summaryrefslogtreecommitdiffstats
path: root/arch/x86/entry/entry_64.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/entry/entry_64.S')
-rw-r--r--arch/x86/entry/entry_64.S1523
1 files changed, 1523 insertions, 0 deletions
diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S
new file mode 100644
index 000000000..23212c53c
--- /dev/null
+++ b/arch/x86/entry/entry_64.S
@@ -0,0 +1,1523 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * linux/arch/x86_64/entry.S
+ *
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
+ * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
+ *
+ * entry.S contains the system-call and fault low-level handling routines.
+ *
+ * Some of this is documented in Documentation/x86/entry_64.rst
+ *
+ * A note on terminology:
+ * - iret frame: Architecture defined interrupt frame from SS to RIP
+ * at the top of the kernel process stack.
+ *
+ * Some macro usage:
+ * - SYM_FUNC_START/END:Define functions in the symbol table.
+ * - idtentry: Define exception entry points.
+ */
+#include <linux/linkage.h>
+#include <asm/segment.h>
+#include <asm/cache.h>
+#include <asm/errno.h>
+#include <asm/asm-offsets.h>
+#include <asm/msr.h>
+#include <asm/unistd.h>
+#include <asm/thread_info.h>
+#include <asm/hw_irq.h>
+#include <asm/page_types.h>
+#include <asm/irqflags.h>
+#include <asm/paravirt.h>
+#include <asm/percpu.h>
+#include <asm/asm.h>
+#include <asm/smap.h>
+#include <asm/pgtable_types.h>
+#include <asm/export.h>
+#include <asm/frame.h>
+#include <asm/trapnr.h>
+#include <asm/nospec-branch.h>
+#include <asm/fsgsbase.h>
+#include <linux/err.h>
+
+#include "calling.h"
+
+.code64
+.section .entry.text, "ax"
+
+#ifdef CONFIG_PARAVIRT_XXL
+SYM_CODE_START(native_usergs_sysret64)
+ UNWIND_HINT_EMPTY
+ swapgs
+ sysretq
+SYM_CODE_END(native_usergs_sysret64)
+#endif /* CONFIG_PARAVIRT_XXL */
+
+/*
+ * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
+ *
+ * This is the only entry point used for 64-bit system calls. The
+ * hardware interface is reasonably well designed and the register to
+ * argument mapping Linux uses fits well with the registers that are
+ * available when SYSCALL is used.
+ *
+ * SYSCALL instructions can be found inlined in libc implementations as
+ * well as some other programs and libraries. There are also a handful
+ * of SYSCALL instructions in the vDSO used, for example, as a
+ * clock_gettimeofday fallback.
+ *
+ * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
+ * then loads new ss, cs, and rip from previously programmed MSRs.
+ * rflags gets masked by a value from another MSR (so CLD and CLAC
+ * are not needed). SYSCALL does not save anything on the stack
+ * and does not change rsp.
+ *
+ * Registers on entry:
+ * rax system call number
+ * rcx return address
+ * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
+ * rdi arg0
+ * rsi arg1
+ * rdx arg2
+ * r10 arg3 (needs to be moved to rcx to conform to C ABI)
+ * r8 arg4
+ * r9 arg5
+ * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
+ *
+ * Only called from user space.
+ *
+ * When user can change pt_regs->foo always force IRET. That is because
+ * it deals with uncanonical addresses better. SYSRET has trouble
+ * with them due to bugs in both AMD and Intel CPUs.
+ */
+
+SYM_CODE_START(entry_SYSCALL_64)
+ UNWIND_HINT_ENTRY
+
+ swapgs
+ /* tss.sp2 is scratch space. */
+ movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
+ SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
+ movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
+
+SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
+
+ /* Construct struct pt_regs on stack */
+ pushq $__USER_DS /* pt_regs->ss */
+ pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
+ pushq %r11 /* pt_regs->flags */
+ pushq $__USER_CS /* pt_regs->cs */
+ pushq %rcx /* pt_regs->ip */
+SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
+ pushq %rax /* pt_regs->orig_ax */
+
+ PUSH_AND_CLEAR_REGS rax=$-ENOSYS
+
+ /* IRQs are off. */
+ movq %rax, %rdi
+ movq %rsp, %rsi
+
+ /* clobbers %rax, make sure it is after saving the syscall nr */
+ IBRS_ENTER
+ UNTRAIN_RET
+
+ call do_syscall_64 /* returns with IRQs disabled */
+
+ /*
+ * Try to use SYSRET instead of IRET if we're returning to
+ * a completely clean 64-bit userspace context. If we're not,
+ * go to the slow exit path.
+ */
+ movq RCX(%rsp), %rcx
+ movq RIP(%rsp), %r11
+
+ cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
+ jne swapgs_restore_regs_and_return_to_usermode
+
+ /*
+ * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
+ * in kernel space. This essentially lets the user take over
+ * the kernel, since userspace controls RSP.
+ *
+ * If width of "canonical tail" ever becomes variable, this will need
+ * to be updated to remain correct on both old and new CPUs.
+ *
+ * Change top bits to match most significant bit (47th or 56th bit
+ * depending on paging mode) in the address.
+ */
+#ifdef CONFIG_X86_5LEVEL
+ ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
+ "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
+#else
+ shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
+ sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
+#endif
+
+ /* If this changed %rcx, it was not canonical */
+ cmpq %rcx, %r11
+ jne swapgs_restore_regs_and_return_to_usermode
+
+ cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
+ jne swapgs_restore_regs_and_return_to_usermode
+
+ movq R11(%rsp), %r11
+ cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
+ jne swapgs_restore_regs_and_return_to_usermode
+
+ /*
+ * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
+ * restore RF properly. If the slowpath sets it for whatever reason, we
+ * need to restore it correctly.
+ *
+ * SYSRET can restore TF, but unlike IRET, restoring TF results in a
+ * trap from userspace immediately after SYSRET. This would cause an
+ * infinite loop whenever #DB happens with register state that satisfies
+ * the opportunistic SYSRET conditions. For example, single-stepping
+ * this user code:
+ *
+ * movq $stuck_here, %rcx
+ * pushfq
+ * popq %r11
+ * stuck_here:
+ *
+ * would never get past 'stuck_here'.
+ */
+ testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
+ jnz swapgs_restore_regs_and_return_to_usermode
+
+ /* nothing to check for RSP */
+
+ cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
+ jne swapgs_restore_regs_and_return_to_usermode
+
+ /*
+ * We win! This label is here just for ease of understanding
+ * perf profiles. Nothing jumps here.
