summaryrefslogtreecommitdiffstats
path: root/drivers/dma/ste_dma40.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/dma/ste_dma40.c')
-rw-r--r--drivers/dma/ste_dma40.c3730
1 files changed, 3730 insertions, 0 deletions
diff --git a/drivers/dma/ste_dma40.c b/drivers/dma/ste_dma40.c
new file mode 100644
index 000000000..4c306dd13
--- /dev/null
+++ b/drivers/dma/ste_dma40.c
@@ -0,0 +1,3730 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) Ericsson AB 2007-2008
+ * Copyright (C) ST-Ericsson SA 2008-2010
+ * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <linux/dmaengine.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/log2.h>
+#include <linux/pm.h>
+#include <linux/pm_runtime.h>
+#include <linux/err.h>
+#include <linux/of.h>
+#include <linux/of_dma.h>
+#include <linux/amba/bus.h>
+#include <linux/regulator/consumer.h>
+#include <linux/platform_data/dma-ste-dma40.h>
+
+#include "dmaengine.h"
+#include "ste_dma40_ll.h"
+
+#define D40_NAME "dma40"
+
+#define D40_PHY_CHAN -1
+
+/* For masking out/in 2 bit channel positions */
+#define D40_CHAN_POS(chan) (2 * (chan / 2))
+#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
+
+/* Maximum iterations taken before giving up suspending a channel */
+#define D40_SUSPEND_MAX_IT 500
+
+/* Milliseconds */
+#define DMA40_AUTOSUSPEND_DELAY 100
+
+/* Hardware requirement on LCLA alignment */
+#define LCLA_ALIGNMENT 0x40000
+
+/* Max number of links per event group */
+#define D40_LCLA_LINK_PER_EVENT_GRP 128
+#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
+
+/* Max number of logical channels per physical channel */
+#define D40_MAX_LOG_CHAN_PER_PHY 32
+
+/* Attempts before giving up to trying to get pages that are aligned */
+#define MAX_LCLA_ALLOC_ATTEMPTS 256
+
+/* Bit markings for allocation map */
+#define D40_ALLOC_FREE BIT(31)
+#define D40_ALLOC_PHY BIT(30)
+#define D40_ALLOC_LOG_FREE 0
+
+#define D40_MEMCPY_MAX_CHANS 8
+
+/* Reserved event lines for memcpy only. */
+#define DB8500_DMA_MEMCPY_EV_0 51
+#define DB8500_DMA_MEMCPY_EV_1 56
+#define DB8500_DMA_MEMCPY_EV_2 57
+#define DB8500_DMA_MEMCPY_EV_3 58
+#define DB8500_DMA_MEMCPY_EV_4 59
+#define DB8500_DMA_MEMCPY_EV_5 60
+
+static int dma40_memcpy_channels[] = {
+ DB8500_DMA_MEMCPY_EV_0,
+ DB8500_DMA_MEMCPY_EV_1,
+ DB8500_DMA_MEMCPY_EV_2,
+ DB8500_DMA_MEMCPY_EV_3,
+ DB8500_DMA_MEMCPY_EV_4,
+ DB8500_DMA_MEMCPY_EV_5,
+};
+
+/* Default configuration for physcial memcpy */
+static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
+ .mode = STEDMA40_MODE_PHYSICAL,
+ .dir = DMA_MEM_TO_MEM,
+
+ .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+ .src_info.psize = STEDMA40_PSIZE_PHY_1,
+ .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+
+ .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+ .dst_info.psize = STEDMA40_PSIZE_PHY_1,
+ .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+};
+
+/* Default configuration for logical memcpy */
+static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
+ .mode = STEDMA40_MODE_LOGICAL,
+ .dir = DMA_MEM_TO_MEM,
+
+ .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+ .src_info.psize = STEDMA40_PSIZE_LOG_1,
+ .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+
+ .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+ .dst_info.psize = STEDMA40_PSIZE_LOG_1,
+ .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+};
+
+/**
+ * enum 40_command - The different commands and/or statuses.
+ *
+ * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
+ * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
+ * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
+ * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
+ */
+enum d40_command {
+ D40_DMA_STOP = 0,
+ D40_DMA_RUN = 1,
+ D40_DMA_SUSPEND_REQ = 2,
+ D40_DMA_SUSPENDED = 3
+};
+
+/*
+ * enum d40_events - The different Event Enables for the event lines.
+ *
+ * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
+ * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
+ * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
+ * @D40_ROUND_EVENTLINE: Status check for event line.
+ */
+
+enum d40_events {
+ D40_DEACTIVATE_EVENTLINE = 0,
+ D40_ACTIVATE_EVENTLINE = 1,
+ D40_SUSPEND_REQ_EVENTLINE = 2,
+ D40_ROUND_EVENTLINE = 3
+};
+
+/*
+ * These are the registers that has to be saved and later restored
+ * when the DMA hw is powered off.
+ * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
+ */
+static __maybe_unused u32 d40_backup_regs[] = {
+ D40_DREG_LCPA,
+ D40_DREG_LCLA,
+ D40_DREG_PRMSE,
+ D40_DREG_PRMSO,
+ D40_DREG_PRMOE,
+ D40_DREG_PRMOO,
+};
+
+#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
+
+/*
+ * since 9540 and 8540 has the same HW revision
+ * use v4a for 9540 or ealier
+ * use v4b for 8540 or later
+ * HW revision:
+ * DB8500ed has revision 0
+ * DB8500v1 has revision 2
+ * DB8500v2 has revision 3
+ * AP9540v1 has revision 4
+ * DB8540v1 has revision 4
+ * TODO: Check if all these registers have to be saved/restored on dma40 v4a
+ */
+static u32 d40_backup_regs_v4a[] = {
+ D40_DREG_PSEG1,
+ D40_DREG_PSEG2,
+ D40_DREG_PSEG3,
+ D40_DREG_PSEG4,
+ D40_DREG_PCEG1,
+ D40_DREG_PCEG2,
+ D40_DREG_PCEG3,
+ D40_DREG_PCEG4,
+ D40_DREG_RSEG1,
+ D40_DREG_RSEG2,
+ D40_DREG_RSEG3,
+ D40_DREG_RSEG4,
+ D40_DREG_RCEG1,
+ D40_DREG_RCEG2,
+ D40_DREG_RCEG3,
+ D40_DREG_RCEG4,
+};
+
+#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
+
+static u32 d40_backup_regs_v4b[] = {
+ D40_DREG_CPSEG1,
+ D40_DREG_CPSEG2,
+ D40_DREG_CPSEG3,
+ D40_DREG_CPSEG4,
+ D40_DREG_CPSEG5,
+ D40_DREG_CPCEG1,
+ D40_DREG_CPCEG2,
+ D40_DREG_CPCEG3,
+ D40_DREG_CPCEG4,
+ D40_DREG_CPCEG5,
+ D40_DREG_CRSEG1,
+ D40_DREG_CRSEG2,
+ D40_DREG_CRSEG3,
+ D40_DREG_CRSEG4,
+ D40_DREG_CRSEG5,
+ D40_DREG_CRCEG1,
+ D40_DREG_CRCEG2,
+ D40_DREG_CRCEG3,
+ D40_DREG_CRCEG4,
+ D40_DREG_CRCEG5,
+};
+
+#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
+
+static __maybe_unused u32 d40_backup_regs_chan[] = {
+ D40_CHAN_REG_SSCFG,
+ D40_CHAN_REG_SSELT,
+ D40_CHAN_REG_SSPTR,
+ D40_CHAN_REG_SSLNK,
+ D40_CHAN_REG_SDCFG,
+ D40_CHAN_REG_SDELT,
+ D40_CHAN_REG_SDPTR,
+ D40_CHAN_REG_SDLNK,
+};
+
+#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
+ BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
+
+/**
+ * struct d40_interrupt_lookup - lookup table for interrupt handler
+ *
+ * @src: Interrupt mask register.
+ * @clr: Interrupt clear register.
+ * @is_error: true if this is an error interrupt.
+ * @offset: start delta in the lookup_log_chans in d40_base. If equals to
+ * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
+ */
+struct d40_interrupt_lookup {
+ u32 src;
+ u32 clr;
+ bool is_error;
+ int offset;
+};
+
+
+static struct d40_interrupt_lookup il_v4a[] = {
+ {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
+ {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
+ {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
+ {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
+ {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
+ {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
+ {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
+ {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
+ {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
+ {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
+};
+
+static struct d40_interrupt_lookup il_v4b[] = {
+ {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
+ {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
+ {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
+ {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
+ {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
+ {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
+ {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
+ {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
+ {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
+ {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
+ {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
+ {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
+};
+
+/**
+ * struct d40_reg_val - simple lookup struct
+ *
+ * @reg: The register.
+ * @val: The value that belongs to the register in reg.
+ */
+struct d40_reg_val {
+ unsigned int reg;
+ unsigned int val;
+};
+
+static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
+ /* Clock every part of the DMA block from start */
+ { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
+
+ /* Interrupts on all logical channels */
+ { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
+};
+static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
+ /* Clock every part of the DMA block from start */
+ { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
+
+ /* Interrupts on all logical channels */
+ { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
+ { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
+};
+
+/**
+ * struct d40_lli_pool - Structure for keeping LLIs in memory
+ *
+ * @base: Pointer to memory area when the pre_alloc_lli's are not large
+ * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
+ * pre_alloc_lli is used.
+ * @dma_addr: DMA address, if mapped
+ * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
+ * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
+ * one buffer to one buffer.
+ */
+struct d40_lli_pool {
+ void *base;
+ int size;
+ dma_addr_t dma_addr;
+ /* Space for dst and src, plus an extra for padding */
+ u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
+};
+
+/**
+ * struct d40_desc - A descriptor is one DMA job.
+ *
+ * @lli_phy: LLI settings for physical channel. Both src and dst=
+ * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
+ * lli_len equals one.
+ * @lli_log: Same as above but for logical channels.
+ * @lli_pool: The pool with two entries pre-allocated.
+ * @lli_len: Number of llis of current descriptor.
+ * @lli_current: Number of transferred llis.
+ * @lcla_alloc: Number of LCLA entries allocated.
+ * @txd: DMA engine struct. Used for among other things for communication
+ * during a transfer.
+ * @node: List entry.
+ * @is_in_client_list: true if the client owns this descriptor.
+ * @cyclic: true if this is a cyclic job
+ *
+ * This descriptor is used for both logical and physical transfers.
+ */
+struct d40_desc {
+ /* LLI physical */
+ struct d40_phy_lli_bidir lli_phy;
+ /* LLI logical */
+ struct d40_log_lli_bidir lli_log;
+
+ struct d40_lli_pool lli_pool;
+ int lli_len;
+ int lli_current;
+ int lcla_alloc;
+
+ struct dma_async_tx_descriptor txd;
+ struct list_head node;
+
+ bool is_in_client_list;
+ bool cyclic;
+};
+
+/**
+ * struct d40_lcla_pool - LCLA pool settings and data.
