diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/cpufreq/intel_pstate.c | 3157 |
1 files changed, 3157 insertions, 0 deletions
diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c new file mode 100644 index 000000000..4359ed1d3 --- /dev/null +++ b/drivers/cpufreq/intel_pstate.c @@ -0,0 +1,3157 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * intel_pstate.c: Native P state management for Intel processors + * + * (C) Copyright 2012 Intel Corporation + * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/kernel.h> +#include <linux/kernel_stat.h> +#include <linux/module.h> +#include <linux/ktime.h> +#include <linux/hrtimer.h> +#include <linux/tick.h> +#include <linux/slab.h> +#include <linux/sched/cpufreq.h> +#include <linux/list.h> +#include <linux/cpu.h> +#include <linux/cpufreq.h> +#include <linux/sysfs.h> +#include <linux/types.h> +#include <linux/fs.h> +#include <linux/acpi.h> +#include <linux/vmalloc.h> +#include <linux/pm_qos.h> +#include <trace/events/power.h> + +#include <asm/div64.h> +#include <asm/msr.h> +#include <asm/cpu_device_id.h> +#include <asm/cpufeature.h> +#include <asm/intel-family.h> + +#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) + +#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 +#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 +#define INTEL_CPUFREQ_TRANSITION_DELAY 500 + +#ifdef CONFIG_ACPI +#include <acpi/processor.h> +#include <acpi/cppc_acpi.h> +#endif + +#define FRAC_BITS 8 +#define int_tofp(X) ((int64_t)(X) << FRAC_BITS) +#define fp_toint(X) ((X) >> FRAC_BITS) + +#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) + +#define EXT_BITS 6 +#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) +#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) +#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) + +static inline int32_t mul_fp(int32_t x, int32_t y) +{ + return ((int64_t)x * (int64_t)y) >> FRAC_BITS; +} + +static inline int32_t div_fp(s64 x, s64 y) +{ + return div64_s64((int64_t)x << FRAC_BITS, y); +} + +static inline int ceiling_fp(int32_t x) +{ + int mask, ret; + + ret = fp_toint(x); + mask = (1 << FRAC_BITS) - 1; + if (x & mask) + ret += 1; + return ret; +} + +static inline int32_t percent_fp(int percent) +{ + return div_fp(percent, 100); +} + +static inline u64 mul_ext_fp(u64 x, u64 y) +{ + return (x * y) >> EXT_FRAC_BITS; +} + +static inline u64 div_ext_fp(u64 x, u64 y) +{ + return div64_u64(x << EXT_FRAC_BITS, y); +} + +static inline int32_t percent_ext_fp(int percent) +{ + return div_ext_fp(percent, 100); +} + +/** + * struct sample - Store performance sample + * @core_avg_perf: Ratio of APERF/MPERF which is the actual average + * performance during last sample period + * @busy_scaled: Scaled busy value which is used to calculate next + * P state. This can be different than core_avg_perf + * to account for cpu idle period + * @aperf: Difference of actual performance frequency clock count + * read from APERF MSR between last and current sample + * @mperf: Difference of maximum performance frequency clock count + * read from MPERF MSR between last and current sample + * @tsc: Difference of time stamp counter between last and + * current sample + * @time: Current time from scheduler + * + * This structure is used in the cpudata structure to store performance sample + * data for choosing next P State. + */ +struct sample { + int32_t core_avg_perf; + int32_t busy_scaled; + u64 aperf; + u64 mperf; + u64 tsc; + u64 time; +}; + +/** + * struct pstate_data - Store P state data + * @current_pstate: Current requested P state + * @min_pstate: Min P state possible for this platform + * @max_pstate: Max P state possible for this platform + * @max_pstate_physical:This is physical Max P state for a processor + * This can be higher than the max_pstate which can + * be limited by platform thermal design power limits + * @scaling: Scaling factor to convert frequency to cpufreq + * frequency units + * @turbo_pstate: Max Turbo P state possible for this platform + * @max_freq: @max_pstate frequency in cpufreq units + * @turbo_freq: @turbo_pstate frequency in cpufreq units + * + * Stores the per cpu model P state limits and current P state. + */ +struct pstate_data { + int current_pstate; + int min_pstate; + int max_pstate; + int max_pstate_physical; + int scaling; + int turbo_pstate; + unsigned int max_freq; + unsigned int turbo_freq; +}; + +/** + * struct vid_data - Stores voltage information data + * @min: VID data for this platform corresponding to + * the lowest P state + * @max: VID data corresponding to the highest P State. + * @turbo: VID data for turbo P state + * @ratio: Ratio of (vid max - vid min) / + * (max P state - Min P State) + * + * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) + * This data is used in Atom platforms, where in addition to target P state, + * the voltage data needs to be specified to select next P State. + */ +struct vid_data { + int min; + int max; + int turbo; + int32_t ratio; +}; + +/** + * struct global_params - Global parameters, mostly tunable via sysfs. + * @no_turbo: Whether or not to use turbo P-states. + * @turbo_disabled: Whether or not turbo P-states are available at all, + * based on the MSR_IA32_MISC_ENABLE value and whether or + * not the maximum reported turbo P-state is different from + * the maximum reported non-turbo one. + * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. + * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo + * P-state capacity. + * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo + * P-state capacity. + */ +struct global_params { + bool no_turbo; + bool turbo_disabled; + bool turbo_disabled_mf; + int max_perf_pct; + int min_perf_pct; +}; + +/** + * struct cpudata - Per CPU instance data storage + * @cpu: CPU number for this instance data + * @policy: CPUFreq policy value + * @update_util: CPUFreq utility callback information + * @update_util_set: CPUFreq utility callback is set + * @iowait_boost: iowait-related boost fraction + * @last_update: Time of the last update. + * @pstate: Stores P state limits for this CPU + * @vid: Stores VID limits for this CPU + * @last_sample_time: Last Sample time + * @aperf_mperf_shift: APERF vs MPERF counting frequency difference + * @prev_aperf: Last APERF value read from APERF MSR + * @prev_mperf: Last MPERF value read from MPERF MSR + * @prev_tsc: Last timestamp counter (TSC) value + * @prev_cummulative_iowait: IO Wait time difference from last and + * current sample + * @sample: Storage for storing last Sample data + * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios + * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios + * @acpi_perf_data: Stores ACPI perf information read from _PSS + * @valid_pss_table: Set to true for valid ACPI _PSS entries found + * @epp_powersave: Last saved HWP energy performance preference + * (EPP) or energy performance bias (EPB), + * when policy switched to performance + * @epp_policy: Last saved policy used to set EPP/EPB + * @epp_default: Power on default HWP energy performance + * preference/bias + * @epp_cached Cached HWP energy-performance preference value + * @hwp_req_cached: Cached value of the last HWP Request MSR + * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR + * @last_io_update: Last time when IO wake flag was set + * @sched_flags: Store scheduler flags for possible cross CPU update + * @hwp_boost_min: Last HWP boosted min performance + * @suspended: Whether or not the driver has been suspended. + * + * This structure stores per CPU instance data for all CPUs. + */ +struct cpudata { + int cpu; + + unsigned int policy; + struct update_util_data update_util; + bool update_util_set; + + struct pstate_data pstate; + struct vid_data vid; + + u64 last_update; + u64 last_sample_time; + u64 aperf_mperf_shift; + u64 prev_aperf; + u64 prev_mperf; + u64 prev_tsc; + u64 prev_cummulative_iowait; + struct sample sample; + int32_t min_perf_ratio; + int32_t max_perf_ratio; +#ifdef CONFIG_ACPI + struct acpi_processor_performance acpi_perf_data; + bool valid_pss_table; +#endif + unsigned int iowait_boost; + s16 epp_powersave; + s16 epp_policy; + s16 epp_default; + s16 epp_cached; + u64 hwp_req_cached; + u64 hwp_cap_cached; + u64 last_io_update; + unsigned int sched_flags; + u32 hwp_boost_min; + bool suspended; +}; + +static struct cpudata **all_cpu_data; + +/** + * struct pstate_funcs - Per CPU model specific callbacks + * @get_max: Callback to get maximum non turbo effective P state + * @get_max_physical: Callback to get maximum non turbo physical P state + * @get_min: Callback to get minimum P state + * @get_turbo: Callback to get turbo P state + * @get_scaling: Callback to get frequency scaling factor + * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference + * @get_val: Callback to convert P state to actual MSR write value + * @get_vid: Callback to get VID data for Atom platforms + * + * Core and Atom CPU models have different way to get P State limits. This + * structure is used to store those callbacks. + */ +struct pstate_funcs { + int (*get_max)(void); + int (*get_max_physical)(void); + int (*get_min)(void); + int (*get_turbo)(void); + int (*get_scaling)(void); + int (*get_aperf_mperf_shift)(void); + u64 (*get_val)(struct cpudata*, int pstate); + void (*get_vid)(struct cpudata *); +}; + +static struct pstate_funcs pstate_funcs __read_mostly; + +static int hwp_active __read_mostly; +static int hwp_mode_bdw __read_mostly; +static bool per_cpu_limits __read_mostly; +static bool hwp_boost __read_mostly; + +static struct cpufreq_driver *intel_pstate_driver __read_mostly; + +#ifdef CONFIG_ACPI +static bool acpi_ppc; +#endif + +static struct global_params global; + +static DEFINE_MUTEX(intel_pstate_driver_lock); +static DEFINE_MUTEX(intel_pstate_limits_lock); + +#ifdef CONFIG_ACPI + +static bool intel_pstate_acpi_pm_profile_server(void) +{ + if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || + acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) + return true; + + return false; +} + +static bool intel_pstate_get_ppc_enable_status(void) +{ + if (intel_pstate_acpi_pm_profile_server()) + return true; + + return acpi_ppc; +} + +#ifdef CONFIG_ACPI_CPPC_LIB + +/* The work item is needed to avoid CPU hotplug locking issues */ +static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) +{ + sched_set_itmt_support(); +} + +static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); + +static void intel_pstate_set_itmt_prio(int cpu) +{ + struct cppc_perf_caps cppc_perf; + static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; + int ret; + + ret = cppc_get_perf_caps(cpu, &cppc_perf); + if (ret) + return; + + /* + * The priorities can be set regardless of whether or not + * sched_set_itmt_support(true) has been called and it is valid to + * update them at any time after it has been called. + */ + sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); + + if (max_highest_perf <= min_highest_perf) { + if (cppc_perf.highest_perf > max_highest_perf) + max_highest_perf = cppc_perf.highest_perf; + + if (cppc_perf.highest_perf < min_highest_perf) + min_highest_perf = cppc_perf.highest_perf; + + if (max_highest_perf > min_highest_perf) { + /* + * This code can be run during CPU online under the + * CPU hotplug locks, so sched_set_itmt_support() + * cannot be called from here. Queue up a work item + * to invoke it. + */ + schedule_work(&sched_itmt_work); + } + } +} + +static int intel_pstate_get_cppc_guranteed(int cpu) +{ + struct cppc_perf_caps cppc_perf; + int ret; + + ret = cppc_get_perf_caps(cpu, &cppc_perf); + if (ret) + return ret; + + if (cppc_perf.guaranteed_perf) + return cppc_perf.guaranteed_perf; + + return cppc_perf.nominal_perf; +} + +#else /* CONFIG_ACPI_CPPC_LIB */ +static void intel_pstate_set_itmt_prio(int cpu) +{ +} +#endif /* CONFIG_ACPI_CPPC_LIB */ + +static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) +{ + struct cpudata *cpu; + int ret; + int i; + + if (hwp_active) { + intel_pstate_set_itmt_prio(policy->cpu); + return; + } + + if (!intel_pstate_get_ppc_enable_status()) + return; + + cpu = all_cpu_data[policy->cpu]; + + ret = acpi_processor_register_performance(&cpu->acpi_perf_data, + policy->cpu); + if (ret) + return; + + /* + * Check if the control value in _PSS is for PERF_CTL MSR, which should + * guarantee that the states returned by it map to the states in our + * list directly. + */ + if (cpu->acpi_perf_data.control_register.space_id != + ACPI_ADR_SPACE_FIXED_HARDWARE) + goto err; + + /* + * If there is only one entry _PSS, simply ignore _PSS and continue as + * usual without taking _PSS into account + */ + if (cpu->acpi_perf_data.state_count < 2) + goto err; + + pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); + for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { + pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", + (i == cpu->acpi_perf_data.state ? '*' : ' '), i, + (u32) cpu->acpi_perf_data.states[i].core_frequency, + (u32) cpu->acpi_perf_data.states[i].power, + (u32) cpu->acpi_perf_data.states[i].control); + } + + cpu->valid_pss_table = true; + pr_debug("_PPC limits will be enforced\n"); + + return; + + err: + cpu->valid_pss_table = false; + acpi_processor_unregister_performance(policy->cpu); +} + +static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) +{ + struct cpudata *cpu; + + cpu = all_cpu_data[policy->cpu]; + if (!cpu->valid_pss_table) + return; + + acpi_processor_unregister_performance(policy->cpu); +} +#else /* CONFIG_ACPI */ +static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) +{ +} + +static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) +{ +} + +static inline bool intel_pstate_acpi_pm_profile_server(void) +{ + return false; +} +#endif /* CONFIG_ACPI */ + +#ifndef CONFIG_ACPI_CPPC_LIB +static int intel_pstate_get_cppc_guranteed(int cpu) +{ + return -ENOTSUPP; +} +#endif /* CONFIG_ACPI_CPPC_LIB */ + +static inline void update_turbo_state(void) +{ + u64 misc_en; + struct cpudata *cpu; + + cpu = all_cpu_data[0]; + rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); + global.turbo_disabled = + (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || + cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); +} + +static int min_perf_pct_min(void) +{ + struct cpudata *cpu = all_cpu_data[0]; + int turbo_pstate = cpu->pstate.turbo_pstate; + + return turbo_pstate ? + (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; +} + +static s16 intel_pstate_get_epb(struct cpudata *cpu_data) +{ + u64 epb; + int ret; + + if (!boot_cpu_has(X86_FEATURE_EPB)) + return -ENXIO; + + ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); + if (ret) + return (s16)ret; + + return (s16)(epb & 0x0f); +} + +static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) +{ + s16 epp; + + if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { + /* + * When hwp_req_data is 0, means that caller didn't read + * MSR_HWP_REQUEST, so need to read and get EPP. + */ + if (!hwp_req_data) { + epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, + &hwp_req_data); + if (epp) + return epp; + } + epp = (hwp_req_data >> 24) & 0xff; + } else { + /* When there is no EPP present, HWP uses EPB settings */ + epp = intel_pstate_get_epb(cpu_data); + } + + return epp; +} + +static int intel_pstate_set_epb(int cpu, s16 pref) +{ + u64 epb; + int ret; + + if (!boot_cpu_has(X86_FEATURE_EPB)) + return -ENXIO; + + ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); + if (ret) + return ret; + + epb = (epb & ~0x0f) | pref; + wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); + + return 0; +} + +/* + * EPP/EPB display strings corresponding to EPP index in the + * energy_perf_strings[] + * index String + *------------------------------------- + * 0 default + * 1 performance + * 2 balance_performance + * 3 balance_power + * 4 power + */ +static const char * const energy_perf_strings[] = { + "default", + "performance", + "balance_performance", + "balance_power", + "power", + NULL +}; +static const unsigned int epp_values[] = { + HWP_EPP_PERFORMANCE, + HWP_EPP_BALANCE_PERFORMANCE, + HWP_EPP_BALANCE_POWERSAVE, + HWP_EPP_POWERSAVE +}; + +static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) +{ + s16 epp; + int index = -EINVAL; + + *raw_epp = 0; + epp = intel_pstate_get_epp(cpu_data, 0); + if (epp < 0) + return epp; + + if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { + if (epp == HWP_EPP_PERFORMANCE) + return 1; + if (epp == HWP_EPP_BALANCE_PERFORMANCE) + return 2; + if (epp == HWP_EPP_BALANCE_POWERSAVE) + return 3; + if (epp == HWP_EPP_POWERSAVE) + return 4; + *raw_epp = epp; + return 0; + } else if (boot_cpu_has(X86_FEATURE_EPB)) { + /* + * Range: + * 0x00-0x03 : Performance + * 0x04-0x07 : Balance performance + * 0x08-0x0B : Balance power + * 0x0C-0x0F : Power + * The EPB is a 4 bit value, but our ranges restrict the + * value which can be set. Here only using top two bits + * effectively. + */ + index = (epp >> 2) + 1; + } + + return index; +} + +static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) +{ + int ret; + + /* + * Use the cached HWP Request MSR value, because in the active mode the + * register itself may be updated by intel_pstate_hwp_boost_up() or + * intel_pstate_hwp_boost_down() at any time. + */ + u64 value = READ_ONCE(cpu->hwp_req_cached); + + value &= ~GENMASK_ULL(31, 24); + value |= (u64)epp << 24; + /* + * The only other updater of hwp_req_cached in the active mode, + * intel_pstate_hwp_set(), is called under the same lock as this + * function, so it cannot run in parallel with the update below. + */ + WRITE_ONCE(cpu->hwp_req_cached, value); + ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); + if (!ret) + cpu->epp_cached = epp; + + return ret; +} + +static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, + int pref_index, bool use_raw, + u32 raw_epp) +{ + int epp = -EINVAL; + int ret; + + if (!pref_index) + epp = cpu_data->epp_default; + + if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { + if (use_raw) + epp = raw_epp; + else if (epp == -EINVAL) + epp = epp_values[pref_index - 1]; + + /* + * To avoid confusion, refuse to set EPP to any values different + * from 0 (performance) if the current policy is "performance", + * because those values would be overridden. + */ + if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) + return -EBUSY; + + ret = intel_pstate_set_epp(cpu_data, epp); + } else { + if (epp == -EINVAL) + epp = (pref_index - 1) << 2; + ret = intel_pstate_set_epb(cpu_data->cpu, epp); + } + + return ret; +} + +static ssize_t show_energy_performance_available_preferences( + struct cpufreq_policy *policy, char *buf) +{ + int i = 0; + int ret = 0; + + while (energy_perf_strings[i] != NULL) + ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); + + ret += sprintf(&buf[ret], "\n"); + + return ret; +} + +cpufreq_freq_attr_ro(energy_performance_available_preferences); + +static struct cpufreq_driver intel_pstate; + +static ssize_t store_energy_performance_preference( + struct cpufreq_policy *policy, const char *buf, size_t count) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + char str_preference[21]; + bool raw = false; + ssize_t ret; + u32 epp = 0; + + ret = sscanf(buf, "%20s", str_preference); + if (ret != 1) + return -EINVAL; + + ret = match_string(energy_perf_strings, -1, str_preference); + if (ret < 0) { + if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) + return ret; + + ret = kstrtouint(buf, 10, &epp); + if (ret) + return ret; + + if (epp > 255) + return -EINVAL; + + raw = true; + } + + /* + * This function runs with the policy R/W semaphore held, which + * guarantees that the driver pointer will not change while it is + * running. + */ + if (!intel_pstate_driver) + return -EAGAIN; + + mutex_lock(&intel_pstate_limits_lock); + + if (intel_pstate_driver == &intel_pstate) { + ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); + } else { + /* + * In the passive mode the governor needs to be stopped on the + * target CPU before the EPP update and restarted after it, + * which is super-heavy-weight, so make sure it is worth doing + * upfront. + */ + if (!raw) + epp = ret ? epp_values[ret - 1] : cpu->epp_default; + + if (cpu->epp_cached != epp) { + int err; + + cpufreq_stop_governor(policy); + ret = intel_pstate_set_epp(cpu, epp); + err = cpufreq_start_governor(policy); + if (!ret) + ret = err; + } else { + ret = 0; + } + } + + mutex_unlock(&intel_pstate_limits_lock); + + return ret ?: count; +} + +static ssize_t show_energy_performance_preference( + struct cpufreq_policy *policy, char *buf) +{ + struct cpudata *cpu_data = all_cpu_data[policy->cpu]; + int preference, raw_epp; + + preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); + if (preference < 0) + return preference; + + if (raw_epp) + return sprintf(buf, "%d\n", raw_epp); + else + return sprintf(buf, "%s\n", energy_perf_strings[preference]); +} + +cpufreq_freq_attr_rw(energy_performance_preference); + +static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) +{ + struct cpudata *cpu; + u64 cap; + int ratio; + + ratio = intel_pstate_get_cppc_guranteed(policy->cpu); + if (ratio <= 0) { + rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); + ratio = HWP_GUARANTEED_PERF(cap); + } + + cpu = all_cpu_data[policy->cpu]; + + return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling); +} + +cpufreq_freq_attr_ro(base_frequency); + +static struct freq_attr *hwp_cpufreq_attrs[] = { + &energy_performance_preference, + &energy_performance_available_preferences, + &base_frequency, + NULL, +}; + +static void intel_pstate_get_hwp_max(struct cpudata *cpu, int *phy_max, + int *current_max) +{ + u64 cap; + + rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); + WRITE_ONCE(cpu->hwp_cap_cached, cap); + if (global.no_turbo || global.turbo_disabled) + *current_max = HWP_GUARANTEED_PERF(cap); + else + *current_max = HWP_HIGHEST_PERF(cap); + + *phy_max = HWP_HIGHEST_PERF(cap); +} + +static void intel_pstate_hwp_set(unsigned int cpu) +{ + struct cpudata *cpu_data = all_cpu_data[cpu]; + int max, min; + u64 value; + s16 epp; + + max = cpu_data->max_perf_ratio; + min = cpu_data->min_perf_ratio; + + if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) + min = max; + + rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); + + value &= ~HWP_MIN_PERF(~0L); + value |= HWP_MIN_PERF(min); + + value &= ~HWP_MAX_PERF(~0L); + value |= HWP_MAX_PERF(max); + + if (cpu_data->epp_policy == cpu_data->policy) + goto skip_epp; + + cpu_data->epp_policy = cpu_data->policy; + + if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { + epp = intel_pstate_get_epp(cpu_data, value); + cpu_data->epp_powersave = epp; + /* If EPP read was failed, then don't try to write */ + if (epp < 0) + goto skip_epp; + + epp = 0; + } else { + /* skip setting EPP, when saved value is invalid */ + if (cpu_data->epp_powersave < 0) + goto skip_epp; + + /* + * No need to restore EPP when it is not zero. This + * means: + * - Policy is not changed + * - user has manually changed + * - Error reading EPB + */ + epp = intel_pstate_get_epp(cpu_data, value); + if (epp) + goto skip_epp; + + epp = cpu_data->epp_powersave; + } + if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { + value &= ~GENMASK_ULL(31, 24); + value |= (u64)epp << 24; + } else { + intel_pstate_set_epb(cpu, epp); + } +skip_epp: + WRITE_ONCE(cpu_data->hwp_req_cached, value); + wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); +} + +static void intel_pstate_hwp_offline(struct cpudata *cpu) +{ + u64 value = READ_ONCE(cpu->hwp_req_cached); + int min_perf; + + if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { + /* + * In case the EPP has been set to "performance" by the + * active mode "performance" scaling algorithm, replace that + * temporary value with the cached EPP one. + */ + value &= ~GENMASK_ULL(31, 24); + value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); + WRITE_ONCE(cpu->hwp_req_cached, value); + } + + value &= ~GENMASK_ULL(31, 0); + min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached); + + /* Set hwp_max = hwp_min */ + value |= HWP_MAX_PERF(min_perf); + value |= HWP_MIN_PERF(min_perf); + + /* Set EPP to min */ + if (boot_cpu_has(X86_FEATURE_HWP_EPP)) + value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); + + wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); +} + +#define POWER_CTL_EE_ENABLE 1 +#define POWER_CTL_EE_DISABLE 2 + +static int power_ctl_ee_state; + +static void set_power_ctl_ee_state(bool input) +{ + u64 power_ctl; + + mutex_lock(&intel_pstate_driver_lock); + rdmsrl(MSR_IA32_POWER_CTL, power_ctl); + if (input) { + power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); + power_ctl_ee_state = POWER_CTL_EE_ENABLE; + } else { + power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); + power_ctl_ee_state = POWER_CTL_EE_DISABLE; + } + wrmsrl(MSR_IA32_POWER_CTL, power_ctl); + mutex_unlock(&intel_pstate_driver_lock); +} + +static void intel_pstate_hwp_enable(struct cpudata *cpudata); + +static void intel_pstate_hwp_reenable(struct cpudata *cpu) +{ + intel_pstate_hwp_enable(cpu); + wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); +} + +static int intel_pstate_suspend(struct cpufreq_policy *policy) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + + pr_debug("CPU %d suspending\n", cpu->cpu); + + cpu->suspended = true; + + return 0; +} + +static int intel_pstate_resume(struct cpufreq_policy *policy) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + + pr_debug("CPU %d resuming\n", cpu->cpu); + + /* Only restore if the system default is changed */ + if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) + set_power_ctl_ee_state(true); + else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) + set_power_ctl_ee_state(false); + + if (cpu->suspended && hwp_active) { + mutex_lock(&intel_pstate_limits_lock); + + /* Re-enable HWP, because "online" has not done that. */ + intel_pstate_hwp_reenable(cpu); + + mutex_unlock(&intel_pstate_limits_lock); + } + + cpu->suspended = false; + + return 0; +} + +static void intel_pstate_update_policies(void) +{ + int cpu; + + for_each_possible_cpu(cpu) + cpufreq_update_policy(cpu); +} + +static void intel_pstate_update_max_freq(unsigned int cpu) +{ + struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); + struct cpudata *cpudata; + + if (!policy) + return; + + cpudata = all_cpu_data[cpu]; + policy->cpuinfo.max_freq = global.turbo_disabled_mf ? + cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; + + refresh_frequency_limits(policy); + + cpufreq_cpu_release(policy); +} + +static void intel_pstate_update_limits(unsigned int cpu) +{ + mutex_lock(&intel_pstate_driver_lock); + + update_turbo_state(); + /* + * If turbo has been turned on or off globally, policy limits for + * all CPUs need to be updated to reflect that. + */ + if (global.turbo_disabled_mf != global.turbo_disabled) { + global.turbo_disabled_mf = global.turbo_disabled; + arch_set_max_freq_ratio(global.turbo_disabled); + for_each_possible_cpu(cpu) + intel_pstate_update_max_freq(cpu); + } else { + cpufreq_update_policy(cpu); + } + + mutex_unlock(&intel_pstate_driver_lock); +} + +/************************** sysfs begin ************************/ +#define show_one(file_name, object) \ + static ssize_t show_##file_name \ + (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ + { \ + return sprintf(buf, "%u\n", global.object); \ + } + +static ssize_t intel_pstate_show_status(char *buf); +static int intel_pstate_update_status(const char *buf, size_t size); + +static ssize_t show_status(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + ssize_t ret; + + mutex_lock(&intel_pstate_driver_lock); + ret = intel_pstate_show_status(buf); + mutex_unlock(&intel_pstate_driver_lock); + + return ret; +} + +static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, + const char *buf, size_t count) +{ + char *p = memchr(buf, '\n', count); + int ret; + + mutex_lock(&intel_pstate_driver_lock); + ret = intel_pstate_update_status(buf, p ? p - buf : count); + mutex_unlock(&intel_pstate_driver_lock); + + return ret < 0 ? ret : count; +} + +static ssize_t show_turbo_pct(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct cpudata *cpu; + int total, no_turbo, turbo_pct; + uint32_t turbo_fp; + + mutex_lock(&intel_pstate_driver_lock); + + if (!intel_pstate_driver) { + mutex_unlock(&intel_pstate_driver_lock); + return -EAGAIN; + } + + cpu = all_cpu_data[0]; + + total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; + no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; + turbo_fp = div_fp(no_turbo, total); + turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); + + mutex_unlock(&intel_pstate_driver_lock); + + return sprintf(buf, "%u\n", turbo_pct); +} + +static ssize_t show_num_pstates(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + struct cpudata *cpu; + int total; + + mutex_lock(&intel_pstate_driver_lock); + + if (!intel_pstate_driver) { + mutex_unlock(&intel_pstate_driver_lock); + return -EAGAIN; + } + + cpu = all_cpu_data[0]; + total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; + + mutex_unlock(&intel_pstate_driver_lock); + + return sprintf(buf, "%u\n", total); +} + +static ssize_t show_no_turbo(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + ssize_t ret; + + mutex_lock(&intel_pstate_driver_lock); + + if (!intel_pstate_driver) { + mutex_unlock(&intel_pstate_driver_lock); + return -EAGAIN; + } + + update_turbo_state(); + if (global.turbo_disabled) + ret = sprintf(buf, "%u\n", global.turbo_disabled); + else + ret = sprintf(buf, "%u\n", global.no_turbo); + + mutex_unlock(&intel_pstate_driver_lock); + + return ret; +} + +static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, + const char *buf, size_t count) +{ + unsigned int input; + int ret; + + ret = sscanf(buf, "%u", &input); + if (ret != 1) + return -EINVAL; + + mutex_lock(&intel_pstate_driver_lock); + + if (!intel_pstate_driver) { + mutex_unlock(&intel_pstate_driver_lock); + return -EAGAIN; + } + + mutex_lock(&intel_pstate_limits_lock); + + update_turbo_state(); + if (global.turbo_disabled) { + pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); + mutex_unlock(&intel_pstate_limits_lock); + mutex_unlock(&intel_pstate_driver_lock); + return -EPERM; + } + + global.no_turbo = clamp_t(int, input, 0, 1); + + if (global.no_turbo) { + struct cpudata *cpu = all_cpu_data[0]; + int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; + + /* Squash the global minimum into the permitted range. */ + if (global.min_perf_pct > pct) + global.min_perf_pct = pct; + } + + mutex_unlock(&intel_pstate_limits_lock); + + intel_pstate_update_policies(); + + mutex_unlock(&intel_pstate_driver_lock); + + return count; +} + +static void update_qos_request(enum freq_qos_req_type type) +{ + int max_state, turbo_max, freq, i, perf_pct; + struct freq_qos_request *req; + struct cpufreq_policy *policy; + + for_each_possible_cpu(i) { + struct cpudata *cpu = all_cpu_data[i]; + + policy = cpufreq_cpu_get(i); + if (!policy) + continue; + + req = policy->driver_data; + cpufreq_cpu_put(policy); + + if (!req) + continue; + + if (hwp_active) + intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state); + else + turbo_max = cpu->pstate.turbo_pstate; + + if (type == FREQ_QOS_MIN) { + perf_pct = global.min_perf_pct; + } else { + req++; + perf_pct = global.max_perf_pct; + } + + freq = DIV_ROUND_UP(turbo_max * perf_pct, 100); + freq *= cpu->pstate.scaling; + + if (freq_qos_update_request(req, freq) < 0) + pr_warn("Failed to update freq constraint: CPU%d\n", i); + } +} + +static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, + const char *buf, size_t count) +{ + unsigned int input; + int ret; + + ret = sscanf(buf, "%u", &input); + if (ret != 1) + return -EINVAL; + + mutex_lock(&intel_pstate_driver_lock); + + if (!intel_pstate_driver) { + mutex_unlock(&intel_pstate_driver_lock); + return -EAGAIN; + } + + mutex_lock(&intel_pstate_limits_lock); + + global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); + + mutex_unlock(&intel_pstate_limits_lock); + + if (intel_pstate_driver == &intel_pstate) + intel_pstate_update_policies(); + else + update_qos_request(FREQ_QOS_MAX); + + mutex_unlock(&intel_pstate_driver_lock); + + return count; +} + +static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, + const char *buf, size_t count) +{ + unsigned int input; + int ret; + + ret = sscanf(buf, "%u", &input); + if (ret != 1) + return -EINVAL; + + mutex_lock(&intel_pstate_driver_lock); + + if (!intel_pstate_driver) { + mutex_unlock(&intel_pstate_driver_lock); + return -EAGAIN; + } + + mutex_lock(&intel_pstate_limits_lock); + + global.min_perf_pct = clamp_t(int, input, + min_perf_pct_min(), global.max_perf_pct); + + mutex_unlock(&intel_pstate_limits_lock); + + if (intel_pstate_driver == &intel_pstate) + intel_pstate_update_policies(); + else + update_qos_request(FREQ_QOS_MIN); + + mutex_unlock(&intel_pstate_driver_lock); + + return count; +} + +static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return sprintf(buf, "%u\n", hwp_boost); +} + +static ssize_t store_hwp_dynamic_boost(struct kobject *a, + struct kobj_attribute *b, + const char *buf, size_t count) +{ + unsigned int input; + int ret; + + ret = kstrtouint(buf, 10, &input); + if (ret) + return ret; + + mutex_lock(&intel_pstate_driver_lock); + hwp_boost = !!input; + intel_pstate_update_policies(); + mutex_unlock(&intel_pstate_driver_lock); + + return count; +} + +static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, + char *buf) +{ + u64 power_ctl; + int enable; + + rdmsrl(MSR_IA32_POWER_CTL, power_ctl); + enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); + return sprintf(buf, "%d\n", !enable); +} + +static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, + const char *buf, size_t count) +{ + bool input; + int ret; + + ret = kstrtobool(buf, &input); + if (ret) + return ret; + + set_power_ctl_ee_state(input); + + return count; +} + +show_one(max_perf_pct, max_perf_pct); +show_one(min_perf_pct, min_perf_pct); + +define_one_global_rw(status); +define_one_global_rw(no_turbo); +define_one_global_rw(max_perf_pct); +define_one_global_rw(min_perf_pct); +define_one_global_ro(turbo_pct); +define_one_global_ro(num_pstates); +define_one_global_rw(hwp_dynamic_boost); +define_one_global_rw(energy_efficiency); + +static struct attribute *intel_pstate_attributes[] = { + &status.attr, + &no_turbo.attr, + &turbo_pct.attr, + &num_pstates.attr, + NULL +}; + +static const struct attribute_group intel_pstate_attr_group = { + .attrs = intel_pstate_attributes, +}; + +static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; + +static struct kobject *intel_pstate_kobject; + +static void __init intel_pstate_sysfs_expose_params(void) +{ + int rc; + + intel_pstate_kobject = kobject_create_and_add("intel_pstate", + &cpu_subsys.dev_root->kobj); + if (WARN_ON(!intel_pstate_kobject)) + return; + + rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); + if (WARN_ON(rc)) + return; + + /* + * If per cpu limits are enforced there are no global limits, so + * return without creating max/min_perf_pct attributes + */ + if (per_cpu_limits) + return; + + rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); + WARN_ON(rc); + + rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); + WARN_ON(rc); + + if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { + rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); + WARN_ON(rc); + } +} + +static void __init intel_pstate_sysfs_remove(void) +{ + if (!intel_pstate_kobject) + return; + + sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); + + if (!per_cpu_limits) { + sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); + sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); + + if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) + sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); + } + + kobject_put(intel_pstate_kobject); +} + +static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) +{ + int rc; + + if (!hwp_active) + return; + + rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); + WARN_ON_ONCE(rc); +} + +static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) +{ + if (!hwp_active) + return; + + sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); +} + +/************************** sysfs end ************************/ + +static void intel_pstate_hwp_enable(struct cpudata *cpudata) +{ + /* First disable HWP notification interrupt as we don't process them */ + if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) + wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); + + wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); + if (cpudata->epp_default == -EINVAL) + cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); +} + +static int atom_get_min_pstate(void) +{ + u64 value; + + rdmsrl(MSR_ATOM_CORE_RATIOS, value); + return (value >> 8) & 0x7F; +} + +static int atom_get_max_pstate(void) +{ + u64 value; + + rdmsrl(MSR_ATOM_CORE_RATIOS, value); + return (value >> 16) & 0x7F; +} + +static int atom_get_turbo_pstate(void) +{ + u64 value; + + rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); + return value & 0x7F; +} + +static u64 atom_get_val(struct cpudata *cpudata, int pstate) +{ + u64 val; + int32_t vid_fp; + u32 vid; + + val = (u64)pstate << 8; + if (global.no_turbo && !global.turbo_disabled) + val |= (u64)1 << 32; + + vid_fp = cpudata->vid.min + mul_fp( + int_tofp(pstate - cpudata->pstate.min_pstate), + cpudata->vid.ratio); + + vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); + vid = ceiling_fp(vid_fp); + + if (pstate > cpudata->pstate.max_pstate) + vid = cpudata->vid.turbo; + + return val | vid; +} + +static int silvermont_get_scaling(void) +{ + u64 value; + int i; + /* Defined in Table 35-6 from SDM (Sept 2015) */ + static int silvermont_freq_table[] = { + 83300, 100000, 133300, 116700, 80000}; + + rdmsrl(MSR_FSB_FREQ, value); + i = value & 0x7; + WARN_ON(i > 4); + + return silvermont_freq_table[i]; +} + +static int airmont_get_scaling(void) +{ + u64 value; + int i; + /* Defined in Table 35-10 from SDM (Sept 2015) */ + static int airmont_freq_table[] = { + 83300, 100000, 133300, 116700, 80000, + 93300, 90000, 88900, 87500}; + + rdmsrl(MSR_FSB_FREQ, value); + i = value & 0xF; + WARN_ON(i > 8); + + return airmont_freq_table[i]; +} + +static void atom_get_vid(struct cpudata *cpudata) +{ + u64 value; + + rdmsrl(MSR_ATOM_CORE_VIDS, value); + cpudata->vid.min = int_tofp((value >> 8) & 0x7f); + cpudata->vid.max = int_tofp((value >> 16) & 0x7f); + cpudata->vid.ratio = div_fp( + cpudata->vid.max - cpudata->vid.min, + int_tofp(cpudata->pstate.max_pstate - + cpudata->pstate.min_pstate)); + + rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); + cpudata->vid.turbo = value & 0x7f; +} + +static int core_get_min_pstate(void) +{ + u64 value; + + rdmsrl(MSR_PLATFORM_INFO, value); + return (value >> 40) & 0xFF; +} + +static int core_get_max_pstate_physical(void) +{ + u64 value; + + rdmsrl(MSR_PLATFORM_INFO, value); + return (value >> 8) & 0xFF; +} + +static int core_get_tdp_ratio(u64 plat_info) +{ + /* Check how many TDP levels present */ + if (plat_info & 0x600000000) { + u64 tdp_ctrl; + u64 tdp_ratio; + int tdp_msr; + int err; + + /* Get the TDP level (0, 1, 2) to get ratios */ + err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); + if (err) + return err; + + /* TDP MSR are continuous starting at 0x648 */ + tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); + err = rdmsrl_safe(tdp_msr, &tdp_ratio); + if (err) + return err; + + /* For level 1 and 2, bits[23:16] contain the ratio */ + if (tdp_ctrl & 0x03) + tdp_ratio >>= 16; + + tdp_ratio &= 0xff; /* ratios are only 8 bits long */ + pr_debug("tdp_ratio %x\n", (int)tdp_ratio); + + return (int)tdp_ratio; + } + + return -ENXIO; +} + +static int core_get_max_pstate(void) +{ + u64 tar; + u64 plat_info; + int max_pstate; + int tdp_ratio; + int err; + + rdmsrl(MSR_PLATFORM_INFO, plat_info); + max_pstate = (plat_info >> 8) & 0xFF; + + tdp_ratio = core_get_tdp_ratio(plat_info); + if (tdp_ratio <= 0) + return max_pstate; + + if (hwp_active) { + /* Turbo activation ratio is not used on HWP platforms */ + return tdp_ratio; + } + + err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); + if (!err) { + int tar_levels; + + /* Do some sanity checking for safety */ + tar_levels = tar & 0xff; + if (tdp_ratio - 1 == tar_levels) { + max_pstate = tar_levels; + pr_debug("max_pstate=TAC %x\n", max_pstate); + } + } + + return max_pstate; +} + +static int core_get_turbo_pstate(void) +{ + u64 value; + int nont, ret; + + rdmsrl(MSR_TURBO_RATIO_LIMIT, value); + nont = core_get_max_pstate(); + ret = (value) & 255; + if (ret <= nont) + ret = nont; + return ret; +} + +static inline int core_get_scaling(void) +{ + return 100000; +} + +static u64 core_get_val(struct cpudata *cpudata, int pstate) +{ + u64 val; + + val = (u64)pstate << 8; + if (global.no_turbo && !global.turbo_disabled) + val |= (u64)1 << 32; + + return val; +} + +static int knl_get_aperf_mperf_shift(void) +{ + return 10; +} + +static int knl_get_turbo_pstate(void) +{ + u64 value; + int nont, ret; + + rdmsrl(MSR_TURBO_RATIO_LIMIT, value); + nont = core_get_max_pstate(); + ret = (((value) >> 8) & 0xFF); + if (ret <= nont) + ret = nont; + return ret; +} + +static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) +{ + trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); + cpu->pstate.current_pstate = pstate; + /* + * Generally, there is no guarantee that this code will always run on + * the CPU being updated, so force the register update to run on the + * right CPU. + */ + wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, + pstate_funcs.get_val(cpu, pstate)); +} + +static void intel_pstate_set_min_pstate(struct cpudata *cpu) +{ + intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); +} + +static void intel_pstate_max_within_limits(struct cpudata *cpu) +{ + int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); + + update_turbo_state(); + intel_pstate_set_pstate(cpu, pstate); +} + +static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) +{ + cpu->pstate.min_pstate = pstate_funcs.get_min(); + cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); + cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); + cpu->pstate.scaling = pstate_funcs.get_scaling(); + + if (hwp_active && !hwp_mode_bdw) { + unsigned int phy_max, current_max; + + intel_pstate_get_hwp_max(cpu, &phy_max, ¤t_max); + cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling; + cpu->pstate.turbo_pstate = phy_max; + cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(READ_ONCE(cpu->hwp_cap_cached)); + } else { + cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; + cpu->pstate.max_pstate = pstate_funcs.get_max(); + } + cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; + + if (pstate_funcs.get_aperf_mperf_shift) + cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); + + if (pstate_funcs.get_vid) + pstate_funcs.get_vid(cpu); + + intel_pstate_set_min_pstate(cpu); +} + +/* + * Long hold time will keep high perf limits for long time, + * which negatively impacts perf/watt for some workloads, + * like specpower. 3ms is based on experiements on some + * workoads. + */ +static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; + +static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) +{ + u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); + u32 max_limit = (hwp_req & 0xff00) >> 8; + u32 min_limit = (hwp_req & 0xff); + u32 boost_level1; + + /* + * Cases to consider (User changes via sysfs or boot time): + * If, P0 (Turbo max) = P1 (Guaranteed max) = min: + * No boost, return. + * If, P0 (Turbo max) > P1 (Guaranteed max) = min: + * Should result in one level boost only for P0. + * If, P0 (Turbo max) = P1 (Guaranteed max) > min: + * Should result in two level boost: + * (min + p1)/2 and P1. + * If, P0 (Turbo max) > P1 (Guaranteed max) > min: + * Should result in three level boost: + * (min + p1)/2, P1 and P0. + */ + + /* If max and min are equal or already at max, nothing to boost */ + if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) + return; + + if (!cpu->hwp_boost_min) + cpu->hwp_boost_min = min_limit; + + /* level at half way mark between min and guranteed */ + boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1; + + if (cpu->hwp_boost_min < boost_level1) + cpu->hwp_boost_min = boost_level1; + else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) + cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached); + else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) && + max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) + cpu->hwp_boost_min = max_limit; + else + return; + + hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; + wrmsrl(MSR_HWP_REQUEST, hwp_req); + cpu->last_update = cpu->sample.time; +} + +static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) +{ + if (cpu->hwp_boost_min) { + bool expired; + + /* Check if we are idle for hold time to boost down */ + expired = time_after64(cpu->sample.time, cpu->last_update + + hwp_boost_hold_time_ns); + if (expired) { + wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); + cpu->hwp_boost_min = 0; + } + } + cpu->last_update = cpu->sample.time; +} + +static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, + u64 time) +{ + cpu->sample.time = time; + + if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { + bool do_io = false; + + cpu->sched_flags = 0; + /* + * Set iowait_boost flag and update time. Since IO WAIT flag + * is set all the time, we can't just conclude that there is + * some IO bound activity is scheduled on this CPU with just + * one occurrence. If we receive at least two in two + * consecutive ticks, then we treat as boost candidate. + */ + if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) + do_io = true; + + cpu->last_io_update = time; + + if (do_io) + intel_pstate_hwp_boost_up(cpu); + + } else { + intel_pstate_hwp_boost_down(cpu); + } +} + +static inline void intel_pstate_update_util_hwp(struct update_util_data *data, + u64 time, unsigned int flags) +{ + struct cpudata *cpu = container_of(data, struct cpudata, update_util); + + cpu->sched_flags |= flags; + + if (smp_processor_id() == cpu->cpu) + intel_pstate_update_util_hwp_local(cpu, time); +} + +static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) +{ + struct sample *sample = &cpu->sample; + + sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); +} + +static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) +{ + u64 aperf, mperf; + unsigned long flags; + u64 tsc; + + local_irq_save(flags); + rdmsrl(MSR_IA32_APERF, aperf); + rdmsrl(MSR_IA32_MPERF, mperf); + tsc = rdtsc(); + if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { + local_irq_restore(flags); + return false; + } + local_irq_restore(flags); + + cpu->last_sample_time = cpu->sample.time; + cpu->sample.time = time; + cpu->sample.aperf = aperf; + cpu->sample.mperf = mperf; + cpu->sample.tsc = tsc; + cpu->sample.aperf -= cpu->prev_aperf; + cpu->sample.mperf -= cpu->prev_mperf; + cpu->sample.tsc -= cpu->prev_tsc; + + cpu->prev_aperf = aperf; + cpu->prev_mperf = mperf; + cpu->prev_tsc = tsc; + /* + * First time this function is invoked in a given cycle, all of the + * previous sample data fields are equal to zero or stale and they must + * be populated with meaningful numbers for things to work, so assume + * that sample.time will always be reset before setting the utilization + * update hook and make the caller skip the sample then. + */ + if (cpu->last_sample_time) { + intel_pstate_calc_avg_perf(cpu); + return true; + } + return false; +} + +static inline int32_t get_avg_frequency(struct cpudata *cpu) +{ + return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); +} + +static inline int32_t get_avg_pstate(struct cpudata *cpu) +{ + return mul_ext_fp(cpu->pstate.max_pstate_physical, + cpu->sample.core_avg_perf); +} + +static inline int32_t get_target_pstate(struct cpudata *cpu) +{ + struct sample *sample = &cpu->sample; + int32_t busy_frac; + int target, avg_pstate; + + busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, + sample->tsc); + + if (busy_frac < cpu->iowait_boost) + busy_frac = cpu->iowait_boost; + + sample->busy_scaled = busy_frac * 100; + + target = global.no_turbo || global.turbo_disabled ? + cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; + target += target >> 2; + target = mul_fp(target, busy_frac); + if (target < cpu->pstate.min_pstate) + target = cpu->pstate.min_pstate; + + /* + * If the average P-state during the previous cycle was higher than the + * current target, add 50% of the difference to the target to reduce + * possible performance oscillations and offset possible performance + * loss related to moving the workload from one CPU to another within + * a package/module. + */ + avg_pstate = get_avg_pstate(cpu); + if (avg_pstate > target) + target += (avg_pstate - target) >> 1; + + return target; +} + +static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) +{ + int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); + int max_pstate = max(min_pstate, cpu->max_perf_ratio); + + return clamp_t(int, pstate, min_pstate, max_pstate); +} + +static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) +{ + if (pstate == cpu->pstate.current_pstate) + return; + + cpu->pstate.current_pstate = pstate; + wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); +} + +static void intel_pstate_adjust_pstate(struct cpudata *cpu) +{ + int from = cpu->pstate.current_pstate; + struct sample *sample; + int target_pstate; + + update_turbo_state(); + + target_pstate = get_target_pstate(cpu); + target_pstate = intel_pstate_prepare_request(cpu, target_pstate); + trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); + intel_pstate_update_pstate(cpu, target_pstate); + + sample = &cpu->sample; + trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), + fp_toint(sample->busy_scaled), + from, + cpu->pstate.current_pstate, + sample->mperf, + sample->aperf, + sample->tsc, + get_avg_frequency(cpu), + fp_toint(cpu->iowait_boost * 100)); +} + +static void intel_pstate_update_util(struct update_util_data *data, u64 time, + unsigned int flags) +{ + struct cpudata *cpu = container_of(data, struct cpudata, update_util); + u64 delta_ns; + + /* Don't allow remote callbacks */ + if (smp_processor_id() != cpu->cpu) + return; + + delta_ns = time - cpu->last_update; + if (flags & SCHED_CPUFREQ_IOWAIT) { + /* Start over if the CPU may have been idle. */ + if (delta_ns > TICK_NSEC) { + cpu->iowait_boost = ONE_EIGHTH_FP; + } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { + cpu->iowait_boost <<= 1; + if (cpu->iowait_boost > int_tofp(1)) + cpu->iowait_boost = int_tofp(1); + } else { + cpu->iowait_boost = ONE_EIGHTH_FP; + } + } else if (cpu->iowait_boost) { + /* Clear iowait_boost if the CPU may have been idle. */ + if (delta_ns > TICK_NSEC) + cpu->iowait_boost = 0; + else + cpu->iowait_boost >>= 1; + } + cpu->last_update = time; + delta_ns = time - cpu->sample.time; + if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) + return; + + if (intel_pstate_sample(cpu, time)) + intel_pstate_adjust_pstate(cpu); +} + +static struct pstate_funcs core_funcs = { + .get_max = core_get_max_pstate, + .get_max_physical = core_get_max_pstate_physical, + .get_min = core_get_min_pstate, + .get_turbo = core_get_turbo_pstate, + .get_scaling = core_get_scaling, + .get_val = core_get_val, +}; + +static const struct pstate_funcs silvermont_funcs = { + .get_max = atom_get_max_pstate, + .get_max_physical = atom_get_max_pstate, + .get_min = atom_get_min_pstate, + .get_turbo = atom_get_turbo_pstate, + .get_val = atom_get_val, + .get_scaling = silvermont_get_scaling, + .get_vid = atom_get_vid, +}; + +static const struct pstate_funcs airmont_funcs = { + .get_max = atom_get_max_pstate, + .get_max_physical = atom_get_max_pstate, + .get_min = atom_get_min_pstate, + .get_turbo = atom_get_turbo_pstate, + .get_val = atom_get_val, + .get_scaling = airmont_get_scaling, + .get_vid = atom_get_vid, +}; + +static const struct pstate_funcs knl_funcs = { + .get_max = core_get_max_pstate, + .get_max_physical = core_get_max_pstate_physical, + .get_min = core_get_min_pstate, + .get_turbo = knl_get_turbo_pstate, + .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, + .get_scaling = core_get_scaling, + .get_val = core_get_val, +}; + +#define X86_MATCH(model, policy) \ + X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ + X86_FEATURE_APERFMPERF, &policy) + +static const struct x86_cpu_id intel_pstate_cpu_ids[] = { + X86_MATCH(SANDYBRIDGE, core_funcs), + X86_MATCH(SANDYBRIDGE_X, core_funcs), + X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), + X86_MATCH(IVYBRIDGE, core_funcs), + X86_MATCH(HASWELL, core_funcs), + X86_MATCH(BROADWELL, core_funcs), + X86_MATCH(IVYBRIDGE_X, core_funcs), + X86_MATCH(HASWELL_X, core_funcs), + X86_MATCH(HASWELL_L, core_funcs), + X86_MATCH(HASWELL_G, core_funcs), + X86_MATCH(BROADWELL_G, core_funcs), + X86_MATCH(ATOM_AIRMONT, airmont_funcs), + X86_MATCH(SKYLAKE_L, core_funcs), + X86_MATCH(BROADWELL_X, core_funcs), + X86_MATCH(SKYLAKE, core_funcs), + X86_MATCH(BROADWELL_D, core_funcs), + X86_MATCH(XEON_PHI_KNL, knl_funcs), + X86_MATCH(XEON_PHI_KNM, knl_funcs), + X86_MATCH(ATOM_GOLDMONT, core_funcs), + X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), + X86_MATCH(SKYLAKE_X, core_funcs), + {} +}; +MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); + +static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { + X86_MATCH(BROADWELL_D, core_funcs), + X86_MATCH(BROADWELL_X, core_funcs), + X86_MATCH(SKYLAKE_X, core_funcs), + {} +}; + +static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { + X86_MATCH(KABYLAKE, core_funcs), + {} +}; + +static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { + X86_MATCH(SKYLAKE_X, core_funcs), + X86_MATCH(SKYLAKE, core_funcs), + {} +}; + +static int intel_pstate_init_cpu(unsigned int cpunum) +{ + struct cpudata *cpu; + + cpu = all_cpu_data[cpunum]; + + if (!cpu) { + cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); + if (!cpu) + return -ENOMEM; + + all_cpu_data[cpunum] = cpu; + + cpu->cpu = cpunum; + + cpu->epp_default = -EINVAL; + + if (hwp_active) { + const struct x86_cpu_id *id; + + intel_pstate_hwp_enable(cpu); + + id = x86_match_cpu(intel_pstate_hwp_boost_ids); + if (id && intel_pstate_acpi_pm_profile_server()) + hwp_boost = true; + } + } else if (hwp_active) { + /* + * Re-enable HWP in case this happens after a resume from ACPI + * S3 if the CPU was offline during the whole system/resume + * cycle. + */ + intel_pstate_hwp_reenable(cpu); + } + + cpu->epp_powersave = -EINVAL; + cpu->epp_policy = 0; + + intel_pstate_get_cpu_pstates(cpu); + + pr_debug("controlling: cpu %d\n", cpunum); + + return 0; +} + +static void intel_pstate_set_update_util_hook(unsigned int cpu_num) +{ + struct cpudata *cpu = all_cpu_data[cpu_num]; + + if (hwp_active && !hwp_boost) + return; + + if (cpu->update_util_set) + return; + + /* Prevent intel_pstate_update_util() from using stale data. */ + cpu->sample.time = 0; + cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, + (hwp_active ? + intel_pstate_update_util_hwp : + intel_pstate_update_util)); + cpu->update_util_set = true; +} + +static void intel_pstate_clear_update_util_hook(unsigned int cpu) +{ + struct cpudata *cpu_data = all_cpu_data[cpu]; + + if (!cpu_data->update_util_set) + return; + + cpufreq_remove_update_util_hook(cpu); + cpu_data->update_util_set = false; + synchronize_rcu(); +} + +static int intel_pstate_get_max_freq(struct cpudata *cpu) +{ + return global.turbo_disabled || global.no_turbo ? + cpu->pstate.max_freq : cpu->pstate.turbo_freq; +} + +static void intel_pstate_update_perf_limits(struct cpudata *cpu, + unsigned int policy_min, + unsigned int policy_max) +{ + int32_t max_policy_perf, min_policy_perf; + int max_state, turbo_max; + int max_freq; + + /* + * HWP needs some special consideration, because on BDX the + * HWP_REQUEST uses abstract value to represent performance + * rather than pure ratios. + */ + if (hwp_active) { + intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state); + } else { + max_state = global.no_turbo || global.turbo_disabled ? + cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; + turbo_max = cpu->pstate.turbo_pstate; + } + max_freq = max_state * cpu->pstate.scaling; + + max_policy_perf = max_state * policy_max / max_freq; + if (policy_max == policy_min) { + min_policy_perf = max_policy_perf; + } else { + min_policy_perf = max_state * policy_min / max_freq; + min_policy_perf = clamp_t(int32_t, min_policy_perf, + 0, max_policy_perf); + } + + pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n", + cpu->cpu, max_state, min_policy_perf, max_policy_perf); + + /* Normalize user input to [min_perf, max_perf] */ + if (per_cpu_limits) { + cpu->min_perf_ratio = min_policy_perf; + cpu->max_perf_ratio = max_policy_perf; + } else { + int32_t global_min, global_max; + + /* Global limits are in percent of the maximum turbo P-state. */ + global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); + global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); + global_min = clamp_t(int32_t, global_min, 0, global_max); + + pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, + global_min, global_max); + + cpu->min_perf_ratio = max(min_policy_perf, global_min); + cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); + cpu->max_perf_ratio = min(max_policy_perf, global_max); + cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); + + /* Make sure min_perf <= max_perf */ + cpu->min_perf_ratio = min(cpu->min_perf_ratio, + cpu->max_perf_ratio); + + } + pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, + cpu->max_perf_ratio, + cpu->min_perf_ratio); +} + +static int intel_pstate_set_policy(struct cpufreq_policy *policy) +{ + struct cpudata *cpu; + + if (!policy->cpuinfo.max_freq) + return -ENODEV; + + pr_debug("set_policy cpuinfo.max %u policy->max %u\n", + policy->cpuinfo.max_freq, policy->max); + + cpu = all_cpu_data[policy->cpu]; + cpu->policy = policy->policy; + + mutex_lock(&intel_pstate_limits_lock); + + intel_pstate_update_perf_limits(cpu, policy->min, policy->max); + + if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { + /* + * NOHZ_FULL CPUs need this as the governor callback may not + * be invoked on them. + */ + intel_pstate_clear_update_util_hook(policy->cpu); + intel_pstate_max_within_limits(cpu); + } else { + intel_pstate_set_update_util_hook(policy->cpu); + } + + if (hwp_active) { + /* + * When hwp_boost was active before and dynamically it + * was turned off, in that case we need to clear the + * update util hook. + */ + if (!hwp_boost) + intel_pstate_clear_update_util_hook(policy->cpu); + intel_pstate_hwp_set(policy->cpu); + } + + mutex_unlock(&intel_pstate_limits_lock); + + return 0; +} + +static void intel_pstate_adjust_policy_max(struct cpudata *cpu, + struct cpufreq_policy_data *policy) +{ + if (!hwp_active && + cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && + policy->max < policy->cpuinfo.max_freq && + policy->max > cpu->pstate.max_freq) { + pr_debug("policy->max > max non turbo frequency\n"); + policy->max = policy->cpuinfo.max_freq; + } +} + +static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, + struct cpufreq_policy_data *policy) +{ + int max_freq; + + update_turbo_state(); + if (hwp_active) { + int max_state, turbo_max; + + intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state); + max_freq = max_state * cpu->pstate.scaling; + } else { + max_freq = intel_pstate_get_max_freq(cpu); + } + cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); + + intel_pstate_adjust_policy_max(cpu, policy); +} + +static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) +{ + intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); + + return 0; +} + +static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + + pr_debug("CPU %d going offline\n", cpu->cpu); + + if (cpu->suspended) + return 0; + + /* + * If the CPU is an SMT thread and it goes offline with the performance + * settings different from the minimum, it will prevent its sibling + * from getting to lower performance levels, so force the minimum + * performance on CPU offline to prevent that from happening. + */ + if (hwp_active) + intel_pstate_hwp_offline(cpu); + else + intel_pstate_set_min_pstate(cpu); + + intel_pstate_exit_perf_limits(policy); + + return 0; +} + +static int intel_pstate_cpu_online(struct cpufreq_policy *policy) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + + pr_debug("CPU %d going online\n", cpu->cpu); + + intel_pstate_init_acpi_perf_limits(policy); + + if (hwp_active) { + /* + * Re-enable HWP and clear the "suspended" flag to let "resume" + * know that it need not do that. + */ + intel_pstate_hwp_reenable(cpu); + cpu->suspended = false; + } + + return 0; +} + +static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) +{ + pr_debug("CPU %d stopping\n", policy->cpu); + + intel_pstate_clear_update_util_hook(policy->cpu); +} + +static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) +{ + pr_debug("CPU %d exiting\n", policy->cpu); + + policy->fast_switch_possible = false; + + return 0; +} + +static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) +{ + struct cpudata *cpu; + int rc; + + rc = intel_pstate_init_cpu(policy->cpu); + if (rc) + return rc; + + cpu = all_cpu_data[policy->cpu]; + + cpu->max_perf_ratio = 0xFF; + cpu->min_perf_ratio = 0; + + policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; + policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; + + /* cpuinfo and default policy values */ + policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; + update_turbo_state(); + global.turbo_disabled_mf = global.turbo_disabled; + policy->cpuinfo.max_freq = global.turbo_disabled ? + cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; + policy->cpuinfo.max_freq *= cpu->pstate.scaling; + + if (hwp_active) { + unsigned int max_freq; + + max_freq = global.turbo_disabled ? + cpu->pstate.max_freq : cpu->pstate.turbo_freq; + if (max_freq < policy->cpuinfo.max_freq) + policy->cpuinfo.max_freq = max_freq; + } + + intel_pstate_init_acpi_perf_limits(policy); + + policy->fast_switch_possible = true; + + return 0; +} + +static int intel_pstate_cpu_init(struct cpufreq_policy *policy) +{ + int ret = __intel_pstate_cpu_init(policy); + + if (ret) + return ret; + + /* + * Set the policy to powersave to provide a valid fallback value in case + * the default cpufreq governor is neither powersave nor performance. + */ + policy->policy = CPUFREQ_POLICY_POWERSAVE; + + if (hwp_active) { + struct cpudata *cpu = all_cpu_data[policy->cpu]; + + cpu->epp_cached = intel_pstate_get_epp(cpu, 0); + } + + return 0; +} + +static struct cpufreq_driver intel_pstate = { + .flags = CPUFREQ_CONST_LOOPS, + .verify = intel_pstate_verify_policy, + .setpolicy = intel_pstate_set_policy, + .suspend = intel_pstate_suspend, + .resume = intel_pstate_resume, + .init = intel_pstate_cpu_init, + .exit = intel_pstate_cpu_exit, + .stop_cpu = intel_pstate_stop_cpu, + .offline = intel_pstate_cpu_offline, + .online = intel_pstate_cpu_online, + .update_limits = intel_pstate_update_limits, + .name = "intel_pstate", +}; + +static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + + intel_pstate_verify_cpu_policy(cpu, policy); + intel_pstate_update_perf_limits(cpu, policy->min, policy->max); + + return 0; +} + +/* Use of trace in passive mode: + * + * In passive mode the trace core_busy field (also known as the + * performance field, and lablelled as such on the graphs; also known as + * core_avg_perf) is not needed and so is re-assigned to indicate if the + * driver call was via the normal or fast switch path. Various graphs + * output from the intel_pstate_tracer.py utility that include core_busy + * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, + * so we use 10 to indicate the the normal path through the driver, and + * 90 to indicate the fast switch path through the driver. + * The scaled_busy field is not used, and is set to 0. + */ + +#define INTEL_PSTATE_TRACE_TARGET 10 +#define INTEL_PSTATE_TRACE_FAST_SWITCH 90 + +static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) +{ + struct sample *sample; + + if (!trace_pstate_sample_enabled()) + return; + + if (!intel_pstate_sample(cpu, ktime_get())) + return; + + sample = &cpu->sample; + trace_pstate_sample(trace_type, + 0, + old_pstate, + cpu->pstate.current_pstate, + sample->mperf, + sample->aperf, + sample->tsc, + get_avg_frequency(cpu), + fp_toint(cpu->iowait_boost * 100)); +} + +static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate, + bool strict, bool fast_switch) +{ + u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; + + value &= ~HWP_MIN_PERF(~0L); + value |= HWP_MIN_PERF(target_pstate); + + /* + * The entire MSR needs to be updated in order to update the HWP min + * field in it, so opportunistically update the max too if needed. + */ + value &= ~HWP_MAX_PERF(~0L); + value |= HWP_MAX_PERF(strict ? target_pstate : cpu->max_perf_ratio); + + if (value == prev) + return; + + WRITE_ONCE(cpu->hwp_req_cached, value); + if (fast_switch) + wrmsrl(MSR_HWP_REQUEST, value); + else + wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); +} + +static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu, + u32 target_pstate, bool fast_switch) +{ + if (fast_switch) + wrmsrl(MSR_IA32_PERF_CTL, + pstate_funcs.get_val(cpu, target_pstate)); + else + wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, + pstate_funcs.get_val(cpu, target_pstate)); +} + +static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, + int target_pstate, bool fast_switch) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + int old_pstate = cpu->pstate.current_pstate; + + target_pstate = intel_pstate_prepare_request(cpu, target_pstate); + if (hwp_active) { + intel_cpufreq_adjust_hwp(cpu, target_pstate, + policy->strict_target, fast_switch); + cpu->pstate.current_pstate = target_pstate; + } else if (target_pstate != old_pstate) { + intel_cpufreq_adjust_perf_ctl(cpu, target_pstate, fast_switch); + cpu->pstate.current_pstate = target_pstate; + } + + intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : + INTEL_PSTATE_TRACE_TARGET, old_pstate); + + return target_pstate; +} + +static int intel_cpufreq_target(struct cpufreq_policy *policy, + unsigned int target_freq, + unsigned int relation) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + struct cpufreq_freqs freqs; + int target_pstate; + + update_turbo_state(); + + freqs.old = policy->cur; + freqs.new = target_freq; + + cpufreq_freq_transition_begin(policy, &freqs); + + switch (relation) { + case CPUFREQ_RELATION_L: + target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); + break; + case CPUFREQ_RELATION_H: + target_pstate = freqs.new / cpu->pstate.scaling; + break; + default: + target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); + break; + } + + target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); + + freqs.new = target_pstate * cpu->pstate.scaling; + + cpufreq_freq_transition_end(policy, &freqs, false); + + return 0; +} + +static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, + unsigned int target_freq) +{ + struct cpudata *cpu = all_cpu_data[policy->cpu]; + int target_pstate; + + update_turbo_state(); + + target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); + + target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); + + return target_pstate * cpu->pstate.scaling; +} + +static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) +{ + int max_state, turbo_max, min_freq, max_freq, ret; + struct freq_qos_request *req; + struct cpudata *cpu; + struct device *dev; + + dev = get_cpu_device(policy->cpu); + if (!dev) + return -ENODEV; + + ret = __intel_pstate_cpu_init(policy); + if (ret) + return ret; + + policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; + /* This reflects the intel_pstate_get_cpu_pstates() setting. */ + policy->cur = policy->cpuinfo.min_freq; + + req = kcalloc(2, sizeof(*req), GFP_KERNEL); + if (!req) { + ret = -ENOMEM; + goto pstate_exit; + } + + cpu = all_cpu_data[policy->cpu]; + + if (hwp_active) { + u64 value; + + intel_pstate_get_hwp_max(cpu, &turbo_max, &max_state); + policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; + rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); + WRITE_ONCE(cpu->hwp_req_cached, value); + cpu->epp_cached = intel_pstate_get_epp(cpu, value); + } else { + turbo_max = cpu->pstate.turbo_pstate; + policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; + } + + min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); + min_freq *= cpu->pstate.scaling; + max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); + max_freq *= cpu->pstate.scaling; + + ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, + min_freq); + if (ret < 0) { + dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); + goto free_req; + } + + ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, + max_freq); + if (ret < 0) { + dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); + goto remove_min_req; + } + + policy->driver_data = req; + + return 0; + +remove_min_req: + freq_qos_remove_request(req); +free_req: + kfree(req); +pstate_exit: + intel_pstate_exit_perf_limits(policy); + + return ret; +} + +static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) +{ + struct freq_qos_request *req; + + req = policy->driver_data; + + freq_qos_remove_request(req + 