diff options
Diffstat (limited to 'arch/x86/kvm/mmu/tdp_mmu.c')
-rw-r--r-- | arch/x86/kvm/mmu/tdp_mmu.c | 1192 |
1 files changed, 1192 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c new file mode 100644 index 000000000..073514bbb --- /dev/null +++ b/arch/x86/kvm/mmu/tdp_mmu.c @@ -0,0 +1,1192 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include "mmu.h" +#include "mmu_internal.h" +#include "mmutrace.h" +#include "tdp_iter.h" +#include "tdp_mmu.h" +#include "spte.h" + +#ifdef CONFIG_X86_64 +static bool __read_mostly tdp_mmu_enabled = false; +module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644); +#endif + +static bool is_tdp_mmu_enabled(void) +{ +#ifdef CONFIG_X86_64 + return tdp_enabled && READ_ONCE(tdp_mmu_enabled); +#else + return false; +#endif /* CONFIG_X86_64 */ +} + +/* Initializes the TDP MMU for the VM, if enabled. */ +void kvm_mmu_init_tdp_mmu(struct kvm *kvm) +{ + if (!is_tdp_mmu_enabled()) + return; + + /* This should not be changed for the lifetime of the VM. */ + kvm->arch.tdp_mmu_enabled = true; + + INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); + INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); +} + +void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) +{ + if (!kvm->arch.tdp_mmu_enabled) + return; + + WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); +} + +static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root) +{ + if (kvm_mmu_put_root(kvm, root)) + kvm_tdp_mmu_free_root(kvm, root); +} + +static inline bool tdp_mmu_next_root_valid(struct kvm *kvm, + struct kvm_mmu_page *root) +{ + lockdep_assert_held(&kvm->mmu_lock); + + if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link)) + return false; + + kvm_mmu_get_root(kvm, root); + return true; + +} + +static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, + struct kvm_mmu_page *root) +{ + struct kvm_mmu_page *next_root; + + next_root = list_next_entry(root, link); + tdp_mmu_put_root(kvm, root); + return next_root; +} + +/* + * Note: this iterator gets and puts references to the roots it iterates over. + * This makes it safe to release the MMU lock and yield within the loop, but + * if exiting the loop early, the caller must drop the reference to the most + * recent root. (Unless keeping a live reference is desirable.) + */ +#define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \ + for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots, \ + typeof(*_root), link); \ + tdp_mmu_next_root_valid(_kvm, _root); \ + _root = tdp_mmu_next_root(_kvm, _root)) + +#define for_each_tdp_mmu_root(_kvm, _root) \ + list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) + +bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa) +{ + struct kvm_mmu_page *sp; + + if (!kvm->arch.tdp_mmu_enabled) + return false; + if (WARN_ON(!VALID_PAGE(hpa))) + return false; + + sp = to_shadow_page(hpa); + if (WARN_ON(!sp)) + return false; + + return sp->tdp_mmu_page && sp->root_count; +} + +static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end, bool can_yield, bool flush); + +void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root) +{ + gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT); + + lockdep_assert_held(&kvm->mmu_lock); + + WARN_ON(root->root_count); + WARN_ON(!root->tdp_mmu_page); + + list_del(&root->link); + + zap_gfn_range(kvm, root, 0, max_gfn, false, false); + + free_page((unsigned long)root->spt); + kmem_cache_free(mmu_page_header_cache, root); +} + +static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu, + int level) +{ + union kvm_mmu_page_role role; + + role = vcpu->arch.mmu->mmu_role.base; + role.level = level; + role.direct = true; + role.gpte_is_8_bytes = true; + role.access = ACC_ALL; + + return role; +} + +static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn, + int level) +{ + struct kvm_mmu_page *sp; + + sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); + sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); + set_page_private(virt_to_page(sp->spt), (unsigned long)sp); + + sp->role.word = page_role_for_level(vcpu, level).word; + sp->gfn = gfn; + sp->tdp_mmu_page = true; + + return sp; +} + +static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_page_role role; + struct kvm *kvm = vcpu->kvm; + struct kvm_mmu_page *root; + + role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level); + + spin_lock(&kvm->mmu_lock); + + /* Check for an existing root before allocating a new one. */ + for_each_tdp_mmu_root(kvm, root) { + if (root->role.word == role.word) { + kvm_mmu_get_root(kvm, root); + spin_unlock(&kvm->mmu_lock); + return root; + } + } + + root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level); + root->root_count = 1; + + list_add(&root->link, &kvm->arch.tdp_mmu_roots); + + spin_unlock(&kvm->mmu_lock); + + return root; +} + +hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu_page *root; + + root = get_tdp_mmu_vcpu_root(vcpu); + if (!root) + return INVALID_PAGE; + + return __pa(root->spt); +} + +static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level); + +static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp) +{ + return sp->role.smm ? 