+ *
+ * @base: The virtual address of LCLA. 18 bit aligned.
+ * @dma_addr: DMA address, if mapped
+ * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
+ * This pointer is only there for clean-up on error.
+ * @pages: The number of pages needed for all physical channels.
+ * Only used later for clean-up on error
+ * @lock: Lock to protect the content in this struct.
+ * @alloc_map: big map over which LCLA entry is own by which job.
+ */
+struct d40_lcla_pool {
+ void *base;
+ dma_addr_t dma_addr;
+ void *base_unaligned;
+ int pages;
+ spinlock_t lock;
+ struct d40_desc **alloc_map;
+};
+
+/**
+ * struct d40_phy_res - struct for handling eventlines mapped to physical
+ * channels.
+ *
+ * @lock: A lock protection this entity.
+ * @reserved: True if used by secure world or otherwise.
+ * @num: The physical channel number of this entity.
+ * @allocated_src: Bit mapped to show which src event line's are mapped to
+ * this physical channel. Can also be free or physically allocated.
+ * @allocated_dst: Same as for src but is dst.
+ * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
+ * event line number.
+ * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
+ */
+struct d40_phy_res {
+ spinlock_t lock;
+ bool reserved;
+ int num;
+ u32 allocated_src;
+ u32 allocated_dst;
+ bool use_soft_lli;
+};
+
+struct d40_base;
+
+/**
+ * struct d40_chan - Struct that describes a channel.
+ *
+ * @lock: A spinlock to protect this struct.
+ * @log_num: The logical number, if any of this channel.
+ * @pending_tx: The number of pending transfers. Used between interrupt handler
+ * and tasklet.
+ * @busy: Set to true when transfer is ongoing on this channel.
+ * @phy_chan: Pointer to physical channel which this instance runs on. If this
+ * point is NULL, then the channel is not allocated.
+ * @chan: DMA engine handle.
+ * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
+ * transfer and call client callback.
+ * @client: Cliented owned descriptor list.
+ * @pending_queue: Submitted jobs, to be issued by issue_pending()
+ * @active: Active descriptor.
+ * @done: Completed jobs
+ * @queue: Queued jobs.
+ * @prepare_queue: Prepared jobs.
+ * @dma_cfg: The client configuration of this dma channel.
+ * @slave_config: DMA slave configuration.
+ * @configured: whether the dma_cfg configuration is valid
+ * @base: Pointer to the device instance struct.
+ * @src_def_cfg: Default cfg register setting for src.
+ * @dst_def_cfg: Default cfg register setting for dst.
+ * @log_def: Default logical channel settings.
+ * @lcpa: Pointer to dst and src lcpa settings.
+ * @runtime_addr: runtime configured address.
+ * @runtime_direction: runtime configured direction.
+ *
+ * This struct can either "be" a logical or a physical channel.
+ */
+struct d40_chan {
+ spinlock_t lock;
+ int log_num;
+ int pending_tx;
+ bool busy;
+ struct d40_phy_res *phy_chan;
+ struct dma_chan chan;
+ struct tasklet_struct tasklet;
+ struct list_head client;
+ struct list_head pending_queue;
+ struct list_head active;
+ struct list_head done;
+ struct list_head queue;
+ struct list_head prepare_queue;
+ struct stedma40_chan_cfg dma_cfg;
+ struct dma_slave_config slave_config;
+ bool configured;
+ struct d40_base *base;
+ /* Default register configurations */
+ u32 src_def_cfg;
+ u32 dst_def_cfg;
+ struct d40_def_lcsp log_def;
+ struct d40_log_lli_full *lcpa;
+ /* Runtime reconfiguration */
+ dma_addr_t runtime_addr;
+ enum dma_transfer_direction runtime_direction;
+};
+
+/**
+ * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
+ * controller
+ *
+ * @backup: the pointer to the registers address array for backup
+ * @backup_size: the size of the registers address array for backup
+ * @realtime_en: the realtime enable register
+ * @realtime_clear: the realtime clear register
+ * @high_prio_en: the high priority enable register
+ * @high_prio_clear: the high priority clear register
+ * @interrupt_en: the interrupt enable register
+ * @interrupt_clear: the interrupt clear register
+ * @il: the pointer to struct d40_interrupt_lookup
+ * @il_size: the size of d40_interrupt_lookup array
+ * @init_reg: the pointer to the struct d40_reg_val
+ * @init_reg_size: the size of d40_reg_val array
+ */
+struct d40_gen_dmac {
+ u32 *backup;
+ u32 backup_size;
+ u32 realtime_en;
+ u32 realtime_clear;
+ u32 high_prio_en;
+ u32 high_prio_clear;
+ u32 interrupt_en;
+ u32 interrupt_clear;
+ struct d40_interrupt_lookup *il;
+ u32 il_size;
+ struct d40_reg_val *init_reg;
+ u32 init_reg_size;
+};
+
+/**
+ * struct d40_base - The big global struct, one for each probe'd instance.
+ *
+ * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
+ * @execmd_lock: Lock for execute command usage since several channels share
+ * the same physical register.
+ * @dev: The device structure.
+ * @virtbase: The virtual base address of the DMA's register.
+ * @rev: silicon revision detected.
+ * @clk: Pointer to the DMA clock structure.
+ * @phy_start: Physical memory start of the DMA registers.
+ * @phy_size: Size of the DMA register map.
+ * @irq: The IRQ number.
+ * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
+ * transfers).
+ * @num_phy_chans: The number of physical channels. Read from HW. This
+ * is the number of available channels for this driver, not counting "Secure
+ * mode" allocated physical channels.
+ * @num_log_chans: The number of logical channels. Calculated from
+ * num_phy_chans.
+ * @dma_both: dma_device channels that can do both memcpy and slave transfers.
+ * @dma_slave: dma_device channels that can do only do slave transfers.
+ * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
+ * @phy_chans: Room for all possible physical channels in system.
+ * @log_chans: Room for all possible logical channels in system.
+ * @lookup_log_chans: Used to map interrupt number to logical channel. Points
+ * to log_chans entries.
+ * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
+ * to phy_chans entries.
+ * @plat_data: Pointer to provided platform_data which is the driver
+ * configuration.
+ * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
+ * @phy_res: Vector containing all physical channels.
+ * @lcla_pool: lcla pool settings and data.
+ * @lcpa_base: The virtual mapped address of LCPA.
+ * @phy_lcpa: The physical address of the LCPA.
+ * @lcpa_size: The size of the LCPA area.
+ * @desc_slab: cache for descriptors.
+ * @reg_val_backup: Here the values of some hardware registers are stored
+ * before the DMA is powered off. They are restored when the power is back on.
+ * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
+ * later
+ * @reg_val_backup_chan: Backup data for standard channel parameter registers.
+ * @regs_interrupt: Scratch space for registers during interrupt.
+ * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
+ * @gen_dmac: the struct for generic registers values to represent u8500/8540
+ * DMA controller
+ */
+struct d40_base {
+ spinlock_t interrupt_lock;
+ spinlock_t execmd_lock;
+ struct device *dev;
+ void __iomem *virtbase;
+ u8 rev:4;
+ struct clk *clk;
+ phys_addr_t phy_start;
+ resource_size_t phy_size;
+ int irq;
+ int num_memcpy_chans;
+ int num_phy_chans;
+ int num_log_chans;
+ struct dma_device dma_both;
+ struct dma_device dma_slave;
+ struct dma_device dma_memcpy;
+ struct d40_chan *phy_chans;
+ struct d40_chan *log_chans;
+ struct d40_chan **lookup_log_chans;
+ struct d40_chan **lookup_phy_chans;
+ struct stedma40_platform_data *plat_data;
+ struct regulator *lcpa_regulator;
+ /* Physical half channels */
+ struct d40_phy_res *phy_res;
+ struct d40_lcla_pool lcla_pool;
+ void *lcpa_base;
+ dma_addr_t phy_lcpa;
+ resource_size_t lcpa_size;
+ struct kmem_cache *desc_slab;
+ u32 reg_val_backup[BACKUP_REGS_SZ];
+ u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
+ u32 *reg_val_backup_chan;
+ u32 *regs_interrupt;
+ u16 gcc_pwr_off_mask;
+ struct d40_gen_dmac gen_dmac;
+};
+
+static struct device *chan2dev(struct d40_chan *d40c)
+{
+ return &d40c->chan.dev->device;
+}
+
+static bool chan_is_physical(struct d40_chan *chan)
+{
+ return chan->log_num == D40_PHY_CHAN;
+}
+
+static bool chan_is_logical(struct d40_chan *chan)
+{
+ return !chan_is_physical(chan);
+}
+
+static void __iomem *chan_base(struct d40_chan *chan)
+{
+ return chan->base->virtbase + D40_DREG_PCBASE +
+ chan->phy_chan->num * D40_DREG_PCDELTA;
+}
+
+#define d40_err(dev, format, arg...) \
+ dev_err(dev, "[%s] " format, __func__, ## arg)
+
+#define chan_err(d40c, format, arg...) \
+ d40_err(chan2dev(d40c), format, ## arg)
+
+static int d40_set_runtime_config_write(struct dma_chan *chan,
+ struct dma_slave_config *config,
+ enum dma_transfer_direction direction);
+
+static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
+ int lli_len)
+{
+ bool is_log = chan_is_logical(d40c);
+ u32 align;
+ void *base;
+
+ if (is_log)
+ align = sizeof(struct d40_log_lli);
+ else
+ align = sizeof(struct d40_phy_lli);
+
+ if (lli_len == 1) {
+ base = d40d->lli_pool.pre_alloc_lli;
+ d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
+ d40d->lli_pool.base = NULL;
+ } else {
+ d40d->lli_pool.size = lli_len * 2 * align;
+
+ base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
+ d40d->lli_pool.base = base;
+
+ if (d40d->lli_pool.base == NULL)
+ return -ENOMEM;
+ }
+
+ if (is_log) {
+ d40d->lli_log.src = PTR_ALIGN(base, align);
+ d40d->lli_log.dst = d40d->lli_log.src + lli_len;
+
+ d40d->lli_pool.dma_addr = 0;
+ } else {
+ d40d->lli_phy.src = PTR_ALIGN(base, align);
+ d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
+
+ d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
+ d40d->lli_phy.src,
+ d40d->lli_pool.size,
+ DMA_TO_DEVICE);
+
+ if (dma_mapping_error(d40c->base->dev,
+ d40d->lli_pool.dma_addr)) {
+ kfree(d40d->lli_pool.base);
+ d40d->lli_pool.base = NULL;
+ d40d->lli_pool.dma_addr = 0;
+ return -ENOMEM;
+ }
+ }
+
+ return 0;
+}
+
+static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+ if (d40d->lli_pool.dma_addr)
+ dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
+ d40d->lli_pool.size, DMA_TO_DEVICE);
+
+ kfree(d40d->lli_pool.base);
+ d40d->lli_pool.base = NULL;
+ d40d->lli_pool.size = 0;
+ d40d->lli_log.src = NULL;
+ d40d->lli_log.dst = NULL;
+ d40d->lli_phy.src = NULL;
+ d40d->lli_phy.dst = NULL;
+}
+
+static int d40_lcla_alloc_one(struct d40_chan *d40c,
+ struct d40_desc *d40d)
+{
+ unsigned long flags;
+ int i;
+ int ret = -EINVAL;
+
+ spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
+
+ /*
+ * Allocate both src and dst at the same time, therefore the half
+ * start on 1 since 0 can't be used since zero is used as end marker.