+ */
+syscall_return_via_sysret:
+ IBRS_EXIT
+ POP_REGS pop_rdi=0
+
+ /*
+ * Now all regs are restored except RSP and RDI.
+ * Save old stack pointer and switch to trampoline stack.
+ */
+ movq %rsp, %rdi
+ movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
+ UNWIND_HINT_EMPTY
+
+ pushq RSP-RDI(%rdi) /* RSP */
+ pushq (%rdi) /* RDI */
+
+ /*
+ * We are on the trampoline stack. All regs except RDI are live.
+ * We can do future final exit work right here.
+ */
+ STACKLEAK_ERASE_NOCLOBBER
+
+ SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
+
+ popq %rdi
+ popq %rsp
+ USERGS_SYSRET64
+SYM_CODE_END(entry_SYSCALL_64)
+
+/*
+ * %rdi: prev task
+ * %rsi: next task
+ */
+.pushsection .text, "ax"
+SYM_FUNC_START(__switch_to_asm)
+ /*
+ * Save callee-saved registers
+ * This must match the order in inactive_task_frame
+ */
+ pushq %rbp
+ pushq %rbx
+ pushq %r12
+ pushq %r13
+ pushq %r14
+ pushq %r15
+
+ /* switch stack */
+ movq %rsp, TASK_threadsp(%rdi)
+ movq TASK_threadsp(%rsi), %rsp
+
+#ifdef CONFIG_STACKPROTECTOR
+ movq TASK_stack_canary(%rsi), %rbx
+ movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
+#endif
+
+ /*
+ * When switching from a shallower to a deeper call stack
+ * the RSB may either underflow or use entries populated
+ * with userspace addresses. On CPUs where those concerns
+ * exist, overwrite the RSB with entries which capture
+ * speculative execution to prevent attack.
+ */
+ FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
+
+ /* restore callee-saved registers */
+ popq %r15
+ popq %r14
+ popq %r13
+ popq %r12
+ popq %rbx
+ popq %rbp
+
+ jmp __switch_to
+SYM_FUNC_END(__switch_to_asm)
+.popsection
+
+/*
+ * A newly forked process directly context switches into this address.
+ *
+ * rax: prev task we switched from
+ * rbx: kernel thread func (NULL for user thread)
+ * r12: kernel thread arg
+ */
+.pushsection .text, "ax"
+SYM_CODE_START(ret_from_fork)
+ UNWIND_HINT_EMPTY
+ movq %rax, %rdi
+ call schedule_tail /* rdi: 'prev' task parameter */
+
+ testq %rbx, %rbx /* from kernel_thread? */
+ jnz 1f /* kernel threads are uncommon */
+
+2:
+ UNWIND_HINT_REGS
+ movq %rsp, %rdi
+ call syscall_exit_to_user_mode /* returns with IRQs disabled */
+ jmp swapgs_restore_regs_and_return_to_usermode
+
+1:
+ /* kernel thread */
+ UNWIND_HINT_EMPTY
+ movq %r12, %rdi
+ CALL_NOSPEC rbx
+ /*
+ * A kernel thread is allowed to return here after successfully
+ * calling kernel_execve(). Exit to userspace to complete the execve()
+ * syscall.
+ */
+ movq $0, RAX(%rsp)
+ jmp 2b
+SYM_CODE_END(ret_from_fork)
+.popsection
+
+.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
+#ifdef CONFIG_DEBUG_ENTRY
+ pushq %rax
+ SAVE_FLAGS(CLBR_RAX)
+ testl $X86_EFLAGS_IF, %eax
+ jz .Lokay_\@
+ ud2
+.Lokay_\@:
+ popq %rax
+#endif
+.endm
+
+/**
+ * idtentry_body - Macro to emit code calling the C function
+ * @cfunc: C function to be called
+ * @has_error_code: Hardware pushed error code on stack
+ */
+.macro idtentry_body cfunc has_error_code:req
+
+ call error_entry
+ UNWIND_HINT_REGS
+
+ movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
+
+ .if \has_error_code == 1
+ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
+ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
+ .endif
+
+ call \cfunc
+
+ jmp error_return
+.endm
+
+/**
+ * idtentry - Macro to generate entry stubs for simple IDT entries
+ * @vector: Vector number
+ * @asmsym: ASM symbol for the entry point
+ * @cfunc: C function to be called
+ * @has_error_code: Hardware pushed error code on stack
+ *
+ * The macro emits code to set up the kernel context for straight forward
+ * and simple IDT entries. No IST stack, no paranoid entry checks.
+ */
+.macro idtentry vector asmsym cfunc has_error_code:req
+SYM_CODE_START(\asmsym)
+ UNWIND_HINT_IRET_REGS offset=\has_error_code*8
+ ASM_CLAC
+
+ .if \has_error_code == 0
+ pushq $-1 /* ORIG_RAX: no syscall to restart */
+ .endif
+
+ .if \vector == X86_TRAP_BP
+ /*
+ * If coming from kernel space, create a 6-word gap to allow the
+ * int3 handler to emulate a call instruction.
+ */
+ testb $3, CS-ORIG_RAX(%rsp)
+ jnz .Lfrom_usermode_no_gap_\@
+ .rept 6
+ pushq 5*8(%rsp)
+ .endr
+ UNWIND_HINT_IRET_REGS offset=8
+.Lfrom_usermode_no_gap_\@:
+ .endif
+
+ idtentry_body \cfunc \has_error_code
+
+_ASM_NOKPROBE(\asmsym)
+SYM_CODE_END(\asmsym)
+.endm
+
+/*
+ * Interrupt entry/exit.
+ *
+ + The interrupt stubs push (vector) onto the stack, which is the error_code
+ * position of idtentry exceptions, and jump to one of the two idtentry points
+ * (common/spurious).
+ *
+ * common_interrupt is a hotpath, align it to a cache line
+ */
+.macro idtentry_irq vector cfunc
+ .p2align CONFIG_X86_L1_CACHE_SHIFT
+ idtentry \vector asm_\cfunc \cfunc has_error_code=1
+.endm
+
+/*
+ * System vectors which invoke their handlers directly and are not
+ * going through the regular common device interrupt handling code.
