summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/oprofile
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/oprofile')
-rw-r--r--arch/powerpc/oprofile/Makefile19
-rw-r--r--arch/powerpc/oprofile/backtrace.c120
-rw-r--r--arch/powerpc/oprofile/cell/pr_util.h110
-rw-r--r--arch/powerpc/oprofile/cell/spu_profiler.c248
-rw-r--r--arch/powerpc/oprofile/cell/spu_task_sync.c657
-rw-r--r--arch/powerpc/oprofile/cell/vma_map.c279
-rw-r--r--arch/powerpc/oprofile/common.c243
-rw-r--r--arch/powerpc/oprofile/op_model_7450.c207
-rw-r--r--arch/powerpc/oprofile/op_model_cell.c1709
-rw-r--r--arch/powerpc/oprofile/op_model_fsl_emb.c380
-rw-r--r--arch/powerpc/oprofile/op_model_pa6t.c227
-rw-r--r--arch/powerpc/oprofile/op_model_power4.c438
12 files changed, 4637 insertions, 0 deletions
diff --git a/arch/powerpc/oprofile/Makefile b/arch/powerpc/oprofile/Makefile
new file mode 100644
index 000000000..bb2d94c8c
--- /dev/null
+++ b/arch/powerpc/oprofile/Makefile
@@ -0,0 +1,19 @@
+# SPDX-License-Identifier: GPL-2.0
+
+ccflags-$(CONFIG_PPC64) := $(NO_MINIMAL_TOC)
+
+obj-$(CONFIG_OPROFILE) += oprofile.o
+
+DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \
+ oprof.o cpu_buffer.o buffer_sync.o \
+ event_buffer.o oprofile_files.o \
+ oprofilefs.o oprofile_stats.o \
+ timer_int.o )
+
+oprofile-y := $(DRIVER_OBJS) common.o backtrace.o
+oprofile-$(CONFIG_OPROFILE_CELL) += op_model_cell.o \
+ cell/spu_profiler.o cell/vma_map.o \
+ cell/spu_task_sync.o
+oprofile-$(CONFIG_PPC_BOOK3S_64) += op_model_power4.o op_model_pa6t.o
+oprofile-$(CONFIG_FSL_EMB_PERFMON) += op_model_fsl_emb.o
+oprofile-$(CONFIG_PPC_BOOK3S_32) += op_model_7450.o
diff --git a/arch/powerpc/oprofile/backtrace.c b/arch/powerpc/oprofile/backtrace.c
new file mode 100644
index 000000000..9db7ada79
--- /dev/null
+++ b/arch/powerpc/oprofile/backtrace.c
@@ -0,0 +1,120 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/**
+ * Copyright (C) 2005 Brian Rogan <bcr6@cornell.edu>, IBM
+ *
+**/
+
+#include <linux/time.h>
+#include <linux/oprofile.h>
+#include <linux/sched.h>
+#include <asm/processor.h>
+#include <linux/uaccess.h>
+#include <linux/compat.h>
+#include <asm/oprofile_impl.h>
+
+#define STACK_SP(STACK) *(STACK)
+
+#define STACK_LR64(STACK) *((unsigned long *)(STACK) + 2)
+#define STACK_LR32(STACK) *((unsigned int *)(STACK) + 1)
+
+#ifdef CONFIG_PPC64
+#define STACK_LR(STACK) STACK_LR64(STACK)
+#else
+#define STACK_LR(STACK) STACK_LR32(STACK)
+#endif
+
+static unsigned int user_getsp32(unsigned int sp, int is_first)
+{
+ unsigned int stack_frame[2];
+ void __user *p = compat_ptr(sp);
+
+ /*
+ * The most likely reason for this is that we returned -EFAULT,
+ * which means that we've done all that we can do from
+ * interrupt context.
+ */
+ if (copy_from_user_nofault(stack_frame, (void __user *)p,
+ sizeof(stack_frame)))
+ return 0;
+
+ if (!is_first)
+ oprofile_add_trace(STACK_LR32(stack_frame));
+
+ /*
+ * We do not enforce increasing stack addresses here because
+ * we may transition to a different stack, eg a signal handler.
+ */
+ return STACK_SP(stack_frame);
+}
+
+#ifdef CONFIG_PPC64
+static unsigned long user_getsp64(unsigned long sp, int is_first)
+{
+ unsigned long stack_frame[3];
+
+ if (copy_from_user_nofault(stack_frame, (void __user *)sp,
+ sizeof(stack_frame)))
+ return 0;
+
+ if (!is_first)
+ oprofile_add_trace(STACK_LR64(stack_frame));
+
+ return STACK_SP(stack_frame);
+}
+#endif
+
+static unsigned long kernel_getsp(unsigned long sp, int is_first)
+{
+ unsigned long *stack_frame = (unsigned long *)sp;
+
+ if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
+ return 0;
+
+ if (!is_first)
+ oprofile_add_trace(STACK_LR(stack_frame));
+
+ /*
+ * We do not enforce increasing stack addresses here because
+ * we might be transitioning from an interrupt stack to a kernel
+ * stack. validate_sp() is designed to understand this, so just
+ * use it.
+ */
+ return STACK_SP(stack_frame);
+}
+
+void op_powerpc_backtrace(struct pt_regs * const regs, unsigned int depth)
+{
+ unsigned long sp = regs->gpr[1];
+ int first_frame = 1;
+
+ /* We ditch the top stackframe so need to loop through an extra time */
+ depth += 1;
+
+ if (!user_mode(regs)) {
+ while (depth--) {
+ sp = kernel_getsp(sp, first_frame);
+ if (!sp)
+ break;
+ first_frame = 0;
+ }
+ } else {
+#ifdef CONFIG_PPC64
+ if (!is_32bit_task()) {
+ while (depth--) {
+ sp = user_getsp64(sp, first_frame);
+ if (!sp)
+ break;
+ first_frame = 0;
+ }
+ return;
+ }
+#endif
+
+ while (depth--) {
+ sp = user_getsp32(sp, first_frame);
+ if (!sp)
+ break;
+ first_frame = 0;
+ }
+ }
+}
diff --git a/arch/powerpc/oprofile/cell/pr_util.h b/arch/powerpc/oprofile/cell/pr_util.h
new file mode 100644
index 000000000..e198efa91
--- /dev/null
+++ b/arch/powerpc/oprofile/cell/pr_util.h
@@ -0,0 +1,110 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+ /*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: Maynard Johnson <maynardj@us.ibm.com>
+ */
+
+#ifndef PR_UTIL_H
+#define PR_UTIL_H
+
+#include <linux/cpumask.h>
+#include <linux/oprofile.h>
+#include <asm/cell-pmu.h>
+#include <asm/cell-regs.h>
+#include <asm/spu.h>
+
+/* Defines used for sync_start */
+#define SKIP_GENERIC_SYNC 0
+#define SYNC_START_ERROR -1
+#define DO_GENERIC_SYNC 1
+#define SPUS_PER_NODE 8
+#define DEFAULT_TIMER_EXPIRE (HZ / 10)
+
+extern struct delayed_work spu_work;
+extern int spu_prof_running;
+
+#define TRACE_ARRAY_SIZE 1024
+
+extern spinlock_t oprof_spu_smpl_arry_lck;
+
+struct spu_overlay_info { /* map of sections within an SPU overlay */
+ unsigned int vma; /* SPU virtual memory address from elf */
+ unsigned int size; /* size of section from elf */
+ unsigned int offset; /* offset of section into elf file */
+ unsigned int buf;
+};
+
+struct vma_to_fileoffset_map { /* map of sections within an SPU program */
+ struct vma_to_fileoffset_map *next; /* list pointer */
+ unsigned int vma; /* SPU virtual memory address from elf */
+ unsigned int size; /* size of section from elf */
+ unsigned int offset; /* offset of section into elf file */
+ unsigned int guard_ptr;
+ unsigned int guard_val;
+ /*
+ * The guard pointer is an entry in the _ovly_buf_table,
+ * computed using ovly.buf as the index into the table. Since
+ * ovly.buf values begin at '1' to reference the first (or 0th)
+ * entry in the _ovly_buf_table, the computation subtracts 1
+ * from ovly.buf.
+ * The guard value is stored in the _ovly_buf_table entry and
+ * is an index (starting at 1) back to the _ovly_table entry
+ * that is pointing at this _ovly_buf_table entry. So, for
+ * example, for an overlay scenario with one overlay segment
+ * and two overlay sections:
+ * - Section 1 points to the first entry of the
+ * _ovly_buf_table, which contains a guard value
+ * of '1', referencing the first (index=0) entry of
+ * _ovly_table.
+ * - Section 2 points to the second entry of the
+ * _ovly_buf_table, which contains a guard value
+ * of '2', referencing the second (index=1) entry of
+ * _ovly_table.
+ */
+
+};
+
+struct spu_buffer {
+ int last_guard_val;
+ int ctx_sw_seen;
+ unsigned long *buff;
+ unsigned int head, tail;
+};
+
+
+/* The three functions below are for maintaining and accessing
+ * the vma-to-fileoffset map.
+ */
+struct vma_to_fileoffset_map *create_vma_map(const struct spu *spu,
+ unsigned long objectid);
+unsigned int vma_map_lookup(struct vma_to_fileoffset_map *map,
+ unsigned int vma, const struct spu *aSpu,
+ int *grd_val);
+void vma_map_free(struct vma_to_fileoffset_map *map);
+
+/*
+ * Entry point for SPU profiling.
+ * cycles_reset is the SPU_CYCLES count value specified by the user.
+ */
+int start_spu_profiling_cycles(unsigned int cycles_reset);
+void start_spu_profiling_events(void);
+
+void stop_spu_profiling_cycles(void);
+void stop_spu_profiling_events(void);
+
+/* add the necessary profiling hooks */
+int spu_sync_start(void);
+
+/* remove the hooks */
+int spu_sync_stop(void);
+
+/* Record SPU program counter samples to the oprofile event buffer. */
+void spu_sync_buffer(int spu_num, unsigned int *samples,
+ int num_samples);
+
+void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset);
+
+#endif /* PR_UTIL_H */
diff --git a/arch/powerpc/oprofile/cell/spu_profiler.c b/arch/powerpc/oprofile/cell/spu_profiler.c
new file mode 100644
index 000000000..cdf883445
--- /dev/null
+++ b/arch/powerpc/oprofile/cell/spu_profiler.c
@@ -0,0 +1,248 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Authors: Maynard Johnson <maynardj@us.ibm.com>
+ * Carl Love <carll@us.ibm.com>
+ */
+
+#include <linux/hrtimer.h>
+#include <linux/smp.h>
+#include <linux/slab.h>
+#include <asm/cell-pmu.h>
+#include <asm/time.h>
+#include "pr_util.h"
+
+#define SCALE_SHIFT 14
+
+static u32 *samples;
+
+/* spu_prof_running is a flag used to indicate if spu profiling is enabled
+ * or not. It is set by the routines start_spu_profiling_cycles() and
+ * start_spu_profiling_events(). The flag is cleared by the routines
+ * stop_spu_profiling_cycles() and stop_spu_profiling_events(). These
+ * routines are called via global_start() and global_stop() which are called in
+ * op_powerpc_start() and op_powerpc_stop(). These routines are called once
+ * per system as a result of the user starting/stopping oprofile. Hence, only
+ * one CPU per user at a time will be changing the value of spu_prof_running.
+ * In general, OProfile does not protect against multiple users trying to run
+ * OProfile at a time.
+ */
+int spu_prof_running;
+static unsigned int profiling_interval;
+
+#define NUM_SPU_BITS_TRBUF 16
+#define SPUS_PER_TB_ENTRY 4
+
+#define SPU_PC_MASK 0xFFFF
+
+DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
+static unsigned long oprof_spu_smpl_arry_lck_flags;
+
+void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
+{
+ unsigned long ns_per_cyc;
+
+ if (!freq_khz)
+ freq_khz = ppc_proc_freq/1000;
+
+ /* To calculate a timeout in nanoseconds, the basic
+ * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
+ * To avoid floating point math, we use the scale math
+ * technique as described in linux/jiffies.h. We use
+ * a scale factor of SCALE_SHIFT, which provides 4 decimal places
+ * of precision. This is close enough for the purpose at hand.
+ *
+ * The value of the timeout should be small enough that the hw
+ * trace buffer will not get more than about 1/3 full for the
+ * maximum user specified (the LFSR value) hw sampling frequency.
+ * This is to ensure the trace buffer will never fill even if the
+ * kernel thread scheduling varies under a heavy system load.
+ */
+
+ ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
+ profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
+
+}
+
+/*
+ * Extract SPU PC from trace buffer entry
+ */
+static void spu_pc_extract(int cpu, int entry)
+{
+ /* the trace buffer is 128 bits */
+ u64 trace_buffer[2];
+ u64 spu_mask;
+ int spu;
+
+ spu_mask = SPU_PC_MASK;
+
+ /* Each SPU PC is 16 bits; hence, four spus in each of
+ * the two 64-bit buffer entries that make up the
+ * 128-bit trace_buffer entry. Process two 64-bit values
+ * simultaneously.
+ * trace[0] SPU PC contents are: 0 1 2 3
+ * trace[1] SPU PC contents are: 4 5 6 7
+ */
+
+ cbe_read_trace_buffer(cpu, trace_buffer);
+
+ for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
+ /* spu PC trace entry is upper 16 bits of the
+ * 18 bit SPU program counter
+ */
+ samples[spu * TRACE_ARRAY_SIZE + entry]
+ = (spu_mask & trace_buffer[0]) << 2;
+ samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
+ = (spu_mask & trace_buffer[1]) << 2;
+
+ trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
+ trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
+ }
+}
+
+static int cell_spu_pc_collection(int cpu)
+{
+ u32 trace_addr;
+ int entry;
+
+ /* process the collected SPU PC for the node */
+
+ entry = 0;
+
+ trace_addr = cbe_read_pm(cpu, trace_address);
+ while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
+ /* there is data in the trace buffer to process */
+ spu_pc_extract(cpu, entry);
+
+ entry++;
+
+ if (entry >= TRACE_ARRAY_SIZE)
+ /* spu_samples is full */
+ break;
+
+ trace_addr = cbe_read_pm(cpu, trace_address);
+ }
+
+ return entry;
+}
+
+
+static enum hrtimer_restart profile_spus(struct hrtimer *timer)
+{
+ ktime_t kt;
+ int cpu, node, k, num_samples, spu_num;
+
+ if (!spu_prof_running)
+ goto stop;
+
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ node = cbe_cpu_to_node(cpu);
+
+ /* There should only be one kernel thread at a time processing
+ * the samples. In the very unlikely case that the processing
+ * is taking a very long time and multiple kernel threads are
+ * started to process the samples. Make sure only one kernel
+ * thread is working on the samples array at a time. The
+ * sample array must be loaded and then processed for a given
+ * cpu. The sample array is not per cpu.
+ */
+ spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
+ oprof_spu_smpl_arry_lck_flags);
+ num_samples = cell_spu_pc_collection(cpu);
+
+ if (num_samples == 0) {
+ spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+ oprof_spu_smpl_arry_lck_flags);
+ continue;
+ }
+
+ for (k = 0; k < SPUS_PER_NODE; k++) {
+ spu_num = k + (node * SPUS_PER_NODE);
+ spu_sync_buffer(spu_num,
+ samples + (k * TRACE_ARRAY_SIZE),
+ num_samples);
+ }
+
+ spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+ oprof_spu_smpl_arry_lck_flags);
+
+ }
+ smp_wmb(); /* insure spu event buffer updates are written */
+ /* don't want events intermingled... */
+
+ kt = profiling_interval;
+ if (!spu_prof_running)
+ goto stop;
+ hrtimer_forward(timer, timer->base->get_time(), kt);
+ return HRTIMER_RESTART;
+
+ stop:
+ printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
+ return HRTIMER_NORESTART;
+}
+
+static struct hrtimer timer;
+/*
+ * Entry point for SPU cycle profiling.
+ * NOTE: SPU profiling is done system-wide, not per-CPU.
+ *
+ * cycles_reset is the count value specified by the user when
+ * setting up OProfile to count SPU_CYCLES.
+ */
+int start_spu_profiling_cycles(unsigned int cycles_reset)
+{
+ ktime_t kt;
+
+ pr_debug("timer resolution: %lu\n", TICK_NSEC);
+ kt = profiling_interval;
+ hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ hrtimer_set_expires(&timer, kt);
+ timer.function = profile_spus;
+
+ /* Allocate arrays for collecting SPU PC samples */
+ samples = kcalloc(SPUS_PER_NODE * TRACE_ARRAY_SIZE, sizeof(u32),
+ GFP_KERNEL);
+
+ if (!samples)
+ return -ENOMEM;
+
+ spu_prof_running = 1;
+ hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
+ schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
+
+ return 0;
+}
+
+/*
+ * Entry point for SPU event profiling.
+ * NOTE: SPU profiling is done system-wide, not per-CPU.
+ *
+ * cycles_reset is the count value specified by the user when
+ * setting up OProfile to count SPU_CYCLES.
+ */
+void start_spu_profiling_events(void)
+{
+ spu_prof_running = 1;
+ schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
+
+ return;
+}
+
+void stop_spu_profiling_cycles(void)
+{
+ spu_prof_running = 0;
+ hrtimer_cancel(&timer);
+ kfree(samples);
+ pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
+}
+
+void stop_spu_profiling_events(void)
+{
+ spu_prof_running = 0;
+}
diff --git a/arch/powerpc/oprofile/cell/spu_task_sync.c b/arch/powerpc/oprofile/cell/spu_task_sync.c
new file mode 100644
index 000000000..489f99310
--- /dev/null
+++ b/arch/powerpc/oprofile/cell/spu_task_sync.c
@@ -0,0 +1,657 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: Maynard Johnson <maynardj@us.ibm.com>
+ */
+
+/* The purpose of this file is to handle SPU event task switching
+ * and to record SPU context information into the OProfile
+ * event buffer.
+ *
+ * Additionally, the spu_sync_buffer function is provided as a helper
+ * for recoding actual SPU program counter samples to the event buffer.