+ */
+ for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
+ int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
+
+ if (!d40c->base->lcla_pool.alloc_map[idx]) {
+ d40c->base->lcla_pool.alloc_map[idx] = d40d;
+ d40d->lcla_alloc++;
+ ret = i;
+ break;
+ }
+ }
+
+ spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
+
+ return ret;
+}
+
+static int d40_lcla_free_all(struct d40_chan *d40c,
+ struct d40_desc *d40d)
+{
+ unsigned long flags;
+ int i;
+ int ret = -EINVAL;
+
+ if (chan_is_physical(d40c))
+ return 0;
+
+ spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
+
+ for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
+ int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
+
+ if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
+ d40c->base->lcla_pool.alloc_map[idx] = NULL;
+ d40d->lcla_alloc--;
+ if (d40d->lcla_alloc == 0) {
+ ret = 0;
+ break;
+ }
+ }
+ }
+
+ spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
+
+ return ret;
+
+}
+
+static void d40_desc_remove(struct d40_desc *d40d)
+{
+ list_del(&d40d->node);
+}
+
+static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
+{
+ struct d40_desc *desc = NULL;
+
+ if (!list_empty(&d40c->client)) {
+ struct d40_desc *d;
+ struct d40_desc *_d;
+
+ list_for_each_entry_safe(d, _d, &d40c->client, node) {
+ if (async_tx_test_ack(&d->txd)) {
+ d40_desc_remove(d);
+ desc = d;
+ memset(desc, 0, sizeof(*desc));
+ break;
+ }
+ }
+ }
+
+ if (!desc)
+ desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
+
+ if (desc)
+ INIT_LIST_HEAD(&desc->node);
+
+ return desc;
+}
+
+static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+
+ d40_pool_lli_free(d40c, d40d);
+ d40_lcla_free_all(d40c, d40d);
+ kmem_cache_free(d40c->base->desc_slab, d40d);
+}
+
+static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
+{
+ list_add_tail(&desc->node, &d40c->active);
+}
+
+static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
+{
+ struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
+ struct d40_phy_lli *lli_src = desc->lli_phy.src;
+ void __iomem *base = chan_base(chan);
+
+ writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
+ writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
+ writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
+ writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
+
+ writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
+ writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
+ writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
+ writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
+}
+
+static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
+{
+ list_add_tail(&desc->node, &d40c->done);
+}
+
+static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
+{
+ struct d40_lcla_pool *pool = &chan->base->lcla_pool;
+ struct d40_log_lli_bidir *lli = &desc->lli_log;
+ int lli_current = desc->lli_current;
+ int lli_len = desc->lli_len;
+ bool cyclic = desc->cyclic;
+ int curr_lcla = -EINVAL;
+ int first_lcla = 0;
+ bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
+ bool linkback;
+
+ /*
+ * We may have partially running cyclic transfers, in case we did't get
+ * enough LCLA entries.
+ */
+ linkback = cyclic && lli_current == 0;
+
+ /*
+ * For linkback, we need one LCLA even with only one link, because we
+ * can't link back to the one in LCPA space
+ */
+ if (linkback || (lli_len - lli_current > 1)) {
+ /*
+ * If the channel is expected to use only soft_lli don't
+ * allocate a lcla. This is to avoid a HW issue that exists
+ * in some controller during a peripheral to memory transfer
+ * that uses linked lists.
+ */
+ if (!(chan->phy_chan->use_soft_lli &&
+ chan->dma_cfg.dir == DMA_DEV_TO_MEM))
+ curr_lcla = d40_lcla_alloc_one(chan, desc);
+
+ first_lcla = curr_lcla;
+ }
+
+ /*
+ * For linkback, we normally load the LCPA in the loop since we need to
+ * link it to the second LCLA and not the first. However, if we
+ * couldn't even get a first LCLA, then we have to run in LCPA and
+ * reload manually.
+ */
+ if (!linkback || curr_lcla == -EINVAL) {
+ unsigned int flags = 0;
+
+ if (curr_lcla == -EINVAL)
+ flags |= LLI_TERM_INT;
+
+ d40_log_lli_lcpa_write(chan->lcpa,
+ &lli->dst[lli_current],
+ &lli->src[lli_current],
+ curr_lcla,
+ flags);
+ lli_current++;
+ }
+
+ if (curr_lcla < 0)
+ goto set_current;
+
+ for (; lli_current < lli_len; lli_current++) {
+ unsigned int lcla_offset = chan->phy_chan->num * 1024 +
+ 8 * curr_lcla * 2;
+ struct d40_log_lli *lcla = pool->base + lcla_offset;
+ unsigned int flags = 0;
+ int next_lcla;
+
+ if (lli_current + 1 < lli_len)
+ next_lcla = d40_lcla_alloc_one(chan, desc);
+ else
+ next_lcla = linkback ? first_lcla : -EINVAL;
+
+ if (cyclic || next_lcla == -EINVAL)
+ flags |= LLI_TERM_INT;
+
+ if (linkback && curr_lcla == first_lcla) {
+ /* First link goes in both LCPA and LCLA */
+ d40_log_lli_lcpa_write(chan->lcpa,
+ &lli->dst[lli_current],
+ &lli->src[lli_current],
+ next_lcla, flags);
+ }
+
+ /*
+ * One unused LCLA in the cyclic case if the very first
+ * next_lcla fails...
+ */
+ d40_log_lli_lcla_write(lcla,
+ &lli->dst[lli_current],
+ &lli->src[lli_current],
+ next_lcla, flags);
+
+ /*
+ * Cache maintenance is not needed if lcla is
+ * mapped in esram
+ */
+ if (!use_esram_lcla) {
+ dma_sync_single_range_for_device(chan->base->dev,
+ pool->dma_addr, lcla_offset,
+ 2 * sizeof(struct d40_log_lli),
+ DMA_TO_DEVICE);
+ }
+ curr_lcla = next_lcla;
+
+ if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
+ lli_current++;
+ break;
+ }
+ }
+ set_current:
+ desc->lli_current = lli_current;
+}
+
+static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+ if (chan_is_physical(d40c)) {
+ d40_phy_lli_load(d40c, d40d);
+ d40d->lli_current = d40d->lli_len;
+ } else
+ d40_log_lli_to_lcxa(d40c, d40d);
+}
+
+static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
+{
+ return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
+}
+
+/* remove desc from current queue and add it to the pending_queue */
+static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
+{
+ d40_desc_remove(desc);
+ desc->is_in_client_list = false;
+ list_add_tail(&desc->node, &d40c->pending_queue);
+}
+
+static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
+{
+ return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
+ node);
+}
+
+static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
+{
+ return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
+}
+
+static struct d40_desc *d40_first_done(struct d40_chan *d40c)
+{
+ return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
+}
+
+static int d40_psize_2_burst_size(bool is_log, int psize)
+{
+ if (is_log) {
+ if (psize == STEDMA40_PSIZE_LOG_1)
+ return 1;
+ } else {
+ if (psize == STEDMA40_PSIZE_PHY_1)
+ return 1;
+ }
+
+ return 2 << psize;
+}
+
+/*
+ * The dma only supports transmitting packages up to
+ * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
+ *
+ * Calculate the total number of dma elements required to send the entire sg list.
+ */
+static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
+{
+ int dmalen;
+ u32 max_w = max(data_width1, data_width2);
+ u32 min_w = min(data_width1, data_width2);
+ u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
+
+ if (seg_max > STEDMA40_MAX_SEG_SIZE)
+ seg_max -= max_w;
+
+ if (!IS_ALIGNED(size, max_w))
+ return -EINVAL;
+
+ if (size <= seg_max)
+ dmalen = 1;
+ else {
+ dmalen = size / seg_max;
+ if (dmalen * seg_max < size)
+ dmalen++;
+ }
+ return dmalen;
+}
+
+static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
+ u32 data_width1, u32 data_width2)
+{
+ struct scatterlist *sg;
+ int i;
+ int len = 0;
+ int ret;
+
+ for_each_sg(sgl, sg, sg_len, i) {
+ ret = d40_size_2_dmalen(sg_dma_len(sg),
+ data_width1, data_width2);
+ if (ret < 0)
+ return ret;
+ len += ret;
+ }
+ return len;
+}
+
+static int __d40_execute_command_phy(struct d40_chan *d40c,
+ enum d40_command command)
+{
+ u32 status;
+ int i;
+ void __iomem *active_reg;
+ int ret = 0;
+ unsigned long flags;
+ u32 wmask;
+
+ if (command == D40_DMA_STOP) {
+ ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
+ if (ret)
+ return ret;
+ }
+
+ spin_lock_irqsave(&d40c->base->execmd_lock, flags);
+
+ if (d40c->phy_chan->num % 2 == 0)
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+ else
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+ if (command == D40_DMA_SUSPEND_REQ) {
+ status = (readl(active_reg) &
+ D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+ D40_CHAN_POS(d40c->phy_chan->num);
+
+ if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
+ goto unlock;
+ }
+
+ wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
+ writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
+ active_reg);
+
+ if (command == D40_DMA_SUSPEND_REQ) {
+
+ for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
+ status = (readl(active_reg) &
+ D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+ D40_CHAN_POS(d40c->phy_chan->num);
+
+ cpu_relax();
+ /*
+ * Reduce the number of bus accesses while
+ * waiting for the DMA to suspend.