+ */
+.macro idtentry_sysvec vector cfunc
+ idtentry \vector asm_\cfunc \cfunc has_error_code=0
+.endm
+
+/**
+ * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
+ * @vector: Vector number
+ * @asmsym: ASM symbol for the entry point
+ * @cfunc: C function to be called
+ *
+ * The macro emits code to set up the kernel context for #MC and #DB
+ *
+ * If the entry comes from user space it uses the normal entry path
+ * including the return to user space work and preemption checks on
+ * exit.
+ *
+ * If hits in kernel mode then it needs to go through the paranoid
+ * entry as the exception can hit any random state. No preemption
+ * check on exit to keep the paranoid path simple.
+ */
+.macro idtentry_mce_db vector asmsym cfunc
+SYM_CODE_START(\asmsym)
+ UNWIND_HINT_IRET_REGS
+ ASM_CLAC
+
+ pushq $-1 /* ORIG_RAX: no syscall to restart */
+
+ /*
+ * If the entry is from userspace, switch stacks and treat it as
+ * a normal entry.
+ */
+ testb $3, CS-ORIG_RAX(%rsp)
+ jnz .Lfrom_usermode_switch_stack_\@
+
+ /* paranoid_entry returns GS information for paranoid_exit in EBX. */
+ call paranoid_entry
+
+ UNWIND_HINT_REGS
+
+ movq %rsp, %rdi /* pt_regs pointer */
+
+ call \cfunc
+
+ jmp paranoid_exit
+
+ /* Switch to the regular task stack and use the noist entry point */
+.Lfrom_usermode_switch_stack_\@:
+ idtentry_body noist_\cfunc, has_error_code=0
+
+_ASM_NOKPROBE(\asmsym)
+SYM_CODE_END(\asmsym)
+.endm
+
+#ifdef CONFIG_AMD_MEM_ENCRYPT
+/**
+ * idtentry_vc - Macro to generate entry stub for #VC
+ * @vector: Vector number
+ * @asmsym: ASM symbol for the entry point
+ * @cfunc: C function to be called
+ *
+ * The macro emits code to set up the kernel context for #VC. The #VC handler
+ * runs on an IST stack and needs to be able to cause nested #VC exceptions.
+ *
+ * To make this work the #VC entry code tries its best to pretend it doesn't use
+ * an IST stack by switching to the task stack if coming from user-space (which
+ * includes early SYSCALL entry path) or back to the stack in the IRET frame if
+ * entered from kernel-mode.
+ *
+ * If entered from kernel-mode the return stack is validated first, and if it is
+ * not safe to use (e.g. because it points to the entry stack) the #VC handler
+ * will switch to a fall-back stack (VC2) and call a special handler function.
+ *
+ * The macro is only used for one vector, but it is planned to be extended in
+ * the future for the #HV exception.
+ */
+.macro idtentry_vc vector asmsym cfunc
+SYM_CODE_START(\asmsym)
+ UNWIND_HINT_IRET_REGS
+ ASM_CLAC
+
+ /*
+ * If the entry is from userspace, switch stacks and treat it as
+ * a normal entry.
+ */
+ testb $3, CS-ORIG_RAX(%rsp)
+ jnz .Lfrom_usermode_switch_stack_\@
+
+ /*
+ * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
+ * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
+ */
+ call paranoid_entry
+
+ UNWIND_HINT_REGS
+
+ /*
+ * Switch off the IST stack to make it free for nested exceptions. The
+ * vc_switch_off_ist() function will switch back to the interrupted
+ * stack if it is safe to do so. If not it switches to the VC fall-back
+ * stack.
+ */
+ movq %rsp, %rdi /* pt_regs pointer */
+ call vc_switch_off_ist
+ movq %rax, %rsp /* Switch to new stack */
+
+ ENCODE_FRAME_POINTER
+ UNWIND_HINT_REGS
+
+ /* Update pt_regs */
+ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
+ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
+
+ movq %rsp, %rdi /* pt_regs pointer */
+
+ call kernel_\cfunc
+
+ /*
+ * No need to switch back to the IST stack. The current stack is either
+ * identical to the stack in the IRET frame or the VC fall-back stack,
+ * so it is definitly mapped even with PTI enabled.
+ */
+ jmp paranoid_exit
+
+ /* Switch to the regular task stack */
+.Lfrom_usermode_switch_stack_\@:
+ idtentry_body user_\cfunc, has_error_code=1
+
+_ASM_NOKPROBE(\asmsym)
+SYM_CODE_END(\asmsym)
+.endm
+#endif
+
+/*
+ * Double fault entry. Straight paranoid. No checks from which context
+ * this comes because for the espfix induced #DF this would do the wrong
+ * thing.
+ */
+.macro idtentry_df vector asmsym cfunc
+SYM_CODE_START(\asmsym)
+ UNWIND_HINT_IRET_REGS offset=8
+ ASM_CLAC
+
+ /* paranoid_entry returns GS information for paranoid_exit in EBX. */
+ call paranoid_entry
+ UNWIND_HINT_REGS
+
+ movq %rsp, %rdi /* pt_regs pointer into first argument */
+ movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
+ movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
+ call \cfunc
+
+ jmp paranoid_exit
+
+_ASM_NOKPROBE(\asmsym)
+SYM_CODE_END(\asmsym)
+.endm
+
+/*
+ * Include the defines which emit the idt entries which are shared
+ * shared between 32 and 64 bit and emit the __irqentry_text_* markers
+ * so the stacktrace boundary checks work.
+ */
+ .align 16
+ .globl __irqentry_text_start
+__irqentry_text_start:
+
+#include <asm/idtentry.h>
+
+ .align 16
+ .globl __irqentry_text_end
+__irqentry_text_end:
+
+SYM_CODE_START_LOCAL(common_interrupt_return)
+SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
+ IBRS_EXIT
+#ifdef CONFIG_DEBUG_ENTRY
+ /* Assert that pt_regs indicates user mode. */
+ testb $3, CS(%rsp)
+ jnz 1f
+ ud2
+1:
+#endif
+#ifdef CONFIG_XEN_PV
+ ALTERNATIVE "", "jmp xenpv_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
+#endif
+
+ POP_REGS pop_rdi=0
+
+ /*
+ * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
+ * Save old stack pointer and switch to trampoline stack.
