summaryrefslogtreecommitdiffstats
path: root/arch/sparc/mm/init_64.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sparc/mm/init_64.c')
-rw-r--r--arch/sparc/mm/init_64.c3185
1 files changed, 3185 insertions, 0 deletions
diff --git a/arch/sparc/mm/init_64.c b/arch/sparc/mm/init_64.c
new file mode 100644
index 000000000..182bb7bda
--- /dev/null
+++ b/arch/sparc/mm/init_64.c
@@ -0,0 +1,3185 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * arch/sparc64/mm/init.c
+ *
+ * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
+ * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
+ */
+
+#include <linux/extable.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/memblock.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/initrd.h>
+#include <linux/swap.h>
+#include <linux/pagemap.h>
+#include <linux/poison.h>
+#include <linux/fs.h>
+#include <linux/seq_file.h>
+#include <linux/kprobes.h>
+#include <linux/cache.h>
+#include <linux/sort.h>
+#include <linux/ioport.h>
+#include <linux/percpu.h>
+#include <linux/mmzone.h>
+#include <linux/gfp.h>
+
+#include <asm/head.h>
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+#include <asm/oplib.h>
+#include <asm/iommu.h>
+#include <asm/io.h>
+#include <linux/uaccess.h>
+#include <asm/mmu_context.h>
+#include <asm/tlbflush.h>
+#include <asm/dma.h>
+#include <asm/starfire.h>
+#include <asm/tlb.h>
+#include <asm/spitfire.h>
+#include <asm/sections.h>
+#include <asm/tsb.h>
+#include <asm/hypervisor.h>
+#include <asm/prom.h>
+#include <asm/mdesc.h>
+#include <asm/cpudata.h>
+#include <asm/setup.h>
+#include <asm/irq.h>
+
+#include "init_64.h"
+
+unsigned long kern_linear_pte_xor[4] __read_mostly;
+static unsigned long page_cache4v_flag;
+
+/* A bitmap, two bits for every 256MB of physical memory. These two
+ * bits determine what page size we use for kernel linear
+ * translations. They form an index into kern_linear_pte_xor[]. The
+ * value in the indexed slot is XOR'd with the TLB miss virtual
+ * address to form the resulting TTE. The mapping is:
+ *
+ * 0 ==> 4MB
+ * 1 ==> 256MB
+ * 2 ==> 2GB
+ * 3 ==> 16GB
+ *
+ * All sun4v chips support 256MB pages. Only SPARC-T4 and later
+ * support 2GB pages, and hopefully future cpus will support the 16GB
+ * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
+ * if these larger page sizes are not supported by the cpu.
+ *
+ * It would be nice to determine this from the machine description
+ * 'cpu' properties, but we need to have this table setup before the
+ * MDESC is initialized.
+ */
+
+#ifndef CONFIG_DEBUG_PAGEALLOC
+/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
+ * Space is allocated for this right after the trap table in
+ * arch/sparc64/kernel/head.S
+ */
+extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
+#endif
+extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
+
+static unsigned long cpu_pgsz_mask;
+
+#define MAX_BANKS 1024
+
+static struct linux_prom64_registers pavail[MAX_BANKS];
+static int pavail_ents;
+
+u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
+
+static int cmp_p64(const void *a, const void *b)
+{
+ const struct linux_prom64_registers *x = a, *y = b;
+
+ if (x->phys_addr > y->phys_addr)
+ return 1;
+ if (x->phys_addr < y->phys_addr)
+ return -1;
+ return 0;
+}
+
+static void __init read_obp_memory(const char *property,
+ struct linux_prom64_registers *regs,
+ int *num_ents)
+{
+ phandle node = prom_finddevice("/memory");
+ int prop_size = prom_getproplen(node, property);
+ int ents, ret, i;
+
+ ents = prop_size / sizeof(struct linux_prom64_registers);
+ if (ents > MAX_BANKS) {
+ prom_printf("The machine has more %s property entries than "
+ "this kernel can support (%d).\n",
+ property, MAX_BANKS);
+ prom_halt();
+ }
+
+ ret = prom_getproperty(node, property, (char *) regs, prop_size);
+ if (ret == -1) {
+ prom_printf("Couldn't get %s property from /memory.\n",
+ property);
+ prom_halt();
+ }
+
+ /* Sanitize what we got from the firmware, by page aligning
+ * everything.
+ */
+ for (i = 0; i < ents; i++) {
+ unsigned long base, size;
+
+ base = regs[i].phys_addr;
+ size = regs[i].reg_size;
+
+ size &= PAGE_MASK;
+ if (base & ~PAGE_MASK) {
+ unsigned long new_base = PAGE_ALIGN(base);
+
+ size -= new_base - base;
+ if ((long) size < 0L)
+ size = 0UL;
+ base = new_base;
+ }
+ if (size == 0UL) {
+ /* If it is empty, simply get rid of it.
+ * This simplifies the logic of the other
+ * functions that process these arrays.
+ */
+ memmove(&regs[i], &regs[i + 1],
+ (ents - i - 1) * sizeof(regs[0]));
+ i--;
+ ents--;
+ continue;
+ }
+ regs[i].phys_addr = base;
+ regs[i].reg_size = size;
+ }
+
+ *num_ents = ents;
+
+ sort(regs, ents, sizeof(struct linux_prom64_registers),
+ cmp_p64, NULL);
+}
+
+/* Kernel physical address base and size in bytes. */
+unsigned long kern_base __read_mostly;
+unsigned long kern_size __read_mostly;
+
+/* Initial ramdisk setup */
+extern unsigned long sparc_ramdisk_image64;
+extern unsigned int sparc_ramdisk_image;
+extern unsigned int sparc_ramdisk_size;
+
+struct page *mem_map_zero __read_mostly;
+EXPORT_SYMBOL(mem_map_zero);
+
+unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
+
+unsigned long sparc64_kern_pri_context __read_mostly;
+unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
+unsigned long sparc64_kern_sec_context __read_mostly;
+
+int num_kernel_image_mappings;
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+atomic_t dcpage_flushes = ATOMIC_INIT(0);
+#ifdef CONFIG_SMP
+atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
+#endif
+#endif
+
+inline void flush_dcache_page_impl(struct page *page)
+{
+ BUG_ON(tlb_type == hypervisor);
+#ifdef CONFIG_DEBUG_DCFLUSH
+ atomic_inc(&dcpage_flushes);
+#endif
+
+#ifdef DCACHE_ALIASING_POSSIBLE
+ __flush_dcache_page(page_address(page),
+ ((tlb_type == spitfire) &&
+ page_mapping_file(page) != NULL));
+#else
+ if (page_mapping_file(page) != NULL &&
+ tlb_type == spitfire)
+ __flush_icache_page(__pa(page_address(page)));
+#endif
+}
+
+#define PG_dcache_dirty PG_arch_1
+#define PG_dcache_cpu_shift 32UL
+#define PG_dcache_cpu_mask \
+ ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
+
+#define dcache_dirty_cpu(page) \
+ (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
+
+static inline void set_dcache_dirty(struct page *page, int this_cpu)
+{
+ unsigned long mask = this_cpu;
+ unsigned long non_cpu_bits;
+
+ non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
+ mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
+
+ __asm__ __volatile__("1:\n\t"
+ "ldx [%2], %%g7\n\t"
+ "and %%g7, %1, %%g1\n\t"
+ "or %%g1, %0, %%g1\n\t"
+ "casx [%2], %%g7, %%g1\n\t"
+ "cmp %%g7, %%g1\n\t"
+ "bne,pn %%xcc, 1b\n\t"
+ " nop"
+ : /* no outputs */
+ : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
+ : "g1", "g7");
+}
+
+static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
+{
+ unsigned long mask = (1UL << PG_dcache_dirty);
+
+ __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
+ "1:\n\t"
+ "ldx [%2], %%g7\n\t"
+ "srlx %%g7, %4, %%g1\n\t"
+ "and %%g1, %3, %%g1\n\t"
+ "cmp %%g1, %0\n\t"
+ "bne,pn %%icc, 2f\n\t"
+ " andn %%g7, %1, %%g1\n\t"
+ "casx [%2], %%g7, %%g1\n\t"
+ "cmp %%g7, %%g1\n\t"
+ "bne,pn %%xcc, 1b\n\t"
+ " nop\n"
+ "2:"
+ : /* no outputs */
+ : "r" (cpu), "r" (mask), "r" (&page->flags),
+ "i" (PG_dcache_cpu_mask),
+ "i" (PG_dcache_cpu_shift)
+ : "g1", "g7");
+}
+
+static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
+{
+ unsigned long tsb_addr = (unsigned long) ent;
+
+ if (tlb_type == cheetah_plus || tlb_type == hypervisor)
+ tsb_addr = __pa(tsb_addr);
+
+ __tsb_insert(tsb_addr, tag, pte);
+}
+
+unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
+
+static void flush_dcache(unsigned long pfn)
+{
+ struct page *page;
+
+ page = pfn_to_page(pfn);
+ if (page) {
+ unsigned long pg_flags;
+
+ pg_flags = page->flags;
+ if (pg_flags & (1UL << PG_dcache_dirty)) {
+ int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
+ PG_dcache_cpu_mask);
+ int this_cpu = get_cpu();
+
+ /* This is just to optimize away some function calls
+ * in the SMP case.