+ */
+ udelay(3);
+
+ if (status == D40_DMA_STOP ||
+ status == D40_DMA_SUSPENDED)
+ break;
+ }
+
+ if (i == D40_SUSPEND_MAX_IT) {
+ chan_err(d40c,
+ "unable to suspend the chl %d (log: %d) status %x\n",
+ d40c->phy_chan->num, d40c->log_num,
+ status);
+ dump_stack();
+ ret = -EBUSY;
+ }
+
+ }
+ unlock:
+ spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
+ return ret;
+}
+
+static void d40_term_all(struct d40_chan *d40c)
+{
+ struct d40_desc *d40d;
+ struct d40_desc *_d;
+
+ /* Release completed descriptors */
+ while ((d40d = d40_first_done(d40c))) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release active descriptors */
+ while ((d40d = d40_first_active_get(d40c))) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release queued descriptors waiting for transfer */
+ while ((d40d = d40_first_queued(d40c))) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release pending descriptors */
+ while ((d40d = d40_first_pending(d40c))) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release client owned descriptors */
+ if (!list_empty(&d40c->client))
+ list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ }
+
+ /* Release descriptors in prepare queue */
+ if (!list_empty(&d40c->prepare_queue))
+ list_for_each_entry_safe(d40d, _d,
+ &d40c->prepare_queue, node) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ }
+
+ d40c->pending_tx = 0;
+}
+
+static void __d40_config_set_event(struct d40_chan *d40c,
+ enum d40_events event_type, u32 event,
+ int reg)
+{
+ void __iomem *addr = chan_base(d40c) + reg;
+ int tries;
+ u32 status;
+
+ switch (event_type) {
+
+ case D40_DEACTIVATE_EVENTLINE:
+
+ writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
+ | ~D40_EVENTLINE_MASK(event), addr);
+ break;
+
+ case D40_SUSPEND_REQ_EVENTLINE:
+ status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
+ D40_EVENTLINE_POS(event);
+
+ if (status == D40_DEACTIVATE_EVENTLINE ||
+ status == D40_SUSPEND_REQ_EVENTLINE)
+ break;
+
+ writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
+ | ~D40_EVENTLINE_MASK(event), addr);
+
+ for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
+
+ status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
+ D40_EVENTLINE_POS(event);
+
+ cpu_relax();
+ /*
+ * Reduce the number of bus accesses while
+ * waiting for the DMA to suspend.
+ */
+ udelay(3);
+
+ if (status == D40_DEACTIVATE_EVENTLINE)
+ break;
+ }
+
+ if (tries == D40_SUSPEND_MAX_IT) {
+ chan_err(d40c,
+ "unable to stop the event_line chl %d (log: %d)"
+ "status %x\n", d40c->phy_chan->num,
+ d40c->log_num, status);
+ }
+ break;
+
+ case D40_ACTIVATE_EVENTLINE:
+ /*
+ * The hardware sometimes doesn't register the enable when src and dst
+ * event lines are active on the same logical channel. Retry to ensure
+ * it does. Usually only one retry is sufficient.
+ */
+ tries = 100;
+ while (--tries) {
+ writel((D40_ACTIVATE_EVENTLINE <<
+ D40_EVENTLINE_POS(event)) |
+ ~D40_EVENTLINE_MASK(event), addr);
+
+ if (readl(addr) & D40_EVENTLINE_MASK(event))
+ break;
+ }
+
+ if (tries != 99)
+ dev_dbg(chan2dev(d40c),
+ "[%s] workaround enable S%cLNK (%d tries)\n",
+ __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
+ 100 - tries);
+
+ WARN_ON(!tries);
+ break;
+
+ case D40_ROUND_EVENTLINE:
+ BUG();
+ break;
+
+ }
+}
+
+static void d40_config_set_event(struct d40_chan *d40c,
+ enum d40_events event_type)
+{
+ u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
+
+ /* Enable event line connected to device (or memcpy) */
+ if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
+ (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
+ __d40_config_set_event(d40c, event_type, event,
+ D40_CHAN_REG_SSLNK);
+
+ if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
+ __d40_config_set_event(d40c, event_type, event,
+ D40_CHAN_REG_SDLNK);
+}
+
+static u32 d40_chan_has_events(struct d40_chan *d40c)
+{
+ void __iomem *chanbase = chan_base(d40c);
+ u32 val;
+
+ val = readl(chanbase + D40_CHAN_REG_SSLNK);
+ val |= readl(chanbase + D40_CHAN_REG_SDLNK);
+
+ return val;
+}
+
+static int
+__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
+{
+ unsigned long flags;
+ int ret = 0;
+ u32 active_status;
+ void __iomem *active_reg;
+
+ if (d40c->phy_chan->num % 2 == 0)
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+ else
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+
+ spin_lock_irqsave(&d40c->phy_chan->lock, flags);
+
+ switch (command) {
+ case D40_DMA_STOP:
+ case D40_DMA_SUSPEND_REQ:
+
+ active_status = (readl(active_reg) &
+ D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+ D40_CHAN_POS(d40c->phy_chan->num);
+
+ if (active_status == D40_DMA_RUN)
+ d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
+ else
+ d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
+
+ if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
+ ret = __d40_execute_command_phy(d40c, command);
+
+ break;
+
+ case D40_DMA_RUN:
+
+ d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
+ ret = __d40_execute_command_phy(d40c, command);
+ break;
+
+ case D40_DMA_SUSPENDED:
+ BUG();
+ break;
+ }
+
+ spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
+ return ret;
+}
+
+static int d40_channel_execute_command(struct d40_chan *d40c,
+ enum d40_command command)
+{
+ if (chan_is_logical(d40c))
+ return __d40_execute_command_log(d40c, command);
+ else
+ return __d40_execute_command_phy(d40c, command);
+}
+
+static u32 d40_get_prmo(struct d40_chan *d40c)
+{
+ static const unsigned int phy_map[] = {
+ [STEDMA40_PCHAN_BASIC_MODE]
+ = D40_DREG_PRMO_PCHAN_BASIC,
+ [STEDMA40_PCHAN_MODULO_MODE]
+ = D40_DREG_PRMO_PCHAN_MODULO,
+ [STEDMA40_PCHAN_DOUBLE_DST_MODE]
+ = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
+ };
+ static const unsigned int log_map[] = {
+ [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
+ = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
+ [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
+ = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
+ [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
+ = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
+ };
+
+ if (chan_is_physical(d40c))
+ return phy_map[d40c->dma_cfg.mode_opt];
+ else
+ return log_map[d40c->dma_cfg.mode_opt];
+}
+
+static void d40_config_write(struct d40_chan *d40c)
+{
+ u32 addr_base;
+ u32 var;
+
+ /* Odd addresses are even addresses + 4 */
+ addr_base = (d40c->phy_chan->num % 2) * 4;
+ /* Setup channel mode to logical or physical */
+ var = ((u32)(chan_is_logical(d40c)) + 1) <<
+ D40_CHAN_POS(d40c->phy_chan->num);
+ writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
+
+ /* Setup operational mode option register */
+ var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
+
+ writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
+
+ if (chan_is_logical(d40c)) {
+ int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
+ & D40_SREG_ELEM_LOG_LIDX_MASK;
+ void __iomem *chanbase = chan_base(d40c);
+
+ /* Set default config for CFG reg */
+ writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
+ writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
+
+ /* Set LIDX for lcla */
+ writel(lidx, chanbase + D40_CHAN_REG_SSELT);
+ writel(lidx, chanbase + D40_CHAN_REG_SDELT);
+
+ /* Clear LNK which will be used by d40_chan_has_events() */
+ writel(0, chanbase + D40_CHAN_REG_SSLNK);
+ writel(0, chanbase + D40_CHAN_REG_SDLNK);
+ }
+}
+
+static u32 d40_residue(struct d40_chan *d40c)
+{
+ u32 num_elt;
+
+ if (chan_is_logical(d40c))
+ num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
+ >> D40_MEM_LCSP2_ECNT_POS;
+ else {
+ u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
+ num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
+ >> D40_SREG_ELEM_PHY_ECNT_POS;
+ }
+
+ return num_elt * d40c->dma_cfg.dst_info.data_width;
+}
+
+static bool d40_tx_is_linked(struct d40_chan *d40c)
+{
+ bool is_link;
+
+ if (chan_is_logical(d40c))
+ is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
+ else
+ is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
+ & D40_SREG_LNK_PHYS_LNK_MASK;
+
+ return is_link;
+}
+
+static int d40_pause(struct dma_chan *chan)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ int res = 0;
+ unsigned long flags;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Channel is not allocated!\n");
+ return -EINVAL;
+ }
+
+ if (!d40c->busy)
+ return 0;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+ pm_runtime_get_sync(d40c->base->dev);
+
+ res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return res;
+}
+
+static int d40_resume(struct dma_chan *chan)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ int res = 0;
+ unsigned long flags;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Channel is not allocated!\n");
+ return -EINVAL;
+ }
+
+ if (!d40c->busy)
+ return 0;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+ pm_runtime_get_sync(d40c->base->dev);
+
+ /* If bytes left to transfer or linked tx resume job */
+ if (d40_residue(d40c) || d40_tx_is_linked(d40c))
+ res = d40_channel_execute_command(d40c, D40_DMA_RUN);
+
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return res;
+}
+
+static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+ struct d40_chan *d40c = container_of(tx->chan,
+ struct d40_chan,
+ chan);
+ struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
+ unsigned long flags;
+ dma_cookie_t cookie;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+ cookie = dma_cookie_assign(tx);
+ d40_desc_queue(d40c, d40d);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+
+ return cookie;
+}
+
+static int d40_start(struct d40_chan *d40c)
+{
+ return d40_channel_execute_command(d40c, D40_DMA_RUN);
+}
+
+static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
+{
+ struct d40_desc *d40d;
+ int err;
+
+ /* Start queued jobs, if any */
+ d40d = d40_first_queued(d40c);
+
+ if (d40d != NULL) {
+ if (!d40c->busy) {
+ d40c->busy = true;
+ pm_runtime_get_sync(d40c->base->dev);
+ }
+
+ /* Remove from queue */
+ d40_desc_remove(d40d);
+
+ /* Add to active queue */
+ d40_desc_submit(d40c, d40d);
+
+ /* Initiate DMA job */
+ d40_desc_load(d40c, d40d);
+
+ /* Start dma job */
+ err = d40_start(d40c);
+
+ if (err)
+ return NULL;
+ }
+
+ return d40d;
+}
+
+/* called from interrupt context */
+static void dma_tc_handle(struct d40_chan *d40c)
+{
+ struct d40_desc *d40d;
+
+ /* Get first active entry from list */
+ d40d = d40_first_active_get(d40c);
+
+ if (d40d == NULL)
+ return;
+
+ if (d40d->cyclic) {
+ /*
+ * If this was a paritially loaded list, we need to reloaded
+ * it, and only when the list is completed. We need to check
+ * for done because the interrupt will hit for every link, and
+ * not just the last one.