+ */
+ movq %rsp, %rdi
+ movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
+ UNWIND_HINT_EMPTY
+
+ /* Copy the IRET frame to the trampoline stack. */
+ pushq 6*8(%rdi) /* SS */
+ pushq 5*8(%rdi) /* RSP */
+ pushq 4*8(%rdi) /* EFLAGS */
+ pushq 3*8(%rdi) /* CS */
+ pushq 2*8(%rdi) /* RIP */
+
+ /* Push user RDI on the trampoline stack. */
+ pushq (%rdi)
+
+ /*
+ * We are on the trampoline stack. All regs except RDI are live.
+ * We can do future final exit work right here.
+ */
+ STACKLEAK_ERASE_NOCLOBBER
+
+ SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
+
+ /* Restore RDI. */
+ popq %rdi
+ SWAPGS
+ INTERRUPT_RETURN
+
+
+SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
+#ifdef CONFIG_DEBUG_ENTRY
+ /* Assert that pt_regs indicates kernel mode. */
+ testb $3, CS(%rsp)
+ jz 1f
+ ud2
+1:
+#endif
+ POP_REGS
+ addq $8, %rsp /* skip regs->orig_ax */
+ /*
+ * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
+ * when returning from IPI handler.
+ */
+ INTERRUPT_RETURN
+
+SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
+ UNWIND_HINT_IRET_REGS
+ /*
+ * Are we returning to a stack segment from the LDT? Note: in
+ * 64-bit mode SS:RSP on the exception stack is always valid.
+ */
+#ifdef CONFIG_X86_ESPFIX64
+ testb $4, (SS-RIP)(%rsp)
+ jnz native_irq_return_ldt
+#endif
+
+SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
+ /*
+ * This may fault. Non-paranoid faults on return to userspace are
+ * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
+ * Double-faults due to espfix64 are handled in exc_double_fault.
+ * Other faults here are fatal.
+ */
+ iretq
+
+#ifdef CONFIG_X86_ESPFIX64
+native_irq_return_ldt:
+ /*
+ * We are running with user GSBASE. All GPRs contain their user
+ * values. We have a percpu ESPFIX stack that is eight slots
+ * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
+ * of the ESPFIX stack.
+ *
+ * We clobber RAX and RDI in this code. We stash RDI on the
+ * normal stack and RAX on the ESPFIX stack.
+ *
+ * The ESPFIX stack layout we set up looks like this:
+ *
+ * --- top of ESPFIX stack ---
+ * SS
+ * RSP
+ * RFLAGS
+ * CS
+ * RIP <-- RSP points here when we're done
+ * RAX <-- espfix_waddr points here
+ * --- bottom of ESPFIX stack ---
+ */
+
+ pushq %rdi /* Stash user RDI */
+ swapgs /* to kernel GS */
+ SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
+ UNTRAIN_RET
+
+ movq PER_CPU_VAR(espfix_waddr), %rdi
+ movq %rax, (0*8)(%rdi) /* user RAX */
+ movq (1*8)(%rsp), %rax /* user RIP */
+ movq %rax, (1*8)(%rdi)
+ movq (2*8)(%rsp), %rax /* user CS */
+ movq %rax, (2*8)(%rdi)
+ movq (3*8)(%rsp), %rax /* user RFLAGS */
+ movq %rax, (3*8)(%rdi)
+ movq (5*8)(%rsp), %rax /* user SS */
+ movq %rax, (5*8)(%rdi)
+ movq (4*8)(%rsp), %rax /* user RSP */
+ movq %rax, (4*8)(%rdi)
+ /* Now RAX == RSP. */
+
+ andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
+
+ /*
+ * espfix_stack[31:16] == 0. The page tables are set up such that
+ * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
+ * espfix_waddr for any X. That is, there are 65536 RO aliases of
+ * the same page. Set up RSP so that RSP[31:16] contains the
+ * respective 16 bits of the /userspace/ RSP and RSP nonetheless
+ * still points to an RO alias of the ESPFIX stack.
+ */
+ orq PER_CPU_VAR(espfix_stack), %rax
+
+ SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
+ swapgs /* to user GS */
+ popq %rdi /* Restore user RDI */
+
+ movq %rax, %rsp
+ UNWIND_HINT_IRET_REGS offset=8
+
+ /*
+ * At this point, we cannot write to the stack any more, but we can
+ * still read.
+ */
+ popq %rax /* Restore user RAX */
+
+ /*
+ * RSP now points to an ordinary IRET frame, except that the page
+ * is read-only and RSP[31:16] are preloaded with the userspace
+ * values. We can now IRET back to userspace.
+ */
+ jmp native_irq_return_iret
+#endif
+SYM_CODE_END(common_interrupt_return)
+_ASM_NOKPROBE(common_interrupt_return)
+
+/*
+ * Reload gs selector with exception handling
+ * edi: new selector
+ *
+ * Is in entry.text as it shouldn't be instrumented.
+ */
+SYM_FUNC_START(asm_load_gs_index)
+ FRAME_BEGIN
+ swapgs
+.Lgs_change:
+ movl %edi, %gs
+2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
+ swapgs
+ FRAME_END
+ RET
+SYM_FUNC_END(asm_load_gs_index)
+EXPORT_SYMBOL(asm_load_gs_index)
+
+ _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
+ .section .fixup, "ax"
+ /* running with kernelgs */
+SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
+ swapgs /* switch back to user gs */
+.macro ZAP_GS
+ /* This can't be a string because the preprocessor needs to see it. */
+ movl $__USER_DS, %eax
+ movl %eax, %gs
+.endm
+ ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
+ xorl %eax, %eax
+ movl %eax, %gs
+ jmp 2b
+SYM_CODE_END(.Lbad_gs)
+ .previous
+
+/*
+ * rdi: New stack pointer points to the top word of the stack
+ * rsi: Function pointer
+ * rdx: Function argument (can be NULL if none)
+ */
+SYM_FUNC_START(asm_call_on_stack)
+SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL)
+SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL)
+ /*
+ * Save the frame pointer unconditionally. This allows the ORC
+ * unwinder to handle the stack switch.
+ */
+ pushq %rbp
+ mov %rsp, %rbp
+
+ /*
+ * The unwinder relies on the word at the top of the new stack
+ * page linking back to the previous RSP.
+ */
+ mov %rsp, (%rdi)
+ mov %rdi, %rsp
+ /* Move the argument to the right place */
+ mov %rdx, %rdi
+
+1:
+ .pushsection .discard.instr_begin
+ .long 1b - .
+ .popsection
+
+ CALL_NOSPEC rsi
+
+2:
+ .pushsection .discard.instr_end
+ .long 2b - .