1 : 0; +} + +static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level) +{ + bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); + + if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level)) + return; + + if (is_accessed_spte(old_spte) && + (!is_accessed_spte(new_spte) || pfn_changed)) + kvm_set_pfn_accessed(spte_to_pfn(old_spte)); +} + +static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level) +{ + bool pfn_changed; + struct kvm_memory_slot *slot; + + if (level > PG_LEVEL_4K) + return; + + pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); + + if ((!is_writable_pte(old_spte) || pfn_changed) && + is_writable_pte(new_spte)) { + slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn); + mark_page_dirty_in_slot(slot, gfn); + } +} + +/** + * handle_changed_spte - handle bookkeeping associated with an SPTE change + * @kvm: kvm instance + * @as_id: the address space of the paging structure the SPTE was a part of + * @gfn: the base GFN that was mapped by the SPTE + * @old_spte: The value of the SPTE before the change + * @new_spte: The value of the SPTE after the change + * @level: the level of the PT the SPTE is part of in the paging structure + * + * Handle bookkeeping that might result from the modification of a SPTE. + * This function must be called for all TDP SPTE modifications. + */ +static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level) +{ + bool was_present = is_shadow_present_pte(old_spte); + bool is_present = is_shadow_present_pte(new_spte); + bool was_leaf = was_present && is_last_spte(old_spte, level); + bool is_leaf = is_present && is_last_spte(new_spte, level); + bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); + u64 *pt; + struct kvm_mmu_page *sp; + u64 old_child_spte; + int i; + + WARN_ON(level > PT64_ROOT_MAX_LEVEL); + WARN_ON(level < PG_LEVEL_4K); + WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); + + /* + * If this warning were to trigger it would indicate that there was a + * missing MMU notifier or a race with some notifier handler. + * A present, leaf SPTE should never be directly replaced with another + * present leaf SPTE pointing to a differnt PFN. A notifier handler + * should be zapping the SPTE before the main MM's page table is + * changed, or the SPTE should be zeroed, and the TLBs flushed by the + * thread before replacement. + */ + if (was_leaf && is_leaf && pfn_changed) { + pr_err("Invalid SPTE change: cannot replace a present leaf\n" + "SPTE with another present leaf SPTE mapping a\n" + "different PFN!\n" + "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", + as_id, gfn, old_spte, new_spte, level); + + /* + * Crash the host to prevent error propagation and guest data + * courruption. + */ + BUG(); + } + + if (old_spte == new_spte) + return; + + /* + * The only times a SPTE should be changed from a non-present to + * non-present state is when an MMIO entry is installed/modified/ + * removed. In that case, there is nothing to do here. + */ + if (!was_present && !is_present) { + /* + * If this change does not involve a MMIO SPTE, it is + * unexpected. Log the change, though it should not impact the + * guest since both the former and current SPTEs are nonpresent. + */ + if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte))) + pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" + "should not be replaced with another,\n" + "different nonpresent SPTE, unless one or both\n" + "are MMIO SPTEs.