+ */
+ if (d40d->lli_current < d40d->lli_len
+ && !d40_tx_is_linked(d40c)
+ && !d40_residue(d40c)) {
+ d40_lcla_free_all(d40c, d40d);
+ d40_desc_load(d40c, d40d);
+ (void) d40_start(d40c);
+
+ if (d40d->lli_current == d40d->lli_len)
+ d40d->lli_current = 0;
+ }
+ } else {
+ d40_lcla_free_all(d40c, d40d);
+
+ if (d40d->lli_current < d40d->lli_len) {
+ d40_desc_load(d40c, d40d);
+ /* Start dma job */
+ (void) d40_start(d40c);
+ return;
+ }
+
+ if (d40_queue_start(d40c) == NULL) {
+ d40c->busy = false;
+
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ }
+
+ d40_desc_remove(d40d);
+ d40_desc_done(d40c, d40d);
+ }
+
+ d40c->pending_tx++;
+ tasklet_schedule(&d40c->tasklet);
+
+}
+
+static void dma_tasklet(struct tasklet_struct *t)
+{
+ struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
+ struct d40_desc *d40d;
+ unsigned long flags;
+ bool callback_active;
+ struct dmaengine_desc_callback cb;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ /* Get first entry from the done list */
+ d40d = d40_first_done(d40c);
+ if (d40d == NULL) {
+ /* Check if we have reached here for cyclic job */
+ d40d = d40_first_active_get(d40c);
+ if (d40d == NULL || !d40d->cyclic)
+ goto check_pending_tx;
+ }
+
+ if (!d40d->cyclic)
+ dma_cookie_complete(&d40d->txd);
+
+ /*
+ * If terminating a channel pending_tx is set to zero.
+ * This prevents any finished active jobs to return to the client.
+ */
+ if (d40c->pending_tx == 0) {
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return;
+ }
+
+ /* Callback to client */
+ callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
+ dmaengine_desc_get_callback(&d40d->txd, &cb);
+
+ if (!d40d->cyclic) {
+ if (async_tx_test_ack(&d40d->txd)) {
+ d40_desc_remove(d40d);
+ d40_desc_free(d40c, d40d);
+ } else if (!d40d->is_in_client_list) {
+ d40_desc_remove(d40d);
+ d40_lcla_free_all(d40c, d40d);
+ list_add_tail(&d40d->node, &d40c->client);
+ d40d->is_in_client_list = true;
+ }
+ }
+
+ d40c->pending_tx--;
+
+ if (d40c->pending_tx)
+ tasklet_schedule(&d40c->tasklet);
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+
+ if (callback_active)
+ dmaengine_desc_callback_invoke(&cb, NULL);
+
+ return;
+ check_pending_tx:
+ /* Rescue manouver if receiving double interrupts */
+ if (d40c->pending_tx > 0)
+ d40c->pending_tx--;
+ spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static irqreturn_t d40_handle_interrupt(int irq, void *data)
+{
+ int i;
+ u32 idx;
+ u32 row;
+ long chan = -1;
+ struct d40_chan *d40c;
+ unsigned long flags;
+ struct d40_base *base = data;
+ u32 *regs = base->regs_interrupt;
+ struct d40_interrupt_lookup *il = base->gen_dmac.il;
+ u32 il_size = base->gen_dmac.il_size;
+
+ spin_lock_irqsave(&base->interrupt_lock, flags);
+
+ /* Read interrupt status of both logical and physical channels */
+ for (i = 0; i < il_size; i++)
+ regs[i] = readl(base->virtbase + il[i].src);
+
+ for (;;) {
+
+ chan = find_next_bit((unsigned long *)regs,
+ BITS_PER_LONG * il_size, chan + 1);
+
+ /* No more set bits found? */
+ if (chan == BITS_PER_LONG * il_size)
+ break;
+
+ row = chan / BITS_PER_LONG;
+ idx = chan & (BITS_PER_LONG - 1);
+
+ if (il[row].offset == D40_PHY_CHAN)
+ d40c = base->lookup_phy_chans[idx];
+ else
+ d40c = base->lookup_log_chans[il[row].offset + idx];
+
+ if (!d40c) {
+ /*
+ * No error because this can happen if something else
+ * in the system is using the channel.
+ */
+ continue;
+ }
+
+ /* ACK interrupt */
+ writel(BIT(idx), base->virtbase + il[row].clr);
+
+ spin_lock(&d40c->lock);
+
+ if (!il[row].is_error)
+ dma_tc_handle(d40c);
+ else
+ d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
+ chan, il[row].offset, idx);
+
+ spin_unlock(&d40c->lock);
+ }
+
+ spin_unlock_irqrestore(&base->interrupt_lock, flags);
+
+ return IRQ_HANDLED;
+}
+
+static int d40_validate_conf(struct d40_chan *d40c,
+ struct stedma40_chan_cfg *conf)
+{
+ int res = 0;
+ bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
+
+ if (!conf->dir) {
+ chan_err(d40c, "Invalid direction.\n");
+ res = -EINVAL;
+ }
+
+ if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
+ (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
+ (conf->dev_type < 0)) {
+ chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
+ res = -EINVAL;
+ }
+
+ if (conf->dir == DMA_DEV_TO_DEV) {
+ /*
+ * DMAC HW supports it. Will be added to this driver,
+ * in case any dma client requires it.
+ */
+ chan_err(d40c, "periph to periph not supported\n");
+ res = -EINVAL;
+ }
+
+ if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
+ conf->src_info.data_width !=
+ d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
+ conf->dst_info.data_width) {
+ /*
+ * The DMAC hardware only supports
+ * src (burst x width) == dst (burst x width)
+ */
+
+ chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
+ res = -EINVAL;
+ }
+
+ return res;
+}
+
+static bool d40_alloc_mask_set(struct d40_phy_res *phy,
+ bool is_src, int log_event_line, bool is_log,
+ bool *first_user)
+{
+ unsigned long flags;
+ spin_lock_irqsave(&phy->lock, flags);
+
+ *first_user = ((phy->allocated_src | phy->allocated_dst)
+ == D40_ALLOC_FREE);
+
+ if (!is_log) {
+ /* Physical interrupts are masked per physical full channel */
+ if (phy->allocated_src == D40_ALLOC_FREE &&
+ phy->allocated_dst == D40_ALLOC_FREE) {
+ phy->allocated_dst = D40_ALLOC_PHY;
+ phy->allocated_src = D40_ALLOC_PHY;
+ goto found_unlock;
+ } else
+ goto not_found_unlock;
+ }
+
+ /* Logical channel */
+ if (is_src) {
+ if (phy->allocated_src == D40_ALLOC_PHY)
+ goto not_found_unlock;
+
+ if (phy->allocated_src == D40_ALLOC_FREE)
+ phy->allocated_src = D40_ALLOC_LOG_FREE;
+
+ if (!(phy->allocated_src & BIT(log_event_line))) {
+ phy->allocated_src |= BIT(log_event_line);
+ goto found_unlock;
+ } else
+ goto not_found_unlock;
+ } else {
+ if (phy->allocated_dst == D40_ALLOC_PHY)
+ goto not_found_unlock;
+
+ if (phy->allocated_dst == D40_ALLOC_FREE)
+ phy->allocated_dst = D40_ALLOC_LOG_FREE;
+
+ if (!(phy->allocated_dst & BIT(log_event_line))) {
+ phy->allocated_dst |= BIT(log_event_line);
+ goto found_unlock;
+ }
+ }
+ not_found_unlock:
+ spin_unlock_irqrestore(&phy->lock, flags);
+ return false;
+ found_unlock:
+ spin_unlock_irqrestore(&phy->lock, flags);
+ return true;
+}
+
+static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
+ int log_event_line)
+{
+ unsigned long flags;
+ bool is_free = false;
+
+ spin_lock_irqsave(&phy->lock, flags);
+ if (!log_event_line) {
+ phy->allocated_dst = D40_ALLOC_FREE;
+ phy->allocated_src = D40_ALLOC_FREE;
+ is_free = true;
+ goto unlock;
+ }
+
+ /* Logical channel */
+ if (is_src) {
+ phy->allocated_src &= ~BIT(log_event_line);
+ if (phy->allocated_src == D40_ALLOC_LOG_FREE)
+ phy->allocated_src = D40_ALLOC_FREE;
+ } else {
+ phy->allocated_dst &= ~BIT(log_event_line);
+ if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
+ phy->allocated_dst = D40_ALLOC_FREE;
+ }
+
+ is_free = ((phy->allocated_src | phy->allocated_dst) ==
+ D40_ALLOC_FREE);
+ unlock:
+ spin_unlock_irqrestore(&phy->lock, flags);
+
+ return is_free;
+}
+
+static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
+{
+ int dev_type = d40c->dma_cfg.dev_type;
+ int event_group;
+ int event_line;
+ struct d40_phy_res *phys;
+ int i;
+ int j;
+ int log_num;
+ int num_phy_chans;
+ bool is_src;
+ bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
+
+ phys = d40c->base->phy_res;
+ num_phy_chans = d40c->base->num_phy_chans;
+
+ if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
+ log_num = 2 * dev_type;
+ is_src = true;
+ } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
+ d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
+ /* dst event lines are used for logical memcpy */
+ log_num = 2 * dev_type + 1;
+ is_src = false;
+ } else
+ return -EINVAL;
+
+ event_group = D40_TYPE_TO_GROUP(dev_type);
+ event_line = D40_TYPE_TO_EVENT(dev_type);
+
+ if (!is_log) {
+ if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
+ /* Find physical half channel */
+ if (d40c->dma_cfg.use_fixed_channel) {
+ i = d40c->dma_cfg.phy_channel;
+ if (d40_alloc_mask_set(&phys[i], is_src,
+ 0, is_log,
+ first_phy_user))
+ goto found_phy;
+ } else {
+ for (i = 0; i < num_phy_chans; i++) {
+ if (d40_alloc_mask_set(&phys[i], is_src,
+ 0, is_log,
+ first_phy_user))
+ goto found_phy;
+ }
+ }
+ } else
+ for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+ int phy_num = j + event_group * 2;
+ for (i = phy_num; i < phy_num + 2; i++) {
+ if (d40_alloc_mask_set(&phys[i],
+ is_src,
+ 0,
+ is_log,
+ first_phy_user))
+ goto found_phy;
+ }
+ }
+ return -EINVAL;
+found_phy:
+ d40c->phy_chan = &phys[i];
+ d40c->log_num = D40_PHY_CHAN;
+ goto out;
+ }
+ if (dev_type == -1)
+ return -EINVAL;
+
+ /* Find logical channel */
+ for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+ int phy_num = j + event_group * 2;
+
+ if (d40c->dma_cfg.use_fixed_channel) {
+ i = d40c->dma_cfg.phy_channel;
+
+ if ((i != phy_num) && (i != phy_num + 1)) {
+ dev_err(chan2dev(d40c),
+ "invalid fixed phy channel %d\n", i);
+ return -EINVAL;
+ }
+
+ if (d40_alloc_mask_set(&phys[i], is_src, event_line,
+ is_log, first_phy_user))
+ goto found_log;
+
+ dev_err(chan2dev(d40c),
+ "could not allocate fixed phy channel %d\n", i);
+ return -EINVAL;
+ }
+
+ /*
+ * Spread logical channels across all available physical rather
+ * than pack every logical channel at the first available phy
+ * channels.