+ .popsection
+
+ /* Restore the previous stack pointer from RBP. */
+ leaveq
+ RET
+SYM_FUNC_END(asm_call_on_stack)
+
+#ifdef CONFIG_XEN_PV
+/*
+ * A note on the "critical region" in our callback handler.
+ * We want to avoid stacking callback handlers due to events occurring
+ * during handling of the last event. To do this, we keep events disabled
+ * until we've done all processing. HOWEVER, we must enable events before
+ * popping the stack frame (can't be done atomically) and so it would still
+ * be possible to get enough handler activations to overflow the stack.
+ * Although unlikely, bugs of that kind are hard to track down, so we'd
+ * like to avoid the possibility.
+ * So, on entry to the handler we detect whether we interrupted an
+ * existing activation in its critical region -- if so, we pop the current
+ * activation and restart the handler using the previous one.
+ *
+ * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
+ */
+SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
+
+/*
+ * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
+ * see the correct pointer to the pt_regs
+ */
+ UNWIND_HINT_FUNC
+ movq %rdi, %rsp /* we don't return, adjust the stack frame */
+ UNWIND_HINT_REGS
+
+ call xen_pv_evtchn_do_upcall
+
+ jmp error_return
+SYM_CODE_END(exc_xen_hypervisor_callback)
+
+/*
+ * Hypervisor uses this for application faults while it executes.
+ * We get here for two reasons:
+ * 1. Fault while reloading DS, ES, FS or GS
+ * 2. Fault while executing IRET
+ * Category 1 we do not need to fix up as Xen has already reloaded all segment
+ * registers that could be reloaded and zeroed the others.
+ * Category 2 we fix up by killing the current process. We cannot use the
+ * normal Linux return path in this case because if we use the IRET hypercall
+ * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
+ * We distinguish between categories by comparing each saved segment register
+ * with its current contents: any discrepancy means we in category 1.
+ */
+SYM_CODE_START(xen_failsafe_callback)
+ UNWIND_HINT_EMPTY
+ movl %ds, %ecx
+ cmpw %cx, 0x10(%rsp)
+ jne 1f
+ movl %es, %ecx
+ cmpw %cx, 0x18(%rsp)
+ jne 1f
+ movl %fs, %ecx
+ cmpw %cx, 0x20(%rsp)
+ jne 1f
+ movl %gs, %ecx
+ cmpw %cx, 0x28(%rsp)
+ jne 1f
+ /* All segments match their saved values => Category 2 (Bad IRET). */
+ movq (%rsp), %rcx
+ movq 8(%rsp), %r11
+ addq $0x30, %rsp
+ pushq $0 /* RIP */
+ UNWIND_HINT_IRET_REGS offset=8
+ jmp asm_exc_general_protection
+1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
+ movq (%rsp), %rcx
+ movq 8(%rsp), %r11
+ addq $0x30, %rsp
+ UNWIND_HINT_IRET_REGS
+ pushq $-1 /* orig_ax = -1 => not a system call */
+ PUSH_AND_CLEAR_REGS
+ ENCODE_FRAME_POINTER
+ jmp error_return
+SYM_CODE_END(xen_failsafe_callback)
+#endif /* CONFIG_XEN_PV */
+
+/*
+ * Save all registers in pt_regs. Return GSBASE related information
+ * in EBX depending on the availability of the FSGSBASE instructions:
+ *
+ * FSGSBASE R/EBX
+ * N 0 -> SWAPGS on exit
+ * 1 -> no SWAPGS on exit
+ *
+ * Y GSBASE value at entry, must be restored in paranoid_exit
+ *
+ * R14 - old CR3
+ * R15 - old SPEC_CTRL
+ */
+SYM_CODE_START_LOCAL(paranoid_entry)
+ UNWIND_HINT_FUNC
+ cld
+ PUSH_AND_CLEAR_REGS save_ret=1
+ ENCODE_FRAME_POINTER 8
+
+ /*
+ * Always stash CR3 in %r14. This value will be restored,
+ * verbatim, at exit. Needed if paranoid_entry interrupted
+ * another entry that already switched to the user CR3 value
+ * but has not yet returned to userspace.
+ *
+ * This is also why CS (stashed in the "iret frame" by the
+ * hardware at entry) can not be used: this may be a return
+ * to kernel code, but with a user CR3 value.
+ *
+ * Switching CR3 does not depend on kernel GSBASE so it can
+ * be done before switching to the kernel GSBASE. This is
+ * required for FSGSBASE because the kernel GSBASE has to
+ * be retrieved from a kernel internal table.
+ */
+ SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
+
+ /*
+ * Handling GSBASE depends on the availability of FSGSBASE.
+ *
+ * Without FSGSBASE the kernel enforces that negative GSBASE
+ * values indicate kernel GSBASE. With FSGSBASE no assumptions
+ * can be made about the GSBASE value when entering from user
+ * space.
+ */
+ ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
+
+ /*
+ * Read the current GSBASE and store it in %rbx unconditionally,
+ * retrieve and set the current CPUs kernel GSBASE. The stored value
+ * has to be restored in paranoid_exit unconditionally.
+ *
+ * The unconditional write to GS base below ensures that no subsequent
+ * loads based on a mispredicted GS base can happen, therefore no LFENCE
+ * is needed here.
+ */
+ SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
+ jmp .Lparanoid_gsbase_done
+
+.Lparanoid_entry_checkgs:
+ /* EBX = 1 -> kernel GSBASE active, no restore required */
+ movl $1, %ebx
+
+ /*
+ * The kernel-enforced convention is a negative GSBASE indicates
+ * a kernel value. No SWAPGS needed on entry and exit.
+ */
+ movl $MSR_GS_BASE, %ecx
+ rdmsr
+ testl %edx, %edx
+ js .Lparanoid_kernel_gsbase
+
+ /* EBX = 0 -> SWAPGS required on exit */
+ xorl %ebx, %ebx
+ swapgs
+.Lparanoid_kernel_gsbase:
+ FENCE_SWAPGS_KERNEL_ENTRY
+.Lparanoid_gsbase_done:
+
+ /*
+ * Once we have CR3 and %GS setup save and set SPEC_CTRL. Just like
+ * CR3 above, keep the old value in a callee saved register.
+ */
+ IBRS_ENTER save_reg=%r15
+ UNTRAIN_RET
+
+ RET
+SYM_CODE_END(paranoid_entry)
+
+/*
+ * "Paranoid" exit path from exception stack. This is invoked
+ * only on return from non-NMI IST interrupts that came
+ * from kernel space.