+ */
+ if (cpu == this_cpu)
+ flush_dcache_page_impl(page);
+ else
+ smp_flush_dcache_page_impl(page, cpu);
+
+ clear_dcache_dirty_cpu(page, cpu);
+
+ put_cpu();
+ }
+ }
+}
+
+/* mm->context.lock must be held */
+static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
+ unsigned long tsb_hash_shift, unsigned long address,
+ unsigned long tte)
+{
+ struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
+ unsigned long tag;
+
+ if (unlikely(!tsb))
+ return;
+
+ tsb += ((address >> tsb_hash_shift) &
+ (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
+ tag = (address >> 22UL);
+ tsb_insert(tsb, tag, tte);
+}
+
+#ifdef CONFIG_HUGETLB_PAGE
+static int __init hugetlbpage_init(void)
+{
+ hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
+ hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
+ hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
+ hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
+
+ return 0;
+}
+
+arch_initcall(hugetlbpage_init);
+
+static void __init pud_huge_patch(void)
+{
+ struct pud_huge_patch_entry *p;
+ unsigned long addr;
+
+ p = &__pud_huge_patch;
+ addr = p->addr;
+ *(unsigned int *)addr = p->insn;
+
+ __asm__ __volatile__("flush %0" : : "r" (addr));
+}
+
+bool __init arch_hugetlb_valid_size(unsigned long size)
+{
+ unsigned int hugepage_shift = ilog2(size);
+ unsigned short hv_pgsz_idx;
+ unsigned int hv_pgsz_mask;
+
+ switch (hugepage_shift) {
+ case HPAGE_16GB_SHIFT:
+ hv_pgsz_mask = HV_PGSZ_MASK_16GB;
+ hv_pgsz_idx = HV_PGSZ_IDX_16GB;
+ pud_huge_patch();
+ break;
+ case HPAGE_2GB_SHIFT:
+ hv_pgsz_mask = HV_PGSZ_MASK_2GB;
+ hv_pgsz_idx = HV_PGSZ_IDX_2GB;
+ break;
+ case HPAGE_256MB_SHIFT:
+ hv_pgsz_mask = HV_PGSZ_MASK_256MB;
+ hv_pgsz_idx = HV_PGSZ_IDX_256MB;
+ break;
+ case HPAGE_SHIFT:
+ hv_pgsz_mask = HV_PGSZ_MASK_4MB;
+ hv_pgsz_idx = HV_PGSZ_IDX_4MB;
+ break;
+ case HPAGE_64K_SHIFT:
+ hv_pgsz_mask = HV_PGSZ_MASK_64K;
+ hv_pgsz_idx = HV_PGSZ_IDX_64K;
+ break;
+ default:
+ hv_pgsz_mask = 0;
+ }
+
+ if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
+ return false;
+
+ return true;
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
+{
+ struct mm_struct *mm;
+ unsigned long flags;
+ bool is_huge_tsb;
+ pte_t pte = *ptep;
+
+ if (tlb_type != hypervisor) {
+ unsigned long pfn = pte_pfn(pte);
+
+ if (pfn_valid(pfn))
+ flush_dcache(pfn);
+ }
+
+ mm = vma->vm_mm;
+
+ /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
+ if (!pte_accessible(mm, pte))
+ return;
+
+ spin_lock_irqsave(&mm->context.lock, flags);
+
+ is_huge_tsb = false;
+#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
+ if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
+ unsigned long hugepage_size = PAGE_SIZE;
+
+ if (is_vm_hugetlb_page(vma))
+ hugepage_size = huge_page_size(hstate_vma(vma));
+
+ if (hugepage_size >= PUD_SIZE) {
+ unsigned long mask = 0x1ffc00000UL;
+
+ /* Transfer bits [32:22] from address to resolve
+ * at 4M granularity.
+ */
+ pte_val(pte) &= ~mask;
+ pte_val(pte) |= (address & mask);
+ } else if (hugepage_size >= PMD_SIZE) {
+ /* We are fabricating 8MB pages using 4MB
+ * real hw pages.
+ */
+ pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
+ }
+
+ if (hugepage_size >= PMD_SIZE) {
+ __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
+ REAL_HPAGE_SHIFT, address, pte_val(pte));
+ is_huge_tsb = true;
+ }
+ }
+#endif
+ if (!is_huge_tsb)
+ __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
+ address, pte_val(pte));
+
+ spin_unlock_irqrestore(&mm->context.lock, flags);
+}
+
+void flush_dcache_page(struct page *page)
+{
+ struct address_space *mapping;
+ int this_cpu;
+
+ if (tlb_type == hypervisor)
+ return;
+
+ /* Do not bother with the expensive D-cache flush if it
+ * is merely the zero page. The 'bigcore' testcase in GDB
+ * causes this case to run millions of times.
+ */
+ if (page == ZERO_PAGE(0))
+ return;
+
+ this_cpu = get_cpu();
+
+ mapping = page_mapping_file(page);
+ if (mapping && !mapping_mapped(mapping)) {
+ int dirty = test_bit(PG_dcache_dirty, &page->flags);
+ if (dirty) {
+ int dirty_cpu = dcache_dirty_cpu(page);
+
+ if (dirty_cpu == this_cpu)
+ goto out;
+ smp_flush_dcache_page_impl(page, dirty_cpu);
+ }
+ set_dcache_dirty(page, this_cpu);
+ } else {
+ /* We could delay the flush for the !page_mapping
+ * case too. But that case is for exec env/arg
+ * pages and those are %99 certainly going to get
+ * faulted into the tlb (and thus flushed) anyways.
+ */
+ flush_dcache_page_impl(page);
+ }
+
+out:
+ put_cpu();
+}
+EXPORT_SYMBOL(flush_dcache_page);
+
+void __kprobes flush_icache_range(unsigned long start, unsigned long end)
+{
+ /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
+ if (tlb_type == spitfire) {
+ unsigned long kaddr;
+
+ /* This code only runs on Spitfire cpus so this is
+ * why we can assume _PAGE_PADDR_4U.
+ */
+ for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
+ unsigned long paddr, mask = _PAGE_PADDR_4U;
+
+ if (kaddr >= PAGE_OFFSET)
+ paddr = kaddr & mask;
+ else {
+ pte_t *ptep = virt_to_kpte(kaddr);
+
+ paddr = pte_val(*ptep) & mask;
+ }
+ __flush_icache_page(paddr);
+ }
+ }
+}
+EXPORT_SYMBOL(flush_icache_range);
+
+void mmu_info(struct seq_file *m)
+{
+ static const char *pgsz_strings[] = {
+ "8K", "64K", "512K", "4MB", "32MB",
+ "256MB", "2GB", "16GB",
+ };
+ int i, printed;
+
+ if (tlb_type == cheetah)
+ seq_printf(m, "MMU Type\t: Cheetah\n");
+ else if (tlb_type == cheetah_plus)
+ seq_printf(m, "MMU Type\t: Cheetah+\n");
+ else if (tlb_type == spitfire)
+ seq_printf(m, "MMU Type\t: Spitfire\n");
+ else if (tlb_type == hypervisor)
+ seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
+ else
+ seq_printf(m, "MMU Type\t: ???\n");
+
+ seq_printf(m, "MMU PGSZs\t: ");
+ printed = 0;
+ for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
+ if (cpu_pgsz_mask & (1UL << i)) {
+ seq_printf(m, "%s%s",
+ printed ? "," : "", pgsz_strings[i]);
+ printed++;
+ }
+ }
+ seq_putc(m, '\n');
+
+#ifdef CONFIG_DEBUG_DCFLUSH
+ seq_printf(m, "DCPageFlushes\t: %d\n",
+ atomic_read(&dcpage_flushes));
+#ifdef CONFIG_SMP
+ seq_printf(m, "DCPageFlushesXC\t: %d\n",
+ atomic_read(&dcpage_flushes_xcall));
+#endif /* CONFIG_SMP */
+#endif /* CONFIG_DEBUG_DCFLUSH */
+}
+
+struct linux_prom_translation prom_trans[512] __read_mostly;
+unsigned int prom_trans_ents __read_mostly;
+
+unsigned long kern_locked_tte_data;
+
+/* The obp translations are saved based on 8k pagesize, since obp can
+ * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
+ * HI_OBP_ADDRESS range are handled in ktlb.S.
+ */
+static inline int in_obp_range(unsigned long vaddr)
+{
+ return (vaddr >= LOW_OBP_ADDRESS &&
+ vaddr < HI_OBP_ADDRESS);
+}
+
+static int cmp_ptrans(const void *a, const void *b)
+{
+ const struct linux_prom_translation *x = a, *y = b;
+
+ if (x->virt > y->virt)
+ return 1;
+ if (x->virt < y->virt)
+ return -1;
+ return 0;
+}
+
+/* Read OBP translations property into 'prom_trans[]'. */
+static void __init read_obp_translations(void)
+{
+ int n, node, ents, first, last, i;
+
+ node = prom_finddevice("/virtual-memory");
+ n = prom_getproplen(node, "translations");
+ if (unlikely(n == 0 || n == -1)) {
+ prom_printf("prom_mappings: Couldn't get size.\n");
+ prom_halt();
+ }
+ if (unlikely(n > sizeof(prom_trans))) {
+ prom_printf("prom_mappings: Size %d is too big.\n", n);
+ prom_halt();
+ }
+
+ if ((n = prom_getproperty(node, "translations",
+ (char *)&prom_trans[0],
+ sizeof(prom_trans))) == -1) {
+ prom_printf("prom_mappings: Couldn't get property.\n");
+ prom_halt();
+ }
+
+ n = n / sizeof(struct linux_prom_translation);
+
+ ents = n;
+
+ sort(prom_trans, ents, sizeof(struct linux_prom_translation),
+ cmp_ptrans, NULL);
+
+ /* Now kick out all the non-OBP entries. */
+ for (i = 0; i < ents; i++) {
+ if (in_obp_range(prom_trans[i].virt))
+ break;
+ }
+ first = i;
+ for (; i < ents; i++) {
+ if (!in_obp_range(prom_trans[i].virt))
+ break;
+ }
+ last = i;
+
+ for (i = 0; i < (last - first); i++) {
+ struct linux_prom_translation *src = &prom_trans[i + first];
+ struct linux_prom_translation *dest = &prom_trans[i];
+
+ *dest = *src;
+ }
+ for (; i < ents; i++) {
+ struct linux_prom_translation *dest = &prom_trans[i];
+ dest->virt = dest->size = dest->data = 0x0UL;
+ }
+
+ prom_trans_ents = last - first;
+
+ if (tlb_type == spitfire) {
+ /* Clear diag TTE bits. */
+ for (i = 0; i < prom_trans_ents; i++)
+ prom_trans[i].data &= ~0x0003fe0000000000UL;
+ }
+
+ /* Force execute bit on. */
+ for (i = 0; i < prom_trans_ents; i++)
+ prom_trans[i].data |= (tlb_type == hypervisor ?
+ _PAGE_EXEC_4V : _PAGE_EXEC_4U);
+}
+
+static void __init hypervisor_tlb_lock(unsigned long vaddr,
+ unsigned long pte,
+ unsigned long mmu)
+{
+ unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
+
+ if (ret != 0) {
+ prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
+ "errors with %lx\n", vaddr, 0, pte, mmu, ret);
+ prom_halt();
+ }
+}
+
+static unsigned long kern_large_tte(unsigned long paddr);
+
+static void __init remap_kernel(void)
+{
+ unsigned long phys_page, tte_vaddr, tte_data;
+ int i, tlb_ent = sparc64_highest_locked_tlbent();
+
+ tte_vaddr = (unsigned long) KERNBASE;
+ phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
+ tte_data = kern_large_tte(phys_page);
+
+ kern_locked_tte_data = tte_data;
+
+ /* Now lock us into the TLBs via Hypervisor or OBP. */
+ if (tlb_type == hypervisor) {
+ for (i = 0; i < num_kernel_image_mappings; i++) {
+ hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
+ hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
+ tte_vaddr += 0x400000;
+ tte_data += 0x400000;
+ }
+ } else {
+ for (i = 0; i < num_kernel_image_mappings; i++) {
+ prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
+ prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
+ tte_vaddr += 0x400000;
+ tte_data += 0x400000;
+ }
+ sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
+ }
+ if (tlb_type == cheetah_plus) {
+ sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
+ CTX_CHEETAH_PLUS_NUC);
+ sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
+ sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
+ }
+}
+
+
+static void __init inherit_prom_mappings(void)
+{
+ /* Now fixup OBP's idea about where we really are mapped. */
+ printk("Remapping the kernel... ");
+ remap_kernel();
+ printk("done.\n");
+}
+
+void prom_world(int enter)
+{
+ if (!enter)
+ set_fs(get_fs());
+
+ __asm__ __volatile__("flushw");
+}
+
+void __flush_dcache_range(unsigned long start, unsigned long end)
+{
+ unsigned long va;
+
+ if (tlb_type == spitfire) {
+ int n = 0;
+
+ for (va = start; va < end; va += 32) {
+ spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
+ if (++n >= 512)
+ break;
+ }
+ } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+ start = __pa(start);
+ end = __pa(end);
+ for (va = start; va < end; va += 32)
+ __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
+ "membar #Sync"
+ : /* no outputs */
+ : "r" (va),
+ "i" (ASI_DCACHE_INVALIDATE));
+ }
+}
+EXPORT_SYMBOL(__flush_dcache_range);
+
+/* get_new_mmu_context() uses "cache + 1". */
+DEFINE_SPINLOCK(ctx_alloc_lock);
+unsigned long tlb_context_cache = CTX_FIRST_VERSION;
+#define MAX_CTX_NR (1UL << CTX_NR_BITS)
+#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
+DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
+DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
+
+static void mmu_context_wrap(void)
+{
+ unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
+ unsigned long new_ver, new_ctx, old_ctx;
+ struct mm_struct *mm;
+ int cpu;
+
+ bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
+
+ /* Reserve kernel context */
+ set_bit(0, mmu_context_bmap);
+
+ new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
+ if (unlikely(new_ver == 0))
+ new_ver = CTX_FIRST_VERSION;
+ tlb_context_cache = new_ver;
+
+ /*
+ * Make sure that any new mm that are added into per_cpu_secondary_mm,
+ * are going to go through get_new_mmu_context() path.