+ */
+#include <linux/dcookies.h>
+#include <linux/kref.h>
+#include <linux/mm.h>
+#include <linux/fs.h>
+#include <linux/file.h>
+#include <linux/module.h>
+#include <linux/notifier.h>
+#include <linux/numa.h>
+#include <linux/oprofile.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include "pr_util.h"
+
+#define RELEASE_ALL 9999
+
+static DEFINE_SPINLOCK(buffer_lock);
+static DEFINE_SPINLOCK(cache_lock);
+static int num_spu_nodes;
+static int spu_prof_num_nodes;
+
+struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
+struct delayed_work spu_work;
+static unsigned max_spu_buff;
+
+static void spu_buff_add(unsigned long int value, int spu)
+{
+ /* spu buff is a circular buffer. Add entries to the
+ * head. Head is the index to store the next value.
+ * The buffer is full when there is one available entry
+ * in the queue, i.e. head and tail can't be equal.
+ * That way we can tell the difference between the
+ * buffer being full versus empty.
+ *
+ * ASSUMPTION: the buffer_lock is held when this function
+ * is called to lock the buffer, head and tail.
+ */
+ int full = 1;
+
+ if (spu_buff[spu].head >= spu_buff[spu].tail) {
+ if ((spu_buff[spu].head - spu_buff[spu].tail)
+ < (max_spu_buff - 1))
+ full = 0;
+
+ } else if (spu_buff[spu].tail > spu_buff[spu].head) {
+ if ((spu_buff[spu].tail - spu_buff[spu].head)
+ > 1)
+ full = 0;
+ }
+
+ if (!full) {
+ spu_buff[spu].buff[spu_buff[spu].head] = value;
+ spu_buff[spu].head++;
+
+ if (spu_buff[spu].head >= max_spu_buff)
+ spu_buff[spu].head = 0;
+ } else {
+ /* From the user's perspective make the SPU buffer
+ * size management/overflow look like we are using
+ * per cpu buffers. The user uses the same
+ * per cpu parameter to adjust the SPU buffer size.
+ * Increment the sample_lost_overflow to inform
+ * the user the buffer size needs to be increased.
+ */
+ oprofile_cpu_buffer_inc_smpl_lost();
+ }
+}
+
+/* This function copies the per SPU buffers to the
+ * OProfile kernel buffer.
+ */
+static void sync_spu_buff(void)
+{
+ int spu;
+ unsigned long flags;
+ int curr_head;
+
+ for (spu = 0; spu < num_spu_nodes; spu++) {
+ /* In case there was an issue and the buffer didn't
+ * get created skip it.
+ */
+ if (spu_buff[spu].buff == NULL)
+ continue;
+
+ /* Hold the lock to make sure the head/tail
+ * doesn't change while spu_buff_add() is
+ * deciding if the buffer is full or not.
+ * Being a little paranoid.
+ */
+ spin_lock_irqsave(&buffer_lock, flags);
+ curr_head = spu_buff[spu].head;
+ spin_unlock_irqrestore(&buffer_lock, flags);
+
+ /* Transfer the current contents to the kernel buffer.
+ * data can still be added to the head of the buffer.
+ */
+ oprofile_put_buff(spu_buff[spu].buff,
+ spu_buff[spu].tail,
+ curr_head, max_spu_buff);
+
+ spin_lock_irqsave(&buffer_lock, flags);
+ spu_buff[spu].tail = curr_head;
+ spin_unlock_irqrestore(&buffer_lock, flags);
+ }
+
+}
+
+static void wq_sync_spu_buff(struct work_struct *work)
+{
+ /* move data from spu buffers to kernel buffer */
+ sync_spu_buff();
+
+ /* only reschedule if profiling is not done */
+ if (spu_prof_running)
+ schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
+}
+
+/* Container for caching information about an active SPU task. */
+struct cached_info {
+ struct vma_to_fileoffset_map *map;
+ struct spu *the_spu; /* needed to access pointer to local_store */
+ struct kref cache_ref;
+};
+
+static struct cached_info *spu_info[MAX_NUMNODES * 8];
+
+static void destroy_cached_info(struct kref *kref)
+{
+ struct cached_info *info;
+
+ info = container_of(kref, struct cached_info, cache_ref);
+ vma_map_free(info->map);
+ kfree(info);
+ module_put(THIS_MODULE);
+}
+
+/* Return the cached_info for the passed SPU number.
+ * ATTENTION: Callers are responsible for obtaining the
+ * cache_lock if needed prior to invoking this function.
+ */
+static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
+{
+ struct kref *ref;
+ struct cached_info *ret_info;
+
+ if (spu_num >= num_spu_nodes) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: Invalid index %d into spu info cache\n",
+ __func__, __LINE__, spu_num);
+ ret_info = NULL;
+ goto out;
+ }
+ if (!spu_info[spu_num] && the_spu) {
+ ref = spu_get_profile_private_kref(the_spu->ctx);
+ if (ref) {
+ spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
+ kref_get(&spu_info[spu_num]->cache_ref);
+ }
+ }
+
+ ret_info = spu_info[spu_num];
+ out:
+ return ret_info;
+}
+
+
+/* Looks for cached info for the passed spu. If not found, the
+ * cached info is created for the passed spu.
+ * Returns 0 for success; otherwise, -1 for error.
+ */
+static int
+prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
+{
+ unsigned long flags;
+ struct vma_to_fileoffset_map *new_map;
+ int retval = 0;
+ struct cached_info *info;
+
+ /* We won't bother getting cache_lock here since
+ * don't do anything with the cached_info that's returned.
+ */
+ info = get_cached_info(spu, spu->number);
+
+ if (info) {
+ pr_debug("Found cached SPU info.\n");
+ goto out;
+ }
+
+ /* Create cached_info and set spu_info[spu->number] to point to it.
+ * spu->number is a system-wide value, not a per-node value.
+ */
+ info = kzalloc(sizeof(*info), GFP_KERNEL);
+ if (!info) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: create vma_map failed\n",
+ __func__, __LINE__);
+ retval = -ENOMEM;
+ goto err_alloc;
+ }
+ new_map = create_vma_map(spu, objectId);
+ if (!new_map) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: create vma_map failed\n",
+ __func__, __LINE__);
+ retval = -ENOMEM;
+ goto err_alloc;
+ }
+
+ pr_debug("Created vma_map\n");
+ info->map = new_map;
+ info->the_spu = spu;
+ kref_init(&info->cache_ref);
+ spin_lock_irqsave(&cache_lock, flags);
+ spu_info[spu->number] = info;
+ /* Increment count before passing off ref to SPUFS. */
+ kref_get(&info->cache_ref);
+
+ /* We increment the module refcount here since SPUFS is
+ * responsible for the final destruction of the cached_info,
+ * and it must be able to access the destroy_cached_info()
+ * function defined in the OProfile module. We decrement
+ * the module refcount in destroy_cached_info.
+ */
+ try_module_get(THIS_MODULE);
+ spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
+ destroy_cached_info);
+ spin_unlock_irqrestore(&cache_lock, flags);
+ goto out;
+
+err_alloc:
+ kfree(info);
+out:
+ return retval;
+}
+
+/*
+ * NOTE: The caller is responsible for locking the
+ * cache_lock prior to calling this function.
+ */
+static int release_cached_info(int spu_index)
+{
+ int index, end;
+
+ if (spu_index == RELEASE_ALL) {
+ end = num_spu_nodes;
+ index = 0;
+ } else {
+ if (spu_index >= num_spu_nodes) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: "
+ "Invalid index %d into spu info cache\n",
+ __func__, __LINE__, spu_index);
+ goto out;
+ }
+ end = spu_index + 1;
+ index = spu_index;
+ }
+ for (; index < end; index++) {
+ if (spu_info[index]) {
+ kref_put(&spu_info[index]->cache_ref,
+ destroy_cached_info);
+ spu_info[index] = NULL;
+ }
+ }
+
+out:
+ return 0;
+}
+
+/* The source code for fast_get_dcookie was "borrowed"
+ * from drivers/oprofile/buffer_sync.c.
+ */
+
+/* Optimisation. We can manage without taking the dcookie sem
+ * because we cannot reach this code without at least one
+ * dcookie user still being registered (namely, the reader
+ * of the event buffer).
+ */
+static inline unsigned long fast_get_dcookie(const struct path *path)
+{
+ unsigned long cookie;
+
+ if (path->dentry->d_flags & DCACHE_COOKIE)
+ return (unsigned long)path->dentry;
+ get_dcookie(path, &cookie);
+ return cookie;
+}
+
+/* Look up the dcookie for the task's mm->exe_file,
+ * which corresponds loosely to "application name". Also, determine
+ * the offset for the SPU ELF object. If computed offset is
+ * non-zero, it implies an embedded SPU object; otherwise, it's a
+ * separate SPU binary, in which case we retrieve it's dcookie.
+ * For the embedded case, we must determine if SPU ELF is embedded
+ * in the executable application or another file (i.e., shared lib).
+ * If embedded in a shared lib, we must get the dcookie and return
+ * that to the caller.
+ */
+static unsigned long
+get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
+ unsigned long *spu_bin_dcookie,
+ unsigned long spu_ref)
+{
+ unsigned long app_cookie = 0;
+ unsigned int my_offset = 0;
+ struct vm_area_struct *vma;
+ struct file *exe_file;
+ struct mm_struct *mm = spu->mm;
+
+ if (!mm)
+ goto out;
+
+ exe_file = get_mm_exe_file(mm);
+ if (exe_file) {
+ app_cookie = fast_get_dcookie(&exe_file->f_path);
+ pr_debug("got dcookie for %pD\n", exe_file);
+ fput(exe_file);
+ }
+
+ mmap_read_lock(mm);
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
+ continue;
+ my_offset = spu_ref - vma->vm_start;
+ if (!vma->vm_file)
+ goto fail_no_image_cookie;
+
+ pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
+ my_offset, spu_ref, vma->vm_file);
+ *offsetp = my_offset;
+ break;
+ }
+
+ *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
+ pr_debug("got dcookie for %pD\n", vma->vm_file);
+
+ mmap_read_unlock(mm);
+
+out:
+ return app_cookie;
+
+fail_no_image_cookie:
+ mmap_read_unlock(mm);
+
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: Cannot find dcookie for SPU binary\n",
+ __func__, __LINE__);
+ goto out;
+}
+
+
+
+/* This function finds or creates cached context information for the
+ * passed SPU and records SPU context information into the OProfile
+ * event buffer.
+ */
+static int process_context_switch(struct spu *spu, unsigned long objectId)
+{
+ unsigned long flags;
+ int retval;
+ unsigned int offset = 0;
+ unsigned long spu_cookie = 0, app_dcookie;
+
+ retval = prepare_cached_spu_info(spu, objectId);
+ if (retval)
+ goto out;
+
+ /* Get dcookie first because a mutex_lock is taken in that
+ * code path, so interrupts must not be disabled.
+ */
+ app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
+ if (!app_dcookie || !spu_cookie) {
+ retval = -ENOENT;
+ goto out;
+ }
+
+ /* Record context info in event buffer */
+ spin_lock_irqsave(&buffer_lock, flags);
+ spu_buff_add(ESCAPE_CODE, spu->number);
+ spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
+ spu_buff_add(spu->number, spu->number);
+ spu_buff_add(spu->pid, spu->number);
+ spu_buff_add(spu->tgid, spu->number);
+ spu_buff_add(app_dcookie, spu->number);
+ spu_buff_add(spu_cookie, spu->number);
+ spu_buff_add(offset, spu->number);
+
+ /* Set flag to indicate SPU PC data can now be written out. If
+ * the SPU program counter data is seen before an SPU context
+ * record is seen, the postprocessing will fail.
+ */
+ spu_buff[spu->number].ctx_sw_seen = 1;
+
+ spin_unlock_irqrestore(&buffer_lock, flags);
+ smp_wmb(); /* insure spu event buffer updates are written */
+ /* don't want entries intermingled... */
+out:
+ return retval;
+}
+
+/*
+ * This function is invoked on either a bind_context or unbind_context.
+ * If called for an unbind_context, the val arg is 0; otherwise,
+ * it is the object-id value for the spu context.
+ * The data arg is of type 'struct spu *'.
+ */
+static int spu_active_notify(struct notifier_block *self, unsigned long val,
+ void *data)
+{
+ int retval;
+ unsigned long flags;
+ struct spu *the_spu = data;
+
+ pr_debug("SPU event notification arrived\n");
+ if (!val) {
+ spin_lock_irqsave(&cache_lock, flags);
+ retval = release_cached_info(the_spu->number);
+ spin_unlock_irqrestore(&cache_lock, flags);
+ } else {
+ retval = process_context_switch(the_spu, val);
+ }
+ return retval;
+}
+
+static struct notifier_block spu_active = {
+ .notifier_call = spu_active_notify,
+};
+
+static int number_of_online_nodes(void)
+{
+ u32 cpu; u32 tmp;
+ int nodes = 0;
+ for_each_online_cpu(cpu) {
+ tmp = cbe_cpu_to_node(cpu) + 1;
+ if (tmp > nodes)
+ nodes++;
+ }
+ return nodes;
+}
+
+static int oprofile_spu_buff_create(void)
+{
+ int spu;
+
+ max_spu_buff = oprofile_get_cpu_buffer_size();
+
+ for (spu = 0; spu < num_spu_nodes; spu++) {
+ /* create circular buffers to store the data in.
+ * use locks to manage accessing the buffers
+ */
+ spu_buff[spu].head = 0;
+ spu_buff[spu].tail = 0;
+
+ /*
+ * Create a buffer for each SPU. Can't reliably
+ * create a single buffer for all spus due to not
+ * enough contiguous kernel memory.
+ */
+
+ spu_buff[spu].buff = kzalloc((max_spu_buff
+ * sizeof(unsigned long)),
+ GFP_KERNEL);
+
+ if (!spu_buff[spu].buff) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: oprofile_spu_buff_create "
+ "failed to allocate spu buffer %d.\n",
+ __func__, __LINE__, spu);
+
+ /* release the spu buffers that have been allocated */
+ while (spu >= 0) {
+ kfree(spu_buff[spu].buff);
+ spu_buff[spu].buff = 0;
+ spu--;
+ }
+ return -ENOMEM;
+ }
+ }
+ return 0;
+}
+
+/* The main purpose of this function is to synchronize
+ * OProfile with SPUFS by registering to be notified of
+ * SPU task switches.
+ *
+ * NOTE: When profiling SPUs, we must ensure that only
+ * spu_sync_start is invoked and not the generic sync_start
+ * in drivers/oprofile/oprof.c. A return value of
+ * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
+ * accomplish this.
+ */
+int spu_sync_start(void)
+{
+ int spu;
+ int ret = SKIP_GENERIC_SYNC;
+ int register_ret;
+ unsigned long flags = 0;
+
+ spu_prof_num_nodes = number_of_online_nodes();
+ num_spu_nodes = spu_prof_num_nodes * 8;
+ INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
+
+ /* create buffer for storing the SPU data to put in
+ * the kernel buffer.
+ */
+ ret = oprofile_spu_buff_create();
+ if (ret)
+ goto out;
+
+ spin_lock_irqsave(&buffer_lock, flags);
+ for (spu = 0; spu < num_spu_nodes; spu++) {
+ spu_buff_add(ESCAPE_CODE, spu);
+ spu_buff_add(SPU_PROFILING_CODE, spu);
+ spu_buff_add(num_spu_nodes, spu);
+ }
+ spin_unlock_irqrestore(&buffer_lock, flags);
+
+ for (spu = 0; spu < num_spu_nodes; spu++) {
+ spu_buff[spu].ctx_sw_seen = 0;
+ spu_buff[spu].last_guard_val = 0;
+ }
+
+ /* Register for SPU events */
+ register_ret = spu_switch_event_register(&spu_active);
+ if (register_ret) {
+ ret = SYNC_START_ERROR;
+ goto out;
+ }
+
+ pr_debug("spu_sync_start -- running.\n");
+out:
+ return ret;
+}
+
+/* Record SPU program counter samples to the oprofile event buffer. */
+void spu_sync_buffer(int spu_num, unsigned int *samples,
+ int num_samples)
+{
+ unsigned long long file_offset;
+ unsigned long flags;
+ int i;
+ struct vma_to_fileoffset_map *map;
+ struct spu *the_spu;
+ unsigned long long spu_num_ll = spu_num;
+ unsigned long long spu_num_shifted = spu_num_ll << 32;
+ struct cached_info *c_info;
+
+ /* We need to obtain the cache_lock here because it's
+ * possible that after getting the cached_info, the SPU job
+ * corresponding to this cached_info may end, thus resulting
+ * in the destruction of the cached_info.
+ */
+ spin_lock_irqsave(&cache_lock, flags);
+ c_info = get_cached_info(NULL, spu_num);
+ if (!c_info) {
+ /* This legitimately happens when the SPU task ends before all
+ * samples are recorded.
+ * No big deal -- so we just drop a few samples.
+ */
+ pr_debug("SPU_PROF: No cached SPU context "
+ "for SPU #%d. Dropping samples.\n", spu_num);
+ goto out;
+ }
+
+ map = c_info->map;
+ the_spu = c_info->the_spu;
+ spin_lock(&buffer_lock);
+ for (i = 0; i < num_samples; i++) {
+ unsigned int sample = *(samples+i);
+ int grd_val = 0;
+ file_offset = 0;
+ if (sample == 0)
+ continue;
+ file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
+
+ /* If overlays are used by this SPU application, the guard
+ * value is non-zero, indicating which overlay section is in
+ * use. We need to discard samples taken during the time
+ * period which an overlay occurs (i.e., guard value changes).
+ */
+ if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
+ spu_buff[spu_num].last_guard_val = grd_val;
+ /* Drop the rest of the samples. */
+ break;
+ }
+
+ /* We must ensure that the SPU context switch has been written
+ * out before samples for the SPU. Otherwise, the SPU context
+ * information is not available and the postprocessing of the
+ * SPU PC will fail with no available anonymous map information.
+ */
+ if (spu_buff[spu_num].ctx_sw_seen)
+ spu_buff_add((file_offset | spu_num_shifted),
+ spu_num);
+ }
+ spin_unlock(&buffer_lock);
+out:
+ spin_unlock_irqrestore(&cache_lock, flags);
+}
+
+
+int spu_sync_stop(void)
+{
+ unsigned long flags = 0;
+ int ret;
+ int k;
+
+ ret = spu_switch_event_unregister(&spu_active);
+
+ if (ret)
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: spu_switch_event_unregister " \
+ "returned %d\n",
+ __func__, __LINE__, ret);
+
+ /* flush any remaining data in the per SPU buffers */
+ sync_spu_buff();
+
+ spin_lock_irqsave(&cache_lock, flags);
+ ret = release_cached_info(RELEASE_ALL);
+ spin_unlock_irqrestore(&cache_lock, flags);
+
+ /* remove scheduled work queue item rather then waiting
+ * for every queued entry to execute. Then flush pending
+ * system wide buffer to event buffer.