+ *
+ * We may be returning to very strange contexts (e.g. very early
+ * in syscall entry), so checking for preemption here would
+ * be complicated. Fortunately, there's no good reason to try
+ * to handle preemption here.
+ *
+ * R/EBX contains the GSBASE related information depending on the
+ * availability of the FSGSBASE instructions:
+ *
+ * FSGSBASE R/EBX
+ * N 0 -> SWAPGS on exit
+ * 1 -> no SWAPGS on exit
+ *
+ * Y User space GSBASE, must be restored unconditionally
+ *
+ * R14 - old CR3
+ * R15 - old SPEC_CTRL
+ */
+SYM_CODE_START_LOCAL(paranoid_exit)
+ UNWIND_HINT_REGS
+
+ /*
+ * Must restore IBRS state before both CR3 and %GS since we need access
+ * to the per-CPU x86_spec_ctrl_shadow variable.
+ */
+ IBRS_EXIT save_reg=%r15
+
+ /*
+ * The order of operations is important. RESTORE_CR3 requires
+ * kernel GSBASE.
+ *
+ * NB to anyone to try to optimize this code: this code does
+ * not execute at all for exceptions from user mode. Those
+ * exceptions go through error_exit instead.
+ */
+ RESTORE_CR3 scratch_reg=%rax save_reg=%r14
+
+ /* Handle the three GSBASE cases */
+ ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
+
+ /* With FSGSBASE enabled, unconditionally restore GSBASE */
+ wrgsbase %rbx
+ jmp restore_regs_and_return_to_kernel
+
+.Lparanoid_exit_checkgs:
+ /* On non-FSGSBASE systems, conditionally do SWAPGS */
+ testl %ebx, %ebx
+ jnz restore_regs_and_return_to_kernel
+
+ /* We are returning to a context with user GSBASE */
+ swapgs
+ jmp restore_regs_and_return_to_kernel
+SYM_CODE_END(paranoid_exit)
+
+/*
+ * Save all registers in pt_regs, and switch GS if needed.
+ */
+SYM_CODE_START_LOCAL(error_entry)
+ UNWIND_HINT_FUNC
+ cld
+ PUSH_AND_CLEAR_REGS save_ret=1
+ ENCODE_FRAME_POINTER 8
+ testb $3, CS+8(%rsp)
+ jz .Lerror_kernelspace
+
+ /*
+ * We entered from user mode or we're pretending to have entered
+ * from user mode due to an IRET fault.
+ */
+ SWAPGS
+ FENCE_SWAPGS_USER_ENTRY
+ /* We have user CR3. Change to kernel CR3. */
+ SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
+ IBRS_ENTER
+ UNTRAIN_RET
+
+.Lerror_entry_from_usermode_after_swapgs:
+
+ /* Put us onto the real thread stack. */
+ popq %r12 /* save return addr in %12 */
+ movq %rsp, %rdi /* arg0 = pt_regs pointer */
+ call sync_regs
+ movq %rax, %rsp /* switch stack */
+ ENCODE_FRAME_POINTER
+ pushq %r12
+ RET
+
+ /*
+ * There are two places in the kernel that can potentially fault with
+ * usergs. Handle them here. B stepping K8s sometimes report a
+ * truncated RIP for IRET exceptions returning to compat mode. Check
+ * for these here too.
+ */
+.Lerror_kernelspace:
+ leaq native_irq_return_iret(%rip), %rcx
+ cmpq %rcx, RIP+8(%rsp)
+ je .Lerror_bad_iret
+ movl %ecx, %eax /* zero extend */
+ cmpq %rax, RIP+8(%rsp)
+ je .Lbstep_iret
+ cmpq $.Lgs_change, RIP+8(%rsp)
+ jne .Lerror_entry_done_lfence
+
+ /*
+ * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
+ * gsbase and proceed. We'll fix up the exception and land in
+ * .Lgs_change's error handler with kernel gsbase.
+ */
+ SWAPGS
+
+ /*
+ * Issue an LFENCE to prevent GS speculation, regardless of whether it is a
+ * kernel or user gsbase.
+ */
+.Lerror_entry_done_lfence:
+ FENCE_SWAPGS_KERNEL_ENTRY
+ ANNOTATE_UNRET_END
+ RET
+
+.Lbstep_iret:
+ /* Fix truncated RIP */
+ movq %rcx, RIP+8(%rsp)
+ /* fall through */
+
+.Lerror_bad_iret:
+ /*
+ * We came from an IRET to user mode, so we have user
+ * gsbase and CR3. Switch to kernel gsbase and CR3:
+ */
+ SWAPGS
+ FENCE_SWAPGS_USER_ENTRY
+ SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
+ IBRS_ENTER
+ UNTRAIN_RET
+
+ /*
+ * Pretend that the exception came from user mode: set up pt_regs
+ * as if we faulted immediately after IRET.
+ */
+ mov %rsp, %rdi
+ call fixup_bad_iret
+ mov %rax, %rsp
+ jmp .Lerror_entry_from_usermode_after_swapgs
+SYM_CODE_END(error_entry)
+
+SYM_CODE_START_LOCAL(error_return)
+ UNWIND_HINT_REGS
+ DEBUG_ENTRY_ASSERT_IRQS_OFF
+ testb $3, CS(%rsp)
+ jz restore_regs_and_return_to_kernel
+ jmp swapgs_restore_regs_and_return_to_usermode
+SYM_CODE_END(error_return)
+
+/*
+ * Runs on exception stack. Xen PV does not go through this path at all,
+ * so we can use real assembly here.
+ *
+ * Registers:
+ * %r14: Used to save/restore the CR3 of the interrupted context
+ * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
+ */
+SYM_CODE_START(asm_exc_nmi)
+ UNWIND_HINT_IRET_REGS
+
+ /*
+ * We allow breakpoints in NMIs. If a breakpoint occurs, then
+ * the iretq it performs will take us out of NMI context.
+ * This means that we can have nested NMIs where the next
+ * NMI is using the top of the stack of the previous NMI. We
+ * can't let it execute because the nested NMI will corrupt the
+ * stack of the previous NMI. NMI handlers are not re-entrant
+ * anyway.
+ *
+ * To handle this case we do the following:
+ * Check the a special location on the stack that contains
+ * a variable that is set when NMIs are executing.
+ * The interrupted task's stack is also checked to see if it
+ * is an NMI stack.