+ */
+ mb();
+
+ /*
+ * Updated versions to current on those CPUs that had valid secondary
+ * contexts
+ */
+ for_each_online_cpu(cpu) {
+ /*
+ * If a new mm is stored after we took this mm from the array,
+ * it will go into get_new_mmu_context() path, because we
+ * already bumped the version in tlb_context_cache.
+ */
+ mm = per_cpu(per_cpu_secondary_mm, cpu);
+
+ if (unlikely(!mm || mm == &init_mm))
+ continue;
+
+ old_ctx = mm->context.sparc64_ctx_val;
+ if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
+ new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
+ set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
+ mm->context.sparc64_ctx_val = new_ctx;
+ }
+ }
+}
+
+/* Caller does TLB context flushing on local CPU if necessary.
+ * The caller also ensures that CTX_VALID(mm->context) is false.
+ *
+ * We must be careful about boundary cases so that we never
+ * let the user have CTX 0 (nucleus) or we ever use a CTX
+ * version of zero (and thus NO_CONTEXT would not be caught
+ * by version mis-match tests in mmu_context.h).
+ *
+ * Always invoked with interrupts disabled.
+ */
+void get_new_mmu_context(struct mm_struct *mm)
+{
+ unsigned long ctx, new_ctx;
+ unsigned long orig_pgsz_bits;
+
+ spin_lock(&ctx_alloc_lock);
+retry:
+ /* wrap might have happened, test again if our context became valid */
+ if (unlikely(CTX_VALID(mm->context)))
+ goto out;
+ orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
+ ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
+ new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
+ if (new_ctx >= (1 << CTX_NR_BITS)) {
+ new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
+ if (new_ctx >= ctx) {
+ mmu_context_wrap();
+ goto retry;
+ }
+ }
+ if (mm->context.sparc64_ctx_val)
+ cpumask_clear(mm_cpumask(mm));
+ mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
+ new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
+ tlb_context_cache = new_ctx;
+ mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
+out:
+ spin_unlock(&ctx_alloc_lock);
+}
+
+static int numa_enabled = 1;
+static int numa_debug;
+
+static int __init early_numa(char *p)
+{
+ if (!p)
+ return 0;
+
+ if (strstr(p, "off"))
+ numa_enabled = 0;
+
+ if (strstr(p, "debug"))
+ numa_debug = 1;
+
+ return 0;
+}
+early_param("numa", early_numa);
+
+#define numadbg(f, a...) \
+do { if (numa_debug) \
+ printk(KERN_INFO f, ## a); \
+} while (0)
+
+static void __init find_ramdisk(unsigned long phys_base)
+{
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (sparc_ramdisk_image || sparc_ramdisk_image64) {
+ unsigned long ramdisk_image;
+
+ /* Older versions of the bootloader only supported a
+ * 32-bit physical address for the ramdisk image
+ * location, stored at sparc_ramdisk_image. Newer
+ * SILO versions set sparc_ramdisk_image to zero and
+ * provide a full 64-bit physical address at
+ * sparc_ramdisk_image64.
+ */
+ ramdisk_image = sparc_ramdisk_image;
+ if (!ramdisk_image)
+ ramdisk_image = sparc_ramdisk_image64;
+
+ /* Another bootloader quirk. The bootloader normalizes
+ * the physical address to KERNBASE, so we have to
+ * factor that back out and add in the lowest valid
+ * physical page address to get the true physical address.
+ */
+ ramdisk_image -= KERNBASE;
+ ramdisk_image += phys_base;
+
+ numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
+ ramdisk_image, sparc_ramdisk_size);
+
+ initrd_start = ramdisk_image;
+ initrd_end = ramdisk_image + sparc_ramdisk_size;
+
+ memblock_reserve(initrd_start, sparc_ramdisk_size);
+
+ initrd_start += PAGE_OFFSET;
+ initrd_end += PAGE_OFFSET;
+ }
+#endif
+}
+
+struct node_mem_mask {
+ unsigned long mask;
+ unsigned long match;
+};
+static struct node_mem_mask node_masks[MAX_NUMNODES];
+static int num_node_masks;
+
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+
+struct mdesc_mlgroup {
+ u64 node;
+ u64 latency;
+ u64 match;
+ u64 mask;
+};
+
+static struct mdesc_mlgroup *mlgroups;
+static int num_mlgroups;
+
+int numa_cpu_lookup_table[NR_CPUS];
+cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
+
+struct mdesc_mblock {
+ u64 base;
+ u64 size;
+ u64 offset; /* RA-to-PA */
+};
+static struct mdesc_mblock *mblocks;
+static int num_mblocks;
+
+static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
+{
+ struct mdesc_mblock *m = NULL;
+ int i;
+
+ for (i = 0; i < num_mblocks; i++) {
+ m = &mblocks[i];
+
+ if (addr >= m->base &&
+ addr < (m->base + m->size)) {
+ break;
+ }
+ }
+
+ return m;
+}
+
+static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
+{
+ int prev_nid, new_nid;
+
+ prev_nid = NUMA_NO_NODE;
+ for ( ; start < end; start += PAGE_SIZE) {
+ for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
+ struct node_mem_mask *p = &node_masks[new_nid];
+
+ if ((start & p->mask) == p->match) {
+ if (prev_nid == NUMA_NO_NODE)
+ prev_nid = new_nid;
+ break;
+ }
+ }
+
+ if (new_nid == num_node_masks) {
+ prev_nid = 0;
+ WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
+ start);
+ break;
+ }
+
+ if (prev_nid != new_nid)
+ break;
+ }
+ *nid = prev_nid;
+
+ return start > end ? end : start;
+}
+
+static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
+{
+ u64 ret_end, pa_start, m_mask, m_match, m_end;
+ struct mdesc_mblock *mblock;
+ int _nid, i;
+
+ if (tlb_type != hypervisor)
+ return memblock_nid_range_sun4u(start, end, nid);
+
+ mblock = addr_to_mblock(start);
+ if (!mblock) {
+ WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
+ start);
+
+ _nid = 0;
+ ret_end = end;
+ goto done;
+ }
+
+ pa_start = start + mblock->offset;
+ m_match = 0;
+ m_mask = 0;
+
+ for (_nid = 0; _nid < num_node_masks; _nid++) {
+ struct node_mem_mask *const m = &node_masks[_nid];
+
+ if ((pa_start & m->mask) == m->match) {
+ m_match = m->match;
+ m_mask = m->mask;
+ break;
+ }
+ }
+
+ if (num_node_masks == _nid) {
+ /* We could not find NUMA group, so default to 0, but lets
+ * search for latency group, so we could calculate the correct
+ * end address that we return
+ */
+ _nid = 0;
+
+ for (i = 0; i < num_mlgroups; i++) {
+ struct mdesc_mlgroup *const m = &mlgroups[i];
+
+ if ((pa_start & m->mask) == m->match) {
+ m_match = m->match;
+ m_mask = m->mask;
+ break;
+ }
+ }
+
+ if (i == num_mlgroups) {
+ WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
+ start);
+
+ ret_end = end;
+ goto done;
+ }
+ }
+
+ /*
+ * Each latency group has match and mask, and each memory block has an
+ * offset. An address belongs to a latency group if its address matches
+ * the following formula: ((addr + offset) & mask) == match
+ * It is, however, slow to check every single page if it matches a
+ * particular latency group. As optimization we calculate end value by
+ * using bit arithmetics.
+ */
+ m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
+ m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
+ ret_end = m_end > end ? end : m_end;
+
+done:
+ *nid = _nid;
+ return ret_end;
+}
+#endif
+
+/* This must be invoked after performing all of the necessary
+ * memblock_set_node() calls for 'nid'. We need to be able to get
+ * correct data from get_pfn_range_for_nid().
+ */
+static void __init allocate_node_data(int nid)
+{
+ struct pglist_data *p;
+ unsigned long start_pfn, end_pfn;
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+
+ NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
+ SMP_CACHE_BYTES, nid);
+ if (!NODE_DATA(nid)) {
+ prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
+ prom_halt();
+ }
+
+ NODE_DATA(nid)->node_id = nid;
+#endif
+
+ p = NODE_DATA(nid);
+
+ get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+ p->node_start_pfn = start_pfn;
+ p->node_spanned_pages = end_pfn - start_pfn;
+}
+
+static void init_node_masks_nonnuma(void)
+{
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+ int i;
+#endif
+
+ numadbg("Initializing tables for non-numa.\n");
+
+ node_masks[0].mask = 0;
+ node_masks[0].match = 0;
+ num_node_masks = 1;
+
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+ for (i = 0; i < NR_CPUS; i++)
+ numa_cpu_lookup_table[i] = 0;
+
+ cpumask_setall(&numa_cpumask_lookup_table[0]);
+#endif
+}
+
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+struct pglist_data *node_data[MAX_NUMNODES];
+
+EXPORT_SYMBOL(numa_cpu_lookup_table);
+EXPORT_SYMBOL(numa_cpumask_lookup_table);
+EXPORT_SYMBOL(node_data);
+
+static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
+ u32 cfg_handle)
+{
+ u64 arc;
+
+ mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
+ u64 target = mdesc_arc_target(md, arc);
+ const u64 *val;
+
+ val = mdesc_get_property(md, target,
+ "cfg-handle", NULL);
+ if (val && *val == cfg_handle)
+ return 0;
+ }
+ return -ENODEV;
+}
+
+static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
+ u32 cfg_handle)
+{
+ u64 arc, candidate, best_latency = ~(u64)0;
+
+ candidate = MDESC_NODE_NULL;
+ mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
+ u64 target = mdesc_arc_target(md, arc);
+ const char *name = mdesc_node_name(md, target);
+ const u64 *val;
+
+ if (strcmp(name, "pio-latency-group"))
+ continue;
+
+ val = mdesc_get_property(md, target, "latency", NULL);
+ if (!val)
+ continue;
+
+ if (*val < best_latency) {
+ candidate = target;
+ best_latency = *val;
+ }
+ }
+
+ if (candidate == MDESC_NODE_NULL)
+ return -ENODEV;
+
+ return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
+}
+
+int of_node_to_nid(struct device_node *dp)
+{
+ const struct linux_prom64_registers *regs;
+ struct mdesc_handle *md;
+ u32 cfg_handle;
+ int count, nid;
+ u64 grp;
+
+ /* This is the right thing to do on currently supported
+ * SUN4U NUMA platforms as well, as the PCI controller does
+ * not sit behind any particular memory controller.
