summaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/sh_cmt.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/clocksource/sh_cmt.c1163
1 files changed, 1163 insertions, 0 deletions
diff --git a/drivers/clocksource/sh_cmt.c b/drivers/clocksource/sh_cmt.c
new file mode 100644
index 000000000..66e4872ab
--- /dev/null
+++ b/drivers/clocksource/sh_cmt.c
@@ -0,0 +1,1163 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * SuperH Timer Support - CMT
+ *
+ * Copyright (C) 2008 Magnus Damm
+ */
+
+#include <linux/clk.h>
+#include <linux/clockchips.h>
+#include <linux/clocksource.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_domain.h>
+#include <linux/pm_runtime.h>
+#include <linux/sh_timer.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+#ifdef CONFIG_SUPERH
+#include <asm/platform_early.h>
+#endif
+
+struct sh_cmt_device;
+
+/*
+ * The CMT comes in 5 different identified flavours, depending not only on the
+ * SoC but also on the particular instance. The following table lists the main
+ * characteristics of those flavours.
+ *
+ * 16B 32B 32B-F 48B R-Car Gen2
+ * -----------------------------------------------------------------------------
+ * Channels 2 1/4 1 6 2/8
+ * Control Width 16 16 16 16 32
+ * Counter Width 16 32 32 32/48 32/48
+ * Shared Start/Stop Y Y Y Y N
+ *
+ * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
+ * located in the channel registers block. All other versions have a shared
+ * start/stop register located in the global space.
+ *
+ * Channels are indexed from 0 to N-1 in the documentation. The channel index
+ * infers the start/stop bit position in the control register and the channel
+ * registers block address. Some CMT instances have a subset of channels
+ * available, in which case the index in the documentation doesn't match the
+ * "real" index as implemented in hardware. This is for instance the case with
+ * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
+ * in the documentation but using start/stop bit 5 and having its registers
+ * block at 0x60.
+ *
+ * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
+ * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
+ */
+
+enum sh_cmt_model {
+ SH_CMT_16BIT,
+ SH_CMT_32BIT,
+ SH_CMT_48BIT,
+ SH_CMT0_RCAR_GEN2,
+ SH_CMT1_RCAR_GEN2,
+};
+
+struct sh_cmt_info {
+ enum sh_cmt_model model;
+
+ unsigned int channels_mask;
+
+ unsigned long width; /* 16 or 32 bit version of hardware block */
+ u32 overflow_bit;
+ u32 clear_bits;
+
+ /* callbacks for CMSTR and CMCSR access */
+ u32 (*read_control)(void __iomem *base, unsigned long offs);
+ void (*write_control)(void __iomem *base, unsigned long offs,
+ u32 value);
+
+ /* callbacks for CMCNT and CMCOR access */
+ u32 (*read_count)(void __iomem *base, unsigned long offs);
+ void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
+};
+
+struct sh_cmt_channel {
+ struct sh_cmt_device *cmt;
+
+ unsigned int index; /* Index in the documentation */
+ unsigned int hwidx; /* Real hardware index */
+
+ void __iomem *iostart;
+ void __iomem *ioctrl;
+
+ unsigned int timer_bit;
+ unsigned long flags;
+ u32 match_value;
+ u32 next_match_value;
+ u32 max_match_value;
+ raw_spinlock_t lock;
+ struct clock_event_device ced;
+ struct clocksource cs;
+ u64 total_cycles;
+ bool cs_enabled;
+};
+
+struct sh_cmt_device {
+ struct platform_device *pdev;
+
+ const struct sh_cmt_info *info;
+
+ void __iomem *mapbase;
+ struct clk *clk;
+ unsigned long rate;
+ unsigned int reg_delay;
+
+ raw_spinlock_t lock; /* Protect the shared start/stop register */
+
+ struct sh_cmt_channel *channels;
+ unsigned int num_channels;
+ unsigned int hw_channels;
+
+ bool has_clockevent;
+ bool has_clocksource;
+};
+
+#define SH_CMT16_CMCSR_CMF (1 << 7)
+#define SH_CMT16_CMCSR_CMIE (1 << 6)
+#define SH_CMT16_CMCSR_CKS8 (0 << 0)
+#define SH_CMT16_CMCSR_CKS32 (1 << 0)
+#define SH_CMT16_CMCSR_CKS128 (2 << 0)
+#define SH_CMT16_CMCSR_CKS512 (3 << 0)
+#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