+ */
+ if (is_src) {
+ for (i = phy_num; i < phy_num + 2; i++) {
+ if (d40_alloc_mask_set(&phys[i], is_src,
+ event_line, is_log,
+ first_phy_user))
+ goto found_log;
+ }
+ } else {
+ for (i = phy_num + 1; i >= phy_num; i--) {
+ if (d40_alloc_mask_set(&phys[i], is_src,
+ event_line, is_log,
+ first_phy_user))
+ goto found_log;
+ }
+ }
+ }
+ return -EINVAL;
+
+found_log:
+ d40c->phy_chan = &phys[i];
+ d40c->log_num = log_num;
+out:
+
+ if (is_log)
+ d40c->base->lookup_log_chans[d40c->log_num] = d40c;
+ else
+ d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
+
+ return 0;
+
+}
+
+static int d40_config_memcpy(struct d40_chan *d40c)
+{
+ dma_cap_mask_t cap = d40c->chan.device->cap_mask;
+
+ if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
+ d40c->dma_cfg = dma40_memcpy_conf_log;
+ d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
+
+ d40_log_cfg(&d40c->dma_cfg,
+ &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
+
+ } else if (dma_has_cap(DMA_MEMCPY, cap) &&
+ dma_has_cap(DMA_SLAVE, cap)) {
+ d40c->dma_cfg = dma40_memcpy_conf_phy;
+
+ /* Generate interrrupt at end of transfer or relink. */
+ d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
+
+ /* Generate interrupt on error. */
+ d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
+ d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
+
+ } else {
+ chan_err(d40c, "No memcpy\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int d40_free_dma(struct d40_chan *d40c)
+{
+
+ int res = 0;
+ u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
+ struct d40_phy_res *phy = d40c->phy_chan;
+ bool is_src;
+
+ /* Terminate all queued and active transfers */
+ d40_term_all(d40c);
+
+ if (phy == NULL) {
+ chan_err(d40c, "phy == null\n");
+ return -EINVAL;
+ }
+
+ if (phy->allocated_src == D40_ALLOC_FREE &&
+ phy->allocated_dst == D40_ALLOC_FREE) {
+ chan_err(d40c, "channel already free\n");
+ return -EINVAL;
+ }
+
+ if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
+ d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
+ is_src = false;
+ else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
+ is_src = true;
+ else {
+ chan_err(d40c, "Unknown direction\n");
+ return -EINVAL;
+ }
+
+ pm_runtime_get_sync(d40c->base->dev);
+ res = d40_channel_execute_command(d40c, D40_DMA_STOP);
+ if (res) {
+ chan_err(d40c, "stop failed\n");
+ goto mark_last_busy;
+ }
+
+ d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
+
+ if (chan_is_logical(d40c))
+ d40c->base->lookup_log_chans[d40c->log_num] = NULL;
+ else
+ d40c->base->lookup_phy_chans[phy->num] = NULL;
+
+ if (d40c->busy) {
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ }
+
+ d40c->busy = false;
+ d40c->phy_chan = NULL;
+ d40c->configured = false;
+ mark_last_busy:
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ return res;
+}
+
+static bool d40_is_paused(struct d40_chan *d40c)
+{
+ void __iomem *chanbase = chan_base(d40c);
+ bool is_paused = false;
+ unsigned long flags;
+ void __iomem *active_reg;
+ u32 status;
+ u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ if (chan_is_physical(d40c)) {
+ if (d40c->phy_chan->num % 2 == 0)
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+ else
+ active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+ status = (readl(active_reg) &
+ D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+ D40_CHAN_POS(d40c->phy_chan->num);
+ if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
+ is_paused = true;
+ goto unlock;
+ }
+
+ if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
+ d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
+ status = readl(chanbase + D40_CHAN_REG_SDLNK);
+ } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
+ status = readl(chanbase + D40_CHAN_REG_SSLNK);
+ } else {
+ chan_err(d40c, "Unknown direction\n");
+ goto unlock;
+ }
+
+ status = (status & D40_EVENTLINE_MASK(event)) >>
+ D40_EVENTLINE_POS(event);
+
+ if (status != D40_DMA_RUN)
+ is_paused = true;
+ unlock:
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return is_paused;
+
+}
+
+static u32 stedma40_residue(struct dma_chan *chan)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ u32 bytes_left;
+ unsigned long flags;
+
+ spin_lock_irqsave(&d40c->lock, flags);
+ bytes_left = d40_residue(d40c);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+
+ return bytes_left;
+}
+
+static int
+d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
+ struct scatterlist *sg_src, struct scatterlist *sg_dst,
+ unsigned int sg_len, dma_addr_t src_dev_addr,
+ dma_addr_t dst_dev_addr)
+{
+ struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
+ struct stedma40_half_channel_info *src_info = &cfg->src_info;
+ struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
+ int ret;
+
+ ret = d40_log_sg_to_lli(sg_src, sg_len,
+ src_dev_addr,
+ desc->lli_log.src,
+ chan->log_def.lcsp1,
+ src_info->data_width,
+ dst_info->data_width);
+
+ ret = d40_log_sg_to_lli(sg_dst, sg_len,
+ dst_dev_addr,
+ desc->lli_log.dst,
+ chan->log_def.lcsp3,
+ dst_info->data_width,
+ src_info->data_width);
+
+ return ret < 0 ? ret : 0;
+}
+
+static int
+d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
+ struct scatterlist *sg_src, struct scatterlist *sg_dst,
+ unsigned int sg_len, dma_addr_t src_dev_addr,
+ dma_addr_t dst_dev_addr)
+{
+ struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
+ struct stedma40_half_channel_info *src_info = &cfg->src_info;
+ struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
+ unsigned long flags = 0;
+ int ret;
+
+ if (desc->cyclic)
+ flags |= LLI_CYCLIC | LLI_TERM_INT;
+
+ ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
+ desc->lli_phy.src,
+ virt_to_phys(desc->lli_phy.src),
+ chan->src_def_cfg,
+ src_info, dst_info, flags);
+
+ ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
+ desc->lli_phy.dst,
+ virt_to_phys(desc->lli_phy.dst),
+ chan->dst_def_cfg,
+ dst_info, src_info, flags);
+
+ dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
+ desc->lli_pool.size, DMA_TO_DEVICE);
+
+ return ret < 0 ? ret : 0;
+}
+
+static struct d40_desc *
+d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
+ unsigned int sg_len, unsigned long dma_flags)
+{
+ struct stedma40_chan_cfg *cfg;
+ struct d40_desc *desc;
+ int ret;
+
+ desc = d40_desc_get(chan);
+ if (!desc)
+ return NULL;
+
+ cfg = &chan->dma_cfg;
+ desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
+ cfg->dst_info.data_width);
+ if (desc->lli_len < 0) {
+ chan_err(chan, "Unaligned size\n");
+ goto free_desc;
+ }
+
+ ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
+ if (ret < 0) {
+ chan_err(chan, "Could not allocate lli\n");
+ goto free_desc;
+ }
+
+ desc->lli_current = 0;
+ desc->txd.flags = dma_flags;
+ desc->txd.tx_submit = d40_tx_submit;
+
+ dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
+
+ return desc;
+ free_desc:
+ d40_desc_free(chan, desc);
+ return NULL;
+}
+
+static struct dma_async_tx_descriptor *
+d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
+ struct scatterlist *sg_dst, unsigned int sg_len,
+ enum dma_transfer_direction direction, unsigned long dma_flags)
+{
+ struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
+ dma_addr_t src_dev_addr;
+ dma_addr_t dst_dev_addr;
+ struct d40_desc *desc;
+ unsigned long flags;
+ int ret;
+
+ if (!chan->phy_chan) {
+ chan_err(chan, "Cannot prepare unallocated channel\n");
+ return NULL;
+ }
+
+ d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
+
+ spin_lock_irqsave(&chan->lock, flags);
+
+ desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
+ if (desc == NULL)
+ goto unlock;
+
+ if (sg_next(&sg_src[sg_len - 1]) == sg_src)
+ desc->cyclic = true;
+
+ src_dev_addr = 0;
+ dst_dev_addr = 0;
+ if (direction == DMA_DEV_TO_MEM)
+ src_dev_addr = chan->runtime_addr;
+ else if (direction == DMA_MEM_TO_DEV)
+ dst_dev_addr = chan->runtime_addr;
+
+ if (chan_is_logical(chan))
+ ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
+ sg_len, src_dev_addr, dst_dev_addr);
+ else
+ ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
+ sg_len, src_dev_addr, dst_dev_addr);
+
+ if (ret) {
+ chan_err(chan, "Failed to prepare %s sg job: %d\n",
+ chan_is_logical(chan) ? "log" : "phy", ret);
+ goto free_desc;
+ }
+
+ /*
+ * add descriptor to the prepare queue in order to be able
+ * to free them later in terminate_all
+ */
+ list_add_tail(&desc->node, &chan->prepare_queue);
+
+ spin_unlock_irqrestore(&chan->lock, flags);
+
+ return &desc->txd;
+ free_desc:
+ d40_desc_free(chan, desc);
+ unlock:
+ spin_unlock_irqrestore(&chan->lock, flags);
+ return NULL;
+}
+
+bool stedma40_filter(struct dma_chan *chan, void *data)
+{
+ struct stedma40_chan_cfg *info = data;
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ int err;
+
+ if (data) {
+ err = d40_validate_conf(d40c, info);
+ if (!err)
+ d40c->dma_cfg = *info;
+ } else
+ err = d40_config_memcpy(d40c);
+
+ if (!err)
+ d40c->configured = true;
+
+ return err == 0;
+}
+EXPORT_SYMBOL(stedma40_filter);
+
+static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
+{
+ bool realtime = d40c->dma_cfg.realtime;
+ bool highprio = d40c->dma_cfg.high_priority;
+ u32 rtreg;
+ u32 event = D40_TYPE_TO_EVENT(dev_type);
+ u32 group = D40_TYPE_TO_GROUP(dev_type);
+ u32 bit = BIT(event);
+ u32 prioreg;
+ struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
+
+ rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
+ /*
+ * Due to a hardware bug, in some cases a logical channel triggered by
+ * a high priority destination event line can generate extra packet
+ * transactions.
+ *
+ * The workaround is to not set the high priority level for the
+ * destination event lines that trigger logical channels.