+ */
+ if (!mlgroups)
+ return -1;
+
+ regs = of_get_property(dp, "reg", NULL);
+ if (!regs)
+ return -1;
+
+ cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
+
+ md = mdesc_grab();
+
+ count = 0;
+ nid = NUMA_NO_NODE;
+ mdesc_for_each_node_by_name(md, grp, "group") {
+ if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
+ nid = count;
+ break;
+ }
+ count++;
+ }
+
+ mdesc_release(md);
+
+ return nid;
+}
+
+static void __init add_node_ranges(void)
+{
+ phys_addr_t start, end;
+ unsigned long prev_max;
+ u64 i;
+
+memblock_resized:
+ prev_max = memblock.memory.max;
+
+ for_each_mem_range(i, &start, &end) {
+ while (start < end) {
+ unsigned long this_end;
+ int nid;
+
+ this_end = memblock_nid_range(start, end, &nid);
+
+ numadbg("Setting memblock NUMA node nid[%d] "
+ "start[%llx] end[%lx]\n",
+ nid, start, this_end);
+
+ memblock_set_node(start, this_end - start,
+ &memblock.memory, nid);
+ if (memblock.memory.max != prev_max)
+ goto memblock_resized;
+ start = this_end;
+ }
+ }
+}
+
+static int __init grab_mlgroups(struct mdesc_handle *md)
+{
+ unsigned long paddr;
+ int count = 0;
+ u64 node;
+
+ mdesc_for_each_node_by_name(md, node, "memory-latency-group")
+ count++;
+ if (!count)
+ return -ENOENT;
+
+ paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
+ SMP_CACHE_BYTES);
+ if (!paddr)
+ return -ENOMEM;
+
+ mlgroups = __va(paddr);
+ num_mlgroups = count;
+
+ count = 0;
+ mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
+ struct mdesc_mlgroup *m = &mlgroups[count++];
+ const u64 *val;
+
+ m->node = node;
+
+ val = mdesc_get_property(md, node, "latency", NULL);
+ m->latency = *val;
+ val = mdesc_get_property(md, node, "address-match", NULL);
+ m->match = *val;
+ val = mdesc_get_property(md, node, "address-mask", NULL);
+ m->mask = *val;
+
+ numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
+ "match[%llx] mask[%llx]\n",
+ count - 1, m->node, m->latency, m->match, m->mask);
+ }
+
+ return 0;
+}
+
+static int __init grab_mblocks(struct mdesc_handle *md)
+{
+ unsigned long paddr;
+ int count = 0;
+ u64 node;
+
+ mdesc_for_each_node_by_name(md, node, "mblock")
+ count++;
+ if (!count)
+ return -ENOENT;
+
+ paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
+ SMP_CACHE_BYTES);
+ if (!paddr)
+ return -ENOMEM;
+
+ mblocks = __va(paddr);
+ num_mblocks = count;
+
+ count = 0;
+ mdesc_for_each_node_by_name(md, node, "mblock") {
+ struct mdesc_mblock *m = &mblocks[count++];
+ const u64 *val;
+
+ val = mdesc_get_property(md, node, "base", NULL);
+ m->base = *val;
+ val = mdesc_get_property(md, node, "size", NULL);
+ m->size = *val;
+ val = mdesc_get_property(md, node,
+ "address-congruence-offset", NULL);
+
+ /* The address-congruence-offset property is optional.
+ * Explicity zero it be identifty this.
+ */
+ if (val)
+ m->offset = *val;
+ else
+ m->offset = 0UL;
+
+ numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
+ count - 1, m->base, m->size, m->offset);
+ }
+
+ return 0;
+}
+
+static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
+ u64 grp, cpumask_t *mask)
+{
+ u64 arc;
+
+ cpumask_clear(mask);
+
+ mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
+ u64 target = mdesc_arc_target(md, arc);
+ const char *name = mdesc_node_name(md, target);
+ const u64 *id;
+
+ if (strcmp(name, "cpu"))
+ continue;
+ id = mdesc_get_property(md, target, "id", NULL);
+ if (*id < nr_cpu_ids)
+ cpumask_set_cpu(*id, mask);
+ }
+}
+
+static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
+{
+ int i;
+
+ for (i = 0; i < num_mlgroups; i++) {
+ struct mdesc_mlgroup *m = &mlgroups[i];
+ if (m->node == node)
+ return m;
+ }
+ return NULL;
+}
+
+int __node_distance(int from, int to)
+{
+ if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
+ pr_warn("Returning default NUMA distance value for %d->%d\n",
+ from, to);
+ return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
+ }
+ return numa_latency[from][to];
+}
+EXPORT_SYMBOL(__node_distance);
+
+static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
+{
+ int i;
+
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ struct node_mem_mask *n = &node_masks[i];
+
+ if ((grp->mask == n->mask) && (grp->match == n->match))
+ break;
+ }
+ return i;
+}
+
+static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
+ u64 grp, int index)
+{
+ u64 arc;
+
+ mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
+ int tnode;
+ u64 target = mdesc_arc_target(md, arc);
+ struct mdesc_mlgroup *m = find_mlgroup(target);
+
+ if (!m)
+ continue;
+ tnode = find_best_numa_node_for_mlgroup(m);
+ if (tnode == MAX_NUMNODES)
+ continue;
+ numa_latency[index][tnode] = m->latency;
+ }
+}
+
+static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
+ int index)
+{
+ struct mdesc_mlgroup *candidate = NULL;
+ u64 arc, best_latency = ~(u64)0;
+ struct node_mem_mask *n;
+
+ mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
+ u64 target = mdesc_arc_target(md, arc);
+ struct mdesc_mlgroup *m = find_mlgroup(target);
+ if (!m)
+ continue;
+ if (m->latency < best_latency) {
+ candidate = m;
+ best_latency = m->latency;
+ }
+ }
+ if (!candidate)
+ return -ENOENT;
+
+ if (num_node_masks != index) {
+ printk(KERN_ERR "Inconsistent NUMA state, "
+ "index[%d] != num_node_masks[%d]\n",
+ index, num_node_masks);
+ return -EINVAL;
+ }
+
+ n = &node_masks[num_node_masks++];
+
+ n->mask = candidate->mask;
+ n->match = candidate->match;
+
+ numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
+ index, n->mask, n->match, candidate->latency);
+
+ return 0;
+}
+
+static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
+ int index)
+{
+ cpumask_t mask;
+ int cpu;
+
+ numa_parse_mdesc_group_cpus(md, grp, &mask);
+
+ for_each_cpu(cpu, &mask)
+ numa_cpu_lookup_table[cpu] = index;
+ cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
+
+ if (numa_debug) {
+ printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
+ for_each_cpu(cpu, &mask)
+ printk("%d ", cpu);
+ printk("]\n");
+ }
+
+ return numa_attach_mlgroup(md, grp, index);
+}
+
+static int __init numa_parse_mdesc(void)
+{
+ struct mdesc_handle *md = mdesc_grab();
+ int i, j, err, count;
+ u64 node;
+
+ node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
+ if (node == MDESC_NODE_NULL) {
+ mdesc_release(md);
+ return -ENOENT;
+ }
+
+ err = grab_mblocks(md);
+ if (err < 0)
+ goto out;
+
+ err = grab_mlgroups(md);
+ if (err < 0)
+ goto out;
+
+ count = 0;
+ mdesc_for_each_node_by_name(md, node, "group") {
+ err = numa_parse_mdesc_group(md, node, count);
+ if (err < 0)
+ break;
+ count++;
+ }
+
+ count = 0;
+ mdesc_for_each_node_by_name(md, node, "group") {
+ find_numa_latencies_for_group(md, node, count);
+ count++;
+ }
+
+ /* Normalize numa latency matrix according to ACPI SLIT spec. */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ u64 self_latency = numa_latency[i][i];
+
+ for (j = 0; j < MAX_NUMNODES; j++) {
+ numa_latency[i][j] =
+ (numa_latency[i][j] * LOCAL_DISTANCE) /
+ self_latency;
+ }
+ }
+
+ add_node_ranges();
+
+ for (i = 0; i < num_node_masks; i++) {
+ allocate_node_data(i);
+ node_set_online(i);
+ }
+
+ err = 0;
+out:
+ mdesc_release(md);
+ return err;
+}
+
+static int __init numa_parse_jbus(void)
+{
+ unsigned long cpu, index;
+
+ /* NUMA node id is encoded in bits 36 and higher, and there is
+ * a 1-to-1 mapping from CPU ID to NUMA node ID.
+ */
+ index = 0;
+ for_each_present_cpu(cpu) {
+ numa_cpu_lookup_table[cpu] = index;
+ cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
+ node_masks[index].mask = ~((1UL << 36UL) - 1UL);
+ node_masks[index].match = cpu << 36UL;
+
+ index++;
+ }
+ num_node_masks = index;
+
+ add_node_ranges();
+
+ for (index = 0; index < num_node_masks; index++) {
+ allocate_node_data(index);
+ node_set_online(index);
+ }
+
+ return 0;
+}
+
+static int __init numa_parse_sun4u(void)
+{
+ if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+ unsigned long ver;
+
+ __asm__ ("rdpr %%ver, %0" : "=r" (ver));
+ if ((ver >> 32UL) == __JALAPENO_ID ||
+ (ver >> 32UL) == __SERRANO_ID)
+ return numa_parse_jbus();
+ }
+ return -1;
+}
+
+static int __init bootmem_init_numa(void)
+{
+ int i, j;
+ int err = -1;
+
+ numadbg("bootmem_init_numa()\n");
+
+ /* Some sane defaults for numa latency values */
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ for (j = 0; j < MAX_NUMNODES; j++)
+ numa_latency[i][j] = (i == j) ?