\n" + "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", + as_id, gfn, old_spte, new_spte, level); + return; + } + + + if (was_leaf && is_dirty_spte(old_spte) && + (!is_dirty_spte(new_spte) || pfn_changed)) + kvm_set_pfn_dirty(spte_to_pfn(old_spte)); + + /* + * Recursively handle child PTs if the change removed a subtree from + * the paging structure. + */ + if (was_present && !was_leaf && (pfn_changed || !is_present)) { + pt = spte_to_child_pt(old_spte, level); + sp = sptep_to_sp(pt); + + list_del(&sp->link); + + if (sp->lpage_disallowed) + unaccount_huge_nx_page(kvm, sp); + + for (i = 0; i < PT64_ENT_PER_PAGE; i++) { + old_child_spte = READ_ONCE(*(pt + i)); + WRITE_ONCE(*(pt + i), 0); + handle_changed_spte(kvm, as_id, + gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)), + old_child_spte, 0, level - 1); + } + + kvm_flush_remote_tlbs_with_address(kvm, gfn, + KVM_PAGES_PER_HPAGE(level)); + + free_page((unsigned long)pt); + kmem_cache_free(mmu_page_header_cache, sp); + } +} + +static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level) +{ + __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level); + handle_changed_spte_acc_track(old_spte, new_spte, level); + handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, + new_spte, level); +} + +static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, + u64 new_spte, bool record_acc_track, + bool record_dirty_log) +{ + u64 *root_pt = tdp_iter_root_pt(iter); + struct kvm_mmu_page *root = sptep_to_sp(root_pt); + int as_id = kvm_mmu_page_as_id(root); + + WRITE_ONCE(*iter->sptep, new_spte); + + __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte, + iter->level); + if (record_acc_track) + handle_changed_spte_acc_track(iter->old_spte, new_spte, + iter->level); + if (record_dirty_log) + handle_changed_spte_dirty_log(kvm, as_id, iter->gfn, + iter->old_spte, new_spte, + iter->level); +} + +static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, + u64 new_spte) +{ + __tdp_mmu_set_spte(kvm, iter, new_spte, true, true); +} + +static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) +{ + __tdp_mmu_set_spte(kvm, iter, new_spte, false, true); +} + +static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) +{ + __tdp_mmu_set_spte(kvm, iter, new_spte, true, false); +} + +#define tdp_root_for_each_pte(_iter, _root, _start, _end) \ + for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end) + +#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ + tdp_root_for_each_pte(_iter, _root, _start, _end) \ + if (!is_shadow_present_pte(_iter.old_spte) || \ + !is_last_spte(_iter.old_spte, _iter.level)) \ + continue; \ + else + +#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ + for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \ + _mmu->shadow_root_level, _start, _end) + +/* + * Yield if the MMU lock is contended or this thread needs to return control + * to the scheduler. + * + * If this function should yield and flush is set, it will perform a remote + * TLB flush before yielding. + * + * If this function yields, it will also reset the tdp_iter's walk over the + * paging structure and the calling function should skip to the next + * iteration to allow the iterator to continue its traversal from the + * paging structure root. + * + * Return true if this function yielded and the iterator's traversal was reset. + * Return false if a yield was not needed. + */ +static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm, + struct tdp_iter *iter, bool flush) +{ + /* Ensure forward progress has been made before yielding. */ + if (iter->next_last_level_gfn == iter->yielded_gfn) + return false; + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { + if (flush) + kvm_flush_remote_tlbs(kvm); + + cond_resched_lock(&kvm->mmu_lock); + + WARN_ON(iter->gfn > iter->next_last_level_gfn); + + tdp_iter_start(iter, iter->pt_path[iter->root_level - 1], + iter->root_level, iter->min_level, + iter->next_last_level_gfn); + + return true; + } + + return false; +} + +/* + * Tears down the mappings for the range of gfns, [start, end), and frees the + * non-root pages mapping GFNs strictly within that range. Returns true if + * SPTEs have been cleared and a TLB flush is needed before releasing the + * MMU lock. + * If can_yield is true, will release the MMU lock and reschedule if the + * scheduler needs the CPU or there is contention on the MMU lock. If this + * function cannot yield, it will not release the MMU lock or reschedule and + * the caller must ensure it does not supply too large a GFN range, or the + * operation can cause a soft lockup. Note, in some use cases a flush may be + * required by prior actions. Ensure the pending flush is performed prior to + * yielding. + */ +static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end, bool can_yield, bool flush) +{ + struct tdp_iter iter; + + tdp_root_for_each_pte(iter, root, start, end) { + if (can_yield && + tdp_mmu_iter_cond_resched(kvm, &iter, flush)) { + flush = false; + continue; + } + + if (!is_shadow_present_pte(iter.old_spte)) + continue; + + /* + * If this is a non-last-level SPTE that covers a larger range + * than should be