+
+#define SH_CMT32_CMCSR_CMF (1 << 15)
+#define SH_CMT32_CMCSR_OVF (1 << 14)
+#define SH_CMT32_CMCSR_WRFLG (1 << 13)
+#define SH_CMT32_CMCSR_STTF (1 << 12)
+#define SH_CMT32_CMCSR_STPF (1 << 11)
+#define SH_CMT32_CMCSR_SSIE (1 << 10)
+#define SH_CMT32_CMCSR_CMS (1 << 9)
+#define SH_CMT32_CMCSR_CMM (1 << 8)
+#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
+#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
+#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
+#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
+#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
+#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
+#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
+#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
+#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
+#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
+#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
+
+static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
+{
+ return ioread16(base + (offs << 1));
+}
+
+static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
+{
+ return ioread32(base + (offs << 2));
+}
+
+static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
+{
+ iowrite16(value, base + (offs << 1));
+}
+
+static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
+{
+ iowrite32(value, base + (offs << 2));
+}
+
+static const struct sh_cmt_info sh_cmt_info[] = {
+ [SH_CMT_16BIT] = {
+ .model = SH_CMT_16BIT,
+ .width = 16,
+ .overflow_bit = SH_CMT16_CMCSR_CMF,
+ .clear_bits = ~SH_CMT16_CMCSR_CMF,
+ .read_control = sh_cmt_read16,
+ .write_control = sh_cmt_write16,
+ .read_count = sh_cmt_read16,
+ .write_count = sh_cmt_write16,
+ },
+ [SH_CMT_32BIT] = {
+ .model = SH_CMT_32BIT,
+ .width = 32,
+ .overflow_bit = SH_CMT32_CMCSR_CMF,
+ .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
+ .read_control = sh_cmt_read16,
+ .write_control = sh_cmt_write16,
+ .read_count = sh_cmt_read32,
+ .write_count = sh_cmt_write32,
+ },
+ [SH_CMT_48BIT] = {
+ .model = SH_CMT_48BIT,
+ .channels_mask = 0x3f,
+ .width = 32,
+ .overflow_bit = SH_CMT32_CMCSR_CMF,
+ .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
+ .read_control = sh_cmt_read32,
+ .write_control = sh_cmt_write32,
+ .read_count = sh_cmt_read32,
+ .write_count = sh_cmt_write32,
+ },
+ [SH_CMT0_RCAR_GEN2] = {
+ .model = SH_CMT0_RCAR_GEN2,
+ .channels_mask = 0x60,
+ .width = 32,
+ .overflow_bit = SH_CMT32_CMCSR_CMF,
+ .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
+ .read_control = sh_cmt_read32,
+ .write_control = sh_cmt_write32,
+ .read_count = sh_cmt_read32,
+ .write_count = sh_cmt_write32,
+ },
+ [SH_CMT1_RCAR_GEN2] = {
+ .model = SH_CMT1_RCAR_GEN2,
+ .channels_mask = 0xff,
+ .width = 32,
+ .overflow_bit = SH_CMT32_CMCSR_CMF,
+ .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
+ .read_control = sh_cmt_read32,
+ .write_control = sh_cmt_write32,
+ .read_count = sh_cmt_read32,
+ .write_count = sh_cmt_write32,
+ },
+};
+
+#define CMCSR 0 /* channel register */
+#define CMCNT 1 /* channel register */
+#define CMCOR 2 /* channel register */
+
+#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
+
+static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
+{
+ if (ch->iostart)
+ return ch->cmt->info->read_control(ch->iostart, 0);
+ else
+ return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
+}
+
+static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
+{
+ u32 old_value = sh_cmt_read_cmstr(ch);
+
+ if (value != old_value) {
+ if (ch->iostart) {
+ ch->cmt->info->write_control(ch->iostart, 0, value);
+ udelay(ch->cmt->reg_delay);
+ } else {
+ ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
+ udelay(ch->cmt->reg_delay);
+ }
+ }
+}
+
+static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
+{
+ return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
+}
+
+static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
+{
+ u32 old_value = sh_cmt_read_cmcsr(ch);
+