+ */
+ if (!src && chan_is_logical(d40c))
+ highprio = false;
+
+ prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
+
+ /* Destination event lines are stored in the upper halfword */
+ if (!src)
+ bit <<= 16;
+
+ writel(bit, d40c->base->virtbase + prioreg + group * 4);
+ writel(bit, d40c->base->virtbase + rtreg + group * 4);
+}
+
+static void d40_set_prio_realtime(struct d40_chan *d40c)
+{
+ if (d40c->base->rev < 3)
+ return;
+
+ if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
+ (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
+ __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
+
+ if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
+ (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
+ __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
+}
+
+#define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
+#define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
+#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
+#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
+#define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
+
+static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
+ struct of_dma *ofdma)
+{
+ struct stedma40_chan_cfg cfg;
+ dma_cap_mask_t cap;
+ u32 flags;
+
+ memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
+
+ dma_cap_zero(cap);
+ dma_cap_set(DMA_SLAVE, cap);
+
+ cfg.dev_type = dma_spec->args[0];
+ flags = dma_spec->args[2];
+
+ switch (D40_DT_FLAGS_MODE(flags)) {
+ case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
+ case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
+ }
+
+ switch (D40_DT_FLAGS_DIR(flags)) {
+ case 0:
+ cfg.dir = DMA_MEM_TO_DEV;
+ cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
+ break;
+ case 1:
+ cfg.dir = DMA_DEV_TO_MEM;
+ cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
+ break;
+ }
+
+ if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
+ cfg.phy_channel = dma_spec->args[1];
+ cfg.use_fixed_channel = true;
+ }
+
+ if (D40_DT_FLAGS_HIGH_PRIO(flags))
+ cfg.high_priority = true;
+
+ return dma_request_channel(cap, stedma40_filter, &cfg);
+}
+
+/* DMA ENGINE functions */
+static int d40_alloc_chan_resources(struct dma_chan *chan)
+{
+ int err;
+ unsigned long flags;
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ bool is_free_phy;
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ dma_cookie_init(chan);
+
+ /* If no dma configuration is set use default configuration (memcpy) */
+ if (!d40c->configured) {
+ err = d40_config_memcpy(d40c);
+ if (err) {
+ chan_err(d40c, "Failed to configure memcpy channel\n");
+ goto mark_last_busy;
+ }
+ }
+
+ err = d40_allocate_channel(d40c, &is_free_phy);
+ if (err) {
+ chan_err(d40c, "Failed to allocate channel\n");
+ d40c->configured = false;
+ goto mark_last_busy;
+ }
+
+ pm_runtime_get_sync(d40c->base->dev);
+
+ d40_set_prio_realtime(d40c);
+
+ if (chan_is_logical(d40c)) {
+ if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
+ d40c->lcpa = d40c->base->lcpa_base +
+ d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
+ else
+ d40c->lcpa = d40c->base->lcpa_base +
+ d40c->dma_cfg.dev_type *
+ D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
+
+ /* Unmask the Global Interrupt Mask. */
+ d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
+ d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
+ }
+
+ dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
+ chan_is_logical(d40c) ? "logical" : "physical",
+ d40c->phy_chan->num,
+ d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
+
+
+ /*
+ * Only write channel configuration to the DMA if the physical
+ * resource is free. In case of multiple logical channels
+ * on the same physical resource, only the first write is necessary.
+ */
+ if (is_free_phy)
+ d40_config_write(d40c);
+ mark_last_busy:
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return err;
+}
+
+static void d40_free_chan_resources(struct dma_chan *chan)
+{
+ struct d40_chan *d40c =
+ container_of(chan, struct d40_chan, chan);
+ int err;
+ unsigned long flags;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Cannot free unallocated channel\n");
+ return;
+ }
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ err = d40_free_dma(d40c);
+
+ if (err)
+ chan_err(d40c, "Failed to free channel\n");
+ spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
+ dma_addr_t dst,
+ dma_addr_t src,
+ size_t size,
+ unsigned long dma_flags)
+{
+ struct scatterlist dst_sg;
+ struct scatterlist src_sg;
+
+ sg_init_table(&dst_sg, 1);
+ sg_init_table(&src_sg, 1);
+
+ sg_dma_address(&dst_sg) = dst;
+ sg_dma_address(&src_sg) = src;
+
+ sg_dma_len(&dst_sg) = size;
+ sg_dma_len(&src_sg) = size;
+
+ return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
+ DMA_MEM_TO_MEM, dma_flags);
+}
+
+static struct dma_async_tx_descriptor *
+d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
+ unsigned int sg_len, enum dma_transfer_direction direction,
+ unsigned long dma_flags, void *context)
+{
+ if (!is_slave_direction(direction))
+ return NULL;
+
+ return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
+}
+
+static struct dma_async_tx_descriptor *
+dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
+ size_t buf_len, size_t period_len,
+ enum dma_transfer_direction direction, unsigned long flags)
+{
+ unsigned int periods = buf_len / period_len;
+ struct dma_async_tx_descriptor *txd;
+ struct scatterlist *sg;
+ int i;
+
+ sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
+ if (!sg)
+ return NULL;
+
+ for (i = 0; i < periods; i++) {
+ sg_dma_address(&sg[i]) = dma_addr;
+ sg_dma_len(&sg[i]) = period_len;
+ dma_addr += period_len;
+ }
+
+ sg_chain(sg, periods + 1, sg);
+
+ txd = d40_prep_sg(chan, sg, sg, periods, direction,
+ DMA_PREP_INTERRUPT);
+
+ kfree(sg);
+
+ return txd;
+}
+
+static enum dma_status d40_tx_status(struct dma_chan *chan,
+ dma_cookie_t cookie,
+ struct dma_tx_state *txstate)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ enum dma_status ret;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Cannot read status of unallocated channel\n");
+ return -EINVAL;
+ }
+
+ ret = dma_cookie_status(chan, cookie, txstate);
+ if (ret != DMA_COMPLETE && txstate)
+ dma_set_residue(txstate, stedma40_residue(chan));
+
+ if (d40_is_paused(d40c))
+ ret = DMA_PAUSED;
+
+ return ret;
+}
+
+static void d40_issue_pending(struct dma_chan *chan)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ unsigned long flags;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Channel is not allocated!\n");
+ return;
+ }
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
+
+ /* Busy means that queued jobs are already being processed */
+ if (!d40c->busy)
+ (void) d40_queue_start(d40c);
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static int d40_terminate_all(struct dma_chan *chan)
+{
+ unsigned long flags;
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ int ret;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Channel is not allocated!\n");
+ return -EINVAL;
+ }
+
+ spin_lock_irqsave(&d40c->lock, flags);
+
+ pm_runtime_get_sync(d40c->base->dev);
+ ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
+ if (ret)
+ chan_err(d40c, "Failed to stop channel\n");
+
+ d40_term_all(d40c);
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ if (d40c->busy) {
+ pm_runtime_mark_last_busy(d40c->base->dev);
+ pm_runtime_put_autosuspend(d40c->base->dev);
+ }
+ d40c->busy = false;
+
+ spin_unlock_irqrestore(&d40c->lock, flags);
+ return 0;
+}
+
+static int
+dma40_config_to_halfchannel(struct d40_chan *d40c,
+ struct stedma40_half_channel_info *info,
+ u32 maxburst)
+{
+ int psize;
+
+ if (chan_is_logical(d40c)) {
+ if (maxburst >= 16)
+ psize = STEDMA40_PSIZE_LOG_16;
+ else if (maxburst >= 8)
+ psize = STEDMA40_PSIZE_LOG_8;
+ else if (maxburst >= 4)
+ psize = STEDMA40_PSIZE_LOG_4;
+ else
+ psize = STEDMA40_PSIZE_LOG_1;
+ } else {
+ if (maxburst >= 16)
+ psize = STEDMA40_PSIZE_PHY_16;
+ else if (maxburst >= 8)
+ psize = STEDMA40_PSIZE_PHY_8;
+ else if (maxburst >= 4)
+ psize = STEDMA40_PSIZE_PHY_4;
+ else
+ psize = STEDMA40_PSIZE_PHY_1;
+ }
+
+ info->psize = psize;
+ info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
+
+ return 0;
+}
+
+static int d40_set_runtime_config(struct dma_chan *chan,
+ struct dma_slave_config *config)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+
+ memcpy(&d40c->slave_config, config, sizeof(*config));
+
+ return 0;
+}
+
+/* Runtime reconfiguration extension */
+static int d40_set_runtime_config_write(struct dma_chan *chan,
+ struct dma_slave_config *config,
+ enum dma_transfer_direction direction)
+{
+ struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+ struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
+ enum dma_slave_buswidth src_addr_width, dst_addr_width;
+ dma_addr_t config_addr;
+ u32 src_maxburst, dst_maxburst;
+ int ret;
+
+ if (d40c->phy_chan == NULL) {
+ chan_err(d40c, "Channel is not allocated!\n");
+ return -EINVAL;
+ }
+
+ src_addr_width = config->src_addr_width;
+ src_maxburst = config->src_maxburst;
+ dst_addr_width = config->dst_addr_width;
+ dst_maxburst = config->dst_maxburst;
+
+ if (direction == DMA_DEV_TO_MEM) {
+ config_addr = config->src_addr;
+
+ if (cfg->dir != DMA_DEV_TO_MEM)
+ dev_dbg(d40c->base->dev,
+ "channel was not configured for peripheral "
+ "to memory transfer (%d) overriding\n",
+ cfg->dir);
+ cfg->dir = DMA_DEV_TO_MEM;
+
+ /* Configure the memory side */
+ if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
+ dst_addr_width = src_addr_width;
+ if (dst_maxburst == 0)
+ dst_maxburst = src_maxburst;
+
+ } else if (direction == DMA_MEM_TO_DEV) {
+ config_addr = config->dst_addr;
+
+ if (cfg->dir != DMA_MEM_TO_DEV)
+ dev_dbg(d40c->base->dev,
+ "channel was not configured for memory "
+ "to peripheral transfer (%d) overriding\n",
+ cfg->dir);
+ cfg->dir = DMA_MEM_TO_DEV;
+
+ /* Configure the memory side */
+ if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
+ src_addr_width = dst_addr_width;
+ if (src_maxburst == 0)
+ src_maxburst = dst_maxburst;
+ } else {
+ dev_err(d40c->base->dev,
+ "unrecognized channel direction %d\n",
+ direction);
+ return -EINVAL;
+ }
+
+ if (config_addr <= 0) {
+ dev_err(d40c->base->dev, "no address supplied\n");
+ return -EINVAL;
+ }
+
+ if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
+ dev_err(d40c->base->dev,
+ "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
+ src_maxburst,
+ src_addr_width,
+ dst_maxburst,
+ dst_addr_width);
+ return -EINVAL;
+ }
+
+ if (src_maxburst > 16) {
+ src_maxburst = 16;
+ dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
+ } else if (dst_maxburst > 16) {
+ dst_maxburst = 16;
+ src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
+ }
+
+ /* Only valid widths are; 1, 2, 4 and 8. */
+ if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