zapped, continue, and zap the mappings at a + * lower level. + */ + if ((iter.gfn < start || + iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) && + !is_last_spte(iter.old_spte, iter.level)) + continue; + + tdp_mmu_set_spte(kvm, &iter, 0); + flush = true; + } + + return flush; +} + +/* + * Tears down the mappings for the range of gfns, [start, end), and frees the + * non-root pages mapping GFNs strictly within that range. Returns true if + * SPTEs have been cleared and a TLB flush is needed before releasing the + * MMU lock. + */ +bool __kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end, + bool can_yield) +{ + struct kvm_mmu_page *root; + bool flush = false; + + for_each_tdp_mmu_root_yield_safe(kvm, root) + flush = zap_gfn_range(kvm, root, start, end, can_yield, flush); + + return flush; +} + +void kvm_tdp_mmu_zap_all(struct kvm *kvm) +{ + gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT); + bool flush; + + flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn); + if (flush) + kvm_flush_remote_tlbs(kvm); +} + +/* + * Installs a last-level SPTE to handle a TDP page fault. + * (NPT/EPT violation/misconfiguration) + */ +static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write, + int map_writable, + struct tdp_iter *iter, + kvm_pfn_t pfn, bool prefault) +{ + u64 new_spte; + int ret = RET_PF_FIXED; + int make_spte_ret = 0; + + if (unlikely(is_noslot_pfn(pfn))) { + new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); + trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte); + } else + make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn, + pfn, iter->old_spte, prefault, true, + map_writable, !shadow_accessed_mask, + &new_spte); + + if (new_spte == iter->old_spte) + ret = RET_PF_SPURIOUS; + else + tdp_mmu_set_spte(vcpu->kvm, iter, new_spte); + + /* + * If the page fault was caused by a write but the page is write + * protected, emulation is needed. If the emulation was skipped, + * the vCPU would have the same fault again. + */ + if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { + if (write) + ret = RET_PF_EMULATE; + kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); + } + + /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ + if (unlikely(is_mmio_spte(new_spte))) + ret = RET_PF_EMULATE; + + trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep); + if (!prefault) + vcpu->stat.pf_fixed++; + + return ret; +} + +/* + * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing + * page tables and SPTEs to translate the faulting guest physical address. + */ +int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, + int map_writable, int max_level, kvm_pfn_t pfn, + bool prefault) +{ + bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); + bool write = error_code & PFERR_WRITE_MASK; + bool exec = error_code & PFERR_FETCH_MASK; + bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; + struct kvm_mmu *mmu = vcpu->arch.mmu; + struct tdp_iter iter; + struct kvm_mmu_page *sp; + u64 *child_pt; + u64 new_spte; + int ret; + gfn_t gfn = gpa >> PAGE_SHIFT; + int level; + int req_level; + + if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) + return RET_PF_RETRY; + if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))) + return RET_PF_RETRY; + + level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, + huge_page_disallowed, &req_level); + + trace_kvm_mmu_spte_requested(gpa, level, pfn); + tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { + if (nx_huge_page_workaround_enabled) + disallowed_hugepage_adjust(iter.old_spte, gfn, + iter.level, &pfn, &level); + + if (iter.level == level) + break; + + /* + * If there is an SPTE mapping a large page at a higher level + * than the target, that SPTE must be cleared and replaced + * with a non-leaf SPTE. + */ + if (is_shadow_present_pte(iter.old_spte) && + is_large_pte(iter.old_spte)) { + tdp_mmu_set_spte(vcpu->kvm, &iter, 0); + + kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn, + KVM_PAGES_PER_HPAGE(iter.level)); + + /* + * The iter must explicitly re-read the spte here + * because the new value informs the !present + * path below. + */ + iter.old_spte = READ_ONCE(*iter.sptep); + } + + if (!is_shadow_present_pte(iter.old_spte)) { + sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level); + list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages); + child_pt = sp->spt; + clear_page(child_pt); + new_spte = make_nonleaf_spte(child_pt, + !shadow_accessed_mask); + + trace_kvm_mmu_get_page(sp, true); + if (huge_page_disallowed && req_level >= iter.level) + account_huge_nx_page(vcpu->kvm, sp); + + tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte); + } + } + + if (WARN_ON(iter.level != level)) + return RET_PF_RETRY; + + ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter, + pfn, prefault); + + return ret; +} + +static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start, + unsigned long end, unsigned long data, + int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot, + struct kvm_mmu_page *root, gfn_t start, + gfn_t end, unsigned long data)) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + struct kvm_mmu_page *root; + int ret = 0; + int as_id; + + for_each_tdp_mmu_root_yield_safe(kvm, root) { + as_id = kvm_mmu_page_as_id(root); + slots = __kvm_memslots(kvm, as_id); + kvm_for_each_memslot(memslot, slots) { + unsigned long hva_start, hva_end; + gfn_t gfn_start, gfn_end; + + hva_start = max(start, memslot->userspace_addr); + hva_end = min(end, memslot->userspace_addr + + (memslot->npages << PAGE_SHIFT)); + if (hva_start >= hva_end) + continue; + /* + * {gfn(page) | page intersects with [hva_start, hva_end)} = + * {gfn_start, gfn_start+1, ..., gfn_end-1}. + */ + gfn_start = hva_to_gfn_memslot(hva_start, memslot); + gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); + + ret |= handler(kvm, memslot, root, gfn_start, + gfn_end, data); + } + } + + return ret; +} + +static int zap_gfn_range_hva_wrapper(struct kvm *kvm, + struct kvm_memory_slot *slot, + struct kvm_mmu_page *root, gfn_t start, + gfn_t end, unsigned long unused) +{ + return zap_gfn_range(kvm, root, start, end, false, false); +} + +int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start, + unsigned long end) +{ + return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0, + zap_gfn_range_hva_wrapper); +} + +/* + * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero + * if any of the GFNs in the range have been accessed. + */ +static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot, + struct kvm_mmu_page *root, gfn_t start, gfn_t end, + unsigned long unused) +{ + struct tdp_iter iter; + int young = 0; + u64 new_spte = 0; + + tdp_root_for_each_leaf_pte(iter, root, start, end) { + /* + * If we have a non-accessed entry we don't need to change the + * pte. + */ + if (!is_accessed_spte(iter.old_spte)) + continue; + + new_spte = iter.old_spte; + + if (spte_ad_enabled(new_spte)) { + clear_bit((ffs(shadow_accessed_mask) - 1), + (unsigned long *)&new_spte); + } else { + /* + * Capture the dirty status of the page, so that it doesn't get + * lost when the SPTE is marked for access tracking. + */ + if (is_writable_pte(new_spte)) + kvm_set_pfn_dirty(spte_to_pfn(new_spte)); + + new_spte = mark_spte_for_access_track(new_spte); + } + new_spte &= ~shadow_dirty_mask; + + tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte); + young = 1; + } + + return young; +} + +int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start, + unsigned long end) +{ + return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0, + age_gfn_range); +} + +static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot, + struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused, + unsigned long unused2) +{ + struct tdp_iter iter; + + tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) + if (is_accessed_spte(iter.old_spte)) + return 1; + + return 0; +} + +int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva) +{ + return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0, + test_age_gfn); +} + +/* + * Handle the changed_pte MMU notifier for the TDP MMU. + * data is a pointer to the new pte_t mapping the HVA specified by the MMU + * notifier. + * Returns non-zero if a flush is needed before releasing the MMU lock. + */ +static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot, + struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused, + unsigned long data) +{ + struct tdp_iter iter; + pte_t *ptep = (pte_t *)data; + kvm_pfn_t new_pfn; + u64 new_spte; + int need_flush = 0; + + WARN_ON(pte_huge(*ptep)); + + new_pfn = pte_pfn(*ptep); + + tdp_root_for_each_pte(iter, root, gfn, gfn + 1) { + if (iter.level != PG_LEVEL_4K) + continue; + + if (!is_shadow_present_pte(iter.old_spte)) + break; + + tdp_mmu_set_spte(kvm, &iter, 0); + + kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1); + + if (!pte_write(*ptep)) { + new_spte = kvm_mmu_changed_pte_notifier_make_spte( + iter.old_spte, new_pfn); + + tdp_mmu_set_spte(kvm, &iter, new_spte); + } + + need_flush = 1; + } + + if (need_flush) + kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); + + return 