+ if (value != old_value) {
+ ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
+ udelay(ch->cmt->reg_delay);
+ }
+}
+
+static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
+{
+ return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
+}
+
+static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
+{
+ /* Tests showed that we need to wait 3 clocks here */
+ unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
+ u32 reg;
+
+ if (ch->cmt->info->model > SH_CMT_16BIT) {
+ int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
+ !(reg & SH_CMT32_CMCSR_WRFLG),
+ 1, cmcnt_delay, false, ch);
+ if (ret < 0)
+ return ret;
+ }
+
+ ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
+ udelay(cmcnt_delay);
+ return 0;
+}
+
+static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
+{
+ u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
+
+ if (value != old_value) {
+ ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
+ udelay(ch->cmt->reg_delay);
+ }
+}
+
+static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
+{
+ u32 v1, v2, v3;
+ u32 o1, o2;
+
+ o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
+
+ /* Make sure the timer value is stable. Stolen from acpi_pm.c */
+ do {
+ o2 = o1;
+ v1 = sh_cmt_read_cmcnt(ch);
+ v2 = sh_cmt_read_cmcnt(ch);
+ v3 = sh_cmt_read_cmcnt(ch);
+ o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
+ } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
+ || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
+
+ *has_wrapped = o1;
+ return v2;
+}
+
+static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
+{
+ unsigned long flags;
+ u32 value;
+
+ /* start stop register shared by multiple timer channels */
+ raw_spin_lock_irqsave(&ch->cmt->lock, flags);
+ value = sh_cmt_read_cmstr(ch);
+
+ if (start)
+ value |= 1 << ch->timer_bit;
+ else
+ value &= ~(1 << ch->timer_bit);
+
+ sh_cmt_write_cmstr(ch, value);
+ raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
+}
+
+static int sh_cmt_enable(struct sh_cmt_channel *ch)
+{
+ int ret;
+
+ pm_runtime_get_sync(&ch->cmt->pdev->dev);
+ dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
+
+ /* enable clock */
+ ret = clk_enable(ch->cmt->clk);
+ if (ret) {
+ dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
+ ch->index);
+ goto err0;
+ }
+
+ /* make sure channel is disabled */
+ sh_cmt_start_stop_ch(ch, 0);
+
+ /* configure channel, periodic mode and maximum timeout */
+ if (ch->cmt->info->width == 16) {
+ sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
+ SH_CMT16_CMCSR_CKS512);
+ } else {
+ sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
+ SH_CMT32_CMCSR_CMTOUT_IE |
+ SH_CMT32_CMCSR_CMR_IRQ |
+ SH_CMT32_CMCSR_CKS_RCLK8);
+ }
+
+ sh_cmt_write_cmcor(ch, 0xffffffff);
+ ret = sh_cmt_write_cmcnt(ch, 0);
+
+ if (ret || sh_cmt_read_cmcnt(ch)) {
+ dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
+ ch->index);
+ ret = -ETIMEDOUT;
+ goto err1;
+ }
+
+ /* enable channel */
+ sh_cmt_start_stop_ch(ch, 1);
+ return 0;
+ err1:
+ /* stop clock */
+ clk_disable(ch->cmt->clk);
+
+ err0:
+ return ret;
+}
+
+static void sh_cmt_disable(struct sh_cmt_channel *ch)
+{
+ /* disable channel */
+ sh_cmt_start_stop_ch(ch, 0);
+
+ /* disable interrupts in CMT block */
+ sh_cmt_write_cmcsr(ch, 0);
+
+ /* stop clock */
+ clk_disable(ch->cmt->clk);
+
+ dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
+ pm_runtime_put(&ch->cmt->pdev->dev);
+}
+
+/* private flags */
+#define FLAG_CLOCKEVENT (1 << 0)
+#define FLAG_CLOCKSOURCE (1 << 1)
+#define FLAG_REPROGRAM (1 << 2)
+#define FLAG_SKIPEVENT (1 << 3)
+#define FLAG_IRQCONTEXT (1 << 4)
+
+static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
+ int absolute)
+{
+ u32 value = ch->next_match_value;
+ u32 new_match;
+ u32 delay = 0;
+ u32 now = 0;
+ u32 has_wrapped;
+
+ now = sh_cmt_get_counter(ch, &has_wrapped);
+ ch->flags |= FLAG_REPROGRAM; /* force reprogram */
+
+ if (has_wrapped) {
+ /* we're competing with the interrupt handler.
