether this is just an OF limit due to some temporary buffer size + * or if this is an SMU imposed limit. This driver has the same limitation + * for now as I use a 0x10 bytes temporary buffer as well + * + * Once that is completed, a response is expected from the SMU. This is + * obtained via a command of type 0x9a with a length of 1 byte containing + * 0 as the data byte. OF also fills the rest of the data buffer with 0xff's + * though I can't tell yet if this is actually necessary. Once this command + * is complete, at this point, all I can tell is what OF does. OF tests + * byte 0 of the reply: + * - on read, 0xfe or 0xfc : bus is busy, wait (see below) or nak ? + * - on read, 0x00 or 0x01 : reply is in buffer (after the byte 0) + * - on write, < 0 -> failure (immediate exit) + * - else, OF just exists (without error, weird) + * + * So on read, there is this wait-for-busy thing when getting a 0xfc or + * 0xfe result. OF does a loop of up to 64 retries, waiting 20ms and + * doing the above again until either the retries expire or the result + * is no longer 0xfe or 0xfc + * + * The Darwin I2C driver is less subtle though. On any non-success status + * from the response command, it waits 5ms and tries again up to 20 times, + * it doesn't differentiate between fatal errors or "busy" status. + * + * This driver provides an asynchronous paramblock based i2c command + * interface to be used either directly by low level code or by a higher + * level driver interfacing to the linux i2c layer. The current + * implementation of this relies on working timers & timer interrupts + * though, so be careful of calling context for now. This may be "fixed" + * in the future by adding a polling facility. + */ +#define SMU_CMD_I2C_COMMAND 0x9a + /* transfer types */ +#define SMU_I2C_TRANSFER_SIMPLE 0x00 +#define SMU_I2C_TRANSFER_STDSUB 0x01 +#define SMU_I2C_TRANSFER_COMBINED 0x02 + +/* + * Power supply control + * + * The "sub" command is an ASCII string in the data, the + * data length is that of the string. + * + * The VSLEW command can be used to get or set the voltage slewing. + * - length 5 (only "VSLEW") : it returns "DONE" and 3 bytes of + * reply at data offset 6, 7 and 8. + * - length 8 ("VSLEWxyz") has 3 additional bytes appended, and is + * used to set the voltage slewing point. The SMU replies with "DONE" + * I yet have to figure out their exact meaning of those 3 bytes in + * both cases. They seem to be: + * x = processor mask + * y = op. point index + * z = processor freq. step index + * I haven't yet deciphered result codes + * + */ +#define SMU_CMD_POWER_COMMAND 0xaa +#define SMU_CMD_POWER_RESTART "RESTART" +#define SMU_CMD_POWER_SHUTDOWN "SHUTDOWN" +#define SMU_CMD_POWER_VOLTAGE_SLEW "VSLEW" + +/* + * Read ADC sensors + * + * This command takes one byte of parameter: the sensor ID (or "reg" + * value in the device-tree) and returns a 16 bits value + */ +#define SMU_CMD_READ_ADC 0xd8 + + +/* Misc commands + * + * This command seem to be a grab bag of various things + * + * Parameters: + * 1: subcommand + */ +#define SMU_CMD_MISC_df_COMMAND 0xdf + +/* + * Sets "system ready" status + * + * I did not yet understand how it exactly works or what it does. + * + * Guessing from OF code, 0x02 activates the display backlight. Apple uses/used + * the same codebase for all OF versions. On PowerBooks, this command would + * enable the backlight. For the G5s, it only activates the front LED. However, + * don't take this for granted. + * + * Parameters: + * 2: status [0x00, 0x01 or 0x02] + */ +#define SMU_CMD_MISC_df_SET_DISPLAY_LIT 0x02 + +/* + * Sets mode of power switch. + * + * What this actually does is not yet known. Maybe it enables some interrupt. + * + * Parameters: + * 2: enable power switch? [0x00 or 0x01] + * 3 (optional): enable nmi? [0x00 or 