0; +} + +int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address, + pte_t *host_ptep) +{ + return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1, + (unsigned long)host_ptep, + set_tdp_spte); +} + +/* + * Remove write access from all the SPTEs mapping GFNs [start, end). If + * skip_4k is set, SPTEs that map 4k pages, will not be write-protected. + * Returns true if an SPTE has been changed and the TLBs need to be flushed. + */ +static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end, int min_level) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); + + for_each_tdp_pte_min_level(iter, root->spt, root->role.level, + min_level, start, end) { + if (tdp_mmu_iter_cond_resched(kvm, &iter, false)) + continue; + + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level)) + continue; + + new_spte = iter.old_spte & ~PT_WRITABLE_MASK; + + tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); + spte_set = true; + } + return spte_set; +} + +/* + * Remove write access from all the SPTEs mapping GFNs in the memslot. Will + * only affect leaf SPTEs down to min_level. + * Returns true if an SPTE has been changed and the TLBs need to be flushed. + */ +bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot, + int min_level) +{ + struct kvm_mmu_page *root; + int root_as_id; + bool spte_set = false; + + for_each_tdp_mmu_root_yield_safe(kvm, root) { + root_as_id = kvm_mmu_page_as_id(root); + if (root_as_id != slot->as_id) + continue; + + spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages, min_level); + } + + return spte_set; +} + +/* + * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If + * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. + * If AD bits are not enabled, this will require clearing the writable bit on + * each SPTE. Returns true if an SPTE has been changed and the TLBs need to + * be flushed. + */ +static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + tdp_root_for_each_leaf_pte(iter, root, start, end) { + if (tdp_mmu_iter_cond_resched(kvm, &iter, false)) + continue; + + if (!is_shadow_present_pte(iter.old_spte)) + continue; + + if (spte_ad_need_write_protect(iter.old_spte)) { + if (is_writable_pte(iter.old_spte)) + new_spte = iter.old_spte & ~PT_WRITABLE_MASK; + else + continue; + } else { + if (iter.old_spte & shadow_dirty_mask) + new_spte = iter.old_spte & ~shadow_dirty_mask; + else + continue; + } + + tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); + spte_set = true; + } + return spte_set; +} + +/* + * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If + * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. + * If AD bits are not enabled, this will require clearing the writable bit on + * each SPTE. Returns true if an SPTE has been changed and the TLBs need to + * be flushed. + */ +bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot) +{ + struct kvm_mmu_page *root; + int root_as_id; + bool spte_set = false; + + for_each_tdp_mmu_root_yield_safe(kvm, root) { + root_as_id = kvm_mmu_page_as_id(root); + if (root_as_id != slot->as_id) + continue; + + spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages); + } + + return spte_set; +} + +/* + * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is + * set in mask, starting at gfn. The given memslot is expected to contain all + * the GFNs represented by set bits in the mask. If AD bits are enabled, + * clearing the dirty status will involve clearing the dirty bit on each SPTE + * or, if AD bits are not enabled, clearing the writable bit on each SPTE. + */ +static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t gfn, unsigned long mask, bool wrprot) +{ + struct tdp_iter iter; + u64 new_spte; + + tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), + gfn + BITS_PER_LONG) { + if (!mask) + break; + + if (iter.level > PG_LEVEL_4K || + !(mask & (1UL << (iter.gfn - gfn)))) + continue; + + if (wrprot || spte_ad_need_write_protect(iter.old_spte)) { + if (is_writable_pte(iter.old_spte)) + new_spte = iter.old_spte & ~PT_WRITABLE_MASK; + else + continue; + } else { + if (iter.old_spte & shadow_dirty_mask) + new_spte = iter.old_spte & ~shadow_dirty_mask; + else + continue; + } + + tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); + + mask &= ~(1UL << (iter.gfn - gfn)); + } +} + +/* + * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is + * set in mask, starting at gfn. The given memslot is expected to contain all + * the GFNs represented by set bits in the mask. If AD bits are enabled, + * clearing the dirty status will involve clearing the dirty bit on each SPTE + * or, if AD bits are not enabled, clearing the