+ * If the variable is not set and the stack is not the NMI
+ * stack then:
+ * o Set the special variable on the stack
+ * o Copy the interrupt frame into an "outermost" location on the
+ * stack
+ * o Copy the interrupt frame into an "iret" location on the stack
+ * o Continue processing the NMI
+ * If the variable is set or the previous stack is the NMI stack:
+ * o Modify the "iret" location to jump to the repeat_nmi
+ * o return back to the first NMI
+ *
+ * Now on exit of the first NMI, we first clear the stack variable
+ * The NMI stack will tell any nested NMIs at that point that it is
+ * nested. Then we pop the stack normally with iret, and if there was
+ * a nested NMI that updated the copy interrupt stack frame, a
+ * jump will be made to the repeat_nmi code that will handle the second
+ * NMI.
+ *
+ * However, espfix prevents us from directly returning to userspace
+ * with a single IRET instruction. Similarly, IRET to user mode
+ * can fault. We therefore handle NMIs from user space like
+ * other IST entries.
+ */
+
+ ASM_CLAC
+
+ /* Use %rdx as our temp variable throughout */
+ pushq %rdx
+
+ testb $3, CS-RIP+8(%rsp)
+ jz .Lnmi_from_kernel
+
+ /*
+ * NMI from user mode. We need to run on the thread stack, but we
+ * can't go through the normal entry paths: NMIs are masked, and
+ * we don't want to enable interrupts, because then we'll end
+ * up in an awkward situation in which IRQs are on but NMIs
+ * are off.
+ *
+ * We also must not push anything to the stack before switching
+ * stacks lest we corrupt the "NMI executing" variable.
+ */
+
+ swapgs
+ cld
+ FENCE_SWAPGS_USER_ENTRY
+ SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
+ movq %rsp, %rdx
+ movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
+ UNWIND_HINT_IRET_REGS base=%rdx offset=8
+ pushq 5*8(%rdx) /* pt_regs->ss */
+ pushq 4*8(%rdx) /* pt_regs->rsp */
+ pushq 3*8(%rdx) /* pt_regs->flags */
+ pushq 2*8(%rdx) /* pt_regs->cs */
+ pushq 1*8(%rdx) /* pt_regs->rip */
+ UNWIND_HINT_IRET_REGS
+ pushq $-1 /* pt_regs->orig_ax */
+ PUSH_AND_CLEAR_REGS rdx=(%rdx)
+ ENCODE_FRAME_POINTER
+
+ IBRS_ENTER
+ UNTRAIN_RET
+
+ /*
+ * At this point we no longer need to worry about stack damage
+ * due to nesting -- we're on the normal thread stack and we're
+ * done with the NMI stack.
+ */
+
+ movq %rsp, %rdi
+ movq $-1, %rsi
+ call exc_nmi
+
+ /*
+ * Return back to user mode. We must *not* do the normal exit
+ * work, because we don't want to enable interrupts.
+ */
+ jmp swapgs_restore_regs_and_return_to_usermode
+
+.Lnmi_from_kernel:
+ /*
+ * Here's what our stack frame will look like:
+ * +---------------------------------------------------------+
+ * | original SS |
+ * | original Return RSP |
+ * | original RFLAGS |
+ * | original CS |
+ * | original RIP |
+ * +---------------------------------------------------------+
+ * | temp storage for rdx |
+ * +---------------------------------------------------------+
+ * | "NMI executing" variable |
+ * +---------------------------------------------------------+
+ * | iret SS } Copied from "outermost" frame |
+ * | iret Return RSP } on each loop iteration; overwritten |
+ * | iret RFLAGS } by a nested NMI to force another |
+ * | iret CS } iteration if needed. |
+ * | iret RIP } |
+ * +---------------------------------------------------------+
+ * | outermost SS } initialized in first_nmi; |
+ * | outermost Return RSP } will not be changed before |
+ * | outermost RFLAGS } NMI processing is done. |
+ * | outermost CS } Copied to "iret" frame on each |
+ * | outermost RIP } iteration. |
+ * +---------------------------------------------------------+
+ * | pt_regs |
+ * +---------------------------------------------------------+
+ *
+ * The "original" frame is used by hardware. Before re-enabling
+ * NMIs, we need to be done with it, and we need to leave enough
+ * space for the asm code here.
+ *
+ * We return by executing IRET while RSP points to the "iret" frame.
+ * That will either return for real or it will loop back into NMI
+ * processing.
+ *
+ * The "outermost" frame is copied to the "iret" frame on each
+ * iteration of the loop, so each iteration starts with the "iret"
+ * frame pointing to the final return target.
+ */
+
+ /*
+ * Determine whether we're a nested NMI.
+ *
+ * If we interrupted kernel code between repeat_nmi and
+ * end_repeat_nmi, then we are a nested NMI. We must not
+ * modify the "iret" frame because it's being written by
+ * the outer NMI. That's okay; the outer NMI handler is
+ * about to about to call exc_nmi() anyway, so we can just
+ * resume the outer NMI.
+ */
+
+ movq $repeat_nmi, %rdx
+ cmpq 8(%rsp), %rdx
+ ja 1f
+ movq $end_repeat_nmi, %rdx
+ cmpq 8(%rsp), %rdx
+ ja nested_nmi_out
+1:
+
+ /*
+ * Now check "NMI executing". If it's set, then we're nested.
+ * This will not detect if we interrupted an outer NMI just
+ * before IRET.
+ */
+ cmpl $1, -8(%rsp)
+ je nested_nmi
+
+ /*
+ * Now test if the previous stack was an NMI stack. This covers
+ * the case where we interrupt an outer NMI after it clears
+ * "NMI executing" but before IRET. We need to be careful, though:
+ * there is one case in which RSP could point to the NMI stack
+ * despite there being no NMI active: naughty userspace controls
+ * RSP at the very beginning of the SYSCALL targets. We can
+ * pull a fast one on naughty userspace, though: we program
+ * SYSCALL to mask DF, so userspace cannot cause DF to be set
+ * if it controls the kernel's RSP. We set DF before we clear
+ * "NMI executing".
+ */
+ lea 6*8(%rsp), %rdx
+ /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
+ cmpq %rdx, 4*8(%rsp)
+ /* If the stack pointer is above the NMI stack, this is a normal NMI */
+ ja first_nmi
+
+ subq $EXCEPTION_STKSZ, %rdx
+ cmpq %rdx, 4*8(%rsp)
+ /* If it is below the NMI stack, it is a normal NMI */
+ jb first_nmi
+
+ /* Ah, it is within the NMI stack. */
+
+ testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
+ jz first_nmi /* RSP was user controlled. */
+
+ /* This is a nested NMI. */
+
+nested_nmi:
+ /*
+ * Modify the "iret" frame to point to repeat_nmi, forcing another
+ * iteration of NMI handling.