+ */
+ cancel_delayed_work(&spu_work);
+
+ for (k = 0; k < num_spu_nodes; k++) {
+ spu_buff[k].ctx_sw_seen = 0;
+
+ /*
+ * spu_sys_buff will be null if there was a problem
+ * allocating the buffer. Only delete if it exists.
+ */
+ kfree(spu_buff[k].buff);
+ spu_buff[k].buff = 0;
+ }
+ pr_debug("spu_sync_stop -- done.\n");
+ return ret;
+}
+
diff --git a/arch/powerpc/oprofile/cell/vma_map.c b/arch/powerpc/oprofile/cell/vma_map.c
new file mode 100644
index 000000000..7c4b19cfd
--- /dev/null
+++ b/arch/powerpc/oprofile/cell/vma_map.c
@@ -0,0 +1,279 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: Maynard Johnson <maynardj@us.ibm.com>
+ */
+
+/* The code in this source file is responsible for generating
+ * vma-to-fileOffset maps for both overlay and non-overlay SPU
+ * applications.
+ */
+
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/elf.h>
+#include <linux/slab.h>
+#include "pr_util.h"
+
+
+void vma_map_free(struct vma_to_fileoffset_map *map)
+{
+ while (map) {
+ struct vma_to_fileoffset_map *next = map->next;
+ kfree(map);
+ map = next;
+ }
+}
+
+unsigned int
+vma_map_lookup(struct vma_to_fileoffset_map *map, unsigned int vma,
+ const struct spu *aSpu, int *grd_val)
+{
+ /*
+ * Default the offset to the physical address + a flag value.
+ * Addresses of dynamically generated code can't be found in the vma
+ * map. For those addresses the flagged value will be sent on to
+ * the user space tools so they can be reported rather than just
+ * thrown away.
+ */
+ u32 offset = 0x10000000 + vma;
+ u32 ovly_grd;
+
+ for (; map; map = map->next) {
+ if (vma < map->vma || vma >= map->vma + map->size)
+ continue;
+
+ if (map->guard_ptr) {
+ ovly_grd = *(u32 *)(aSpu->local_store + map->guard_ptr);
+ if (ovly_grd != map->guard_val)
+ continue;
+ *grd_val = ovly_grd;
+ }
+ offset = vma - map->vma + map->offset;
+ break;
+ }
+
+ return offset;
+}
+
+static struct vma_to_fileoffset_map *
+vma_map_add(struct vma_to_fileoffset_map *map, unsigned int vma,
+ unsigned int size, unsigned int offset, unsigned int guard_ptr,
+ unsigned int guard_val)
+{
+ struct vma_to_fileoffset_map *new = kzalloc(sizeof(*new), GFP_KERNEL);
+
+ if (!new) {
+ printk(KERN_ERR "SPU_PROF: %s, line %d: malloc failed\n",
+ __func__, __LINE__);
+ vma_map_free(map);
+ return NULL;
+ }
+
+ new->next = map;
+ new->vma = vma;
+ new->size = size;
+ new->offset = offset;
+ new->guard_ptr = guard_ptr;
+ new->guard_val = guard_val;
+
+ return new;
+}
+
+
+/* Parse SPE ELF header and generate a list of vma_maps.
+ * A pointer to the first vma_map in the generated list
+ * of vma_maps is returned. */
+struct vma_to_fileoffset_map *create_vma_map(const struct spu *aSpu,
+ unsigned long __spu_elf_start)
+{
+ static const unsigned char expected[EI_PAD] = {
+ [EI_MAG0] = ELFMAG0,
+ [EI_MAG1] = ELFMAG1,
+ [EI_MAG2] = ELFMAG2,
+ [EI_MAG3] = ELFMAG3,
+ [EI_CLASS] = ELFCLASS32,
+ [EI_DATA] = ELFDATA2MSB,
+ [EI_VERSION] = EV_CURRENT,
+ [EI_OSABI] = ELFOSABI_NONE
+ };
+
+ int grd_val;
+ struct vma_to_fileoffset_map *map = NULL;
+ void __user *spu_elf_start = (void __user *)__spu_elf_start;
+ struct spu_overlay_info ovly;
+ unsigned int overlay_tbl_offset = -1;
+ Elf32_Phdr __user *phdr_start;
+ Elf32_Shdr __user *shdr_start;
+ Elf32_Ehdr ehdr;
+ Elf32_Phdr phdr;
+ Elf32_Shdr shdr, shdr_str;
+ Elf32_Sym sym;
+ int i, j;
+ char name[32];
+
+ unsigned int ovly_table_sym = 0;
+ unsigned int ovly_buf_table_sym = 0;
+ unsigned int ovly_table_end_sym = 0;
+ unsigned int ovly_buf_table_end_sym = 0;
+ struct spu_overlay_info __user *ovly_table;
+ unsigned int n_ovlys;
+
+ /* Get and validate ELF header. */
+
+ if (copy_from_user(&ehdr, spu_elf_start, sizeof (ehdr)))
+ goto fail;
+
+ if (memcmp(ehdr.e_ident, expected, EI_PAD) != 0) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: Unexpected e_ident parsing SPU ELF\n",
+ __func__, __LINE__);
+ goto fail;
+ }
+ if (ehdr.e_machine != EM_SPU) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: Unexpected e_machine parsing SPU ELF\n",
+ __func__, __LINE__);
+ goto fail;
+ }
+ if (ehdr.e_type != ET_EXEC) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: Unexpected e_type parsing SPU ELF\n",
+ __func__, __LINE__);
+ goto fail;
+ }
+ phdr_start = spu_elf_start + ehdr.e_phoff;
+ shdr_start = spu_elf_start + ehdr.e_shoff;
+
+ /* Traverse program headers. */
+ for (i = 0; i < ehdr.e_phnum; i++) {
+ if (copy_from_user(&phdr, phdr_start + i, sizeof(phdr)))
+ goto fail;
+
+ if (phdr.p_type != PT_LOAD)
+ continue;
+ if (phdr.p_flags & (1 << 27))
+ continue;
+
+ map = vma_map_add(map, phdr.p_vaddr, phdr.p_memsz,
+ phdr.p_offset, 0, 0);
+ if (!map)
+ goto fail;
+ }
+
+ pr_debug("SPU_PROF: Created non-overlay maps\n");
+ /* Traverse section table and search for overlay-related symbols. */
+ for (i = 0; i < ehdr.e_shnum; i++) {
+ if (copy_from_user(&shdr, shdr_start + i, sizeof(shdr)))
+ goto fail;
+
+ if (shdr.sh_type != SHT_SYMTAB)
+ continue;
+ if (shdr.sh_entsize != sizeof (sym))
+ continue;
+
+ if (copy_from_user(&shdr_str,
+ shdr_start + shdr.sh_link,
+ sizeof(shdr)))
+ goto fail;
+
+ if (shdr_str.sh_type != SHT_STRTAB)
+ goto fail;
+
+ for (j = 0; j < shdr.sh_size / sizeof (sym); j++) {
+ if (copy_from_user(&sym, spu_elf_start +
+ shdr.sh_offset +
+ j * sizeof (sym),
+ sizeof (sym)))
+ goto fail;
+
+ if (copy_from_user(name,
+ spu_elf_start + shdr_str.sh_offset +
+ sym.st_name,
+ 20))
+ goto fail;
+
+ if (memcmp(name, "_ovly_table", 12) == 0)
+ ovly_table_sym = sym.st_value;
+ if (memcmp(name, "_ovly_buf_table", 16) == 0)
+ ovly_buf_table_sym = sym.st_value;
+ if (memcmp(name, "_ovly_table_end", 16) == 0)
+ ovly_table_end_sym = sym.st_value;
+ if (memcmp(name, "_ovly_buf_table_end", 20) == 0)
+ ovly_buf_table_end_sym = sym.st_value;
+ }
+ }
+
+ /* If we don't have overlays, we're done. */
+ if (ovly_table_sym == 0 || ovly_buf_table_sym == 0
+ || ovly_table_end_sym == 0 || ovly_buf_table_end_sym == 0) {
+ pr_debug("SPU_PROF: No overlay table found\n");
+ goto out;
+ } else {
+ pr_debug("SPU_PROF: Overlay table found\n");
+ }
+
+ /* The _ovly_table symbol represents a table with one entry
+ * per overlay section. The _ovly_buf_table symbol represents
+ * a table with one entry per overlay region.
+ * The struct spu_overlay_info gives the structure of the _ovly_table
+ * entries. The structure of _ovly_table_buf is simply one
+ * u32 word per entry.
+ */
+ overlay_tbl_offset = vma_map_lookup(map, ovly_table_sym,
+ aSpu, &grd_val);
+ if (overlay_tbl_offset > 0x10000000) {
+ printk(KERN_ERR "SPU_PROF: "
+ "%s, line %d: Error finding SPU overlay table\n",
+ __func__, __LINE__);
+ goto fail;
+ }
+ ovly_table = spu_elf_start + overlay_tbl_offset;
+
+ n_ovlys = (ovly_table_end_sym -
+ ovly_table_sym) / sizeof (ovly);
+
+ /* Traverse overlay table. */
+ for (i = 0; i < n_ovlys; i++) {
+ if (copy_from_user(&ovly, ovly_table + i, sizeof (ovly)))
+ goto fail;
+
+ /* The ovly.vma/size/offset arguments are analogous to the same
+ * arguments used above for non-overlay maps. The final two
+ * args are referred to as the guard pointer and the guard
+ * value.
+ * The guard pointer is an entry in the _ovly_buf_table,
+ * computed using ovly.buf as the index into the table. Since
+ * ovly.buf values begin at '1' to reference the first (or 0th)
+ * entry in the _ovly_buf_table, the computation subtracts 1
+ * from ovly.buf.
+ * The guard value is stored in the _ovly_buf_table entry and
+ * is an index (starting at 1) back to the _ovly_table entry
+ * that is pointing at this _ovly_buf_table entry. So, for
+ * example, for an overlay scenario with one overlay segment
+ * and two overlay sections:
+ * - Section 1 points to the first entry of the
+ * _ovly_buf_table, which contains a guard value
+ * of '1', referencing the first (index=0) entry of
+ * _ovly_table.
+ * - Section 2 points to the second entry of the
+ * _ovly_buf_table, which contains a guard value
+ * of '2', referencing the second (index=1) entry of
+ * _ovly_table.
+ */
+ map = vma_map_add(map, ovly.vma, ovly.size, ovly.offset,
+ ovly_buf_table_sym + (ovly.buf-1) * 4, i+1);
+ if (!map)
+ goto fail;
+ }
+ goto out;
+
+ fail:
+ map = NULL;
+ out:
+ return map;
+}
diff --git a/arch/powerpc/oprofile/common.c b/arch/powerpc/oprofile/common.c
new file mode 100644
index 000000000..0fb528c2b
--- /dev/null
+++ b/arch/powerpc/oprofile/common.c
@@ -0,0 +1,243 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * PPC 64 oprofile support:
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ * PPC 32 oprofile support: (based on PPC 64 support)
+ * Copyright (C) Freescale Semiconductor, Inc 2004
+ * Author: Andy Fleming
+ *
+ * Based on alpha version.
+ */
+
+#include <linux/oprofile.h>
+#include <linux/init.h>
+#include <linux/smp.h>
+#include <linux/errno.h>
+#include <asm/ptrace.h>
+#include <asm/pmc.h>
+#include <asm/cputable.h>
+#include <asm/oprofile_impl.h>
+#include <asm/firmware.h>
+
+static struct op_powerpc_model *model;
+
+static struct op_counter_config ctr[OP_MAX_COUNTER];
+static struct op_system_config sys;
+
+static int op_per_cpu_rc;
+
+static void op_handle_interrupt(struct pt_regs *regs)
+{
+ model->handle_interrupt(regs, ctr);
+}
+
+static void op_powerpc_cpu_setup(void *dummy)
+{
+ int ret;
+
+ ret = model->cpu_setup(ctr);
+
+ if (ret != 0)
+ op_per_cpu_rc = ret;
+}
+
+static int op_powerpc_setup(void)
+{
+ int err;
+
+ op_per_cpu_rc = 0;
+
+ /* Grab the hardware */
+ err = reserve_pmc_hardware(op_handle_interrupt);
+ if (err)
+ return err;
+
+ /* Pre-compute the values to stuff in the hardware registers. */
+ op_per_cpu_rc = model->reg_setup(ctr, &sys, model->num_counters);
+
+ if (op_per_cpu_rc)
+ goto out;
+
+ /* Configure the registers on all cpus. If an error occurs on one
+ * of the cpus, op_per_cpu_rc will be set to the error */
+ on_each_cpu(op_powerpc_cpu_setup, NULL, 1);
+
+out: if (op_per_cpu_rc) {
+ /* error on setup release the performance counter hardware */
+ release_pmc_hardware();
+ }
+
+ return op_per_cpu_rc;
+}
+
+static void op_powerpc_shutdown(void)
+{
+ release_pmc_hardware();
+}
+
+static void op_powerpc_cpu_start(void *dummy)
+{
+ /* If any of the cpus have return an error, set the
+ * global flag to the error so it can be returned
+ * to the generic OProfile caller.
+ */
+ int ret;
+
+ ret = model->start(ctr);
+ if (ret != 0)
+ op_per_cpu_rc = ret;
+}
+
+static int op_powerpc_start(void)
+{
+ op_per_cpu_rc = 0;
+
+ if (model->global_start)
+ return model->global_start(ctr);
+ if (model->start) {
+ on_each_cpu(op_powerpc_cpu_start, NULL, 1);
+ return op_per_cpu_rc;
+ }
+ return -EIO; /* No start function is defined for this
+ power architecture */
+}
+
+static inline void op_powerpc_cpu_stop(void *dummy)
+{
+ model->stop();
+}
+
+static void op_powerpc_stop(void)
+{
+ if (model->stop)
+ on_each_cpu(op_powerpc_cpu_stop, NULL, 1);
+ if (model->global_stop)
+ model->global_stop();
+}
+
+static int op_powerpc_create_files(struct dentry *root)
+{
+ int i;
+
+#ifdef CONFIG_PPC64
+ /*
+ * There is one mmcr0, mmcr1 and mmcra for setting the events for
+ * all of the counters.
+ */
+ oprofilefs_create_ulong(root, "mmcr0", &sys.mmcr0);
+ oprofilefs_create_ulong(root, "mmcr1", &sys.mmcr1);
+ oprofilefs_create_ulong(root, "mmcra", &sys.mmcra);
+#ifdef CONFIG_OPROFILE_CELL
+ /* create a file the user tool can check to see what level of profiling
+ * support exits with this kernel. Initialize bit mask to indicate
+ * what support the kernel has:
+ * bit 0 - Supports SPU event profiling in addition to PPU
+ * event and cycles; and SPU cycle profiling
+ * bits 1-31 - Currently unused.
+ *
+ * If the file does not exist, then the kernel only supports SPU
+ * cycle profiling, PPU event and cycle profiling.
+ */
+ oprofilefs_create_ulong(root, "cell_support", &sys.cell_support);
+ sys.cell_support = 0x1; /* Note, the user OProfile tool must check
+ * that this bit is set before attempting to
+ * user SPU event profiling. Older kernels
+ * will not have this file, hence the user
+ * tool is not allowed to do SPU event
+ * profiling on older kernels. Older kernels
+ * will accept SPU events but collected data
+ * is garbage.
+ */
+#endif
+#endif
+
+ for (i = 0; i < model->num_counters; ++i) {
+ struct dentry *dir;
+ char buf[4];
+
+ snprintf(buf, sizeof buf, "%d", i);
+ dir = oprofilefs_mkdir(root, buf);
+
+ oprofilefs_create_ulong(dir, "enabled", &ctr[i].enabled);
+ oprofilefs_create_ulong(dir, "event", &ctr[i].event);
+ oprofilefs_create_ulong(dir, "count", &ctr[i].count);
+
+ /*
+ * Classic PowerPC doesn't support per-counter
+ * control like this, but the options are
+ * expected, so they remain. For Freescale
+ * Book-E style performance monitors, we do
+ * support them.