0x01] + * + * Returns: + * If parameter 2 is 0x00 and parameter 3 is not specified, returns whether + * NMI is enabled. Otherwise unknown. + */ +#define SMU_CMD_MISC_df_NMI_OPTION 0x04 + +/* Sets LED dimm offset. + * + * The front LED dimms itself during sleep. Its brightness (or, well, the PWM + * frequency) depends on current time. Therefore, the SMU needs to know the + * timezone. + * + * Parameters: + * 2-8: unknown (BCD coding) + */ +#define SMU_CMD_MISC_df_DIMM_OFFSET 0x99 + + +/* + * Version info commands + * + * Parameters: + * 1 (optional): Specifies version part to retrieve + * + * Returns: + * Version value + */ +#define SMU_CMD_VERSION_COMMAND 0xea +#define SMU_VERSION_RUNNING 0x00 +#define SMU_VERSION_BASE 0x01 +#define SMU_VERSION_UPDATE 0x02 + + +/* + * Switches + * + * These are switches whose status seems to be known to the SMU. + * + * Parameters: + * none + * + * Result: + * Switch bits (ORed, see below) + */ +#define SMU_CMD_SWITCHES 0xdc + +/* Switches bits */ +#define SMU_SWITCH_CASE_CLOSED 0x01 +#define SMU_SWITCH_AC_POWER 0x04 +#define SMU_SWITCH_POWER_SWITCH 0x08 + + +/* + * Misc commands + * + * This command seem to be a grab bag of various things + * + * SMU_CMD_MISC_ee_GET_DATABLOCK_REC is used, among others, to + * transfer blocks of data from the SMU. So far, I've decrypted it's + * usage to retrieve partition data. In order to do that, you have to + * break your transfer in "chunks" since that command cannot transfer + * more than a chunk at a time. The chunk size used by OF is 0xe bytes, + * but it seems that the darwin driver will let you do 0x1e bytes if + * your "PMU" version is >= 0x30. You can get the "PMU" version apparently + * either in the last 16 bits of property "smu-version-pmu" or as the 16 + * bytes at offset 1 of "smu-version-info" + * + * For each chunk, the command takes 7 bytes of arguments: + * byte 0: subcommand code (0x02) + * byte 1: 0x04 (always, I don't know what it means, maybe the address + * space to use or some other nicety. It's hard coded in OF) + * byte 2..5: SMU address of the chunk (big endian 32 bits) + * byte 6: size to transfer (up to max chunk size) + * + * The data is returned directly + */ +#define SMU_CMD_MISC_ee_COMMAND 0xee +#define SMU_CMD_MISC_ee_GET_DATABLOCK_REC 0x02 + +/* Retrieves currently used watts. + * + * Parameters: + * 1: 0x03 (Meaning unknown) + */ +#define SMU_CMD_MISC_ee_GET_WATTS 0x03 + +#define SMU_CMD_MISC_ee_LEDS_CTRL 0x04 /* i: 00 (00,01) [00] */ +#define SMU_CMD_MISC_ee_GET_DATA 0x05 /* i: 00 , o: ?? */ + + +/* + * Power related commands + * + * Parameters: + * 1: subcommand + */ +#define SMU_CMD_POWER_EVENTS_COMMAND 0x8f + +/* SMU_POWER_EVENTS subcommands */ +enum { + SMU_PWR_GET_POWERUP_EVENTS = 0x00, + SMU_PWR_SET_POWERUP_EVENTS = 0x01, + SMU_PWR_CLR_POWERUP_EVENTS = 0x02, + SMU_PWR_GET_WAKEUP_EVENTS = 0x03, + SMU_PWR_SET_WAKEUP_EVENTS = 0x04, + SMU_PWR_CLR_WAKEUP_EVENTS = 0x05, + + /* + * Get last shutdown cause + * + * Returns: + * 1 byte (signed char): Last shutdown cause. Exact meaning unknown. + */ + SMU_PWR_LAST_SHUTDOWN_CAUSE = 0x07, + + /* + * Sets or gets server ID. Meaning or use is unknown. + * + * Parameters: + * 2 (optional): Set server ID (1 byte) + * + * Returns: + * 1 byte (server ID?) + */ + SMU_PWR_SERVER_ID = 0x08, +}; + +/* Power events wakeup bits */ +enum { + SMU_PWR_WAKEUP_KEY = 0x01, /* Wake on key press */ + SMU_PWR_WAKEUP_AC_INSERT = 0x02, /* Wake on AC adapter plug */ + SMU_PWR_WAKEUP_AC_CHANGE = 0x04, + SMU_PWR_WAKEUP_LID_OPEN = 0x08, + SMU_PWR_WAKEUP_RING = 0x10, +}; + + +/* + * - Kernel side interface - + */ + +#ifdef __KERNEL__ + +/* + * Asynchronous SMU commands + * + * Fill up this structure and submit it via smu_queue_command(), + * and get notified by the optional done() callback, or because + * status becomes != 1 + */ + +struct