1); + freq_qos_remove_request(req); + kfree(req); + + return intel_pstate_cpu_exit(policy); +} + +static struct cpufreq_driver intel_cpufreq = { + .flags = CPUFREQ_CONST_LOOPS, + .verify = intel_cpufreq_verify_policy, + .target = intel_cpufreq_target, + .fast_switch = intel_cpufreq_fast_switch, + .init = intel_cpufreq_cpu_init, + .exit = intel_cpufreq_cpu_exit, + .offline = intel_pstate_cpu_offline, + .online = intel_pstate_cpu_online, + .suspend = intel_pstate_suspend, + .resume = intel_pstate_resume, + .update_limits = intel_pstate_update_limits, + .name = "intel_cpufreq", +}; + +static struct cpufreq_driver *default_driver; + +static void intel_pstate_driver_cleanup(void) +{ + unsigned int cpu; + + get_online_cpus(); + for_each_online_cpu(cpu) { + if (all_cpu_data[cpu]) { + if (intel_pstate_driver == &intel_pstate) + intel_pstate_clear_update_util_hook(cpu); + + kfree(all_cpu_data[cpu]); + all_cpu_data[cpu] = NULL; + } + } + put_online_cpus(); + + intel_pstate_driver = NULL; +} + +static int intel_pstate_register_driver(struct cpufreq_driver *driver) +{ + int ret; + + if (driver == &intel_pstate) + intel_pstate_sysfs_expose_hwp_dynamic_boost(); + + memset(&global, 0, sizeof(global)); + global.max_perf_pct = 100; + + intel_pstate_driver = driver; + ret = cpufreq_register_driver(intel_pstate_driver); + if (ret) { + intel_pstate_driver_cleanup(); + return ret; + } + + global.min_perf_pct = min_perf_pct_min(); + + return 0; +} + +static ssize_t intel_pstate_show_status(char *buf) +{ + if (!intel_pstate_driver) + return sprintf(buf, "off\n"); + + return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? + "active" : "passive"); +} + +static int intel_pstate_update_status(const char *buf, size_t size) +{ + if (size == 3 && !strncmp(buf, "off", size)) { + if (!intel_pstate_driver) + return -EINVAL; + + if (hwp_active) + return -EBUSY; + + cpufreq_unregister_driver(intel_pstate_driver); + intel_pstate_driver_cleanup(); + return 0; + } + + if (size == 6 && !strncmp(buf, "active", size)) { + if (intel_pstate_driver) { + if (intel_pstate_driver == &intel_pstate) + return 0; + + cpufreq_unregister_driver(intel_pstate_driver); + } + + return intel_pstate_register_driver(&intel_pstate); + } + + if (size == 7 && !strncmp(buf, "passive", size)) { + if (intel_pstate_driver) { + if (intel_pstate_driver == &intel_cpufreq) + return 0; + + cpufreq_unregister_driver(intel_pstate_driver); + intel_pstate_sysfs_hide_hwp_dynamic_boost(); + } + + return intel_pstate_register_driver(&intel_cpufreq); + } + + return -EINVAL; +} + +static int no_load __initdata; +static int no_hwp __initdata; +static int hwp_only __initdata; +static unsigned int force_load __initdata; + +static int __init intel_pstate_msrs_not_valid(void) +{ + if (!pstate_funcs.get_max() || + !pstate_funcs.get_min() || + !pstate_funcs.get_turbo()) + return -ENODEV; + + return 0; +} + +static void __init copy_cpu_funcs(struct pstate_funcs *funcs) +{ + pstate_funcs.get_max = funcs->get_max; + pstate_funcs.get_max_physical = funcs->get_max_physical; + pstate_funcs.get_min = funcs->get_min; + pstate_funcs.get_turbo = funcs->get_turbo; + pstate_funcs.get_scaling = funcs->get_scaling; + pstate_funcs.get_val = funcs->get_val; + pstate_funcs.get_vid = funcs->get_vid; + pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; +} + +#ifdef CONFIG_ACPI + +static bool __init intel_pstate_no_acpi_pss(void) +{ + int i; + + for_each_possible_cpu(i) { + acpi_status status; + union acpi_object *pss; + struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; + struct acpi_processor *pr = per_cpu(processors, i); + + if (!pr) + continue; + + status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); + if (ACPI_FAILURE(status)) + continue; + + pss = buffer.pointer; + if (pss && pss->type == ACPI_TYPE_PACKAGE) { + kfree(pss); + return false; + } + + kfree(pss); + } + + pr_debug("ACPI _PSS not found\n"); + return true; +} + +static bool __init intel_pstate_no_acpi_pcch(void) +{ + acpi_status status; + acpi_handle handle; + + status = acpi_get_handle(NULL, "\\_SB", &handle); + if (ACPI_FAILURE(status)) + goto not_found; + + if (acpi_has_method(handle, "PCCH")) + return false; + +not_found: + pr_debug("ACPI PCCH not found\n"); + return true; +} + +static bool __init intel_pstate_has_acpi_ppc(void) +{ + int i; + + for_each_possible_cpu(i) { + struct acpi_processor *pr = per_cpu(processors, i); + + if (!pr) + continue; + if (acpi_has_method(pr->handle, "_PPC")) + return true; + } + pr_debug("ACPI _PPC not found\n"); + return false; +} + +enum { + PSS, + PPC, +}; + +/* Hardware vendor-specific info that has its own power management modes */ +static struct acpi_platform_list plat_info[] __initdata = { + {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, + {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, + { } /* End */ +}; + +#define BITMASK_OOB (BIT(8) | BIT(18)) + +static bool __init intel_pstate_platform_pwr_mgmt_exists(void) +{ + const struct x86_cpu_id *id; + u64 misc_pwr; + int idx; + + id = x86_match_cpu(intel_pstate_cpu_oob_ids); + if (id) { + rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); + if (misc_pwr & BITMASK_OOB) { + pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); + pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); + return true; + } + } + + idx = acpi_match_platform_list(plat_info); + if (idx < 0) + return false; + + switch (plat_info[idx].data) { + case PSS: + if (!intel_pstate_no_acpi_pss()) + return false; + + return intel_pstate_no_acpi_pcch(); + case PPC: + return intel_pstate_has_acpi_ppc() && !force_load; + } + + return false; +} + +static void intel_pstate_request_control_from_smm(void) +{ + /* + * It may be unsafe to request P-states control from SMM if _PPC support + * has not been enabled. + */ + if (acpi_ppc) + acpi_processor_pstate_control(); +} +#else /* CONFIG_ACPI not enabled */ +static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } +static inline bool intel_pstate_has_acpi_ppc(void) { return false; } +static inline void intel_pstate_request_control_from_smm(void) {} +#endif /* CONFIG_ACPI */ + +#define INTEL_PSTATE_HWP_BROADWELL 0x01 + +#define X86_MATCH_HWP(model, hwp_mode) \ + X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ + X86_FEATURE_HWP, hwp_mode) + +static const struct x86_cpu_id hwp_support_ids[] __initconst = { + X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), + X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), + X86_MATCH_HWP(ANY, 0), + {} +}; + +static bool intel_pstate_hwp_is_enabled(void) +{ + u64 value; + + rdmsrl(MSR_PM_ENABLE, value); + return !!(value & 0x1); +} + +static int __init intel_pstate_init(void) +{ + const struct x86_cpu_id *id; + int rc; + + if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) + return -ENODEV; + + id = x86_match_cpu(hwp_support_ids); + if (id) { + bool hwp_forced = intel_pstate_hwp_is_enabled(); + + if (hwp_forced) + pr_info("HWP enabled by BIOS\n"); + else if (no_load) + return -ENODEV; + + copy_cpu_funcs(&core_funcs); + /* + * Avoid enabling HWP for processors without EPP support, + * because that means incomplete HWP implementation which is a + * corner case and supporting it is generally problematic. + * + * If HWP is enabled already, though, there is no choice but to + * deal with it. + */ + if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { + hwp_active++; + hwp_mode_bdw = id->driver_data; + intel_pstate.attr = hwp_cpufreq_attrs; + intel_cpufreq.attr = hwp_cpufreq_attrs; + intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; + if (!default_driver) + default_driver = &intel_pstate; + + goto hwp_cpu_matched; + } + pr_info("HWP not enabled\n"); + } else { + if (no_load) + return -ENODEV; + + id = x86_match_cpu(intel_pstate_cpu_ids); + if (!id) { + pr_info("CPU model not supported\n"); + return -ENODEV; + } + + copy_cpu_funcs((struct pstate_funcs *)id->driver_data); + } + + if (intel_pstate_msrs_not_valid()) { + pr_info("Invalid MSRs\n"); + return -ENODEV; + } + /* Without HWP start in the passive mode. */ + if (!default_driver) + default_driver = &intel_cpufreq; + +hwp_cpu_matched: + /* + * The Intel pstate driver will be ignored if the platform + * firmware has its own power management modes. + */ + if (intel_pstate_platform_pwr_mgmt_exists()) { + pr_info("P-states controlled by the platform\n"); + return -ENODEV; + } + + if (!hwp_active && hwp_only) + return -ENOTSUPP; + + pr_info("Intel P-state driver initializing\n"); + + all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); + if (!all_cpu_data) + return -ENOMEM; + + intel_pstate_request_control_from_smm(); + + intel_pstate_sysfs_expose_params(); + + mutex_lock(&intel_pstate_driver_lock); + rc = intel_pstate_register_driver(default_driver); + mutex_unlock(&intel_pstate_driver_lock); + if (rc) { + intel_pstate_sysfs_remove(); + return rc; + } + + if (hwp_active) { + const struct x86_cpu_id *id; + + id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); + if (id) { + set_power_ctl_ee_state(false); + pr_info("Disabling energy efficiency optimization\n"); + } + + pr_info("HWP enabled\n"); + } + + return 0; +} +device_initcall(intel_pstate_init); + +static int __init intel_pstate_setup(char *str) +{ + if (!str) + return -EINVAL; + + if (!strcmp(str, "disable")) + no_load = 1; + else if (!strcmp(str, "active")) + default_driver = &intel_pstate; + else if (!strcmp(str, "passive")) + default_driver = &intel_cpufreq; + + if (!strcmp(str, "no_hwp")) + no_hwp = 1; + + if (!strcmp(str, "force")) + force_load = 1; + if (!strcmp(str, "hwp_only")) + hwp_only = 1; + if (!strcmp(str, "per_cpu_perf_limits")) + per_cpu_limits = true; + +#ifdef CONFIG_ACPI + if (!strcmp(str, "support_acpi_ppc")) + acpi_ppc = true; +#endif + + return 0; +} +early_param("intel_pstate", intel_pstate_setup); + +MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); +MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); +MODULE_LICENSE("GPL"); |