+ * -> let the interrupt handler reprogram the timer.
+ * -> interrupt number two handles the event.
+ */
+ ch->flags |= FLAG_SKIPEVENT;
+ return;
+ }
+
+ if (absolute)
+ now = 0;
+
+ do {
+ /* reprogram the timer hardware,
+ * but don't save the new match value yet.
+ */
+ new_match = now + value + delay;
+ if (new_match > ch->max_match_value)
+ new_match = ch->max_match_value;
+
+ sh_cmt_write_cmcor(ch, new_match);
+
+ now = sh_cmt_get_counter(ch, &has_wrapped);
+ if (has_wrapped && (new_match > ch->match_value)) {
+ /* we are changing to a greater match value,
+ * so this wrap must be caused by the counter
+ * matching the old value.
+ * -> first interrupt reprograms the timer.
+ * -> interrupt number two handles the event.
+ */
+ ch->flags |= FLAG_SKIPEVENT;
+ break;
+ }
+
+ if (has_wrapped) {
+ /* we are changing to a smaller match value,
+ * so the wrap must be caused by the counter
+ * matching the new value.
+ * -> save programmed match value.
+ * -> let isr handle the event.
+ */
+ ch->match_value = new_match;
+ break;
+ }
+
+ /* be safe: verify hardware settings */
+ if (now < new_match) {
+ /* timer value is below match value, all good.
+ * this makes sure we won't miss any match events.
+ * -> save programmed match value.
+ * -> let isr handle the event.
+ */
+ ch->match_value = new_match;
+ break;
+ }
+
+ /* the counter has reached a value greater
+ * than our new match value. and since the
+ * has_wrapped flag isn't set we must have
+ * programmed a too close event.
+ * -> increase delay and retry.
+ */
+ if (delay)
+ delay <<= 1;
+ else
+ delay = 1;
+
+ if (!delay)
+ dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
+ ch->index);
+
+ } while (delay);
+}
+
+static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
+{
+ if (delta > ch->max_match_value)
+ dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
+ ch->index);
+
+ ch->next_match_value = delta;
+ sh_cmt_clock_event_program_verify(ch, 0);
+}
+
+static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&ch->lock, flags);
+ __sh_cmt_set_next(ch, delta);
+ raw_spin_unlock_irqrestore(&ch->lock, flags);
+}
+
+static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
+{
+ struct sh_cmt_channel *ch = dev_id;
+
+ /* clear flags */
+ sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
+ ch->cmt->info->clear_bits);
+
+ /* update clock source counter to begin with if enabled
+ * the wrap flag should be cleared by the timer specific
+ * isr before we end up here.