+ */
+ oprofilefs_create_ulong(dir, "kernel", &ctr[i].kernel);
+ oprofilefs_create_ulong(dir, "user", &ctr[i].user);
+
+ oprofilefs_create_ulong(dir, "unit_mask", &ctr[i].unit_mask);
+ }
+
+ oprofilefs_create_ulong(root, "enable_kernel", &sys.enable_kernel);
+ oprofilefs_create_ulong(root, "enable_user", &sys.enable_user);
+
+ /* Default to tracing both kernel and user */
+ sys.enable_kernel = 1;
+ sys.enable_user = 1;
+
+ return 0;
+}
+
+int __init oprofile_arch_init(struct oprofile_operations *ops)
+{
+ if (!cur_cpu_spec->oprofile_cpu_type)
+ return -ENODEV;
+
+ switch (cur_cpu_spec->oprofile_type) {
+#ifdef CONFIG_PPC_BOOK3S_64
+#ifdef CONFIG_OPROFILE_CELL
+ case PPC_OPROFILE_CELL:
+ if (firmware_has_feature(FW_FEATURE_LPAR))
+ return -ENODEV;
+ model = &op_model_cell;
+ ops->sync_start = model->sync_start;
+ ops->sync_stop = model->sync_stop;
+ break;
+#endif
+ case PPC_OPROFILE_POWER4:
+ model = &op_model_power4;
+ break;
+ case PPC_OPROFILE_PA6T:
+ model = &op_model_pa6t;
+ break;
+#endif
+#ifdef CONFIG_PPC_BOOK3S_32
+ case PPC_OPROFILE_G4:
+ model = &op_model_7450;
+ break;
+#endif
+#if defined(CONFIG_FSL_EMB_PERFMON)
+ case PPC_OPROFILE_FSL_EMB:
+ model = &op_model_fsl_emb;
+ break;
+#endif
+ default:
+ return -ENODEV;
+ }
+
+ model->num_counters = cur_cpu_spec->num_pmcs;
+
+ ops->cpu_type = cur_cpu_spec->oprofile_cpu_type;
+ ops->create_files = op_powerpc_create_files;
+ ops->setup = op_powerpc_setup;
+ ops->shutdown = op_powerpc_shutdown;
+ ops->start = op_powerpc_start;
+ ops->stop = op_powerpc_stop;
+ ops->backtrace = op_powerpc_backtrace;
+
+ printk(KERN_DEBUG "oprofile: using %s performance monitoring.\n",
+ ops->cpu_type);
+
+ return 0;
+}
+
+void oprofile_arch_exit(void)
+{
+}
diff --git a/arch/powerpc/oprofile/op_model_7450.c b/arch/powerpc/oprofile/op_model_7450.c
new file mode 100644
index 000000000..5ebc25188
--- /dev/null
+++ b/arch/powerpc/oprofile/op_model_7450.c
@@ -0,0 +1,207 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * arch/powerpc/oprofile/op_model_7450.c
+ *
+ * Freescale 745x/744x oprofile support, based on fsl_booke support
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ *
+ * Copyright (c) 2004 Freescale Semiconductor, Inc
+ *
+ * Author: Andy Fleming
+ * Maintainer: Kumar Gala <galak@kernel.crashing.org>
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <asm/ptrace.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/page.h>
+#include <asm/pmc.h>
+#include <asm/oprofile_impl.h>
+
+static unsigned long reset_value[OP_MAX_COUNTER];
+
+static int oprofile_running;
+static u32 mmcr0_val, mmcr1_val, mmcr2_val, num_pmcs;
+
+#define MMCR0_PMC1_SHIFT 6
+#define MMCR0_PMC2_SHIFT 0
+#define MMCR1_PMC3_SHIFT 27
+#define MMCR1_PMC4_SHIFT 22
+#define MMCR1_PMC5_SHIFT 17
+#define MMCR1_PMC6_SHIFT 11
+
+#define mmcr0_event1(event) \
+ ((event << MMCR0_PMC1_SHIFT) & MMCR0_PMC1SEL)
+#define mmcr0_event2(event) \
+ ((event << MMCR0_PMC2_SHIFT) & MMCR0_PMC2SEL)
+
+#define mmcr1_event3(event) \
+ ((event << MMCR1_PMC3_SHIFT) & MMCR1_PMC3SEL)
+#define mmcr1_event4(event) \
+ ((event << MMCR1_PMC4_SHIFT) & MMCR1_PMC4SEL)
+#define mmcr1_event5(event) \
+ ((event << MMCR1_PMC5_SHIFT) & MMCR1_PMC5SEL)
+#define mmcr1_event6(event) \
+ ((event << MMCR1_PMC6_SHIFT) & MMCR1_PMC6SEL)
+
+#define MMCR0_INIT (MMCR0_FC | MMCR0_FCS | MMCR0_FCP | MMCR0_FCM1 | MMCR0_FCM0)
+
+/* Unfreezes the counters on this CPU, enables the interrupt,
+ * enables the counters to trigger the interrupt, and sets the
+ * counters to only count when the mark bit is not set.
+ */
+static void pmc_start_ctrs(void)
+{
+ u32 mmcr0 = mfspr(SPRN_MMCR0);
+
+ mmcr0 &= ~(MMCR0_FC | MMCR0_FCM0);
+ mmcr0 |= (MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
+
+ mtspr(SPRN_MMCR0, mmcr0);
+}
+
+/* Disables the counters on this CPU, and freezes them */
+static void pmc_stop_ctrs(void)
+{
+ u32 mmcr0 = mfspr(SPRN_MMCR0);
+
+ mmcr0 |= MMCR0_FC;
+ mmcr0 &= ~(MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
+
+ mtspr(SPRN_MMCR0, mmcr0);
+}
+
+/* Configures the counters on this CPU based on the global
+ * settings */
+static int fsl7450_cpu_setup(struct op_counter_config *ctr)
+{
+ /* freeze all counters */
+ pmc_stop_ctrs();
+
+ mtspr(SPRN_MMCR0, mmcr0_val);
+ mtspr(SPRN_MMCR1, mmcr1_val);
+ if (num_pmcs > 4)
+ mtspr(SPRN_MMCR2, mmcr2_val);
+
+ return 0;
+}
+
+/* Configures the global settings for the countes on all CPUs. */
+static int fsl7450_reg_setup(struct op_counter_config *ctr,
+ struct op_system_config *sys,
+ int num_ctrs)
+{
+ int i;
+
+ num_pmcs = num_ctrs;
+ /* Our counters count up, and "count" refers to
+ * how much before the next interrupt, and we interrupt
+ * on overflow. So we calculate the starting value
+ * which will give us "count" until overflow.
+ * Then we set the events on the enabled counters */
+ for (i = 0; i < num_ctrs; ++i)
+ reset_value[i] = 0x80000000UL - ctr[i].count;
+
+ /* Set events for Counters 1 & 2 */
+ mmcr0_val = MMCR0_INIT | mmcr0_event1(ctr[0].event)
+ | mmcr0_event2(ctr[1].event);
+
+ /* Setup user/kernel bits */
+ if (sys->enable_kernel)
+ mmcr0_val &= ~(MMCR0_FCS);
+
+ if (sys->enable_user)
+ mmcr0_val &= ~(MMCR0_FCP);
+
+ /* Set events for Counters 3-6 */
+ mmcr1_val = mmcr1_event3(ctr[2].event)
+ | mmcr1_event4(ctr[3].event);
+ if (num_ctrs > 4)
+ mmcr1_val |= mmcr1_event5(ctr[4].event)
+ | mmcr1_event6(ctr[5].event);
+
+ mmcr2_val = 0;
+
+ return 0;
+}
+
+/* Sets the counters on this CPU to the chosen values, and starts them */
+static int fsl7450_start(struct op_counter_config *ctr)
+{
+ int i;
+
+ mtmsr(mfmsr() | MSR_PMM);
+
+ for (i = 0; i < num_pmcs; ++i) {
+ if (ctr[i].enabled)
+ classic_ctr_write(i, reset_value[i]);
+ else
+ classic_ctr_write(i, 0);
+ }
+
+ /* Clear the freeze bit, and enable the interrupt.
+ * The counters won't actually start until the rfi clears
+ * the PMM bit */
+ pmc_start_ctrs();
+
+ oprofile_running = 1;
+
+ return 0;
+}
+
+/* Stop the counters on this CPU */
+static void fsl7450_stop(void)
+{
+ /* freeze counters */
+ pmc_stop_ctrs();
+
+ oprofile_running = 0;
+
+ mb();
+}
+
+
+/* Handle the interrupt on this CPU, and log a sample for each
+ * event that triggered the interrupt */
+static void fsl7450_handle_interrupt(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ unsigned long pc;
+ int is_kernel;
+ int val;
+ int i;
+
+ /* set the PMM bit (see comment below) */
+ mtmsr(mfmsr() | MSR_PMM);
+
+ pc = mfspr(SPRN_SIAR);
+ is_kernel = is_kernel_addr(pc);
+
+ for (i = 0; i < num_pmcs; ++i) {
+ val = classic_ctr_read(i);
+ if (val < 0) {
+ if (oprofile_running && ctr[i].enabled) {
+ oprofile_add_ext_sample(pc, regs, i, is_kernel);
+ classic_ctr_write(i, reset_value[i]);
+ } else {
+ classic_ctr_write(i, 0);
+ }
+ }
+ }
+
+ /* The freeze bit was set by the interrupt. */
+ /* Clear the freeze bit, and reenable the interrupt.
+ * The counters won't actually start until the rfi clears
+ * the PM/M bit */
+ pmc_start_ctrs();
+}
+
+struct op_powerpc_model op_model_7450= {
+ .reg_setup = fsl7450_reg_setup,
+ .cpu_setup = fsl7450_cpu_setup,
+ .start = fsl7450_start,
+ .stop = fsl7450_stop,
+ .handle_interrupt = fsl7450_handle_interrupt,
+};
diff --git a/arch/powerpc/oprofile/op_model_cell.c b/arch/powerpc/oprofile/op_model_cell.c
new file mode 100644
index 000000000..7eb73070b
--- /dev/null
+++ b/arch/powerpc/oprofile/op_model_cell.c
@@ -0,0 +1,1709 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: David Erb (djerb@us.ibm.com)
+ * Modifications:
+ * Carl Love <carll@us.ibm.com>
+ * Maynard Johnson <maynardj@us.ibm.com>
+ */
+
+#include <linux/cpufreq.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/kthread.h>
+#include <linux/oprofile.h>
+#include <linux/percpu.h>
+#include <linux/smp.h>
+#include <linux/spinlock.h>
+#include <linux/timer.h>
+#include <asm/cell-pmu.h>
+#include <asm/cputable.h>
+#include <asm/firmware.h>
+#include <asm/io.h>
+#include <asm/oprofile_impl.h>
+#include <asm/processor.h>
+#include <asm/prom.h>
+#include <asm/ptrace.h>
+#include <asm/reg.h>
+#include <asm/rtas.h>
+#include <asm/cell-regs.h>
+
+#include "../platforms/cell/interrupt.h"
+#include "cell/pr_util.h"
+
+#define PPU_PROFILING 0
+#define SPU_PROFILING_CYCLES 1
+#define SPU_PROFILING_EVENTS 2
+
+#define SPU_EVENT_NUM_START 4100
+#define SPU_EVENT_NUM_STOP 4399
+#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
+#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
+#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
+
+#define NUM_SPUS_PER_NODE 8
+#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
+
+#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
+#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
+ * PPU_CYCLES event
+ */
+#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
+
+#define NUM_THREADS 2 /* number of physical threads in
+ * physical processor
+ */
+#define NUM_DEBUG_BUS_WORDS 4
+#define NUM_INPUT_BUS_WORDS 2
+
+#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
+
+/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
+ * To configure counter to send value every N cycles set counter to
+ * 2^32 - 1 - N.
+ */
+#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
+
+/*
+ * spu_cycle_reset is the number of cycles between samples.
+ * This variable is used for SPU profiling and should ONLY be set
+ * at the beginning of cell_reg_setup; otherwise, it's read-only.
+ */
+static unsigned int spu_cycle_reset;
+static unsigned int profiling_mode;
+static int spu_evnt_phys_spu_indx;
+
+struct pmc_cntrl_data {
+ unsigned long vcntr;
+ unsigned long evnts;
+ unsigned long masks;
+ unsigned long enabled;
+};
+
+/*
+ * ibm,cbe-perftools rtas parameters
+ */
+struct pm_signal {
+ u16 cpu; /* Processor to modify */
+ u16 sub_unit; /* hw subunit this applies to (if applicable)*/
+ short int signal_group; /* Signal Group to Enable/Disable */
+ u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
+ * Bus Word(s) (bitmask)
+ */
+ u8 bit; /* Trigger/Event bit (if applicable) */
+};
+
+/*
+ * rtas call arguments
+ */
+enum {
+ SUBFUNC_RESET = 1,
+ SUBFUNC_ACTIVATE = 2,
+ SUBFUNC_DEACTIVATE = 3,
+
+ PASSTHRU_IGNORE = 0,
+ PASSTHRU_ENABLE = 1,
+ PASSTHRU_DISABLE = 2,
+};
+
+struct pm_cntrl {
+ u16 enable;
+ u16 stop_at_max;
+ u16 trace_mode;
+ u16 freeze;
+ u16 count_mode;
+ u16 spu_addr_trace;
+ u8 trace_buf_ovflw;
+};
+
+static struct {
+ u32 group_control;
+ u32 debug_bus_control;
+ struct pm_cntrl pm_cntrl;
+ u32 pm07_cntrl[NR_PHYS_CTRS];
+} pm_regs;
+
+#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
+#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
+#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
+#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
+#define GET_COUNT_CYCLES(x) (x & 0x00000001)
+#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
+
+static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
+static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
+static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
+
+/*
+ * The CELL profiling code makes rtas calls to setup the debug bus to
+ * route the performance signals. Additionally, SPU profiling requires
+ * a second rtas call to setup the hardware to capture the SPU PCs.
+ * The EIO error value is returned if the token lookups or the rtas
+ * call fail. The EIO error number is the best choice of the existing
+ * error numbers. The probability of rtas related error is very low. But
+ * by returning EIO and printing additional information to dmsg the user
+ * will know that OProfile did not start and dmesg will tell them why.
+ * OProfile does not support returning errors on Stop. Not a huge issue
+ * since failure to reset the debug bus or stop the SPU PC collection is
+ * not a fatel issue. Chances are if the Stop failed, Start doesn't work
+ * either.
+ */
+
+/*
+ * Interpetation of hdw_thread:
+ * 0 - even virtual cpus 0, 2, 4,...
+ * 1 - odd virtual cpus 1, 3, 5, ...
+ *
+ * FIXME: this is strictly wrong, we need to clean this up in a number
+ * of places. It works for now. -arnd
+ */
+static u32 hdw_thread;
+
+static u32 virt_cntr_inter_mask;
+static struct timer_list timer_virt_cntr;
+static struct timer_list timer_spu_event_swap;
+
+/*
+ * pm_signal needs to be global since it is initialized in
+ * cell_reg_setup at the time when the necessary information
+ * is available.
+ */
+static struct pm_signal pm_signal[NR_PHYS_CTRS];
+static int pm_rtas_token; /* token for debug bus setup call */
+static int spu_rtas_token; /* token for SPU cycle profiling */
+
+static u32 reset_value[NR_PHYS_CTRS];
+static int num_counters;
+static int oprofile_running;
+static DEFINE_SPINLOCK(cntr_lock);
+
+static u32 ctr_enabled;
+
+static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
+
+/*
+ * Firmware interface functions
+ */
+static int
+rtas_ibm_cbe_perftools(int subfunc, int passthru,
+ void *address, unsigned long length)
+{
+ u64 paddr = __pa(address);
+
+ return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
+ passthru, paddr >> 32, paddr & 0xffffffff, length);
+}
+
+static void pm_rtas_reset_signals(u32 node)
+{
+ int ret;
+ struct pm_signal pm_signal_local;
+
+ /*
+ * The debug bus is being set to the passthru disable state.
+ * However, the FW still expects at least one legal signal routing
+ * entry or it will return an error on the arguments. If we don't
+ * supply a valid entry, we must ignore all return values. Ignoring
+ * all return values means we might miss an error we should be
+ * concerned about.
+ */
+
+ /* fw expects physical cpu #. */
+ pm_signal_local.cpu = node;
+ pm_signal_local.signal_group = 21;
+ pm_signal_local.bus_word = 1;
+ pm_signal_local.sub_unit = 0;
+ pm_signal_local.bit = 0;
+
+ ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
+ &pm_signal_local,
+ sizeof(struct pm_signal));
+
+ if (unlikely(ret))
+ /*
+ * Not a fatal error. For Oprofile stop, the oprofile
+ * functions do not support returning an error for
+ * failure to stop OProfile.
+ */
+ printk(KERN_WARNING "%s: rtas returned: %d\n",
+ __func__, ret);
+}
+
+static int pm_rtas_activate_signals(u32 node, u32 count)
+{
+ int ret;
+ int i, j;
+ struct pm_signal pm_signal_local[NR_PHYS_CTRS];
+
+ /*
+ * There is no debug setup required for the cycles event.
+ * Note that only events in the same group can be used.
+ * Otherwise, there will be conflicts in correctly routing
+ * the signals on the debug bus. It is the responsibility
+ * of the OProfile user tool to check the events are in
+ * the same group.
+ */
+ i = 0;
+ for (j = 0; j < count; j++) {
+ if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
+
+ /* fw expects physical cpu # */
+ pm_signal_local[i].cpu = node;
+ pm_signal_local[i].signal_group
+ = pm_signal[j].signal_group;
+ pm_signal_local[i].bus_word = pm_signal[j].bus_word;
+ pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
+ pm_signal_local[i].bit = pm_signal[j].bit;
+ i++;
+ }
+ }
+
+ if (i != 0) {
+ ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
+ pm_signal_local,
+ i * sizeof(struct pm_signal));
+
+ if (unlikely(ret)) {
+ printk(KERN_WARNING "%s: rtas returned: %d\n",
+ __func__, ret);
+ return -EIO;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * PM Signal functions
+ */
+static void set_pm_event(u32 ctr, int event, u32 unit_mask)
+{
+ struct pm_signal *p;
+ u32 signal_bit;
+ u32 bus_word, bus_type, count_cycles, polarity, input_control;
+ int j, i;
+
+ if (event == PPU_CYCLES_EVENT_NUM) {
+ /* Special Event: Count all cpu cycles */
+ pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
+ p = &(pm_signal[ctr]);
+ p->signal_group = PPU_CYCLES_GRP_NUM;
+ p->bus_word = 1;
+ p->sub_unit = 0;
+ p->bit = 0;
+ goto out;
+ } else {
+ pm_regs.pm07_cntrl[ctr] = 0;
+ }
+
+ bus_word = GET_BUS_WORD(unit_mask);
+ bus_type = GET_BUS_TYPE(unit_mask);
+ count_cycles = GET_COUNT_CYCLES(unit_mask);
+ polarity = GET_POLARITY(unit_mask);
+ input_control = GET_INPUT_CONTROL(unit_mask);
+ signal_bit = (event % 100);
+
+ p = &(pm_signal[ctr]);
+
+ p->signal_group = event / 100;
+ p->bus_word = bus_word;
+ p->sub_unit = GET_SUB_UNIT(unit_mask);
+
+ pm_regs.pm07_cntrl[ctr] = 0;
+ pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
+ pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
+ pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
+
+ /*
+ * Some of the islands signal selection is based on 64 bit words.
+ * The debug bus words are 32 bits, the input words to the performance
+ * counters are defined as 32 bits. Need to convert the 64 bit island
+ * specification to the appropriate 32 input bit and bus word for the
+ * performance counter event selection. See the CELL Performance
+ * monitoring signals manual and the Perf cntr hardware descriptions
+ * for the details.