writable bit on each SPTE. + */ +void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn, unsigned long mask, + bool wrprot) +{ + struct kvm_mmu_page *root; + int root_as_id; + + lockdep_assert_held(&kvm->mmu_lock); + for_each_tdp_mmu_root(kvm, root) { + root_as_id = kvm_mmu_page_as_id(root); + if (root_as_id != slot->as_id) + continue; + + clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); + } +} + +/* + * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is + * only used for PML, and so will involve setting the dirty bit on each SPTE. + * Returns true if an SPTE has been changed and the TLBs need to be flushed. + */ +static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + tdp_root_for_each_pte(iter, root, start, end) { + if (tdp_mmu_iter_cond_resched(kvm, &iter, false)) + continue; + + if (!is_shadow_present_pte(iter.old_spte)) + continue; + + new_spte = iter.old_spte | shadow_dirty_mask; + + tdp_mmu_set_spte(kvm, &iter, new_spte); + spte_set = true; + } + + return spte_set; +} + +/* + * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is + * only used for PML, and so will involve setting the dirty bit on each SPTE. + * Returns true if an SPTE has been changed and the TLBs need to be flushed. + */ +bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) +{ + struct kvm_mmu_page *root; + int root_as_id; + bool spte_set = false; + + for_each_tdp_mmu_root_yield_safe(kvm, root) { + root_as_id = kvm_mmu_page_as_id(root); + if (root_as_id != slot->as_id) + continue; + + spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages); + } + return spte_set; +} + +/* + * Clear leaf entries which could be replaced by large mappings, for + * GFNs within the slot. + */ +static void zap_collapsible_spte_range(struct kvm *kvm, + struct kvm_mmu_page *root, + gfn_t start, gfn_t end) +{ + struct tdp_iter iter; + kvm_pfn_t pfn; + bool spte_set = false; + + tdp_root_for_each_pte(iter, root, start, end) { + if (tdp_mmu_iter_cond_resched(kvm, &iter, spte_set)) { + spte_set = false; + continue; + } + + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level)) + continue; + + pfn = spte_to_pfn(iter.old_spte); + if (kvm_is_reserved_pfn(pfn) || + (!PageCompound(pfn_to_page(pfn)) && + !kvm_is_zone_device_pfn(pfn))) + continue; + + tdp_mmu_set_spte(kvm, &iter, 0); + + spte_set = true; + } + + if (spte_set) + kvm_flush_remote_tlbs(kvm); +} + +/* + * Clear non-leaf entries (and free associated page tables) which could + * be replaced by large mappings, for GFNs within the slot. + */ +void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, + const struct kvm_memory_slot *slot) +{ + struct kvm_mmu_page *root; + int root_as_id; + + for_each_tdp_mmu_root_yield_safe(kvm, root) { + root_as_id = kvm_mmu_page_as_id(root); + if (root_as_id != slot->as_id) + continue; + + zap_collapsible_spte_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages); + } +} + +/* + * Removes write access on the last level SPTE mapping this GFN and unsets the + * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted. + * Returns true if an SPTE was set and a TLB flush is needed. + */ +static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t gfn) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) { + new_spte = iter.old_spte & + ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); + + if (new_spte == iter.old_spte) + break; + + tdp_mmu_set_spte(kvm, &iter, new_spte); + spte_set = true; + } + + return spte_set; +} + +/* + * Removes write access on the last level SPTE mapping this GFN and unsets the + * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted. + * Returns true if an SPTE was set and a TLB flush is needed. + */ +bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, + struct kvm_memory_slot *slot, gfn_t gfn) +{ + struct kvm_mmu_page *root; + int root_as_id; + bool spte_set = false; + + lockdep_assert_held(&kvm->mmu_lock); + for_each_tdp_mmu_root(kvm, root) { + root_as_id = kvm_mmu_page_as_id(root); + if (root_as_id != slot->as_id) + continue; + + spte_set |= write_protect_gfn(kvm, root, gfn); + } + return spte_set; +} + +/* + * Return the level of the lowest level SPTE added to sptes. + * That SPTE may be non-present. + */ +int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, + int *root_level) +{ + struct tdp_iter iter; + struct kvm_mmu *mmu = vcpu->arch.mmu; + gfn_t gfn = addr >> PAGE_SHIFT; + int leaf = -1; + + *root_level = vcpu->arch.mmu->shadow_root_level; + + tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { + leaf = iter.level; + sptes[leaf - 1] = iter.old_spte; + } + + return leaf; +} |