+ */
+ if (ch->flags & FLAG_CLOCKSOURCE)
+ ch->total_cycles += ch->match_value + 1;
+
+ if (!(ch->flags & FLAG_REPROGRAM))
+ ch->next_match_value = ch->max_match_value;
+
+ ch->flags |= FLAG_IRQCONTEXT;
+
+ if (ch->flags & FLAG_CLOCKEVENT) {
+ if (!(ch->flags & FLAG_SKIPEVENT)) {
+ if (clockevent_state_oneshot(&ch->ced)) {
+ ch->next_match_value = ch->max_match_value;
+ ch->flags |= FLAG_REPROGRAM;
+ }
+
+ ch->ced.event_handler(&ch->ced);
+ }
+ }
+
+ ch->flags &= ~FLAG_SKIPEVENT;
+
+ if (ch->flags & FLAG_REPROGRAM) {
+ ch->flags &= ~FLAG_REPROGRAM;
+ sh_cmt_clock_event_program_verify(ch, 1);
+
+ if (ch->flags & FLAG_CLOCKEVENT)
+ if ((clockevent_state_shutdown(&ch->ced))
+ || (ch->match_value == ch->next_match_value))
+ ch->flags &= ~FLAG_REPROGRAM;
+ }
+
+ ch->flags &= ~FLAG_IRQCONTEXT;
+
+ return IRQ_HANDLED;
+}
+
+static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
+{
+ int ret = 0;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&ch->lock, flags);
+
+ if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
+ ret = sh_cmt_enable(ch);
+
+ if (ret)
+ goto out;
+ ch->flags |= flag;
+
+ /* setup timeout if no clockevent */
+ if (ch->cmt->num_channels == 1 &&
+ flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
+ __sh_cmt_set_next(ch, ch->max_match_value);
+ out:
+ raw_spin_unlock_irqrestore(&ch->lock, flags);
+
+ return ret;
+}
+
+static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
+{
+ unsigned long flags;
+ unsigned long f;
+
+ raw_spin_lock_irqsave(&ch->lock, flags);
+
+ f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
+ ch->flags &= ~flag;
+
+ if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
+ sh_cmt_disable(ch);
+
+ /* adjust the timeout to maximum if only clocksource left */
+ if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
+ __sh_cmt_set_next(ch, ch->max_match_value);
+
+ raw_spin_unlock_irqrestore(&ch->lock, flags);
+}
+
+static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
+{
+ return container_of(cs, struct sh_cmt_channel, cs);
+}
+
+static u64 sh_cmt_clocksource_read(struct clocksource *cs)
+{
+ struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
+ u32 has_wrapped;
+
+ if (ch->cmt->num_channels == 1) {
+ unsigned long flags;
+ u64 value;
+ u32 raw;
+
+ raw_spin_lock_irqsave(&ch->lock, flags);
+ value = ch->total_cycles;
+ raw = sh_cmt_get_counter(ch, &has_wrapped);
+
+ if (unlikely(has_wrapped))
+ raw += ch->match_value + 1;
+ raw_spin_unlock_irqrestore(&ch->lock, flags);
+
+ return value + raw;
+ }
+
+ return sh_cmt_get_counter(ch, &has_wrapped);
+}
+
+static int sh_cmt_clocksource_enable(struct clocksource *cs)
+{
+ int ret;
+ struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
+
+ WARN_ON(ch->cs_enabled);
+
+ ch->total_cycles = 0;
+
+ ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
+ if (!ret)
+ ch->cs_enabled = true;
+
+ return ret;
+}
+
+static void sh_cmt_clocksource_disable(struct clocksource *cs)
+{
+ struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
+
+ WARN_ON(!ch->cs_enabled);
+
+ sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
+ ch->cs_enabled = false;
+}
+
+static void sh_cmt_clocksource_suspend(struct clocksource *cs)
+{
+ struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
+
+ if (!ch->cs_enabled)
+ return;
+
+ sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
+ pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
+}
+
+static void sh_cmt_clocksource_resume(struct clocksource *cs)
+{
+ struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
+
+ if (!ch->cs_enabled)
+ return;
+
+ pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
+ sh_cmt_start(ch, FLAG_CLOCKSOURCE);
+}
+
+static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
+ const char *name)
+{
+ struct clocksource *cs = &ch->cs;
+
+ cs->name = name;
+ cs->rating = 125;
+ cs->read = sh_cmt_clocksource_read;
+ cs->enable = sh_cmt_clocksource_enable;
+ cs->disable = sh_cmt_clocksource_disable;
+ cs->suspend = sh_cmt_clocksource_suspend;
+ cs->resume = sh_cmt_clocksource_resume;
+ cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
+ cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
+
+ dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
+ ch->index);
+
+ clocksource_register_hz(cs, ch->cmt->rate);