+ */
+ if (input_control == 0) {
+ if (signal_bit > 31) {
+ signal_bit -= 32;
+ if (bus_word == 0x3)
+ bus_word = 0x2;
+ else if (bus_word == 0xc)
+ bus_word = 0x8;
+ }
+
+ if ((bus_type == 0) && p->signal_group >= 60)
+ bus_type = 2;
+ if ((bus_type == 1) && p->signal_group >= 50)
+ bus_type = 0;
+
+ pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
+ } else {
+ pm_regs.pm07_cntrl[ctr] = 0;
+ p->bit = signal_bit;
+ }
+
+ for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
+ if (bus_word & (1 << i)) {
+ pm_regs.debug_bus_control |=
+ (bus_type << (30 - (2 * i)));
+
+ for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
+ if (input_bus[j] == 0xff) {
+ input_bus[j] = i;
+ pm_regs.group_control |=
+ (i << (30 - (2 * j)));
+
+ break;
+ }
+ }
+ }
+ }
+out:
+ ;
+}
+
+static void write_pm_cntrl(int cpu)
+{
+ /*
+ * Oprofile will use 32 bit counters, set bits 7:10 to 0
+ * pmregs.pm_cntrl is a global
+ */
+
+ u32 val = 0;
+ if (pm_regs.pm_cntrl.enable == 1)
+ val |= CBE_PM_ENABLE_PERF_MON;
+
+ if (pm_regs.pm_cntrl.stop_at_max == 1)
+ val |= CBE_PM_STOP_AT_MAX;
+
+ if (pm_regs.pm_cntrl.trace_mode != 0)
+ val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
+
+ if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
+ val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
+ if (pm_regs.pm_cntrl.freeze == 1)
+ val |= CBE_PM_FREEZE_ALL_CTRS;
+
+ val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
+
+ /*
+ * Routine set_count_mode must be called previously to set
+ * the count mode based on the user selection of user and kernel.
+ */
+ val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
+ cbe_write_pm(cpu, pm_control, val);
+}
+
+static inline void
+set_count_mode(u32 kernel, u32 user)
+{
+ /*
+ * The user must specify user and kernel if they want them. If
+ * neither is specified, OProfile will count in hypervisor mode.
+ * pm_regs.pm_cntrl is a global
+ */
+ if (kernel) {
+ if (user)
+ pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
+ else
+ pm_regs.pm_cntrl.count_mode =
+ CBE_COUNT_SUPERVISOR_MODE;
+ } else {
+ if (user)
+ pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
+ else
+ pm_regs.pm_cntrl.count_mode =
+ CBE_COUNT_HYPERVISOR_MODE;
+ }
+}
+
+static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
+{
+
+ pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
+ cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
+}
+
+/*
+ * Oprofile is expected to collect data on all CPUs simultaneously.
+ * However, there is one set of performance counters per node. There are
+ * two hardware threads or virtual CPUs on each node. Hence, OProfile must
+ * multiplex in time the performance counter collection on the two virtual
+ * CPUs. The multiplexing of the performance counters is done by this
+ * virtual counter routine.
+ *
+ * The pmc_values used below is defined as 'per-cpu' but its use is
+ * more akin to 'per-node'. We need to store two sets of counter
+ * values per node -- one for the previous run and one for the next.
+ * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
+ * pair of per-cpu arrays is used for storing the previous and next
+ * pmc values for a given node.
+ * NOTE: We use the per-cpu variable to improve cache performance.
+ *
+ * This routine will alternate loading the virtual counters for
+ * virtual CPUs
+ */
+static void cell_virtual_cntr(struct timer_list *unused)
+{
+ int i, prev_hdw_thread, next_hdw_thread;
+ u32 cpu;
+ unsigned long flags;
+
+ /*
+ * Make sure that the interrupt_hander and the virt counter are
+ * not both playing with the counters on the same node.
+ */
+
+ spin_lock_irqsave(&cntr_lock, flags);
+
+ prev_hdw_thread = hdw_thread;
+
+ /* switch the cpu handling the interrupts */
+ hdw_thread = 1 ^ hdw_thread;
+ next_hdw_thread = hdw_thread;
+
+ pm_regs.group_control = 0;
+ pm_regs.debug_bus_control = 0;
+
+ for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
+ input_bus[i] = 0xff;
+
+ /*
+ * There are some per thread events. Must do the
+ * set event, for the thread that is being started
+ */
+ for (i = 0; i < num_counters; i++)
+ set_pm_event(i,
+ pmc_cntrl[next_hdw_thread][i].evnts,
+ pmc_cntrl[next_hdw_thread][i].masks);
+
+ /*
+ * The following is done only once per each node, but
+ * we need cpu #, not node #, to pass to the cbe_xxx functions.
+ */
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ /*
+ * stop counters, save counter values, restore counts
+ * for previous thread
+ */
+ cbe_disable_pm(cpu);
+ cbe_disable_pm_interrupts(cpu);
+ for (i = 0; i < num_counters; i++) {
+ per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
+ = cbe_read_ctr(cpu, i);
+
+ if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
+ == 0xFFFFFFFF)
+ /* If the cntr value is 0xffffffff, we must
+ * reset that to 0xfffffff0 when the current
+ * thread is restarted. This will generate a
+ * new interrupt and make sure that we never
+ * restore the counters to the max value. If
+ * the counters were restored to the max value,
+ * they do not increment and no interrupts are
+ * generated. Hence no more samples will be
+ * collected on that cpu.
+ */
+ cbe_write_ctr(cpu, i, 0xFFFFFFF0);
+ else
+ cbe_write_ctr(cpu, i,
+ per_cpu(pmc_values,
+ cpu +
+ next_hdw_thread)[i]);
+ }
+
+ /*
+ * Switch to the other thread. Change the interrupt
+ * and control regs to be scheduled on the CPU
+ * corresponding to the thread to execute.
+ */
+ for (i = 0; i < num_counters; i++) {
+ if (pmc_cntrl[next_hdw_thread][i].enabled) {
+ /*
+ * There are some per thread events.
+ * Must do the set event, enable_cntr
+ * for each cpu.
+ */
+ enable_ctr(cpu, i,
+ pm_regs.pm07_cntrl);
+ } else {
+ cbe_write_pm07_control(cpu, i, 0);
+ }
+ }
+
+ /* Enable interrupts on the CPU thread that is starting */
+ cbe_enable_pm_interrupts(cpu, next_hdw_thread,
+ virt_cntr_inter_mask);
+ cbe_enable_pm(cpu);
+ }
+
+ spin_unlock_irqrestore(&cntr_lock, flags);
+
+ mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
+}
+
+static void start_virt_cntrs(void)
+{
+ timer_setup(&timer_virt_cntr, cell_virtual_cntr, 0);
+ timer_virt_cntr.expires = jiffies + HZ / 10;
+ add_timer(&timer_virt_cntr);
+}
+
+static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
+ struct op_system_config *sys, int num_ctrs)
+{
+ spu_cycle_reset = ctr[0].count;
+
+ /*
+ * Each node will need to make the rtas call to start
+ * and stop SPU profiling. Get the token once and store it.
+ */
+ spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
+
+ if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+ printk(KERN_ERR
+ "%s: rtas token ibm,cbe-spu-perftools unknown\n",
+ __func__);
+ return -EIO;
+ }
+ return 0;
+}
+
+/* Unfortunately, the hardware will only support event profiling
+ * on one SPU per node at a time. Therefore, we must time slice
+ * the profiling across all SPUs in the node. Note, we do this
+ * in parallel for each node. The following routine is called
+ * periodically based on kernel timer to switch which SPU is
+ * being monitored in a round robbin fashion.
+ */
+static void spu_evnt_swap(struct timer_list *unused)
+{
+ int node;
+ int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
+ unsigned long flags;
+ int cpu;
+ int ret;
+ u32 interrupt_mask;
+
+
+ /* enable interrupts on cntr 0 */
+ interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
+
+ hdw_thread = 0;
+
+ /* Make sure spu event interrupt handler and spu event swap
+ * don't access the counters simultaneously.
+ */
+ spin_lock_irqsave(&cntr_lock, flags);
+
+ cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
+
+ if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
+ spu_evnt_phys_spu_indx = 0;
+
+ pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
+ pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
+ pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
+
+ /* switch the SPU being profiled on each node */
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ node = cbe_cpu_to_node(cpu);
+ cur_phys_spu = (node * NUM_SPUS_PER_NODE)
+ + cur_spu_evnt_phys_spu_indx;
+ nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
+ + spu_evnt_phys_spu_indx;
+
+ /*
+ * stop counters, save counter values, restore counts
+ * for previous physical SPU
+ */
+ cbe_disable_pm(cpu);
+ cbe_disable_pm_interrupts(cpu);
+
+ spu_pm_cnt[cur_phys_spu]
+ = cbe_read_ctr(cpu, 0);
+
+ /* restore previous count for the next spu to sample */
+ /* NOTE, hardware issue, counter will not start if the
+ * counter value is at max (0xFFFFFFFF).
+ */
+ if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
+ cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
+ else
+ cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
+
+ pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+ /* setup the debug bus measure the one event and
+ * the two events to route the next SPU's PC on
+ * the debug bus
+ */
+ ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
+ if (ret)
+ printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
+ "SPU event swap\n", __func__);
+
+ /* clear the trace buffer, don't want to take PC for
+ * previous SPU*/
+ cbe_write_pm(cpu, trace_address, 0);
+
+ enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
+
+ /* Enable interrupts on the CPU thread that is starting */
+ cbe_enable_pm_interrupts(cpu, hdw_thread,
+ interrupt_mask);
+ cbe_enable_pm(cpu);
+ }
+
+ spin_unlock_irqrestore(&cntr_lock, flags);
+
+ /* swap approximately every 0.1 seconds */
+ mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
+}
+
+static void start_spu_event_swap(void)
+{
+ timer_setup(&timer_spu_event_swap, spu_evnt_swap, 0);
+ timer_spu_event_swap.expires = jiffies + HZ / 25;
+ add_timer(&timer_spu_event_swap);
+}
+
+static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
+ struct op_system_config *sys, int num_ctrs)
+{
+ int i;
+
+ /* routine is called once for all nodes */
+
+ spu_evnt_phys_spu_indx = 0;
+ /*
+ * For all events except PPU CYCLEs, each node will need to make
+ * the rtas cbe-perftools call to setup and reset the debug bus.
+ * Make the token lookup call once and store it in the global
+ * variable pm_rtas_token.
+ */
+ pm_rtas_token = rtas_token("ibm,cbe-perftools");
+
+ if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+ printk(KERN_ERR
+ "%s: rtas token ibm,cbe-perftools unknown\n",
+ __func__);
+ return -EIO;
+ }
+
+ /* setup the pm_control register settings,
+ * settings will be written per node by the
+ * cell_cpu_setup() function.
+ */
+ pm_regs.pm_cntrl.trace_buf_ovflw = 1;
+
+ /* Use the occurrence trace mode to have SPU PC saved
+ * to the trace buffer. Occurrence data in trace buffer
+ * is not used. Bit 2 must be set to store SPU addresses.
+ */
+ pm_regs.pm_cntrl.trace_mode = 2;
+
+ pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
+ event 2 & 3 */
+
+ /* setup the debug bus event array with the SPU PC routing events.
+ * Note, pm_signal[0] will be filled in by set_pm_event() call below.
+ */
+ pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
+ pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
+ pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
+ pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
+
+ pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
+ pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
+ pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
+ pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
+
+ /* Set the user selected spu event to profile on,
+ * note, only one SPU profiling event is supported
+ */
+ num_counters = 1; /* Only support one SPU event at a time */
+ set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
+
+ reset_value[0] = 0xFFFFFFFF - ctr[0].count;
+
+ /* global, used by cell_cpu_setup */
+ ctr_enabled |= 1;
+
+ /* Initialize the count for each SPU to the reset value */
+ for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
+ spu_pm_cnt[i] = reset_value[0];
+
+ return 0;
+}
+
+static int cell_reg_setup_ppu(struct op_counter_config *ctr,
+ struct op_system_config *sys, int num_ctrs)
+{
+ /* routine is called once for all nodes */
+ int i, j, cpu;
+
+ num_counters = num_ctrs;
+
+ if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
+ printk(KERN_ERR
+ "%s: Oprofile, number of specified events " \
+ "exceeds number of physical counters\n",
+ __func__);
+ return -EIO;
+ }
+
+ set_count_mode(sys->enable_kernel, sys->enable_user);
+
+ /* Setup the thread 0 events */
+ for (i = 0; i < num_ctrs; ++i) {
+
+ pmc_cntrl[0][i].evnts = ctr[i].event;
+ pmc_cntrl[0][i].masks = ctr[i].unit_mask;
+ pmc_cntrl[0][i].enabled = ctr[i].enabled;
+ pmc_cntrl[0][i].vcntr = i;
+
+ for_each_possible_cpu(j)
+ per_cpu(pmc_values, j)[i] = 0;
+ }
+
+ /*
+ * Setup the thread 1 events, map the thread 0 event to the
+ * equivalent thread 1 event.
+ */
+ for (i = 0; i < num_ctrs; ++i) {
+ if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
+ pmc_cntrl[1][i].evnts = ctr[i].event + 19;
+ else if (ctr[i].event == 2203)
+ pmc_cntrl[1][i].evnts = ctr[i].event;
+ else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
+ pmc_cntrl[1][i].evnts = ctr[i].event + 16;
+ else
+ pmc_cntrl[1][i].evnts = ctr[i].event;
+
+ pmc_cntrl[1][i].masks = ctr[i].unit_mask;
+ pmc_cntrl[1][i].enabled = ctr[i].enabled;
+ pmc_cntrl[1][i].vcntr = i;
+ }
+
+ for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
+ input_bus[i] = 0xff;
+
+ /*
+ * Our counters count up, and "count" refers to
+ * how much before the next interrupt, and we interrupt
+ * on overflow. So we calculate the starting value
+ * which will give us "count" until overflow.
+ * Then we set the events on the enabled counters.
+ */
+ for (i = 0; i < num_counters; ++i) {
+ /* start with virtual counter set 0 */
+ if (pmc_cntrl[0][i].enabled) {
+ /* Using 32bit counters, reset max - count */
+ reset_value[i] = 0xFFFFFFFF - ctr[i].count;
+ set_pm_event(i,
+ pmc_cntrl[0][i].evnts,
+ pmc_cntrl[0][i].masks);
+
+ /* global, used by cell_cpu_setup */
+ ctr_enabled |= (1 << i);
+ }
+ }
+
+ /* initialize the previous counts for the virtual cntrs */
+ for_each_online_cpu(cpu)
+ for (i = 0; i < num_counters; ++i) {
+ per_cpu(pmc_values, cpu)[i] = reset_value[i];
+ }
+
+ return 0;
+}
+
+
+/* This function is called once for all cpus combined */
+static int cell_reg_setup(struct op_counter_config *ctr,
+ struct op_system_config *sys, int num_ctrs)
+{
+ int ret=0;
+ spu_cycle_reset = 0;
+
+ /* initialize the spu_arr_trace value, will be reset if
+ * doing spu event profiling.
+ */
+ pm_regs.group_control = 0;
+ pm_regs.debug_bus_control = 0;
+ pm_regs.pm_cntrl.stop_at_max = 1;
+ pm_regs.pm_cntrl.trace_mode = 0;
+ pm_regs.pm_cntrl.freeze = 1;
+ pm_regs.pm_cntrl.trace_buf_ovflw = 0;
+ pm_regs.pm_cntrl.spu_addr_trace = 0;
+
+ /*
+ * For all events except PPU CYCLEs, each node will need to make
+ * the rtas cbe-perftools call to setup and reset the debug bus.
+ * Make the token lookup call once and store it in the global
+ * variable pm_rtas_token.
+ */
+ pm_rtas_token = rtas_token("ibm,cbe-perftools");
+
+ if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+ printk(KERN_ERR
+ "%s: rtas token ibm,cbe-perftools unknown\n",
+ __func__);
+ return -EIO;
+ }
+
+ if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
+ profiling_mode = SPU_PROFILING_CYCLES;
+ ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
+ } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
+ (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
+ profiling_mode = SPU_PROFILING_EVENTS;
+ spu_cycle_reset = ctr[0].count;
+
+ /* for SPU event profiling, need to setup the
+ * pm_signal array with the events to route the
+ * SPU PC before making the FW call. Note, only
+ * one SPU event for profiling can be specified
+ * at a time.
+ */
+ cell_reg_setup_spu_events(ctr, sys, num_ctrs);
+ } else {
+ profiling_mode = PPU_PROFILING;
+ ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
+ }
+
+ return ret;
+}
+
+
+
+/* This function is called once for each cpu */
+static int cell_cpu_setup(struct op_counter_config *cntr)
+{
+ u32 cpu = smp_processor_id();
+ u32 num_enabled = 0;
+ int i;
+ int ret;
+
+ /* Cycle based SPU profiling does not use the performance
+ * counters. The trace array is configured to collect
+ * the data.
+ */
+ if (profiling_mode == SPU_PROFILING_CYCLES)
+ return 0;
+
+ /* There is one performance monitor per processor chip (i.e. node),
+ * so we only need to perform this function once per node.
+ */
+ if (cbe_get_hw_thread_id(cpu))
+ return 0;
+
+ /* Stop all counters */
+ cbe_disable_pm(cpu);
+ cbe_disable_pm_interrupts(cpu);
+
+ cbe_write_pm(cpu, pm_start_stop, 0);
+ cbe_write_pm(cpu, group_control, pm_regs.group_control);
+ cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
+ write_pm_cntrl(cpu);
+
+ for (i = 0; i < num_counters; ++i) {
+ if (ctr_enabled & (1 << i)) {
+ pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
+ num_enabled++;
+ }
+ }
+
+ /*
+ * The pm_rtas_activate_signals will return -EIO if the FW
+ * call failed.
+ */
+ if (profiling_mode == SPU_PROFILING_EVENTS) {
+ /* For SPU event profiling also need to setup the
+ * pm interval timer
+ */
+ ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
+ num_enabled+2);
+ /* store PC from debug bus to Trace buffer as often
+ * as possible (every 10 cycles)
+ */
+ cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+ return ret;
+ } else
+ return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
+ num_enabled);
+}
+
+#define ENTRIES 303
+#define MAXLFSR 0xFFFFFF
+
+/* precomputed table of 24 bit LFSR values */
+static int initial_lfsr[] = {
+ 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
+ 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
+ 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
+ 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
+ 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
+ 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
+ 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
+ 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
+ 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
+ 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
+ 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
+ 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
+ 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
+ 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
+ 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
+ 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
+ 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
+ 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
+ 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
+ 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
+ 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
+ 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
+ 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
+ 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
+ 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
+ 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
+ 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
+ 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
+ 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
+ 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
+ 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
+ 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
+ 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
+ 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
+ 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
+ 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
+ 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
+ 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
+};
+
+/*
+ * The hardware uses an LFSR counting sequence to determine when to capture
+ * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
+ * where each number occurs once in the sequence but the sequence is not in
+ * numerical order. The SPU PC capture is done when the LFSR sequence reaches
+ * the last value in the sequence. Hence the user specified value N
+ * corresponds to the LFSR number that is N from the end of the sequence.