+ LOCAL_DISTANCE : REMOTE_DISTANCE;
+ }
+
+ if (numa_enabled) {
+ if (tlb_type == hypervisor)
+ err = numa_parse_mdesc();
+ else
+ err = numa_parse_sun4u();
+ }
+ return err;
+}
+
+#else
+
+static int bootmem_init_numa(void)
+{
+ return -1;
+}
+
+#endif
+
+static void __init bootmem_init_nonnuma(void)
+{
+ unsigned long top_of_ram = memblock_end_of_DRAM();
+ unsigned long total_ram = memblock_phys_mem_size();
+
+ numadbg("bootmem_init_nonnuma()\n");
+
+ printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
+ top_of_ram, total_ram);
+ printk(KERN_INFO "Memory hole size: %ldMB\n",
+ (top_of_ram - total_ram) >> 20);
+
+ init_node_masks_nonnuma();
+ memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
+ allocate_node_data(0);
+ node_set_online(0);
+}
+
+static unsigned long __init bootmem_init(unsigned long phys_base)
+{
+ unsigned long end_pfn;
+
+ end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
+ max_pfn = max_low_pfn = end_pfn;
+ min_low_pfn = (phys_base >> PAGE_SHIFT);
+
+ if (bootmem_init_numa() < 0)
+ bootmem_init_nonnuma();
+
+ /* Dump memblock with node info. */
+ memblock_dump_all();
+
+ /* XXX cpu notifier XXX */
+
+ sparse_init();
+
+ return end_pfn;
+}
+
+static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
+static int pall_ents __initdata;
+
+static unsigned long max_phys_bits = 40;
+
+bool kern_addr_valid(unsigned long addr)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if ((long)addr < 0L) {
+ unsigned long pa = __pa(addr);
+
+ if ((pa >> max_phys_bits) != 0UL)
+ return false;
+
+ return pfn_valid(pa >> PAGE_SHIFT);
+ }
+
+ if (addr >= (unsigned long) KERNBASE &&
+ addr < (unsigned long)&_end)
+ return true;
+
+ pgd = pgd_offset_k(addr);
+ if (pgd_none(*pgd))
+ return false;
+
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d))
+ return false;
+
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud))
+ return false;
+
+ if (pud_large(*pud))
+ return pfn_valid(pud_pfn(*pud));
+
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ return false;
+
+ if (pmd_large(*pmd))
+ return pfn_valid(pmd_pfn(*pmd));
+
+ pte = pte_offset_kernel(pmd, addr);
+ if (pte_none(*pte))
+ return false;
+
+ return pfn_valid(pte_pfn(*pte));
+}
+EXPORT_SYMBOL(kern_addr_valid);
+
+static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
+ unsigned long vend,
+ pud_t *pud)
+{
+ const unsigned long mask16gb = (1UL << 34) - 1UL;
+ u64 pte_val = vstart;
+
+ /* Each PUD is 8GB */
+ if ((vstart & mask16gb) ||
+ (vend - vstart <= mask16gb)) {
+ pte_val ^= kern_linear_pte_xor[2];
+ pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
+
+ return vstart + PUD_SIZE;
+ }
+
+ pte_val ^= kern_linear_pte_xor[3];
+ pte_val |= _PAGE_PUD_HUGE;
+
+ vend = vstart + mask16gb + 1UL;
+ while (vstart < vend) {
+ pud_val(*pud) = pte_val;
+
+ pte_val += PUD_SIZE;
+ vstart += PUD_SIZE;
+ pud++;
+ }
+ return vstart;
+}
+
+static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
+ bool guard)
+{
+ if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
+ return true;
+
+ return false;
+}
+
+static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
+ unsigned long vend,
+ pmd_t *pmd)
+{
+ const unsigned long mask256mb = (1UL << 28) - 1UL;
+ const unsigned long mask2gb = (1UL << 31) - 1UL;
+ u64 pte_val = vstart;
+
+ /* Each PMD is 8MB */
+ if ((vstart & mask256mb) ||
+ (vend - vstart <= mask256mb)) {
+ pte_val ^= kern_linear_pte_xor[0];
+ pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
+
+ return vstart + PMD_SIZE;
+ }
+
+ if ((vstart & mask2gb) ||
+ (vend - vstart <= mask2gb)) {
+ pte_val ^= kern_linear_pte_xor[1];
+ pte_val |= _PAGE_PMD_HUGE;
+ vend = vstart + mask256mb + 1UL;
+ } else {
+ pte_val ^= kern_linear_pte_xor[2];
+ pte_val |= _PAGE_PMD_HUGE;
+ vend = vstart + mask2gb + 1UL;
+ }
+
+ while (vstart < vend) {
+ pmd_val(*pmd) = pte_val;
+
+ pte_val += PMD_SIZE;
+ vstart += PMD_SIZE;
+ pmd++;
+ }
+
+ return vstart;
+}
+
+static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
+ bool guard)
+{
+ if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
+ return true;
+
+ return false;
+}
+
+static unsigned long __ref kernel_map_range(unsigned long pstart,
+ unsigned long pend, pgprot_t prot,
+ bool use_huge)
+{
+ unsigned long vstart = PAGE_OFFSET + pstart;
+ unsigned long vend = PAGE_OFFSET + pend;
+ unsigned long alloc_bytes = 0UL;
+
+ if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
+ prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
+ vstart, vend);
+ prom_halt();
+ }
+
+ while (vstart < vend) {
+ unsigned long this_end, paddr = __pa(vstart);
+ pgd_t *pgd = pgd_offset_k(vstart);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ if (pgd_none(*pgd)) {
+ pud_t *new;
+
+ new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
+ PAGE_SIZE);
+ if (!new)
+ goto err_alloc;
+ alloc_bytes += PAGE_SIZE;
+ pgd_populate(&init_mm, pgd, new);
+ }
+
+ p4d = p4d_offset(pgd, vstart);
+ if (p4d_none(*p4d)) {
+ pud_t *new;
+
+ new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
+ PAGE_SIZE);
+ if (!new)
+ goto err_alloc;
+ alloc_bytes += PAGE_SIZE;
+ p4d_populate(&init_mm, p4d, new);
+ }
+
+ pud = pud_offset(p4d, vstart);
+ if (pud_none(*pud)) {
+ pmd_t *new;
+
+ if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
+ vstart = kernel_map_hugepud(vstart, vend, pud);
+ continue;
+ }
+ new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
+ PAGE_SIZE);
+ if (!new)
+ goto err_alloc;
+ alloc_bytes += PAGE_SIZE;
+ pud_populate(&init_mm, pud, new);
+ }
+
+ pmd = pmd_offset(pud, vstart);
+ if (pmd_none(*pmd)) {
+ pte_t *new;
+
+ if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
+ vstart = kernel_map_hugepmd(vstart, vend, pmd);
+ continue;
+ }
+ new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
+ PAGE_SIZE);
+ if (!new)
+ goto err_alloc;
+ alloc_bytes += PAGE_SIZE;
+ pmd_populate_kernel(&init_mm, pmd, new);
+ }
+
+ pte = pte_offset_kernel(pmd, vstart);
+ this_end = (vstart + PMD_SIZE) & PMD_MASK;
+ if (this_end > vend)
+ this_end = vend;
+
+ while (vstart < this_end) {
+ pte_val(*pte) = (paddr | pgprot_val(prot));
+
+ vstart += PAGE_SIZE;
+ paddr += PAGE_SIZE;
+ pte++;
+ }
+ }
+
+ return alloc_bytes;
+
+err_alloc:
+ panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
+ __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
+ return -ENOMEM;
+}
+
+static void __init flush_all_kernel_tsbs(void)
+{
+ int i;
+
+ for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
+ struct tsb *ent = &swapper_tsb[i];
+
+ ent->tag = (1UL << TSB_TAG_INVALID_BIT);
+ }
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
+ struct tsb *ent = &swapper_4m_tsb[i];
+
+ ent->tag = (1UL << TSB_TAG_INVALID_BIT);
+ }
+#endif
+}
+
+extern unsigned int kvmap_linear_patch[1];
+
+static void __init kernel_physical_mapping_init(void)
+{
+ unsigned long i, mem_alloced = 0UL;
+ bool use_huge = true;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ use_huge = false;
+#endif
+ for (i = 0; i < pall_ents; i++) {
+ unsigned long phys_start, phys_end;
+
+ phys_start = pall[i].phys_addr;
+ phys_end = phys_start + pall[i].reg_size;
+
+ mem_alloced += kernel_map_range(phys_start, phys_end,
+ PAGE_KERNEL, use_huge);
+ }
+
+ printk("Allocated %ld bytes for kernel page tables.\n",
+ mem_alloced);
+
+ kvmap_linear_patch[0] = 0x01000000; /* nop */
+ flushi(&kvmap_linear_patch[0]);
+
+ flush_all_kernel_tsbs();
+
+ __flush_tlb_all();
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+void __kernel_map_pages(struct page *page, int numpages, int enable)
+{
+ unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
+ unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
+
+ kernel_map_range(phys_start, phys_end,
+ (enable ? PAGE_KERNEL : __pgprot(0)), false);
+
+ flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
+ PAGE_OFFSET + phys_end);
+
+ /* we should perform an IPI and flush all tlbs,
+ * but that can deadlock->flush only current cpu.
+ */
+ __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
+ PAGE_OFFSET + phys_end);
+}
+#endif
+
+unsigned long __init find_ecache_flush_span(unsigned long size)
+{
+ int i;
+
+ for (i = 0; i < pavail_ents; i++) {
+ if (pavail[i].reg_size >= size)
+ return pavail[i].phys_addr;
+ }
+
+ return ~0UL;
+}
+
+unsigned long PAGE_OFFSET;
+EXPORT_SYMBOL(PAGE_OFFSET);
+
+unsigned long VMALLOC_END = 0x0000010000000000UL;
+EXPORT_SYMBOL(VMALLOC_END);
+
+unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
+unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
+
+static void __init setup_page_offset(void)
+{
+ if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+ /* Cheetah/Panther support a full 64-bit virtual
+ * address, so we can use all that our page tables
+ * support.
+ */
+ sparc64_va_hole_top = 0xfff0000000000000UL;
+ sparc64_va_hole_bottom = 0x0010000000000000UL;
+
+ max_phys_bits = 42;
+ } else if (tlb_type == hypervisor) {
+ switch (sun4v_chip_type) {
+ case SUN4V_CHIP_NIAGARA1:
+ case SUN4V_CHIP_NIAGARA2:
+ /* T1 and T2 support 48-bit virtual addresses. */
+ sparc64_va_hole_top = 0xffff800000000000UL;
+ sparc64_va_hole_bottom = 0x0000800000000000UL;
+
+ max_phys_bits = 39;
+ break;
+ case SUN4V_CHIP_NIAGARA3:
+ /* T3 supports 48-bit virtual addresses. */
+ sparc64_va_hole_top = 0xffff800000000000UL;
+ sparc64_va_hole_bottom = 0x0000800000000000UL;
+
+ max_phys_bits = 43;
+ break;
+ case SUN4V_CHIP_NIAGARA4:
+ case SUN4V_CHIP_NIAGARA5:
+ case SUN4V_CHIP_SPARC64X:
+ case SUN4V_CHIP_SPARC_M6:
+ /* T4 and later support 52-bit virtual addresses. */
+ sparc64_va_hole_top = 0xfff8000000000000UL;
+ sparc64_va_hole_bottom = 0x0008000000000000UL;
+ max_phys_bits = 47;
+ break;
+ case SUN4V_CHIP_SPARC_M7:
+ case SUN4V_CHIP_SPARC_SN:
+ /* M7 and later support 52-bit virtual addresses. */
+ sparc64_va_hole_top = 0xfff8000000000000UL;
+ sparc64_va_hole_bottom = 0x0008000000000000UL;
+ max_phys_bits = 49;
+ break;
+ case SUN4V_CHIP_SPARC_M8:
+ default:
+ /* M8 and later support 54-bit virtual addresses.