+ return 0;
+}
+
+static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
+{
+ return container_of(ced, struct sh_cmt_channel, ced);
+}
+
+static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
+{
+ sh_cmt_start(ch, FLAG_CLOCKEVENT);
+
+ if (periodic)
+ sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
+ else
+ sh_cmt_set_next(ch, ch->max_match_value);
+}
+
+static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
+{
+ struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
+
+ sh_cmt_stop(ch, FLAG_CLOCKEVENT);
+ return 0;
+}
+
+static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
+ int periodic)
+{
+ struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
+
+ /* deal with old setting first */
+ if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
+ sh_cmt_stop(ch, FLAG_CLOCKEVENT);
+
+ dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
+ ch->index, periodic ? "periodic" : "oneshot");
+ sh_cmt_clock_event_start(ch, periodic);
+ return 0;
+}
+
+static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
+{
+ return sh_cmt_clock_event_set_state(ced, 0);
+}
+
+static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
+{
+ return sh_cmt_clock_event_set_state(ced, 1);
+}
+
+static int sh_cmt_clock_event_next(unsigned long delta,
+ struct clock_event_device *ced)
+{
+ struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
+
+ BUG_ON(!clockevent_state_oneshot(ced));
+ if (likely(ch->flags & FLAG_IRQCONTEXT))
+ ch->next_match_value = delta - 1;
+ else
+ sh_cmt_set_next(ch, delta - 1);
+
+ return 0;
+}
+
+static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
+{
+ struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
+
+ pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
+ clk_unprepare(ch->cmt->clk);
+}
+
+static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
+{
+ struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
+
+ clk_prepare(ch->cmt->clk);
+ pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
+}
+
+static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
+ const char *name)
+{
+ struct clock_event_device *ced = &ch->ced;
+ int irq;
+ int ret;
+
+ irq = platform_get_irq(ch->cmt->pdev, ch->index);
+ if (irq < 0)
+ return irq;
+
+ ret = request_irq(irq, sh_cmt_interrupt,
+ IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
+ dev_name(&ch->cmt->pdev->dev), ch);
+ if (ret) {
+ dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
+ ch->index, irq);
+ return ret;
+ }
+
+ ced->name = name;
+ ced->features = CLOCK_EVT_FEAT_PERIODIC;
+ ced->features |= CLOCK_EVT_FEAT_ONESHOT;
+ ced->rating = 125;
+ ced->cpumask = cpu_possible_mask;
+ ced->set_next_event = sh_cmt_clock_event_next;
+ ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
+ ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
+ ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
+ ced->suspend = sh_cmt_clock_event_suspend;
+ ced->resume = sh_cmt_clock_event_resume;
+
+ /* TODO: calculate good shift from rate and counter bit width */
+ ced->shift = 32;
+ ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
+ ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
+ ced->max_delta_ticks = ch->max_match_value;
+ ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
+ ced->min_delta_ticks = 0x1f;
+
+ dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
+ ch->index);
+ clockevents_register_device(ced);
+
+ return 0;
+}
+
+static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
+ bool clockevent, bool clocksource)
+{
+ int ret;
+
+ if (clockevent) {
+ ch->cmt->has_clockevent = true;
+ ret = sh_cmt_register_clockevent(ch, name);
+ if (ret < 0)
+ return ret;
+ }
+
+ if (clocksource) {
+ ch->cmt->has_clocksource = true;
+ sh_cmt_register_clocksource(ch, name);
+ }
+
+ return 0;
+}
+
+static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
+ unsigned int hwidx, bool clockevent,
+ bool clocksource, struct sh_cmt_device *cmt)
+{
+ u32 value;
+ int ret;
+
+ /* Skip unused channels. */
+ if (!clockevent && !clocksource)
+ return 0;
+
+ ch->cmt = cmt;
+ ch->index = index;
+ ch->hwidx = hwidx;
+ ch->timer_bit = hwidx;
+
+ /*
+ * Compute the address of the channel control register block. For the
+ * timers with a per-channel start/stop register, compute its address
+ * as well.