+ *
+ * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
+ * LFSR sequence is broken into four ranges. The spacing of the precomputed
+ * values is adjusted in each range so the error between the user specified
+ * number (N) of events between samples and the actual number of events based
+ * on the precomputed value will be les then about 6.2%. Note, if the user
+ * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
+ * This is to prevent the loss of samples because the trace buffer is full.
+ *
+ * User specified N Step between Index in
+ * precomputed values precomputed
+ * table
+ * 0 to 2^16-1 ---- 0
+ * 2^16 to 2^16+2^19-1 2^12 1 to 128
+ * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
+ * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
+ *
+ *
+ * For example, the LFSR values in the second range are computed for 2^16,
+ * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
+ * 1, 2,..., 127, 128.
+ *
+ * The 24 bit LFSR value for the nth number in the sequence can be
+ * calculated using the following code:
+ *
+ * #define size 24
+ * int calculate_lfsr(int n)
+ * {
+ * int i;
+ * unsigned int newlfsr0;
+ * unsigned int lfsr = 0xFFFFFF;
+ * unsigned int howmany = n;
+ *
+ * for (i = 2; i < howmany + 2; i++) {
+ * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
+ * ((lfsr >> (size - 1 - 1)) & 1) ^
+ * (((lfsr >> (size - 1 - 6)) & 1) ^
+ * ((lfsr >> (size - 1 - 23)) & 1)));
+ *
+ * lfsr >>= 1;
+ * lfsr = lfsr | (newlfsr0 << (size - 1));
+ * }
+ * return lfsr;
+ * }
+ */
+
+#define V2_16 (0x1 << 16)
+#define V2_19 (0x1 << 19)
+#define V2_22 (0x1 << 22)
+
+static int calculate_lfsr(int n)
+{
+ /*
+ * The ranges and steps are in powers of 2 so the calculations
+ * can be done using shifts rather then divide.
+ */
+ int index;
+
+ if ((n >> 16) == 0)
+ index = 0;
+ else if (((n - V2_16) >> 19) == 0)
+ index = ((n - V2_16) >> 12) + 1;
+ else if (((n - V2_16 - V2_19) >> 22) == 0)
+ index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
+ else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
+ index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
+ else
+ index = ENTRIES-1;
+
+ /* make sure index is valid */
+ if ((index >= ENTRIES) || (index < 0))
+ index = ENTRIES-1;
+
+ return initial_lfsr[index];
+}
+
+static int pm_rtas_activate_spu_profiling(u32 node)
+{
+ int ret, i;
+ struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
+
+ /*
+ * Set up the rtas call to configure the debug bus to
+ * route the SPU PCs. Setup the pm_signal for each SPU
+ */
+ for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
+ pm_signal_local[i].cpu = node;
+ pm_signal_local[i].signal_group = 41;
+ /* spu i on word (i/2) */
+ pm_signal_local[i].bus_word = 1 << i / 2;
+ /* spu i */
+ pm_signal_local[i].sub_unit = i;
+ pm_signal_local[i].bit = 63;
+ }
+
+ ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
+ PASSTHRU_ENABLE, pm_signal_local,
+ (ARRAY_SIZE(pm_signal_local)
+ * sizeof(struct pm_signal)));
+
+ if (unlikely(ret)) {
+ printk(KERN_WARNING "%s: rtas returned: %d\n",
+ __func__, ret);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_CPU_FREQ
+static int
+oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
+{
+ int ret = 0;
+ struct cpufreq_freqs *frq = data;
+ if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
+ (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
+ set_spu_profiling_frequency(frq->new, spu_cycle_reset);
+ return ret;
+}
+
+static struct notifier_block cpu_freq_notifier_block = {
+ .notifier_call = oprof_cpufreq_notify
+};
+#endif
+
+/*
+ * Note the generic OProfile stop calls do not support returning
+ * an error on stop. Hence, will not return an error if the FW
+ * calls fail on stop. Failure to reset the debug bus is not an issue.
+ * Failure to disable the SPU profiling is not an issue. The FW calls
+ * to enable the performance counters and debug bus will work even if
+ * the hardware was not cleanly reset.
+ */
+static void cell_global_stop_spu_cycles(void)
+{
+ int subfunc, rtn_value;
+ unsigned int lfsr_value;
+ int cpu;
+
+ oprofile_running = 0;
+ smp_wmb();
+
+#ifdef CONFIG_CPU_FREQ
+ cpufreq_unregister_notifier(&cpu_freq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+#endif
+
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ subfunc = 3; /*
+ * 2 - activate SPU tracing,
+ * 3 - deactivate
+ */
+ lfsr_value = 0x8f100000;
+
+ rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
+ subfunc, cbe_cpu_to_node(cpu),
+ lfsr_value);
+
+ if (unlikely(rtn_value != 0)) {
+ printk(KERN_ERR
+ "%s: rtas call ibm,cbe-spu-perftools " \
+ "failed, return = %d\n",
+ __func__, rtn_value);
+ }
+
+ /* Deactivate the signals */
+ pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+ }
+
+ stop_spu_profiling_cycles();
+}
+
+static void cell_global_stop_spu_events(void)
+{
+ int cpu;
+ oprofile_running = 0;
+
+ stop_spu_profiling_events();
+ smp_wmb();
+
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ cbe_sync_irq(cbe_cpu_to_node(cpu));
+ /* Stop the counters */
+ cbe_disable_pm(cpu);
+ cbe_write_pm07_control(cpu, 0, 0);
+
+ /* Deactivate the signals */
+ pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+ /* Deactivate interrupts */
+ cbe_disable_pm_interrupts(cpu);
+ }
+ del_timer_sync(&timer_spu_event_swap);
+}
+
+static void cell_global_stop_ppu(void)
+{
+ int cpu;
+
+ /*
+ * This routine will be called once for the system.
+ * There is one performance monitor per node, so we
+ * only need to perform this function once per node.
+ */
+ del_timer_sync(&timer_virt_cntr);
+ oprofile_running = 0;
+ smp_wmb();
+
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ cbe_sync_irq(cbe_cpu_to_node(cpu));
+ /* Stop the counters */
+ cbe_disable_pm(cpu);
+
+ /* Deactivate the signals */
+ pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+ /* Deactivate interrupts */
+ cbe_disable_pm_interrupts(cpu);
+ }
+}
+
+static void cell_global_stop(void)
+{
+ if (profiling_mode == PPU_PROFILING)
+ cell_global_stop_ppu();
+ else if (profiling_mode == SPU_PROFILING_EVENTS)
+ cell_global_stop_spu_events();
+ else
+ cell_global_stop_spu_cycles();
+}
+
+static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
+{
+ int subfunc;
+ unsigned int lfsr_value;
+ int cpu;
+ int ret;
+ int rtas_error;
+ unsigned int cpu_khzfreq = 0;
+
+ /* The SPU profiling uses time-based profiling based on
+ * cpu frequency, so if configured with the CPU_FREQ
+ * option, we should detect frequency changes and react
+ * accordingly.
+ */
+#ifdef CONFIG_CPU_FREQ
+ ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
+ CPUFREQ_TRANSITION_NOTIFIER);
+ if (ret < 0)
+ /* this is not a fatal error */
+ printk(KERN_ERR "CPU freq change registration failed: %d\n",
+ ret);
+
+ else
+ cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
+#endif
+
+ set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
+
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ /*
+ * Setup SPU cycle-based profiling.
+ * Set perf_mon_control bit 0 to a zero before
+ * enabling spu collection hardware.
+ */
+ cbe_write_pm(cpu, pm_control, 0);
+
+ if (spu_cycle_reset > MAX_SPU_COUNT)
+ /* use largest possible value */
+ lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
+ else
+ lfsr_value = calculate_lfsr(spu_cycle_reset);
+
+ /* must use a non zero value. Zero disables data collection. */
+ if (lfsr_value == 0)
+ lfsr_value = calculate_lfsr(1);
+
+ lfsr_value = lfsr_value << 8; /* shift lfsr to correct
+ * register location
+ */
+
+ /* debug bus setup */
+ ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
+
+ if (unlikely(ret)) {
+ rtas_error = ret;
+ goto out;
+ }
+
+
+ subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
+
+ /* start profiling */
+ ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
+ cbe_cpu_to_node(cpu), lfsr_value);
+
+ if (unlikely(ret != 0)) {
+ printk(KERN_ERR
+ "%s: rtas call ibm,cbe-spu-perftools failed, " \
+ "return = %d\n", __func__, ret);
+ rtas_error = -EIO;
+ goto out;
+ }
+ }
+
+ rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
+ if (rtas_error)
+ goto out_stop;
+
+ oprofile_running = 1;
+ return 0;
+
+out_stop:
+ cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
+out:
+ return rtas_error;
+}
+
+static int cell_global_start_spu_events(struct op_counter_config *ctr)
+{
+ int cpu;
+ u32 interrupt_mask = 0;
+ int rtn = 0;
+
+ hdw_thread = 0;
+
+ /* spu event profiling, uses the performance counters to generate
+ * an interrupt. The hardware is setup to store the SPU program
+ * counter into the trace array. The occurrence mode is used to
+ * enable storing data to the trace buffer. The bits are set
+ * to send/store the SPU address in the trace buffer. The debug
+ * bus must be setup to route the SPU program counter onto the
+ * debug bus. The occurrence data in the trace buffer is not used.
+ */
+
+ /* This routine gets called once for the system.
+ * There is one performance monitor per node, so we
+ * only need to perform this function once per node.
+ */
+
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ /*
+ * Setup SPU event-based profiling.
+ * Set perf_mon_control bit 0 to a zero before
+ * enabling spu collection hardware.
+ *
+ * Only support one SPU event on one SPU per node.
+ */
+ if (ctr_enabled & 1) {
+ cbe_write_ctr(cpu, 0, reset_value[0]);
+ enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
+ interrupt_mask |=
+ CBE_PM_CTR_OVERFLOW_INTR(0);
+ } else {
+ /* Disable counter */
+ cbe_write_pm07_control(cpu, 0, 0);
+ }
+
+ cbe_get_and_clear_pm_interrupts(cpu);
+ cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
+ cbe_enable_pm(cpu);
+
+ /* clear the trace buffer */
+ cbe_write_pm(cpu, trace_address, 0);
+ }
+
+ /* Start the timer to time slice collecting the event profile
+ * on each of the SPUs. Note, can collect profile on one SPU
+ * per node at a time.
+ */
+ start_spu_event_swap();
+ start_spu_profiling_events();
+ oprofile_running = 1;
+ smp_wmb();
+
+ return rtn;
+}
+
+static int cell_global_start_ppu(struct op_counter_config *ctr)
+{
+ u32 cpu, i;
+ u32 interrupt_mask = 0;
+
+ /* This routine gets called once for the system.
+ * There is one performance monitor per node, so we
+ * only need to perform this function once per node.
+ */
+ for_each_online_cpu(cpu) {
+ if (cbe_get_hw_thread_id(cpu))
+ continue;
+
+ interrupt_mask = 0;
+
+ for (i = 0; i < num_counters; ++i) {
+ if (ctr_enabled & (1 << i)) {
+ cbe_write_ctr(cpu, i, reset_value[i]);
+ enable_ctr(cpu, i, pm_regs.pm07_cntrl);
+ interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
+ } else {
+ /* Disable counter */
+ cbe_write_pm07_control(cpu, i, 0);
+ }
+ }
+
+ cbe_get_and_clear_pm_interrupts(cpu);
+ cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
+ cbe_enable_pm(cpu);
+ }
+
+ virt_cntr_inter_mask = interrupt_mask;
+ oprofile_running = 1;
+ smp_wmb();
+
+ /*
+ * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
+ * executed which manipulates the PMU. We start the "virtual counter"
+ * here so that we do not need to synchronize access to the PMU in
+ * the above for-loop.
+ */
+ start_virt_cntrs();
+
+ return 0;
+}
+
+static int cell_global_start(struct op_counter_config *ctr)
+{
+ if (profiling_mode == SPU_PROFILING_CYCLES)
+ return cell_global_start_spu_cycles(ctr);
+ else if (profiling_mode == SPU_PROFILING_EVENTS)
+ return cell_global_start_spu_events(ctr);
+ else
+ return cell_global_start_ppu(ctr);
+}
+
+
+/* The SPU interrupt handler
+ *
+ * SPU event profiling works as follows:
+ * The pm_signal[0] holds the one SPU event to be measured. It is routed on
+ * the debug bus using word 0 or 1. The value of pm_signal[1] and
+ * pm_signal[2] contain the necessary events to route the SPU program
+ * counter for the selected SPU onto the debug bus using words 2 and 3.
+ * The pm_interval register is setup to write the SPU PC value into the
+ * trace buffer at the maximum rate possible. The trace buffer is configured
+ * to store the PCs, wrapping when it is full. The performance counter is
+ * initialized to the max hardware count minus the number of events, N, between
+ * samples. Once the N events have occurred, a HW counter overflow occurs
+ * causing the generation of a HW counter interrupt which also stops the
+ * writing of the SPU PC values to the trace buffer. Hence the last PC
+ * written to the trace buffer is the SPU PC that we want. Unfortunately,
+ * we have to read from the beginning of the trace buffer to get to the
+ * last value written. We just hope the PPU has nothing better to do then
+ * service this interrupt. The PC for the specific SPU being profiled is
+ * extracted from the trace buffer processed and stored. The trace buffer
+ * is cleared, interrupts are cleared, the counter is reset to max - N.
+ * A kernel timer is used to periodically call the routine spu_evnt_swap()
+ * to switch to the next physical SPU in the node to profile in round robbin
+ * order. This way data is collected for all SPUs on the node. It does mean
+ * that we need to use a relatively small value of N to ensure enough samples
+ * on each SPU are collected each SPU is being profiled 1/8 of the time.
+ * It may also be necessary to use a longer sample collection period.
+ */
+static void cell_handle_interrupt_spu(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ u32 cpu, cpu_tmp;
+ u64 trace_entry;
+ u32 interrupt_mask;
+ u64 trace_buffer[2];
+ u64 last_trace_buffer;
+ u32 sample;
+ u32 trace_addr;
+ unsigned long sample_array_lock_flags;
+ int spu_num;
+ unsigned long flags;
+
+ /* Make sure spu event interrupt handler and spu event swap
+ * don't access the counters simultaneously.
+ */
+ cpu = smp_processor_id();
+ spin_lock_irqsave(&cntr_lock, flags);
+
+ cpu_tmp = cpu;
+ cbe_disable_pm(cpu);
+
+ interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
+
+ sample = 0xABCDEF;
+ trace_entry = 0xfedcba;
+ last_trace_buffer = 0xdeadbeaf;
+
+ if ((oprofile_running == 1) && (interrupt_mask != 0)) {
+ /* disable writes to trace buff */
+ cbe_write_pm(cpu, pm_interval, 0);
+
+ /* only have one perf cntr being used, cntr 0 */
+ if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
+ && ctr[0].enabled)
+ /* The SPU PC values will be read
+ * from the trace buffer, reset counter
+ */
+
+ cbe_write_ctr(cpu, 0, reset_value[0]);
+
+ trace_addr = cbe_read_pm(cpu, trace_address);
+
+ while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
+ /* There is data in the trace buffer to process
+ * Read the buffer until you get to the last
+ * entry. This is the value we want.
+ */
+
+ cbe_read_trace_buffer(cpu, trace_buffer);
+ trace_addr = cbe_read_pm(cpu, trace_address);
+ }
+
+ /* SPU Address 16 bit count format for 128 bit
+ * HW trace buffer is used for the SPU PC storage
+ * HDR bits 0:15
+ * SPU Addr 0 bits 16:31
+ * SPU Addr 1 bits 32:47
+ * unused bits 48:127
+ *
+ * HDR: bit4 = 1 SPU Address 0 valid
+ * HDR: bit5 = 1 SPU Address 1 valid
+ * - unfortunately, the valid bits don't seem to work
+ *
+ * Note trace_buffer[0] holds bits 0:63 of the HW
+ * trace buffer, trace_buffer[1] holds bits 64:127
+ */
+
+ trace_entry = trace_buffer[0]
+ & 0x00000000FFFF0000;
+
+ /* only top 16 of the 18 bit SPU PC address
+ * is stored in trace buffer, hence shift right
+ * by 16 -2 bits */
+ sample = trace_entry >> 14;
+ last_trace_buffer = trace_buffer[0];
+
+ spu_num = spu_evnt_phys_spu_indx
+ + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
+
+ /* make sure only one process at a time is calling
+ * spu_sync_buffer()
+ */
+ spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
+ sample_array_lock_flags);
+ spu_sync_buffer(spu_num, &sample, 1);
+ spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+ sample_array_lock_flags);
+
+ smp_wmb(); /* insure spu event buffer updates are written
+ * don't want events intermingled... */
+
+ /* The counters were frozen by the interrupt.
+ * Reenable the interrupt and restart the counters.
+ */
+ cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+ cbe_enable_pm_interrupts(cpu, hdw_thread,
+ virt_cntr_inter_mask);
+
+ /* clear the trace buffer, re-enable writes to trace buff */
+ cbe_write_pm(cpu, trace_address, 0);
+ cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+
+ /* The writes to the various performance counters only writes
+ * to a latch. The new values (interrupt setting bits, reset
+ * counter value etc.) are not copied to the actual registers
+ * until the performance monitor is enabled. In order to get
+ * this to work as desired, the performance monitor needs to
+ * be disabled while writing to the latches. This is a
+ * HW design issue.
+ */
+ write_pm_cntrl(cpu);
+ cbe_enable_pm(cpu);
+ }
+ spin_unlock_irqrestore(&cntr_lock, flags);
+}
+
+static void cell_handle_interrupt_ppu(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ u32 cpu;
+ u64 pc;
+ int is_kernel;
+ unsigned long flags = 0;
+ u32 interrupt_mask;
+ int i;
+
+ cpu = smp_processor_id();
+
+ /*
+ * Need to make sure the interrupt handler and the virt counter
+ * routine are not running at the same time. See the
+ * cell_virtual_cntr() routine for additional comments.