+ * However, restricting M8 and above VA bits to 53
+ * as 4-level page table cannot support more than
+ * 53 VA bits.
+ */
+ sparc64_va_hole_top = 0xfff0000000000000UL;
+ sparc64_va_hole_bottom = 0x0010000000000000UL;
+ max_phys_bits = 51;
+ break;
+ }
+ }
+
+ if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
+ prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
+ max_phys_bits);
+ prom_halt();
+ }
+
+ PAGE_OFFSET = sparc64_va_hole_top;
+ VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
+ (sparc64_va_hole_bottom >> 2));
+
+ pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
+ PAGE_OFFSET, max_phys_bits);
+ pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
+ VMALLOC_START, VMALLOC_END);
+ pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
+ VMEMMAP_BASE, VMEMMAP_BASE << 1);
+}
+
+static void __init tsb_phys_patch(void)
+{
+ struct tsb_ldquad_phys_patch_entry *pquad;
+ struct tsb_phys_patch_entry *p;
+
+ pquad = &__tsb_ldquad_phys_patch;
+ while (pquad < &__tsb_ldquad_phys_patch_end) {
+ unsigned long addr = pquad->addr;
+
+ if (tlb_type == hypervisor)
+ *(unsigned int *) addr = pquad->sun4v_insn;
+ else
+ *(unsigned int *) addr = pquad->sun4u_insn;
+ wmb();
+ __asm__ __volatile__("flush %0"
+ : /* no outputs */
+ : "r" (addr));
+
+ pquad++;
+ }
+
+ p = &__tsb_phys_patch;
+ while (p < &__tsb_phys_patch_end) {
+ unsigned long addr = p->addr;
+
+ *(unsigned int *) addr = p->insn;
+ wmb();
+ __asm__ __volatile__("flush %0"
+ : /* no outputs */
+ : "r" (addr));
+
+ p++;
+ }
+}
+
+/* Don't mark as init, we give this to the Hypervisor. */
+#ifndef CONFIG_DEBUG_PAGEALLOC
+#define NUM_KTSB_DESCR 2
+#else
+#define NUM_KTSB_DESCR 1
+#endif
+static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
+
+/* The swapper TSBs are loaded with a base sequence of:
+ *
+ * sethi %uhi(SYMBOL), REG1
+ * sethi %hi(SYMBOL), REG2
+ * or REG1, %ulo(SYMBOL), REG1
+ * or REG2, %lo(SYMBOL), REG2
+ * sllx REG1, 32, REG1
+ * or REG1, REG2, REG1
+ *
+ * When we use physical addressing for the TSB accesses, we patch the
+ * first four instructions in the above sequence.
+ */
+
+static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
+{
+ unsigned long high_bits, low_bits;
+
+ high_bits = (pa >> 32) & 0xffffffff;
+ low_bits = (pa >> 0) & 0xffffffff;
+
+ while (start < end) {
+ unsigned int *ia = (unsigned int *)(unsigned long)*start;
+
+ ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
+ __asm__ __volatile__("flush %0" : : "r" (ia));
+
+ ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
+ __asm__ __volatile__("flush %0" : : "r" (ia + 1));
+
+ ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
+ __asm__ __volatile__("flush %0" : : "r" (ia + 2));
+
+ ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
+ __asm__ __volatile__("flush %0" : : "r" (ia + 3));
+
+ start++;
+ }
+}
+
+static void ktsb_phys_patch(void)
+{
+ extern unsigned int __swapper_tsb_phys_patch;
+ extern unsigned int __swapper_tsb_phys_patch_end;
+ unsigned long ktsb_pa;
+
+ ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
+ patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
+ &__swapper_tsb_phys_patch_end, ktsb_pa);
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ {
+ extern unsigned int __swapper_4m_tsb_phys_patch;
+ extern unsigned int __swapper_4m_tsb_phys_patch_end;
+ ktsb_pa = (kern_base +
+ ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
+ patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
+ &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
+ }
+#endif
+}
+
+static void __init sun4v_ktsb_init(void)
+{
+ unsigned long ktsb_pa;
+
+ /* First KTSB for PAGE_SIZE mappings. */
+ ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
+
+ switch (PAGE_SIZE) {
+ case 8 * 1024:
+ default:
+ ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
+ ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
+ break;
+
+ case 64 * 1024:
+ ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
+ ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
+ break;
+
+ case 512 * 1024:
+ ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
+ ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
+ break;
+
+ case 4 * 1024 * 1024:
+ ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
+ ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
+ break;
+ }
+
+ ktsb_descr[0].assoc = 1;
+ ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
+ ktsb_descr[0].ctx_idx = 0;
+ ktsb_descr[0].tsb_base = ktsb_pa;
+ ktsb_descr[0].resv = 0;
+
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
+ ktsb_pa = (kern_base +
+ ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
+
+ ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
+ ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
+ HV_PGSZ_MASK_256MB |
+ HV_PGSZ_MASK_2GB |
+ HV_PGSZ_MASK_16GB) &
+ cpu_pgsz_mask);
+ ktsb_descr[1].assoc = 1;
+ ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
+ ktsb_descr[1].ctx_idx = 0;
+ ktsb_descr[1].tsb_base = ktsb_pa;
+ ktsb_descr[1].resv = 0;
+#endif
+}
+
+void sun4v_ktsb_register(void)
+{
+ unsigned long pa, ret;
+
+ pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
+
+ ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
+ if (ret != 0) {
+ prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
+ "errors with %lx\n", pa, ret);
+ prom_halt();
+ }
+}
+
+static void __init sun4u_linear_pte_xor_finalize(void)
+{
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ /* This is where we would add Panther support for
+ * 32MB and 256MB pages.
+ */
+#endif
+}
+
+static void __init sun4v_linear_pte_xor_finalize(void)
+{
+ unsigned long pagecv_flag;
+
+ /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
+ * enables MCD error. Do not set bit 9 on M7 processor.
+ */
+ switch (sun4v_chip_type) {
+ case SUN4V_CHIP_SPARC_M7:
+ case SUN4V_CHIP_SPARC_M8:
+ case SUN4V_CHIP_SPARC_SN:
+ pagecv_flag = 0x00;
+ break;
+ default:
+ pagecv_flag = _PAGE_CV_4V;
+ break;
+ }
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
+ kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
+ PAGE_OFFSET;
+ kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
+ _PAGE_P_4V | _PAGE_W_4V);
+ } else {
+ kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
+ }
+
+ if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
+ kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
+ PAGE_OFFSET;
+ kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
+ _PAGE_P_4V | _PAGE_W_4V);
+ } else {
+ kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
+ }
+
+ if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
+ kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
+ PAGE_OFFSET;
+ kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
+ _PAGE_P_4V | _PAGE_W_4V);
+ } else {
+ kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
+ }
+#endif
+}
+
+/* paging_init() sets up the page tables */
+
+static unsigned long last_valid_pfn;
+
+static void sun4u_pgprot_init(void);
+static void sun4v_pgprot_init(void);
+
+#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
+#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
+#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
+#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
+#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
+#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
+
+/* We need to exclude reserved regions. This exclusion will include
+ * vmlinux and initrd. To be more precise the initrd size could be used to
+ * compute a new lower limit because it is freed later during initialization.
+ */
+static void __init reduce_memory(phys_addr_t limit_ram)
+{
+ limit_ram += memblock_reserved_size();
+ memblock_enforce_memory_limit(limit_ram);
+}
+
+void __init paging_init(void)
+{
+ unsigned long end_pfn, shift, phys_base;
+ unsigned long real_end, i;
+
+ setup_page_offset();
+
+ /* These build time checkes make sure that the dcache_dirty_cpu()
+ * page->flags usage will work.
+ *
+ * When a page gets marked as dcache-dirty, we store the
+ * cpu number starting at bit 32 in the page->flags. Also,
+ * functions like clear_dcache_dirty_cpu use the cpu mask
+ * in 13-bit signed-immediate instruction fields.
+ */
+
+ /*
+ * Page flags must not reach into upper 32 bits that are used
+ * for the cpu number
+ */
+ BUILD_BUG_ON(NR_PAGEFLAGS > 32);
+
+ /*
+ * The bit fields placed in the high range must not reach below
+ * the 32 bit boundary. Otherwise we cannot place the cpu field
+ * at the 32 bit boundary.
+ */
+ BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
+ ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
+
+ BUILD_BUG_ON(NR_CPUS > 4096);
+
+ kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
+ kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
+
+ /* Invalidate both kernel TSBs. */
+ memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
+#endif
+
+ /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
+ * bit on M7 processor. This is a conflicting usage of the same
+ * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
+ * Detection error on all pages and this will lead to problems
+ * later. Kernel does not run with MCD enabled and hence rest
+ * of the required steps to fully configure memory corruption
+ * detection are not taken. We need to ensure TTE.mcde is not
+ * set on M7 processor. Compute the value of cacheability
+ * flag for use later taking this into consideration.
+ */
+ switch (sun4v_chip_type) {
+ case SUN4V_CHIP_SPARC_M7:
+ case SUN4V_CHIP_SPARC_M8:
+ case SUN4V_CHIP_SPARC_SN:
+ page_cache4v_flag = _PAGE_CP_4V;
+ break;
+ default:
+ page_cache4v_flag = _PAGE_CACHE_4V;
+ break;
+ }
+
+ if (tlb_type == hypervisor)
+ sun4v_pgprot_init();
+ else
+ sun4u_pgprot_init();
+
+ if (tlb_type == cheetah_plus ||
+ tlb_type == hypervisor) {
+ tsb_phys_patch();
+ ktsb_phys_patch();
+ }
+
+ if (tlb_type == hypervisor)
+ sun4v_patch_tlb_handlers();
+
+ /* Find available physical memory...
+ *
+ * Read it twice in order to work around a bug in openfirmware.
+ * The call to grab this table itself can cause openfirmware to
+ * allocate memory, which in turn can take away some space from
+ * the list of available memory. Reading it twice makes sure
+ * we really do get the final value.
+ */
+ read_obp_translations();
+ read_obp_memory("reg", &pall[0], &pall_ents);
+ read_obp_memory("available", &pavail[0], &pavail_ents);
+ read_obp_memory("available", &pavail[0], &pavail_ents);
+
+ phys_base = 0xffffffffffffffffUL;
+ for (i = 0; i < pavail_ents; i++) {
+ phys_base = min(phys_base, pavail[i].phys_addr);
+ memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
+ }
+
+ memblock_reserve(kern_base, kern_size);
+
+ find_ramdisk(phys_base);
+
+ if (cmdline_memory_size)
+ reduce_memory(cmdline_memory_size);
+
+ memblock_allow_resize();
+ memblock_dump_all();
+
+ set_bit(0, mmu_context_bmap);
+
+ shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
+
+ real_end = (unsigned long)_end;
+ num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
+ printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
+ num_kernel_image_mappings);
+
+ /* Set kernel pgd to upper alias so physical page computations
+ * work.