+ */
+ switch (cmt->info->model) {
+ case SH_CMT_16BIT:
+ ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
+ break;
+ case SH_CMT_32BIT:
+ case SH_CMT_48BIT:
+ ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
+ break;
+ case SH_CMT0_RCAR_GEN2:
+ case SH_CMT1_RCAR_GEN2:
+ ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
+ ch->ioctrl = ch->iostart + 0x10;
+ ch->timer_bit = 0;
+
+ /* Enable the clock supply to the channel */
+ value = ioread32(cmt->mapbase + CMCLKE);
+ value |= BIT(hwidx);
+ iowrite32(value, cmt->mapbase + CMCLKE);
+ break;
+ }
+
+ if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
+ ch->max_match_value = ~0;
+ else
+ ch->max_match_value = (1 << cmt->info->width) - 1;
+
+ ch->match_value = ch->max_match_value;
+ raw_spin_lock_init(&ch->lock);
+
+ ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
+ clockevent, clocksource);
+ if (ret) {
+ dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
+ ch->index);
+ return ret;
+ }
+ ch->cs_enabled = false;
+
+ return 0;
+}
+
+static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
+{
+ struct resource *mem;
+
+ mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
+ if (!mem) {
+ dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
+ return -ENXIO;
+ }
+
+ cmt->mapbase = ioremap(mem->start, resource_size(mem));
+ if (cmt->mapbase == NULL) {
+ dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
+ return -ENXIO;
+ }
+
+ return 0;
+}
+
+static const struct platform_device_id sh_cmt_id_table[] = {
+ { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
+ { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
+ { }
+};
+MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
+
+static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
+ {
+ /* deprecated, preserved for backward compatibility */
+ .compatible = "renesas,cmt-48",
+ .data = &sh_cmt_info[SH_CMT_48BIT]
+ },
+ {
+ /* deprecated, preserved for backward compatibility */
+ .compatible = "renesas,cmt-48-gen2",
+ .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
+ },
+ {
+ .compatible = "renesas,r8a7740-cmt1",
+ .data = &sh_cmt_info[SH_CMT_48BIT]
+ },
+ {
+ .compatible = "renesas,sh73a0-cmt1",
+ .data = &sh_cmt_info[SH_CMT_48BIT]
+ },
+ {
+ .compatible = "renesas,rcar-gen2-cmt0",
+ .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
+ },
+ {
+ .compatible = "renesas,rcar-gen2-cmt1",
+ .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
+ },
+ {
+ .compatible = "renesas,rcar-gen3-cmt0",
+ .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
+ },
+ {
+ .compatible = "renesas,rcar-gen3-cmt1",
+ .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
+
+static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
+{
+ unsigned int mask, i;
+ unsigned long rate;
+ int ret;
+
+ cmt->pdev = pdev;
+ raw_spin_lock_init(&cmt->lock);
+
+ if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
+ cmt->info = of_device_get_match_data(&pdev->dev);
+ cmt->hw_channels = cmt->info->channels_mask;
+ } else if (pdev->dev.platform_data) {
+ struct sh_timer_config *cfg = pdev->dev.platform_data;
+ const struct platform_device_id *id = pdev->id_entry;
+
+ cmt->info = (const struct sh_cmt_info *)id->driver_data;
+ cmt->hw_channels = cfg->channels_mask;
+ } else {
+ dev_err(&cmt->pdev->dev, "missing platform data\n");
+ return -ENXIO;
+ }
+
+ /* Get hold of clock. */
+ cmt->clk = clk_get(&cmt->pdev->dev, "fck");
+ if (IS_ERR(cmt->clk)) {
+ dev_err(&cmt->pdev->dev, "cannot get clock\n");
+ return PTR_ERR(cmt->clk);
+ }
+
+ ret = clk_prepare(cmt->clk);
+ if (ret < 0)
+ goto err_clk_put;
+
+ /* Determine clock rate. */
+ ret = clk_enable(cmt->clk);
+ if (ret < 0)
+ goto err_clk_unprepare;
+
+ rate = clk_get_rate(cmt->clk);
+ if (!rate) {
+ ret = -EINVAL;
+ goto err_clk_disable;
+ }
+
+ /* We shall wait 2 input clks after register writes */
+ if (cmt->info->model >= SH_CMT_48BIT)
+ cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
+ cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
+
+ /* Map the memory resource(s). */
+ ret = sh_cmt_map_memory(cmt);
+ if (ret < 0)
+ goto err_clk_disable;
+
+ /* Allocate and setup the channels. */
+ cmt->num_channels = hweight8(cmt->hw_channels);
+ cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
+ GFP_KERNEL);
+ if (cmt->channels == NULL) {
+ ret = -ENOMEM;
+ goto err_unmap;
+ }
+
+ /*
+ * Use the first channel as a clock event device and the second channel
+ * as a clock source. If only one channel is available use it for both.