+ */
+ spin_lock_irqsave(&cntr_lock, flags);
+
+ /*
+ * Need to disable and reenable the performance counters
+ * to get the desired behavior from the hardware. This
+ * is hardware specific.
+ */
+
+ cbe_disable_pm(cpu);
+
+ interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
+
+ /*
+ * If the interrupt mask has been cleared, then the virt cntr
+ * has cleared the interrupt. When the thread that generated
+ * the interrupt is restored, the data count will be restored to
+ * 0xffffff0 to cause the interrupt to be regenerated.
+ */
+
+ if ((oprofile_running == 1) && (interrupt_mask != 0)) {
+ pc = regs->nip;
+ is_kernel = is_kernel_addr(pc);
+
+ for (i = 0; i < num_counters; ++i) {
+ if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
+ && ctr[i].enabled) {
+ oprofile_add_ext_sample(pc, regs, i, is_kernel);
+ cbe_write_ctr(cpu, i, reset_value[i]);
+ }
+ }
+
+ /*
+ * The counters were frozen by the interrupt.
+ * Reenable the interrupt and restart the counters.
+ * If there was a race between the interrupt handler and
+ * the virtual counter routine. The virtual counter
+ * routine may have cleared the interrupts. Hence must
+ * use the virt_cntr_inter_mask to re-enable the interrupts.
+ */
+ cbe_enable_pm_interrupts(cpu, hdw_thread,
+ virt_cntr_inter_mask);
+
+ /*
+ * The writes to the various performance counters only writes
+ * to a latch. The new values (interrupt setting bits, reset
+ * counter value etc.) are not copied to the actual registers
+ * until the performance monitor is enabled. In order to get
+ * this to work as desired, the performance monitor needs to
+ * be disabled while writing to the latches. This is a
+ * HW design issue.
+ */
+ cbe_enable_pm(cpu);
+ }
+ spin_unlock_irqrestore(&cntr_lock, flags);
+}
+
+static void cell_handle_interrupt(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ if (profiling_mode == PPU_PROFILING)
+ cell_handle_interrupt_ppu(regs, ctr);
+ else
+ cell_handle_interrupt_spu(regs, ctr);
+}
+
+/*
+ * This function is called from the generic OProfile
+ * driver. When profiling PPUs, we need to do the
+ * generic sync start; otherwise, do spu_sync_start.
+ */
+static int cell_sync_start(void)
+{
+ if ((profiling_mode == SPU_PROFILING_CYCLES) ||
+ (profiling_mode == SPU_PROFILING_EVENTS))
+ return spu_sync_start();
+ else
+ return DO_GENERIC_SYNC;
+}
+
+static int cell_sync_stop(void)
+{
+ if ((profiling_mode == SPU_PROFILING_CYCLES) ||
+ (profiling_mode == SPU_PROFILING_EVENTS))
+ return spu_sync_stop();
+ else
+ return 1;
+}
+
+struct op_powerpc_model op_model_cell = {
+ .reg_setup = cell_reg_setup,
+ .cpu_setup = cell_cpu_setup,
+ .global_start = cell_global_start,
+ .global_stop = cell_global_stop,
+ .sync_start = cell_sync_start,
+ .sync_stop = cell_sync_stop,
+ .handle_interrupt = cell_handle_interrupt,
+};
diff --git a/arch/powerpc/oprofile/op_model_fsl_emb.c b/arch/powerpc/oprofile/op_model_fsl_emb.c
new file mode 100644
index 000000000..25dc6813e
--- /dev/null
+++ b/arch/powerpc/oprofile/op_model_fsl_emb.c
@@ -0,0 +1,380 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Freescale Embedded oprofile support, based on ppc64 oprofile support
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ *
+ * Copyright (c) 2004, 2010 Freescale Semiconductor, Inc
+ *
+ * Author: Andy Fleming
+ * Maintainer: Kumar Gala <galak@kernel.crashing.org>
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <asm/ptrace.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/reg_fsl_emb.h>
+#include <asm/page.h>
+#include <asm/pmc.h>
+#include <asm/oprofile_impl.h>
+
+static unsigned long reset_value[OP_MAX_COUNTER];
+
+static int num_counters;
+static int oprofile_running;
+
+static inline u32 get_pmlca(int ctr)
+{
+ u32 pmlca;
+
+ switch (ctr) {
+ case 0:
+ pmlca = mfpmr(PMRN_PMLCA0);
+ break;
+ case 1:
+ pmlca = mfpmr(PMRN_PMLCA1);
+ break;
+ case 2:
+ pmlca = mfpmr(PMRN_PMLCA2);
+ break;
+ case 3:
+ pmlca = mfpmr(PMRN_PMLCA3);
+ break;
+ case 4:
+ pmlca = mfpmr(PMRN_PMLCA4);
+ break;
+ case 5:
+ pmlca = mfpmr(PMRN_PMLCA5);
+ break;
+ default:
+ panic("Bad ctr number\n");
+ }
+
+ return pmlca;
+}
+
+static inline void set_pmlca(int ctr, u32 pmlca)
+{
+ switch (ctr) {
+ case 0:
+ mtpmr(PMRN_PMLCA0, pmlca);
+ break;
+ case 1:
+ mtpmr(PMRN_PMLCA1, pmlca);
+ break;
+ case 2:
+ mtpmr(PMRN_PMLCA2, pmlca);
+ break;
+ case 3:
+ mtpmr(PMRN_PMLCA3, pmlca);
+ break;
+ case 4:
+ mtpmr(PMRN_PMLCA4, pmlca);
+ break;
+ case 5:
+ mtpmr(PMRN_PMLCA5, pmlca);
+ break;
+ default:
+ panic("Bad ctr number\n");
+ }
+}
+
+static inline unsigned int ctr_read(unsigned int i)
+{
+ switch(i) {
+ case 0:
+ return mfpmr(PMRN_PMC0);
+ case 1:
+ return mfpmr(PMRN_PMC1);
+ case 2:
+ return mfpmr(PMRN_PMC2);
+ case 3:
+ return mfpmr(PMRN_PMC3);
+ case 4:
+ return mfpmr(PMRN_PMC4);
+ case 5:
+ return mfpmr(PMRN_PMC5);
+ default:
+ return 0;
+ }
+}
+
+static inline void ctr_write(unsigned int i, unsigned int val)
+{
+ switch(i) {
+ case 0:
+ mtpmr(PMRN_PMC0, val);
+ break;
+ case 1:
+ mtpmr(PMRN_PMC1, val);
+ break;
+ case 2:
+ mtpmr(PMRN_PMC2, val);
+ break;
+ case 3:
+ mtpmr(PMRN_PMC3, val);
+ break;
+ case 4:
+ mtpmr(PMRN_PMC4, val);
+ break;
+ case 5:
+ mtpmr(PMRN_PMC5, val);
+ break;
+ default:
+ break;
+ }
+}
+
+
+static void init_pmc_stop(int ctr)
+{
+ u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU |
+ PMLCA_FCM1 | PMLCA_FCM0);
+ u32 pmlcb = 0;
+
+ switch (ctr) {
+ case 0:
+ mtpmr(PMRN_PMLCA0, pmlca);
+ mtpmr(PMRN_PMLCB0, pmlcb);
+ break;
+ case 1:
+ mtpmr(PMRN_PMLCA1, pmlca);
+ mtpmr(PMRN_PMLCB1, pmlcb);
+ break;
+ case 2:
+ mtpmr(PMRN_PMLCA2, pmlca);
+ mtpmr(PMRN_PMLCB2, pmlcb);
+ break;
+ case 3:
+ mtpmr(PMRN_PMLCA3, pmlca);
+ mtpmr(PMRN_PMLCB3, pmlcb);
+ break;
+ case 4:
+ mtpmr(PMRN_PMLCA4, pmlca);
+ mtpmr(PMRN_PMLCB4, pmlcb);
+ break;
+ case 5:
+ mtpmr(PMRN_PMLCA5, pmlca);
+ mtpmr(PMRN_PMLCB5, pmlcb);
+ break;
+ default:
+ panic("Bad ctr number!\n");
+ }
+}
+
+static void set_pmc_event(int ctr, int event)
+{
+ u32 pmlca;
+
+ pmlca = get_pmlca(ctr);
+
+ pmlca = (pmlca & ~PMLCA_EVENT_MASK) |
+ ((event << PMLCA_EVENT_SHIFT) &
+ PMLCA_EVENT_MASK);
+
+ set_pmlca(ctr, pmlca);
+}
+
+static void set_pmc_user_kernel(int ctr, int user, int kernel)
+{
+ u32 pmlca;
+
+ pmlca = get_pmlca(ctr);
+
+ if(user)
+ pmlca &= ~PMLCA_FCU;
+ else
+ pmlca |= PMLCA_FCU;
+
+ if(kernel)
+ pmlca &= ~PMLCA_FCS;
+ else
+ pmlca |= PMLCA_FCS;
+
+ set_pmlca(ctr, pmlca);
+}
+
+static void set_pmc_marked(int ctr, int mark0, int mark1)
+{
+ u32 pmlca = get_pmlca(ctr);
+
+ if(mark0)
+ pmlca &= ~PMLCA_FCM0;
+ else
+ pmlca |= PMLCA_FCM0;
+
+ if(mark1)
+ pmlca &= ~PMLCA_FCM1;
+ else
+ pmlca |= PMLCA_FCM1;
+
+ set_pmlca(ctr, pmlca);
+}
+
+static void pmc_start_ctr(int ctr, int enable)
+{
+ u32 pmlca = get_pmlca(ctr);
+
+ pmlca &= ~PMLCA_FC;
+
+ if (enable)
+ pmlca |= PMLCA_CE;
+ else
+ pmlca &= ~PMLCA_CE;
+
+ set_pmlca(ctr, pmlca);
+}
+
+static void pmc_start_ctrs(int enable)
+{
+ u32 pmgc0 = mfpmr(PMRN_PMGC0);
+
+ pmgc0 &= ~PMGC0_FAC;
+ pmgc0 |= PMGC0_FCECE;
+
+ if (enable)
+ pmgc0 |= PMGC0_PMIE;
+ else
+ pmgc0 &= ~PMGC0_PMIE;
+
+ mtpmr(PMRN_PMGC0, pmgc0);
+}
+
+static void pmc_stop_ctrs(void)
+{
+ u32 pmgc0 = mfpmr(PMRN_PMGC0);
+
+ pmgc0 |= PMGC0_FAC;
+
+ pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE);
+
+ mtpmr(PMRN_PMGC0, pmgc0);
+}
+
+static int fsl_emb_cpu_setup(struct op_counter_config *ctr)
+{
+ int i;
+
+ /* freeze all counters */
+ pmc_stop_ctrs();
+
+ for (i = 0;i < num_counters;i++) {
+ init_pmc_stop(i);
+
+ set_pmc_event(i, ctr[i].event);
+
+ set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel);
+ }
+
+ return 0;
+}
+
+static int fsl_emb_reg_setup(struct op_counter_config *ctr,
+ struct op_system_config *sys,
+ int num_ctrs)
+{
+ int i;
+
+ num_counters = num_ctrs;
+
+ /* Our counters count up, and "count" refers to
+ * how much before the next interrupt, and we interrupt
+ * on overflow. So we calculate the starting value
+ * which will give us "count" until overflow.
+ * Then we set the events on the enabled counters */
+ for (i = 0; i < num_counters; ++i)
+ reset_value[i] = 0x80000000UL - ctr[i].count;
+
+ return 0;
+}
+
+static int fsl_emb_start(struct op_counter_config *ctr)
+{
+ int i;
+
+ mtmsr(mfmsr() | MSR_PMM);
+
+ for (i = 0; i < num_counters; ++i) {
+ if (ctr[i].enabled) {
+ ctr_write(i, reset_value[i]);
+ /* Set each enabled counter to only
+ * count when the Mark bit is *not* set */
+ set_pmc_marked(i, 1, 0);
+ pmc_start_ctr(i, 1);
+ } else {
+ ctr_write(i, 0);
+
+ /* Set the ctr to be stopped */
+ pmc_start_ctr(i, 0);
+ }
+ }
+
+ /* Clear the freeze bit, and enable the interrupt.
+ * The counters won't actually start until the rfi clears
+ * the PMM bit */
+ pmc_start_ctrs(1);
+
+ oprofile_running = 1;
+
+ pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(),
+ mfpmr(PMRN_PMGC0));
+
+ return 0;
+}
+
+static void fsl_emb_stop(void)
+{
+ /* freeze counters */
+ pmc_stop_ctrs();
+
+ oprofile_running = 0;
+
+ pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(),
+ mfpmr(PMRN_PMGC0));
+
+ mb();
+}
+
+
+static void fsl_emb_handle_interrupt(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ unsigned long pc;
+ int is_kernel;
+ int val;
+ int i;
+
+ pc = regs->nip;
+ is_kernel = is_kernel_addr(pc);
+
+ for (i = 0; i < num_counters; ++i) {
+ val = ctr_read(i);
+ if (val < 0) {
+ if (oprofile_running && ctr[i].enabled) {
+ oprofile_add_ext_sample(pc, regs, i, is_kernel);
+ ctr_write(i, reset_value[i]);
+ } else {
+ ctr_write(i, 0);
+ }
+ }
+ }
+
+ /* The freeze bit was set by the interrupt. */
+ /* Clear the freeze bit, and reenable the interrupt. The
+ * counters won't actually start until the rfi clears the PMM
+ * bit. The PMM bit should not be set until after the interrupt
+ * is cleared to avoid it getting lost in some hypervisor
+ * environments.
+ */
+ mtmsr(mfmsr() | MSR_PMM);
+ pmc_start_ctrs(1);
+}
+
+struct op_powerpc_model op_model_fsl_emb = {
+ .reg_setup = fsl_emb_reg_setup,
+ .cpu_setup = fsl_emb_cpu_setup,
+ .start = fsl_emb_start,
+ .stop = fsl_emb_stop,
+ .handle_interrupt = fsl_emb_handle_interrupt,
+};
diff --git a/arch/powerpc/oprofile/op_model_pa6t.c b/arch/powerpc/oprofile/op_model_pa6t.c
new file mode 100644
index 000000000..d23061cf7
--- /dev/null
+++ b/arch/powerpc/oprofile/op_model_pa6t.c
@@ -0,0 +1,227 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2006-2007 PA Semi, Inc
+ *
+ * Author: Shashi Rao, PA Semi
+ *
+ * Maintained by: Olof Johansson <olof@lixom.net>
+ *
+ * Based on arch/powerpc/oprofile/op_model_power4.c
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <linux/percpu.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/oprofile_impl.h>
+#include <asm/reg.h>
+
+static unsigned char oprofile_running;
+
+/* mmcr values are set in pa6t_reg_setup, used in pa6t_cpu_setup */
+static u64 mmcr0_val;
+static u64 mmcr1_val;
+
+/* inited in pa6t_reg_setup */
+static u64 reset_value[OP_MAX_COUNTER];
+
+static inline u64 ctr_read(unsigned int i)
+{
+ switch (i) {
+ case 0:
+ return mfspr(SPRN_PA6T_PMC0);
+ case 1:
+ return mfspr(SPRN_PA6T_PMC1);
+ case 2:
+ return mfspr(SPRN_PA6T_PMC2);
+ case 3:
+ return mfspr(SPRN_PA6T_PMC3);
+ case 4:
+ return mfspr(SPRN_PA6T_PMC4);
+ case 5:
+ return mfspr(SPRN_PA6T_PMC5);
+ default:
+ printk(KERN_ERR "ctr_read called with bad arg %u\n", i);
+ return 0;
+ }
+}
+
+static inline void ctr_write(unsigned int i, u64 val)
+{
+ switch (i) {
+ case 0:
+ mtspr(SPRN_PA6T_PMC0, val);
+ break;
+ case 1:
+ mtspr(SPRN_PA6T_PMC1, val);
+ break;
+ case 2:
+ mtspr(SPRN_PA6T_PMC2, val);
+ break;
+ case 3:
+ mtspr(SPRN_PA6T_PMC3, val);
+ break;
+ case 4:
+ mtspr(SPRN_PA6T_PMC4, val);
+ break;
+ case 5:
+ mtspr(SPRN_PA6T_PMC5, val);
+ break;
+ default:
+ printk(KERN_ERR "ctr_write called with bad arg %u\n", i);
+ break;
+ }
+}
+
+
+/* precompute the values to stuff in the hardware registers */
+static int pa6t_reg_setup(struct op_counter_config *ctr,
+ struct op_system_config *sys,
+ int num_ctrs)
+{
+ int pmc;
+
+ /*
+ * adjust the mmcr0.en[0-5] and mmcr0.inten[0-5] values obtained from the
+ * event_mappings file by turning off the counters that the user doesn't
+ * care about
+ *
+ * setup user and kernel profiling
+ */
+ for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++)
+ if (!ctr[pmc].enabled) {
+ sys->mmcr0 &= ~(0x1UL << pmc);
+ sys->mmcr0 &= ~(0x1UL << (pmc+12));
+ pr_debug("turned off counter %u\n", pmc);
+ }
+
+ if (sys->enable_kernel)
+ sys->mmcr0 |= PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN;
+ else
+ sys->mmcr0 &= ~(PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN);
+
+ if (sys->enable_user)
+ sys->mmcr0 |= PA6T_MMCR0_PREN;
+ else
+ sys->mmcr0 &= ~PA6T_MMCR0_PREN;
+
+ /*
+ * The performance counter event settings are given in the mmcr0 and
+ * mmcr1 values passed from the user in the op_system_config
+ * structure (sys variable).