+ */
+ subq $8, %rsp
+ leaq -10*8(%rsp), %rdx
+ pushq $__KERNEL_DS
+ pushq %rdx
+ pushfq
+ pushq $__KERNEL_CS
+ pushq $repeat_nmi
+
+ /* Put stack back */
+ addq $(6*8), %rsp
+
+nested_nmi_out:
+ popq %rdx
+
+ /* We are returning to kernel mode, so this cannot result in a fault. */
+ iretq
+
+first_nmi:
+ /* Restore rdx. */
+ movq (%rsp), %rdx
+
+ /* Make room for "NMI executing". */
+ pushq $0
+
+ /* Leave room for the "iret" frame */
+ subq $(5*8), %rsp
+
+ /* Copy the "original" frame to the "outermost" frame */
+ .rept 5
+ pushq 11*8(%rsp)
+ .endr
+ UNWIND_HINT_IRET_REGS
+
+ /* Everything up to here is safe from nested NMIs */
+
+#ifdef CONFIG_DEBUG_ENTRY
+ /*
+ * For ease of testing, unmask NMIs right away. Disabled by
+ * default because IRET is very expensive.
+ */
+ pushq $0 /* SS */
+ pushq %rsp /* RSP (minus 8 because of the previous push) */
+ addq $8, (%rsp) /* Fix up RSP */
+ pushfq /* RFLAGS */
+ pushq $__KERNEL_CS /* CS */
+ pushq $1f /* RIP */
+ iretq /* continues at repeat_nmi below */
+ UNWIND_HINT_IRET_REGS
+1:
+#endif
+
+repeat_nmi:
+ /*
+ * If there was a nested NMI, the first NMI's iret will return
+ * here. But NMIs are still enabled and we can take another
+ * nested NMI. The nested NMI checks the interrupted RIP to see
+ * if it is between repeat_nmi and end_repeat_nmi, and if so
+ * it will just return, as we are about to repeat an NMI anyway.
+ * This makes it safe to copy to the stack frame that a nested
+ * NMI will update.
+ *
+ * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
+ * we're repeating an NMI, gsbase has the same value that it had on
+ * the first iteration. paranoid_entry will load the kernel
+ * gsbase if needed before we call exc_nmi(). "NMI executing"
+ * is zero.
+ */
+ movq $1, 10*8(%rsp) /* Set "NMI executing". */
+
+ /*
+ * Copy the "outermost" frame to the "iret" frame. NMIs that nest
+ * here must not modify the "iret" frame while we're writing to
+ * it or it will end up containing garbage.
+ */
+ addq $(10*8), %rsp
+ .rept 5
+ pushq -6*8(%rsp)
+ .endr
+ subq $(5*8), %rsp
+end_repeat_nmi:
+
+ /*
+ * Everything below this point can be preempted by a nested NMI.
+ * If this happens, then the inner NMI will change the "iret"
+ * frame to point back to repeat_nmi.
+ */
+ pushq $-1 /* ORIG_RAX: no syscall to restart */
+
+ /*
+ * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
+ * as we should not be calling schedule in NMI context.
+ * Even with normal interrupts enabled. An NMI should not be
+ * setting NEED_RESCHED or anything that normal interrupts and
+ * exceptions might do.
+ */
+ call paranoid_entry
+ UNWIND_HINT_REGS
+
+ movq %rsp, %rdi
+ movq $-1, %rsi
+ call exc_nmi
+
+ /* Always restore stashed SPEC_CTRL value (see paranoid_entry) */
+ IBRS_EXIT save_reg=%r15
+
+ /* Always restore stashed CR3 value (see paranoid_entry) */
+ RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
+
+ /*
+ * The above invocation of paranoid_entry stored the GSBASE
+ * related information in R/EBX depending on the availability
+ * of FSGSBASE.
+ *
+ * If FSGSBASE is enabled, restore the saved GSBASE value
+ * unconditionally, otherwise take the conditional SWAPGS path.
+ */
+ ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
+
+ wrgsbase %rbx
+ jmp nmi_restore
+
+nmi_no_fsgsbase:
+ /* EBX == 0 -> invoke SWAPGS */
+ testl %ebx, %ebx
+ jnz nmi_restore
+
+nmi_swapgs:
+ swapgs
+
+nmi_restore:
+ POP_REGS
+
+ /*
+ * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
+ * at the "iret" frame.
+ */
+ addq $6*8, %rsp
+
+ /*
+ * Clear "NMI executing". Set DF first so that we can easily
+ * distinguish the remaining code between here and IRET from
+ * the SYSCALL entry and exit paths.
+ *
+ * We arguably should just inspect RIP instead, but I (Andy) wrote
+ * this code when I had the misapprehension that Xen PV supported
+ * NMIs, and Xen PV would break that approach.
+ */
+ std
+ movq $0, 5*8(%rsp) /* clear "NMI executing" */
+
+ /*
+ * iretq reads the "iret" frame and exits the NMI stack in a
+ * single instruction. We are returning to kernel mode, so this
+ * cannot result in a fault. Similarly, we don't need to worry
+ * about espfix64 on the way back to kernel mode.
+ */
+ iretq
+SYM_CODE_END(asm_exc_nmi)
+
+#ifndef CONFIG_IA32_EMULATION
+/*
+ * This handles SYSCALL from 32-bit code. There is no way to program
+ * MSRs to fully disable 32-bit SYSCALL.
+ */
+SYM_CODE_START(ignore_sysret)
+ UNWIND_HINT_EMPTY
+ mov $-ENOSYS, %eax
+ sysretl
+SYM_CODE_END(ignore_sysret)
+#endif
+
+.pushsection .text, "ax"
+SYM_CODE_START(rewind_stack_and_make_dead)
+ UNWIND_HINT_FUNC
+ /* Prevent any naive code from trying to unwind to our caller. */
+ xorl %ebp, %ebp
+
+ movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
+ leaq -PTREGS_SIZE(%rax), %rsp
+ UNWIND_HINT_REGS
+
+ call make_task_dead
+SYM_CODE_END(rewind_stack_and_make_dead)
+.popsection