+ */
+ for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
+ unsigned int hwidx = ffs(mask) - 1;
+ bool clocksource = i == 1 || cmt->num_channels == 1;
+ bool clockevent = i == 0;
+
+ ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
+ clockevent, clocksource, cmt);
+ if (ret < 0)
+ goto err_unmap;
+
+ mask &= ~(1 << hwidx);
+ }
+
+ clk_disable(cmt->clk);
+
+ platform_set_drvdata(pdev, cmt);
+
+ return 0;
+
+err_unmap:
+ kfree(cmt->channels);
+ iounmap(cmt->mapbase);
+err_clk_disable:
+ clk_disable(cmt->clk);
+err_clk_unprepare:
+ clk_unprepare(cmt->clk);
+err_clk_put:
+ clk_put(cmt->clk);
+ return ret;
+}
+
+static int sh_cmt_probe(struct platform_device *pdev)
+{
+ struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
+ int ret;
+
+ if (!is_sh_early_platform_device(pdev)) {
+ pm_runtime_set_active(&pdev->dev);
+ pm_runtime_enable(&pdev->dev);
+ }
+
+ if (cmt) {
+ dev_info(&pdev->dev, "kept as earlytimer\n");
+ goto out;
+ }
+
+ cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
+ if (cmt == NULL)
+ return -ENOMEM;
+
+ ret = sh_cmt_setup(cmt, pdev);
+ if (ret) {
+ kfree(cmt);
+ pm_runtime_idle(&pdev->dev);
+ return ret;
+ }
+ if (is_sh_early_platform_device(pdev))
+ return 0;
+
+ out:
+ if (cmt->has_clockevent || cmt->has_clocksource)
+ pm_runtime_irq_safe(&pdev->dev);
+ else
+ pm_runtime_idle(&pdev->dev);
+
+ return 0;
+}
+
+static int sh_cmt_remove(struct platform_device *pdev)
+{
+ return -EBUSY; /* cannot unregister clockevent and clocksource */
+}
+
+static struct platform_driver sh_cmt_device_driver = {
+ .probe = sh_cmt_probe,
+ .remove = sh_cmt_remove,
+ .driver = {
+ .name = "sh_cmt",
+ .of_match_table = of_match_ptr(sh_cmt_of_table),
+ },
+ .id_table = sh_cmt_id_table,
+};
+
+static int __init sh_cmt_init(void)
+{
+ return platform_driver_register(&sh_cmt_device_driver);
+}
+
+static void __exit sh_cmt_exit(void)
+{
+ platform_driver_unregister(&sh_cmt_device_driver);
+}
+
+#ifdef CONFIG_SUPERH
+sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
+#endif
+
+subsys_initcall(sh_cmt_init);
+module_exit(sh_cmt_exit);
+
+MODULE_AUTHOR("Magnus Damm");
+MODULE_DESCRIPTION("SuperH CMT Timer Driver");
+MODULE_LICENSE("GPL v2");