+ */
+ mmcr0_val = sys->mmcr0;
+ mmcr1_val = sys->mmcr1;
+ pr_debug("mmcr0_val inited to %016lx\n", sys->mmcr0);
+ pr_debug("mmcr1_val inited to %016lx\n", sys->mmcr1);
+
+ for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++) {
+ /* counters are 40 bit. Move to cputable at some point? */
+ reset_value[pmc] = (0x1UL << 39) - ctr[pmc].count;
+ pr_debug("reset_value for pmc%u inited to 0x%llx\n",
+ pmc, reset_value[pmc]);
+ }
+
+ return 0;
+}
+
+/* configure registers on this cpu */
+static int pa6t_cpu_setup(struct op_counter_config *ctr)
+{
+ u64 mmcr0 = mmcr0_val;
+ u64 mmcr1 = mmcr1_val;
+
+ /* Default is all PMCs off */
+ mmcr0 &= ~(0x3FUL);
+ mtspr(SPRN_PA6T_MMCR0, mmcr0);
+
+ /* program selected programmable events in */
+ mtspr(SPRN_PA6T_MMCR1, mmcr1);
+
+ pr_debug("setup on cpu %d, mmcr0 %016lx\n", smp_processor_id(),
+ mfspr(SPRN_PA6T_MMCR0));
+ pr_debug("setup on cpu %d, mmcr1 %016lx\n", smp_processor_id(),
+ mfspr(SPRN_PA6T_MMCR1));
+
+ return 0;
+}
+
+static int pa6t_start(struct op_counter_config *ctr)
+{
+ int i;
+
+ /* Hold off event counting until rfid */
+ u64 mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
+
+ for (i = 0; i < cur_cpu_spec->num_pmcs; i++)
+ if (ctr[i].enabled)
+ ctr_write(i, reset_value[i]);
+ else
+ ctr_write(i, 0UL);
+
+ mtspr(SPRN_PA6T_MMCR0, mmcr0);
+
+ oprofile_running = 1;
+
+ pr_debug("start on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
+
+ return 0;
+}
+
+static void pa6t_stop(void)
+{
+ u64 mmcr0;
+
+ /* freeze counters */
+ mmcr0 = mfspr(SPRN_PA6T_MMCR0);
+ mmcr0 |= PA6T_MMCR0_FCM0;
+ mtspr(SPRN_PA6T_MMCR0, mmcr0);
+
+ oprofile_running = 0;
+
+ pr_debug("stop on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
+}
+
+/* handle the perfmon overflow vector */
+static void pa6t_handle_interrupt(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ unsigned long pc = mfspr(SPRN_PA6T_SIAR);
+ int is_kernel = is_kernel_addr(pc);
+ u64 val;
+ int i;
+ u64 mmcr0;
+
+ /* disable perfmon counting until rfid */
+ mmcr0 = mfspr(SPRN_PA6T_MMCR0);
+ mtspr(SPRN_PA6T_MMCR0, mmcr0 | PA6T_MMCR0_HANDDIS);
+
+ /* Record samples. We've got one global bit for whether a sample
+ * was taken, so add it for any counter that triggered overflow.
+ */
+ for (i = 0; i < cur_cpu_spec->num_pmcs; i++) {
+ val = ctr_read(i);
+ if (val & (0x1UL << 39)) { /* Overflow bit set */
+ if (oprofile_running && ctr[i].enabled) {
+ if (mmcr0 & PA6T_MMCR0_SIARLOG)
+ oprofile_add_ext_sample(pc, regs, i, is_kernel);
+ ctr_write(i, reset_value[i]);
+ } else {
+ ctr_write(i, 0UL);
+ }
+ }
+ }
+
+ /* Restore mmcr0 to a good known value since the PMI changes it */
+ mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
+ mtspr(SPRN_PA6T_MMCR0, mmcr0);
+}
+
+struct op_powerpc_model op_model_pa6t = {
+ .reg_setup = pa6t_reg_setup,
+ .cpu_setup = pa6t_cpu_setup,
+ .start = pa6t_start,
+ .stop = pa6t_stop,
+ .handle_interrupt = pa6t_handle_interrupt,
+};
diff --git a/arch/powerpc/oprofile/op_model_power4.c b/arch/powerpc/oprofile/op_model_power4.c
new file mode 100644
index 000000000..2ae6b86ff
--- /dev/null
+++ b/arch/powerpc/oprofile/op_model_power4.c
@@ -0,0 +1,438 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ * Added mmcra[slot] support:
+ * Copyright (C) 2006-2007 Will Schmidt <willschm@us.ibm.com>, IBM
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <asm/firmware.h>
+#include <asm/ptrace.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/rtas.h>
+#include <asm/oprofile_impl.h>
+#include <asm/reg.h>
+
+#define dbg(args...)
+#define OPROFILE_PM_PMCSEL_MSK 0xffULL
+#define OPROFILE_PM_UNIT_SHIFT 60
+#define OPROFILE_PM_UNIT_MSK 0xfULL
+#define OPROFILE_MAX_PMC_NUM 3
+#define OPROFILE_PMSEL_FIELD_WIDTH 8
+#define OPROFILE_UNIT_FIELD_WIDTH 4
+#define MMCRA_SIAR_VALID_MASK 0x10000000ULL
+
+static unsigned long reset_value[OP_MAX_COUNTER];
+
+static int oprofile_running;
+static int use_slot_nums;
+
+/* mmcr values are set in power4_reg_setup, used in power4_cpu_setup */
+static u32 mmcr0_val;
+static u64 mmcr1_val;
+static u64 mmcra_val;
+static u32 cntr_marked_events;
+
+static int power7_marked_instr_event(u64 mmcr1)
+{
+ u64 psel, unit;
+ int pmc, cntr_marked_events = 0;
+
+ /* Given the MMCR1 value, look at the field for each counter to
+ * determine if it is a marked event. Code based on the function
+ * power7_marked_instr_event() in file arch/powerpc/perf/power7-pmu.c.
+ */
+ for (pmc = 0; pmc < 4; pmc++) {
+ psel = mmcr1 & (OPROFILE_PM_PMCSEL_MSK
+ << (OPROFILE_MAX_PMC_NUM - pmc)
+ * OPROFILE_PMSEL_FIELD_WIDTH);
+ psel = (psel >> ((OPROFILE_MAX_PMC_NUM - pmc)
+ * OPROFILE_PMSEL_FIELD_WIDTH)) & ~1ULL;
+ unit = mmcr1 & (OPROFILE_PM_UNIT_MSK
+ << (OPROFILE_PM_UNIT_SHIFT
+ - (pmc * OPROFILE_PMSEL_FIELD_WIDTH )));
+ unit = unit >> (OPROFILE_PM_UNIT_SHIFT
+ - (pmc * OPROFILE_PMSEL_FIELD_WIDTH));
+
+ switch (psel >> 4) {
+ case 2:
+ cntr_marked_events |= (pmc == 1 || pmc == 3) << pmc;
+ break;
+ case 3:
+ if (psel == 0x3c) {
+ cntr_marked_events |= (pmc == 0) << pmc;
+ break;
+ }
+
+ if (psel == 0x3e) {
+ cntr_marked_events |= (pmc != 1) << pmc;
+ break;
+ }
+
+ cntr_marked_events |= 1 << pmc;
+ break;
+ case 4:
+ case 5:
+ cntr_marked_events |= (unit == 0xd) << pmc;
+ break;
+ case 6:
+ if (psel == 0x64)
+ cntr_marked_events |= (pmc >= 2) << pmc;
+ break;
+ case 8:
+ cntr_marked_events |= (unit == 0xd) << pmc;
+ break;
+ }
+ }
+ return cntr_marked_events;
+}
+
+static int power4_reg_setup(struct op_counter_config *ctr,
+ struct op_system_config *sys,
+ int num_ctrs)
+{
+ int i;
+
+ /*
+ * The performance counter event settings are given in the mmcr0,
+ * mmcr1 and mmcra values passed from the user in the
+ * op_system_config structure (sys variable).
+ */
+ mmcr0_val = sys->mmcr0;
+ mmcr1_val = sys->mmcr1;
+ mmcra_val = sys->mmcra;
+
+ /* Power 7+ and newer architectures:
+ * Determine which counter events in the group (the group of events is
+ * specified by the bit settings in the MMCR1 register) are marked
+ * events for use in the interrupt handler. Do the calculation once
+ * before OProfile starts. Information is used in the interrupt
+ * handler. Starting with Power 7+ we only record the sample for
+ * marked events if the SIAR valid bit is set. For non marked events
+ * the sample is always recorded.
+ */
+ if (pvr_version_is(PVR_POWER7p))
+ cntr_marked_events = power7_marked_instr_event(mmcr1_val);
+ else
+ cntr_marked_events = 0; /* For older processors, set the bit map
+ * to zero so the sample will always be
+ * be recorded.
+ */
+
+ for (i = 0; i < cur_cpu_spec->num_pmcs; ++i)
+ reset_value[i] = 0x80000000UL - ctr[i].count;
+
+ /* setup user and kernel profiling */
+ if (sys->enable_kernel)
+ mmcr0_val &= ~MMCR0_KERNEL_DISABLE;
+ else
+ mmcr0_val |= MMCR0_KERNEL_DISABLE;
+
+ if (sys->enable_user)
+ mmcr0_val &= ~MMCR0_PROBLEM_DISABLE;
+ else
+ mmcr0_val |= MMCR0_PROBLEM_DISABLE;
+
+ if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
+ pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
+ pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX) ||
+ pvr_version_is(PVR_POWER5) || pvr_version_is(PVR_POWER5p))
+ use_slot_nums = 1;
+
+ return 0;
+}
+
+extern void ppc_enable_pmcs(void);
+
+/*
+ * Older CPUs require the MMCRA sample bit to be always set, but newer
+ * CPUs only want it set for some groups. Eventually we will remove all
+ * knowledge of this bit in the kernel, oprofile userspace should be
+ * setting it when required.
+ *
+ * In order to keep current installations working we force the bit for
+ * those older CPUs. Once everyone has updated their oprofile userspace we
+ * can remove this hack.
+ */
+static inline int mmcra_must_set_sample(void)
+{
+ if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
+ pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
+ pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX))
+ return 1;
+
+ return 0;
+}
+
+static int power4_cpu_setup(struct op_counter_config *ctr)
+{
+ unsigned int mmcr0 = mmcr0_val;
+ unsigned long mmcra = mmcra_val;
+
+ ppc_enable_pmcs();
+
+ /* set the freeze bit */
+ mmcr0 |= MMCR0_FC;
+ mtspr(SPRN_MMCR0, mmcr0);
+
+ mmcr0 |= MMCR0_FCM1|MMCR0_PMXE|MMCR0_FCECE;
+ mmcr0 |= MMCR0_PMC1CE|MMCR0_PMCjCE;
+ mtspr(SPRN_MMCR0, mmcr0);
+
+ mtspr(SPRN_MMCR1, mmcr1_val);
+
+ if (mmcra_must_set_sample())
+ mmcra |= MMCRA_SAMPLE_ENABLE;
+ mtspr(SPRN_MMCRA, mmcra);
+
+ dbg("setup on cpu %d, mmcr0 %lx\n", smp_processor_id(),
+ mfspr(SPRN_MMCR0));
+ dbg("setup on cpu %d, mmcr1 %lx\n", smp_processor_id(),
+ mfspr(SPRN_MMCR1));
+ dbg("setup on cpu %d, mmcra %lx\n", smp_processor_id(),
+ mfspr(SPRN_MMCRA));
+
+ return 0;
+}
+
+static int power4_start(struct op_counter_config *ctr)
+{
+ int i;
+ unsigned int mmcr0;
+
+ /* set the PMM bit (see comment below) */
+ mtmsr(mfmsr() | MSR_PMM);
+
+ for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
+ if (ctr[i].enabled) {
+ classic_ctr_write(i, reset_value[i]);
+ } else {
+ classic_ctr_write(i, 0);
+ }
+ }
+
+ mmcr0 = mfspr(SPRN_MMCR0);
+
+ /*
+ * We must clear the PMAO bit on some (GQ) chips. Just do it
+ * all the time
+ */
+ mmcr0 &= ~MMCR0_PMAO;
+
+ /*
+ * now clear the freeze bit, counting will not start until we
+ * rfid from this excetion, because only at that point will
+ * the PMM bit be cleared
+ */
+ mmcr0 &= ~MMCR0_FC;
+ mtspr(SPRN_MMCR0, mmcr0);
+
+ oprofile_running = 1;
+
+ dbg("start on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
+ return 0;
+}
+
+static void power4_stop(void)
+{
+ unsigned int mmcr0;
+
+ /* freeze counters */
+ mmcr0 = mfspr(SPRN_MMCR0);
+ mmcr0 |= MMCR0_FC;
+ mtspr(SPRN_MMCR0, mmcr0);
+
+ oprofile_running = 0;
+
+ dbg("stop on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
+
+ mb();
+}
+
+/* Fake functions used by canonicalize_pc */
+static void __used hypervisor_bucket(void)
+{
+}
+
+static void __used rtas_bucket(void)
+{
+}
+
+static void __used kernel_unknown_bucket(void)
+{
+}
+
+/*
+ * On GQ and newer the MMCRA stores the HV and PR bits at the time
+ * the SIAR was sampled. We use that to work out if the SIAR was sampled in
+ * the hypervisor, our exception vectors or RTAS.
+ * If the MMCRA_SAMPLE_ENABLE bit is set, we can use the MMCRA[slot] bits
+ * to more accurately identify the address of the sampled instruction. The
+ * mmcra[slot] bits represent the slot number of a sampled instruction
+ * within an instruction group. The slot will contain a value between 1
+ * and 5 if MMCRA_SAMPLE_ENABLE is set, otherwise 0.
+ */
+static unsigned long get_pc(struct pt_regs *regs)
+{
+ unsigned long pc = mfspr(SPRN_SIAR);
+ unsigned long mmcra;
+ unsigned long slot;
+
+ /* Can't do much about it */
+ if (!cur_cpu_spec->oprofile_mmcra_sihv)
+ return pc;
+
+ mmcra = mfspr(SPRN_MMCRA);
+
+ if (use_slot_nums && (mmcra & MMCRA_SAMPLE_ENABLE)) {
+ slot = ((mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT);
+ if (slot > 1)
+ pc += 4 * (slot - 1);
+ }
+
+ /* Were we in the hypervisor? */
+ if (firmware_has_feature(FW_FEATURE_LPAR) &&
+ (mmcra & cur_cpu_spec->oprofile_mmcra_sihv))
+ /* function descriptor madness */
+ return *((unsigned long *)hypervisor_bucket);
+
+ /* We were in userspace, nothing to do */
+ if (mmcra & cur_cpu_spec->oprofile_mmcra_sipr)
+ return pc;
+
+#ifdef CONFIG_PPC_RTAS
+ /* Were we in RTAS? */
+ if (pc >= rtas.base && pc < (rtas.base + rtas.size))
+ /* function descriptor madness */
+ return *((unsigned long *)rtas_bucket);
+#endif
+
+ /* Were we in our exception vectors or SLB real mode miss handler? */
+ if (pc < 0x1000000UL)
+ return (unsigned long)__va(pc);
+
+ /* Not sure where we were */
+ if (!is_kernel_addr(pc))
+ /* function descriptor madness */
+ return *((unsigned long *)kernel_unknown_bucket);
+
+ return pc;
+}
+
+static int get_kernel(unsigned long pc, unsigned long mmcra)
+{
+ int is_kernel;
+
+ if (!cur_cpu_spec->oprofile_mmcra_sihv) {
+ is_kernel = is_kernel_addr(pc);
+ } else {
+ is_kernel = ((mmcra & cur_cpu_spec->oprofile_mmcra_sipr) == 0);
+ }
+
+ return is_kernel;
+}
+
+static bool pmc_overflow(unsigned long val)
+{
+ if ((int)val < 0)
+ return true;
+
+ /*
+ * Events on POWER7 can roll back if a speculative event doesn't
+ * eventually complete. Unfortunately in some rare cases they will
+ * raise a performance monitor exception. We need to catch this to
+ * ensure we reset the PMC. In all cases the PMC will be 256 or less
+ * cycles from overflow.
+ *
+ * We only do this if the first pass fails to find any overflowing
+ * PMCs because a user might set a period of less than 256 and we
+ * don't want to mistakenly reset them.
+ */
+ if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256))
+ return true;
+
+ return false;
+}
+
+static void power4_handle_interrupt(struct pt_regs *regs,
+ struct op_counter_config *ctr)
+{
+ unsigned long pc;
+ int is_kernel;
+ int val;
+ int i;
+ unsigned int mmcr0;
+ unsigned long mmcra;
+ bool siar_valid = false;
+
+ mmcra = mfspr(SPRN_MMCRA);
+
+ pc = get_pc(regs);
+ is_kernel = get_kernel(pc, mmcra);
+
+ /* set the PMM bit (see comment below) */
+ mtmsr(mfmsr() | MSR_PMM);
+
+ /* Check that the SIAR valid bit in MMCRA is set to 1. */
+ if ((mmcra & MMCRA_SIAR_VALID_MASK) == MMCRA_SIAR_VALID_MASK)
+ siar_valid = true;
+
+ for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
+ val = classic_ctr_read(i);
+ if (pmc_overflow(val)) {
+ if (oprofile_running && ctr[i].enabled) {
+ /* Power 7+ and newer architectures:
+ * If the event is a marked event, then only
+ * save the sample if the SIAR valid bit is
+ * set. If the event is not marked, then
+ * always save the sample.
+ * Note, the Sample enable bit in the MMCRA
+ * register must be set to 1 if the group
+ * contains a marked event.
+ */
+ if ((siar_valid &&
+ (cntr_marked_events & (1 << i)))
+ || !(cntr_marked_events & (1 << i)))
+ oprofile_add_ext_sample(pc, regs, i,
+ is_kernel);
+
+ classic_ctr_write(i, reset_value[i]);
+ } else {
+ classic_ctr_write(i, 0);
+ }
+ }
+ }
+
+ mmcr0 = mfspr(SPRN_MMCR0);
+
+ /* reset the perfmon trigger */
+ mmcr0 |= MMCR0_PMXE;
+
+ /*
+ * We must clear the PMAO bit on some (GQ) chips. Just do it
+ * all the time
+ */
+ mmcr0 &= ~MMCR0_PMAO;
+
+ /* Clear the appropriate bits in the MMCRA */
+ mmcra &= ~cur_cpu_spec->oprofile_mmcra_clear;
+ mtspr(SPRN_MMCRA, mmcra);
+
+ /*
+ * now clear the freeze bit, counting will not start until we
+ * rfid from this exception, because only at that point will
+ * the PMM bit be cleared
+ */
+ mmcr0 &= ~MMCR0_FC;
+ mtspr(SPRN_MMCR0, mmcr0);
+}
+
+struct op_powerpc_model op_model_power4 = {
+ .reg_setup = power4_reg_setup,
+ .cpu_setup = power4_cpu_setup,
+ .start = power4_start,
+ .stop = power4_stop,
+ .handle_interrupt = power4_handle_interrupt,
+};