+ */
+ init_mm.pgd += ((shift) / (sizeof(pgd_t)));
+
+ memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
+
+ inherit_prom_mappings();
+
+ /* Ok, we can use our TLB miss and window trap handlers safely. */
+ setup_tba();
+
+ __flush_tlb_all();
+
+ prom_build_devicetree();
+ of_populate_present_mask();
+#ifndef CONFIG_SMP
+ of_fill_in_cpu_data();
+#endif
+
+ if (tlb_type == hypervisor) {
+ sun4v_mdesc_init();
+ mdesc_populate_present_mask(cpu_all_mask);
+#ifndef CONFIG_SMP
+ mdesc_fill_in_cpu_data(cpu_all_mask);
+#endif
+ mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
+
+ sun4v_linear_pte_xor_finalize();
+
+ sun4v_ktsb_init();
+ sun4v_ktsb_register();
+ } else {
+ unsigned long impl, ver;
+
+ cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
+ HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
+
+ __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
+ impl = ((ver >> 32) & 0xffff);
+ if (impl == PANTHER_IMPL)
+ cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
+ HV_PGSZ_MASK_256MB);
+
+ sun4u_linear_pte_xor_finalize();
+ }
+
+ /* Flush the TLBs and the 4M TSB so that the updated linear
+ * pte XOR settings are realized for all mappings.
+ */
+ __flush_tlb_all();
+#ifndef CONFIG_DEBUG_PAGEALLOC
+ memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
+#endif
+ __flush_tlb_all();
+
+ /* Setup bootmem... */
+ last_valid_pfn = end_pfn = bootmem_init(phys_base);
+
+ kernel_physical_mapping_init();
+
+ {
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+
+ max_zone_pfns[ZONE_NORMAL] = end_pfn;
+
+ free_area_init(max_zone_pfns);
+ }
+
+ printk("Booting Linux...\n");
+}
+
+int page_in_phys_avail(unsigned long paddr)
+{
+ int i;
+
+ paddr &= PAGE_MASK;
+
+ for (i = 0; i < pavail_ents; i++) {
+ unsigned long start, end;
+
+ start = pavail[i].phys_addr;
+ end = start + pavail[i].reg_size;
+
+ if (paddr >= start && paddr < end)
+ return 1;
+ }
+ if (paddr >= kern_base && paddr < (kern_base + kern_size))
+ return 1;
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (paddr >= __pa(initrd_start) &&
+ paddr < __pa(PAGE_ALIGN(initrd_end)))
+ return 1;
+#endif
+
+ return 0;
+}
+
+static void __init register_page_bootmem_info(void)
+{
+#ifdef CONFIG_NEED_MULTIPLE_NODES
+ int i;
+
+ for_each_online_node(i)
+ if (NODE_DATA(i)->node_spanned_pages)
+ register_page_bootmem_info_node(NODE_DATA(i));
+#endif
+}
+void __init mem_init(void)
+{
+ high_memory = __va(last_valid_pfn << PAGE_SHIFT);
+
+ memblock_free_all();
+
+ /*
+ * Must be done after boot memory is put on freelist, because here we
+ * might set fields in deferred struct pages that have not yet been
+ * initialized, and memblock_free_all() initializes all the reserved
+ * deferred pages for us.
+ */
+ register_page_bootmem_info();
+
+ /*
+ * Set up the zero page, mark it reserved, so that page count
+ * is not manipulated when freeing the page from user ptes.
+ */
+ mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
+ if (mem_map_zero == NULL) {
+ prom_printf("paging_init: Cannot alloc zero page.\n");
+ prom_halt();
+ }
+ mark_page_reserved(mem_map_zero);
+
+ mem_init_print_info(NULL);
+
+ if (tlb_type == cheetah || tlb_type == cheetah_plus)
+ cheetah_ecache_flush_init();
+}
+
+void free_initmem(void)
+{
+ unsigned long addr, initend;
+ int do_free = 1;
+
+ /* If the physical memory maps were trimmed by kernel command
+ * line options, don't even try freeing this initmem stuff up.
+ * The kernel image could have been in the trimmed out region
+ * and if so the freeing below will free invalid page structs.
+ */
+ if (cmdline_memory_size)
+ do_free = 0;
+
+ /*
+ * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
+ */
+ addr = PAGE_ALIGN((unsigned long)(__init_begin));
+ initend = (unsigned long)(__init_end) & PAGE_MASK;
+ for (; addr < initend; addr += PAGE_SIZE) {
+ unsigned long page;
+
+ page = (addr +
+ ((unsigned long) __va(kern_base)) -
+ ((unsigned long) KERNBASE));
+ memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
+
+ if (do_free)
+ free_reserved_page(virt_to_page(page));
+ }
+}
+
+pgprot_t PAGE_KERNEL __read_mostly;
+EXPORT_SYMBOL(PAGE_KERNEL);
+
+pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
+pgprot_t PAGE_COPY __read_mostly;
+
+pgprot_t PAGE_SHARED __read_mostly;
+EXPORT_SYMBOL(PAGE_SHARED);
+
+unsigned long pg_iobits __read_mostly;
+
+unsigned long _PAGE_IE __read_mostly;
+EXPORT_SYMBOL(_PAGE_IE);
+
+unsigned long _PAGE_E __read_mostly;
+EXPORT_SYMBOL(_PAGE_E);
+
+unsigned long _PAGE_CACHE __read_mostly;
+EXPORT_SYMBOL(_PAGE_CACHE);
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
+ int node, struct vmem_altmap *altmap)
+{
+ unsigned long pte_base;
+
+ pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
+ _PAGE_CP_4U | _PAGE_CV_4U |
+ _PAGE_P_4U | _PAGE_W_4U);
+ if (tlb_type == hypervisor)
+ pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
+ page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
+
+ pte_base |= _PAGE_PMD_HUGE;
+
+ vstart = vstart & PMD_MASK;
+ vend = ALIGN(vend, PMD_SIZE);
+ for (; vstart < vend; vstart += PMD_SIZE) {
+ pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
+ unsigned long pte;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ if (!pgd)
+ return -ENOMEM;
+
+ p4d = vmemmap_p4d_populate(pgd, vstart, node);
+ if (!p4d)
+ return -ENOMEM;
+
+ pud = vmemmap_pud_populate(p4d, vstart, node);
+ if (!pud)
+ return -ENOMEM;
+
+ pmd = pmd_offset(pud, vstart);
+ pte = pmd_val(*pmd);
+ if (!(pte & _PAGE_VALID)) {
+ void *block = vmemmap_alloc_block(PMD_SIZE, node);
+
+ if (!block)
+ return -ENOMEM;
+
+ pmd_val(*pmd) = pte_base | __pa(block);
+ }
+ }
+
+ return 0;
+}
+
+void vmemmap_free(unsigned long start, unsigned long end,
+ struct vmem_altmap *altmap)
+{
+}
+#endif /* CONFIG_SPARSEMEM_VMEMMAP */
+
+static void prot_init_common(unsigned long page_none,
+ unsigned long page_shared,
+ unsigned long page_copy,
+ unsigned long page_readonly,
+ unsigned long page_exec_bit)
+{
+ PAGE_COPY = __pgprot(page_copy);
+ PAGE_SHARED = __pgprot(page_shared);
+
+ protection_map[0x0] = __pgprot(page_none);
+ protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
+ protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
+ protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
+ protection_map[0x4] = __pgprot(page_readonly);
+ protection_map[0x5] = __pgprot(page_readonly);
+ protection_map[0x6] = __pgprot(page_copy);
+ protection_map[0x7] = __pgprot(page_copy);
+ protection_map[0x8] = __pgprot(page_none);
+ protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
+ protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
+ protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
+ protection_map[0xc] = __pgprot(page_readonly);
+ protection_map[0xd] = __pgprot(page_readonly);
+ protection_map[0xe] = __pgprot(page_shared);
+ protection_map[0xf] = __pgprot(page_shared);
+}
+
+static void __init sun4u_pgprot_init(void)
+{
+ unsigned long page_none, page_shared, page_copy, page_readonly;
+ unsigned long page_exec_bit;
+ int i;
+
+ PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
+ _PAGE_CACHE_4U | _PAGE_P_4U |
+ __ACCESS_BITS_4U | __DIRTY_BITS_4U |
+ _PAGE_EXEC_4U);
+ PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
+ _PAGE_CACHE_4U | _PAGE_P_4U |
+ __ACCESS_BITS_4U | __DIRTY_BITS_4U |
+ _PAGE_EXEC_4U | _PAGE_L_4U);
+
+ _PAGE_IE = _PAGE_IE_4U;
+ _PAGE_E = _PAGE_E_4U;
+ _PAGE_CACHE = _PAGE_CACHE_4U;
+
+ pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
+ __ACCESS_BITS_4U | _PAGE_E_4U);
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
+#else
+ kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
+ PAGE_OFFSET;
+#endif
+ kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
+ _PAGE_P_4U | _PAGE_W_4U);
+
+ for (i = 1; i < 4; i++)
+ kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
+
+ _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
+ _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
+ _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
+
+
+ page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
+ page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
+ __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
+ page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
+ __ACCESS_BITS_4U | _PAGE_EXEC_4U);
+ page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
+ __ACCESS_BITS_4U | _PAGE_EXEC_4U);
+
+ page_exec_bit = _PAGE_EXEC_4U;
+
+ prot_init_common(page_none, page_shared, page_copy, page_readonly,
+ page_exec_bit);
+}
+
+static void __init sun4v_pgprot_init(void)
+{
+ unsigned long page_none, page_shared, page_copy, page_readonly;
+ unsigned long page_exec_bit;
+ int i;
+
+ PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
+ page_cache4v_flag | _PAGE_P_4V |
+ __ACCESS_BITS_4V | __DIRTY_BITS_4V |
+ _PAGE_EXEC_4V);
+ PAGE_KERNEL_LOCKED = PAGE_KERNEL;
+
+ _PAGE_IE = _PAGE_IE_4V;
+ _PAGE_E = _PAGE_E_4V;
+ _PAGE_CACHE = page_cache4v_flag;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
+#else
+ kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
+ PAGE_OFFSET;
+#endif
+ kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
+ _PAGE_W_4V);
+
+ for (i = 1; i < 4; i++)
+ kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
+
+ pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
+ __ACCESS_BITS_4V | _PAGE_E_4V);
+
+ _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
+ _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
+ _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
+ _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
+
+ page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
+ page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
+ __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
+ page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
+ __ACCESS_BITS_4V | _PAGE_EXEC_4V);
+ page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
+ __ACCESS_BITS_4V | _PAGE_EXEC_4V);
+
+ page_exec_bit = _PAGE_EXEC_4V;
+
+ prot_init_common(page_none, page_shared, page_copy, page_readonly,
+ page_exec_bit);
+}
+
+unsigned long pte_sz_bits(unsigned long sz)
+{
+ if (tlb_type == hypervisor) {
+ switch (sz) {
+ case 8 * 1024:
+ default:
+ return _PAGE_SZ8K_4V;
+ case 64 * 1024:
+ return _PAGE_SZ64K_4V;
+ case 512 * 1024:
+ return _PAGE_SZ512K_4V;
+ case 4 * 1024 * 1024:
+ return _PAGE_SZ4MB_4V;
+ }
+ } else {
+ switch (sz) {
+ case 8 * 1024:
+ default:
+ return _PAGE_SZ8K_4U;
+ case 64 * 1024:
+ return _PAGE_SZ64K_4U;
+ case 512 * 1024:
+ return _PAGE_SZ512K_4U;
+ case 4 * 1024 * 1024:
+ return _PAGE_SZ4MB_4U;
+ }
+ }
+}
+
+pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
+{
+ pte_t pte;
+
+ pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
+ pte_val(pte) |= (((unsigned long)space) << 32);
+ pte_val(pte) |= pte_sz_bits(page_size);
+
+ return pte;
+}
+
+static unsigned long kern_large_tte(unsigned long paddr)
+{
+ unsigned long val;
+
+ val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
+ _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
+ _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
+ if (tlb_type == hypervisor)
+ val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
+ page_cache4v_flag | _PAGE_P_4V |
+ _PAGE_EXEC_4V | _PAGE_W_4V);
+
+ return val | paddr;
+}
+
+/* If not locked, zap it. */
+void __flush_tlb_all(void)
+{
+ unsigned long pstate;
+ int i;
+
+ __asm__ __volatile__("flushw\n\t"
+ "rdpr %%pstate, %0\n\t"
+ "wrpr %0, %1, %%pstate"
+ : "=r" (pstate)
+ : "i" (PSTATE_IE));
+ if (tlb_type == hypervisor) {
+ sun4v_mmu_demap_all();
+ } else if (tlb_type == spitfire) {
+ for (i = 0; i < 64; i++) {
+ /* Spitfire Errata #32 workaround */
+ /* NOTE: Always runs on spitfire, so no
+ * cheetah+ page size encodings.