smu_cmd; + +struct smu_cmd +{ + /* public */ + u8 cmd; /* command */ + int data_len; /* data len */ + int reply_len; /* reply len */ + void *data_buf; /* data buffer */ + void *reply_buf; /* reply buffer */ + int status; /* command status */ + void (*done)(struct smu_cmd *cmd, void *misc); + void *misc; + + /* private */ + struct list_head link; +}; + +/* + * Queues an SMU command, all fields have to be initialized + */ +extern int smu_queue_cmd(struct smu_cmd *cmd); + +/* + * Simple command wrapper. This structure embeds a small buffer + * to ease sending simple SMU commands from the stack + */ +struct smu_simple_cmd +{ + struct smu_cmd cmd; + u8 buffer[16]; +}; + +/* + * Queues a simple command. All fields will be initialized by that + * function + */ +extern int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command, + unsigned int data_len, + void (*done)(struct smu_cmd *cmd, void *misc), + void *misc, + ...); + +/* + * Completion helper. Pass it to smu_queue_simple or as 'done' + * member to smu_queue_cmd, it will call complete() on the struct + * completion passed in the "misc" argument + */ +extern void smu_done_complete(struct smu_cmd *cmd, void *misc); + +/* + * Synchronous helpers. Will spin-wait for completion of a command + */ +extern void smu_spinwait_cmd(struct smu_cmd *cmd); + +static inline void smu_spinwait_simple(struct smu_simple_cmd *scmd) +{ + smu_spinwait_cmd(&scmd->cmd); +} + +/* + * Poll routine to call if blocked with irqs off + */ +extern void smu_poll(void); + + +/* + * Init routine, presence check.... + */ +extern int smu_init(void); +extern int smu_present(void); +struct platform_device; +extern struct platform_device *smu_get_ofdev(void); + + +/* + * Common command wrappers + */ +extern void smu_shutdown(void); +extern void smu_restart(void); +struct rtc_time; +extern int smu_get_rtc_time(struct rtc_time *time, int spinwait); +extern int smu_set_rtc_time(struct rtc_time *time, int spinwait); + +/* + * Kernel asynchronous i2c interface + */ + +#define SMU_I2C_READ_MAX 0x1d +#define SMU_I2C_WRITE_MAX 0x15 + +/* SMU i2c header, exactly matches i2c header on wire */ +struct smu_i2c_param +{ + u8 bus; /* SMU bus ID (from device tree) */ + u8 type; /* i2c transfer type */ + u8 devaddr; /* device address (includes direction) */ + u8 sublen; /* subaddress length */ + u8 subaddr[3]; /* subaddress */ + u8 caddr; /* combined address, filled by SMU driver */ + u8 datalen; /* length of transfer */ + u8 data[SMU_I2C_READ_MAX]; /* data */ +}; + +struct smu_i2c_cmd +{ + /* public */ + struct smu_i2c_param info; + void (*done)(struct smu_i2c_cmd *cmd, void *misc); + void *misc; + int status; /* 1 = pending, 0 = ok, <0 = fail */ + + /* private */ + struct smu_cmd scmd; + int read; + int stage; + int retries; + u8 pdata[32]; + struct list_head link; +}; + +/* + * Call this to queue an i2c command to the SMU. You must fill info, + * including info.data for a write, done and misc. + * For now, no polling interface is provided so you have to use completion + * callback. + */ +extern int smu_queue_i2c(struct smu_i2c_cmd *cmd); + + +#endif /* __KERNEL__ */ + + +/* + * - SMU "sdb" partitions informations - + */ + + +/* + * Partition header format + */ +struct smu_sdbp_header { + __u8 id; + __u8 len; + __u8 version; + __u8 flags; +}; + + + /* + * demangle 16 and 32 bits integer in some SMU partitions + * (currently, afaik, this concerns only the FVT partition + * (0x12) + */ +#define SMU_U16_MIX(x) le16_to_cpu(x) +#define SMU_U32_MIX(x) ((((x) & 0xff00ff00u) >> 8)|(((x) & 0x00ff00ffu) << 8)) + + +/* This is the definition of the SMU sdb-partition-0x12 table (called + * CPU F/V/T operating points in Darwin). The definition for all those + * SMU tables should be moved to some separate file + */ +#define SMU_SDB_FVT_ID 0x12 + +struct smu_sdbp_fvt { + __u32 sysclk; /* Base SysClk frequency in Hz for + * this operating point. Value need to + * be unmixed with SMU_U32_MIX() + */ + __u8 pad; + __u8 maxtemp; /* Max temp. supported by this + * operating point + */ + + __u16 volts[3]; /* CPU core voltage for the 3 + * PowerTune modes, a mode with + * 0V = not supported. Value need + * to be unmixed with SMU_U16_MIX() + */ +}; + +/* This partition contains voltage & current sensor calibration + * informations + */ +#define SMU_SDB_CPUVCP_ID 0x21 + +struct smu_sdbp_cpuvcp { + __u16 volt_scale; /* u4.12 fixed point */ + __s16 volt_offset; /* s4.12 fixed point */ + __u16 curr_scale; /* u4.12 fixed point */ + __s16 curr_offset; /* s4.12 fixed point */ + __s32 power_quads[3]; /* s4.28 fixed point */ +}; + +/* This partition contains CPU thermal diode calibration + */ +#define SMU_SDB_CPUDIODE_ID 0x18 + +struct smu_sdbp_cpudiode { + __u16 m_value; /* u1.15 fixed point */ + __s16 b_value; /* s10.6 fixed point */ + +}; + +/* This partition contains Slots power calibration + */ +#define SMU_SDB_SLOTSPOW_ID 0x78 + +struct smu_sdbp_slotspow { + __u16 pow_scale; /* u4.12 fixed point */ + __s16 pow_offset; /* s4.12 fixed point */ +}; + +/* This partition contains machine specific version information about + * the sensor/control layout + */ +#define SMU_SDB_SENSORTREE_ID 0x25 + +struct smu_sdbp_sensortree { + __u8 model_id; + __u8 unknown[3]; +}; + +/* This partition contains CPU thermal control PID informations. So far + * only single CPU machines have been seen with an SMU, so we assume this + * carries only informations for those + */ +#define SMU_SDB_CPUPIDDATA_ID 0x17 + +struct smu_sdbp_cpupiddata { + __u8 unknown1; + __u8 target_temp_delta; + __u8 unknown2; + __u8 history_len; + __s16 power_adj; + __u16 max_power; + __s32 gp,gr,gd; +}; + + +/* Other partitions without known structures */ +#define SMU_SDB_DEBUG_SWITCHES_ID 0x05 + +#ifdef __KERNEL__ +/* + * This returns the pointer to an SMU "sdb" partition data or NULL + * if not found. The data format is described below + */ +extern const struct smu_sdbp_header *smu_get_sdb_partition(int id, + unsigned int *size); + +/* Get "sdb" partition data from an SMU satellite */ +extern struct smu_sdbp_header *smu_sat_get_sdb_partition(unsigned int sat_id, + int id, unsigned int *size); + + +#endif /* __KERNEL__ */ + + +/* + * - Userland interface - + */ + +/* + * A given instance of the device can be configured for 2 different + * things at the moment: + * + * - sending SMU commands (default at open() time) + * - receiving SMU events (not yet implemented) + * + * Commands are written with write() of a command block. They can be + * "driver" commands (for example to switch to event reception mode) + * or real SMU commands. They are made of a header followed by command + * data if any. + * + * For SMU commands (not for driver commands), you can then read() back + * a reply. The reader will be blocked or not depending on how the device + * file is opened. poll() isn't implemented yet. The reply will consist + * of a header as well, followed by the reply data if any. You should + * always provide a buffer large enough for the maximum reply data, I + * recommand one page. + * + * It is illegal to send SMU commands through a file descriptor configured + * for events reception + * + */ +struct smu_user_cmd_hdr +{ + __u32 cmdtype; +#define SMU_CMDTYPE_SMU 0 /* SMU command */ +#define SMU_CMDTYPE_WANTS_EVENTS 1 /* switch fd to events mode */ +#define SMU_CMDTYPE_GET_PARTITION 2 /* retrieve an sdb partition */ + + __u8 cmd; /* SMU command byte */ + __u8 pad[3]; /* padding */ + __u32 data_len; /* Length of data following */ +}; + +struct smu_user_reply_hdr +{ + __u32 status; /* Command status */ + __u32 reply_len; /* Length of data follwing */ +}; + +#endif /* _SMU_H */ |