+ */
+ __asm__ __volatile__("stxa %0, [%1] %2\n\t"
+ "flush %%g6"
+ : /* No outputs */
+ : "r" (0),
+ "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
+
+ if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
+ __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
+ "membar #Sync"
+ : /* no outputs */
+ : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
+ spitfire_put_dtlb_data(i, 0x0UL);
+ }
+
+ /* Spitfire Errata #32 workaround */
+ /* NOTE: Always runs on spitfire, so no
+ * cheetah+ page size encodings.
+ */
+ __asm__ __volatile__("stxa %0, [%1] %2\n\t"
+ "flush %%g6"
+ : /* No outputs */
+ : "r" (0),
+ "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
+
+ if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
+ __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
+ "membar #Sync"
+ : /* no outputs */
+ : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
+ spitfire_put_itlb_data(i, 0x0UL);
+ }
+ }
+ } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
+ cheetah_flush_dtlb_all();
+ cheetah_flush_itlb_all();
+ }
+ __asm__ __volatile__("wrpr %0, 0, %%pstate"
+ : : "r" (pstate));
+}
+
+pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
+{
+ struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ pte_t *pte = NULL;
+
+ if (page)
+ pte = (pte_t *) page_address(page);
+
+ return pte;
+}
+
+pgtable_t pte_alloc_one(struct mm_struct *mm)
+{
+ struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ if (!page)
+ return NULL;
+ if (!pgtable_pte_page_ctor(page)) {
+ __free_page(page);
+ return NULL;
+ }
+ return (pte_t *) page_address(page);
+}
+
+void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
+{
+ free_page((unsigned long)pte);
+}
+
+static void __pte_free(pgtable_t pte)
+{
+ struct page *page = virt_to_page(pte);
+
+ pgtable_pte_page_dtor(page);
+ __free_page(page);
+}
+
+void pte_free(struct mm_struct *mm, pgtable_t pte)
+{
+ __pte_free(pte);
+}
+
+void pgtable_free(void *table, bool is_page)
+{
+ if (is_page)
+ __pte_free(table);
+ else
+ kmem_cache_free(pgtable_cache, table);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
+ pmd_t *pmd)
+{
+ unsigned long pte, flags;
+ struct mm_struct *mm;
+ pmd_t entry = *pmd;
+
+ if (!pmd_large(entry) || !pmd_young(entry))
+ return;
+
+ pte = pmd_val(entry);
+
+ /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
+ if (!(pte & _PAGE_VALID))
+ return;
+
+ /* We are fabricating 8MB pages using 4MB real hw pages. */
+ pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
+
+ mm = vma->vm_mm;
+
+ spin_lock_irqsave(&mm->context.lock, flags);
+
+ if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
+ __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
+ addr, pte);
+
+ spin_unlock_irqrestore(&mm->context.lock, flags);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
+static void context_reload(void *__data)
+{
+ struct mm_struct *mm = __data;
+
+ if (mm == current->mm)
+ load_secondary_context(mm);
+}
+
+void hugetlb_setup(struct pt_regs *regs)
+{
+ struct mm_struct *mm = current->mm;
+ struct tsb_config *tp;
+
+ if (faulthandler_disabled() || !mm) {
+ const struct exception_table_entry *entry;
+
+ entry = search_exception_tables(regs->tpc);
+ if (entry) {
+ regs->tpc = entry->fixup;
+ regs->tnpc = regs->tpc + 4;
+ return;
+ }
+ pr_alert("Unexpected HugeTLB setup in atomic context.\n");
+ die_if_kernel("HugeTSB in atomic", regs);
+ }
+
+ tp = &mm->context.tsb_block[MM_TSB_HUGE];
+ if (likely(tp->tsb == NULL))
+ tsb_grow(mm, MM_TSB_HUGE, 0);
+
+ tsb_context_switch(mm);
+ smp_tsb_sync(mm);
+
+ /* On UltraSPARC-III+ and later, configure the second half of
+ * the Data-TLB for huge pages.
+ */
+ if (tlb_type == cheetah_plus) {
+ bool need_context_reload = false;
+ unsigned long ctx;
+
+ spin_lock_irq(&ctx_alloc_lock);
+ ctx = mm->context.sparc64_ctx_val;
+ ctx &= ~CTX_PGSZ_MASK;
+ ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
+ ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
+
+ if (ctx != mm->context.sparc64_ctx_val) {
+ /* When changing the page size fields, we
+ * must perform a context flush so that no
+ * stale entries match. This flush must
+ * occur with the original context register
+ * settings.
+ */
+ do_flush_tlb_mm(mm);
+
+ /* Reload the context register of all processors
+ * also executing in this address space.
+ */
+ mm->context.sparc64_ctx_val = ctx;
+ need_context_reload = true;
+ }
+ spin_unlock_irq(&ctx_alloc_lock);
+
+ if (need_context_reload)
+ on_each_cpu(context_reload, mm, 0);
+ }
+}
+#endif
+
+static struct resource code_resource = {
+ .name = "Kernel code",
+ .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
+};
+
+static struct resource data_resource = {
+ .name = "Kernel data",
+ .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
+};
+
+static struct resource bss_resource = {
+ .name = "Kernel bss",
+ .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
+};
+
+static inline resource_size_t compute_kern_paddr(void *addr)
+{
+ return (resource_size_t) (addr - KERNBASE + kern_base);
+}
+
+static void __init kernel_lds_init(void)
+{
+ code_resource.start = compute_kern_paddr(_text);
+ code_resource.end = compute_kern_paddr(_etext - 1);
+ data_resource.start = compute_kern_paddr(_etext);
+ data_resource.end = compute_kern_paddr(_edata - 1);
+ bss_resource.start = compute_kern_paddr(__bss_start);
+ bss_resource.end = compute_kern_paddr(_end - 1);
+}
+
+static int __init report_memory(void)
+{
+ int i;
+ struct resource *res;
+
+ kernel_lds_init();
+
+ for (i = 0; i < pavail_ents; i++) {
+ res = kzalloc(sizeof(struct resource), GFP_KERNEL);
+
+ if (!res) {
+ pr_warn("Failed to allocate source.\n");
+ break;
+ }
+
+ res->name = "System RAM";
+ res->start = pavail[i].phys_addr;
+ res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
+ res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
+
+ if (insert_resource(&iomem_resource, res) < 0) {
+ pr_warn("Resource insertion failed.\n");
+ break;
+ }
+
+ insert_resource(res, &code_resource);
+ insert_resource(res, &data_resource);
+ insert_resource(res, &bss_resource);
+ }
+
+ return 0;
+}
+arch_initcall(report_memory);
+
+#ifdef CONFIG_SMP
+#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
+#else
+#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
+#endif
+
+void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+ if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
+ if (start < LOW_OBP_ADDRESS) {
+ flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
+ do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
+ }
+ if (end > HI_OBP_ADDRESS) {
+ flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
+ do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
+ }
+ } else {
+ flush_tsb_kernel_range(start, end);
+ do_flush_tlb_kernel_range(start, end);
+ }
+}
+
+void copy_user_highpage(struct page *to, struct page *from,
+ unsigned long vaddr, struct vm_area_struct *vma)
+{
+ char *vfrom, *vto;
+
+ vfrom = kmap_atomic(from);
+ vto = kmap_atomic(to);
+ copy_user_page(vto, vfrom, vaddr, to);
+ kunmap_atomic(vto);
+ kunmap_atomic(vfrom);
+
+ /* If this page has ADI enabled, copy over any ADI tags
+ * as well
+ */
+ if (vma->vm_flags & VM_SPARC_ADI) {
+ unsigned long pfrom, pto, i, adi_tag;
+
+ pfrom = page_to_phys(from);
+ pto = page_to_phys(to);
+
+ for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
+ asm volatile("ldxa [%1] %2, %0\n\t"
+ : "=r" (adi_tag)
+ : "r" (i), "i" (ASI_MCD_REAL));
+ asm volatile("stxa %0, [%1] %2\n\t"
+ :
+ : "r" (adi_tag), "r" (pto),
+ "i" (ASI_MCD_REAL));
+ pto += adi_blksize();
+ }
+ asm volatile("membar #Sync\n\t");
+ }
+}
+EXPORT_SYMBOL(copy_user_highpage);
+
+void copy_highpage(struct page *to, struct page *from)
+{
+ char *vfrom, *vto;
+
+ vfrom = kmap_atomic(from);
+ vto = kmap_atomic(to);
+ copy_page(vto, vfrom);
+ kunmap_atomic(vto);
+ kunmap_atomic(vfrom);
+
+ /* If this platform is ADI enabled, copy any ADI tags
+ * as well
+ */
+ if (adi_capable()) {
+ unsigned long pfrom, pto, i, adi_tag;
+
+ pfrom = page_to_phys(from);
+ pto = page_to_phys(to);
+
+ for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
+ asm volatile("ldxa [%1] %2, %0\n\t"
+ : "=r" (adi_tag)
+ : "r" (i), "i" (ASI_MCD_REAL));
+ asm volatile("stxa %0, [%1] %2\n\t"
+ :
+ : "r" (adi_tag), "r" (pto),
+ "i" (ASI_MCD_REAL));
+ pto += adi_blksize();
+ }
+ asm volatile("membar #Sync\n\t");
+ }
+}
+EXPORT_SYMBOL(copy_highpage);