+ src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
+ dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
+ dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
+ !is_power_of_2(src_addr_width) ||
+ !is_power_of_2(dst_addr_width))
+ return -EINVAL;
+
+ cfg->src_info.data_width = src_addr_width;
+ cfg->dst_info.data_width = dst_addr_width;
+
+ ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
+ src_maxburst);
+ if (ret)
+ return ret;
+
+ ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
+ dst_maxburst);
+ if (ret)
+ return ret;
+
+ /* Fill in register values */
+ if (chan_is_logical(d40c))
+ d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
+ else
+ d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
+
+ /* These settings will take precedence later */
+ d40c->runtime_addr = config_addr;
+ d40c->runtime_direction = direction;
+ dev_dbg(d40c->base->dev,
+ "configured channel %s for %s, data width %d/%d, "
+ "maxburst %d/%d elements, LE, no flow control\n",
+ dma_chan_name(chan),
+ (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
+ src_addr_width, dst_addr_width,
+ src_maxburst, dst_maxburst);
+
+ return 0;
+}
+
+/* Initialization functions */
+
+static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
+ struct d40_chan *chans, int offset,
+ int num_chans)
+{
+ int i = 0;
+ struct d40_chan *d40c;
+
+ INIT_LIST_HEAD(&dma->channels);
+
+ for (i = offset; i < offset + num_chans; i++) {
+ d40c = &chans[i];
+ d40c->base = base;
+ d40c->chan.device = dma;
+
+ spin_lock_init(&d40c->lock);
+
+ d40c->log_num = D40_PHY_CHAN;
+
+ INIT_LIST_HEAD(&d40c->done);
+ INIT_LIST_HEAD(&d40c->active);
+ INIT_LIST_HEAD(&d40c->queue);
+ INIT_LIST_HEAD(&d40c->pending_queue);
+ INIT_LIST_HEAD(&d40c->client);
+ INIT_LIST_HEAD(&d40c->prepare_queue);
+
+ tasklet_setup(&d40c->tasklet, dma_tasklet);
+
+ list_add_tail(&d40c->chan.device_node,
+ &dma->channels);
+ }
+}
+
+static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
+{
+ if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
+ dev->device_prep_slave_sg = d40_prep_slave_sg;
+ dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
+ }
+
+ if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
+ dev->device_prep_dma_memcpy = d40_prep_memcpy;
+ dev->directions = BIT(DMA_MEM_TO_MEM);
+ /*
+ * This controller can only access address at even
+ * 32bit boundaries, i.e. 2^2
+ */
+ dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
+ }
+
+ if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
+ dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
+
+ dev->device_alloc_chan_resources = d40_alloc_chan_resources;
+ dev->device_free_chan_resources = d40_free_chan_resources;
+ dev->device_issue_pending = d40_issue_pending;
+ dev->device_tx_status = d40_tx_status;
+ dev->device_config = d40_set_runtime_config;
+ dev->device_pause = d40_pause;
+ dev->device_resume = d40_resume;
+ dev->device_terminate_all = d40_terminate_all;
+ dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+ dev->dev = base->dev;
+}
+
+static int __init d40_dmaengine_init(struct d40_base *base,
+ int num_reserved_chans)
+{
+ int err ;
+
+ d40_chan_init(base, &base->dma_slave, base->log_chans,
+ 0, base->num_log_chans);
+
+ dma_cap_zero(base->dma_slave.cap_mask);
+ dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
+ dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
+
+ d40_ops_init(base, &base->dma_slave);
+
+ err = dmaenginem_async_device_register(&base->dma_slave);
+
+ if (err) {
+ d40_err(base->dev, "Failed to register slave channels\n");
+ goto exit;
+ }
+
+ d40_chan_init(base, &base->dma_memcpy, base->log_chans,
+ base->num_log_chans, base->num_memcpy_chans);
+
+ dma_cap_zero(base->dma_memcpy.cap_mask);
+ dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
+
+ d40_ops_init(base, &base->dma_memcpy);
+
+ err = dmaenginem_async_device_register(&base->dma_memcpy);
+
+ if (err) {
+ d40_err(base->dev,
+ "Failed to register memcpy only channels\n");
+ goto exit;
+ }
+
+ d40_chan_init(base, &base->dma_both, base->phy_chans,
+ 0, num_reserved_chans);
+
+ dma_cap_zero(base->dma_both.cap_mask);
+ dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
+ dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
+ dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
+
+ d40_ops_init(base, &base->dma_both);
+ err = dmaenginem_async_device_register(&base->dma_both);
+
+ if (err) {
+ d40_err(base->dev,
+ "Failed to register logical and physical capable channels\n");
+ goto exit;
+ }
+ return 0;
+ exit:
+ return err;
+}
+
+/* Suspend resume functionality */
+#ifdef CONFIG_PM_SLEEP
+static int dma40_suspend(struct device *dev)
+{
+ struct d40_base *base = dev_get_drvdata(dev);
+ int ret;
+
+ ret = pm_runtime_force_suspend(dev);
+ if (ret)
+ return ret;
+
+ if (base->lcpa_regulator)
+ ret = regulator_disable(base->lcpa_regulator);
+ return ret;
+}
+
+static int dma40_resume(struct device *dev)
+{
+ struct d40_base *base = dev_get_drvdata(dev);
+ int ret = 0;
+
+ if (base->lcpa_regulator) {
+ ret = regulator_enable(base->lcpa_regulator);
+ if (ret)
+ return ret;
+ }
+
+ return pm_runtime_force_resume(dev);
+}
+#endif
+
+#ifdef CONFIG_PM
+static void dma40_backup(void __iomem *baseaddr, u32 *backup,
+ u32 *regaddr, int num, bool save)
+{
+ int i;
+
+ for (i = 0; i < num; i++) {
+ void __iomem *addr = baseaddr + regaddr[i];
+
+ if (save)
+ backup[i] = readl_relaxed(addr);
+ else
+ writel_relaxed(backup[i], addr);
+ }
+}
+
+static void d40_save_restore_registers(struct d40_base *base, bool save)
+{
+ int i;
+
+ /* Save/Restore channel specific registers */
+ for (i = 0; i < base->num_phy_chans; i++) {
+ void __iomem *addr;
+ int idx;
+
+ if (base->phy_res[i].reserved)
+ continue;
+
+ addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
+ idx = i * ARRAY_SIZE(d40_backup_regs_chan);
+
+ dma40_backup(addr, &base->reg_val_backup_chan[idx],
+ d40_backup_regs_chan,
+ ARRAY_SIZE(d40_backup_regs_chan),
+ save);
+ }
+
+ /* Save/Restore global registers */
+ dma40_backup(base->virtbase, base->reg_val_backup,
+ d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
+ save);
+
+ /* Save/Restore registers only existing on dma40 v3 and later */
+ if (base->gen_dmac.backup)
+ dma40_backup(base->virtbase, base->reg_val_backup_v4,
+ base->gen_dmac.backup,
+ base->gen_dmac.backup_size,
+ save);
+}
+
+static int dma40_runtime_suspend(struct device *dev)
+{
+ struct d40_base *base = dev_get_drvdata(dev);
+
+ d40_save_restore_registers(base, true);
+
+ /* Don't disable/enable clocks for v1 due to HW bugs */
+ if (base->rev != 1)
+ writel_relaxed(base->gcc_pwr_off_mask,
+ base->virtbase + D40_DREG_GCC);
+
+ return 0;
+}
+
+static int dma40_runtime_resume(struct device *dev)
+{
+ struct d40_base *base = dev_get_drvdata(dev);
+
+ d40_save_restore_registers(base, false);
+
+ writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
+ base->virtbase + D40_DREG_GCC);
+ return 0;
+}
+#endif
+
+static const struct dev_pm_ops dma40_pm_ops = {
+ SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
+ SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
+ dma40_runtime_resume,
+ NULL)
+};
+
+/* Initialization functions. */
+
+static int __init d40_phy_res_init(struct d40_base *base)
+{
+ int i;
+ int num_phy_chans_avail = 0;
+ u32 val[2];
+ int odd_even_bit = -2;
+ int gcc = D40_DREG_GCC_ENA;
+
+ val[0] = readl(base->virtbase + D40_DREG_PRSME);
+ val[1] = readl(base->virtbase + D40_DREG_PRSMO);
+
+ for (i = 0; i < base->num_phy_chans; i++) {
+ base->phy_res[i].num = i;
+ odd_even_bit += 2 * ((i % 2) == 0);
+ if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
+ /* Mark security only channels as occupied */
+ base->phy_res[i].allocated_src = D40_ALLOC_PHY;
+ base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
+ base->phy_res[i].reserved = true;
+ gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
+ D40_DREG_GCC_SRC);
+ gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
+ D40_DREG_GCC_DST);
+
+
+ } else {
+ base->phy_res[i].allocated_src = D40_ALLOC_FREE;
+ base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
+ base->phy_res[i].reserved = false;
+ num_phy_chans_avail++;
+ }
+ spin_lock_init(&base->phy_res[i].lock);
+ }
+
+ /* Mark disabled channels as occupied */
+ for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
+ int chan = base->plat_data->disabled_channels[i];
+
+ base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
+ base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
+ base->phy_res[chan].reserved = true;
+ gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
+ D40_DREG_GCC_SRC);
+ gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
+ D40_DREG_GCC_DST);
+ num_phy_chans_avail--;
+ }
+
+ /* Mark soft_lli channels */
+ for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
+ int chan = base->plat_data->soft_lli_chans[i];
+
+ base->phy_res[chan].use_soft_lli = true;
+ }
+
+ dev_info(base->dev, "%d of %d physical DMA channels available\n",
+ num_phy_chans_avail, base->num_phy_chans);
+
+ /* Verify settings extended vs standard */
+ val[0] = readl(base->virtbase + D40_DREG_PRTYP);
+
+ for (i = 0; i < base->num_phy_chans; i++) {
+
+ if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
+ (val[0] & 0x3) != 1)
+ dev_info(base->dev,
+ "[%s] INFO: channel %d is misconfigured (%d)\n",
+ __func__, i, val[0] & 0x3);
+
+ val[0] = val[0] >> 2;
+ }
+
+ /*
+ * To keep things simple, Enable all clocks initially.
+ * The clocks will get managed later post channel allocation.
+ * The clocks for the event lines on which reserved channels exists
+ * are not managed here.
+ */
+ writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
+ base->gcc_pwr_off_mask = gcc;
+
+ return num_phy_chans_avail;
+}
+
+static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
+{
+ struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
+ struct clk *clk;
+ void __iomem *virtbase;
+ struct resource *res;
+ struct d40_base *base;
+ int num_log_chans;
+ int num_phy_chans;
+ int num_memcpy_chans;
+ int clk_ret = -EINVAL;
+ int i;
+ u32 pid;
+ u32 cid;
+ u8 rev;
+
+ clk = clk_get(&pdev->dev, NULL);
+ if (IS_ERR(clk)) {
+ d40_err(&pdev->dev, "No matching clock found\n");
+ goto check_prepare_enabled;
+ }
+
+ clk_ret = clk_prepare_enable(clk);
+ if (clk_ret) {
+ d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
+ goto disable_unprepare;
+ }
+
+ /* Get IO for DMAC base address */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
+ if (!res)
+ goto disable_unprepare;
+
+ if (request_mem_region(res->start, resource_size(res),
+ D40_NAME " I/O base") == NULL)
+ goto release_region;
+
+ virtbase = ioremap(res->start, resource_size(res));
+ if (!virtbase)
+ goto release_region;
+
+ /* This is just a regular AMBA PrimeCell ID actually */
+ for (pid = 0, i = 0; i < 4; i++)
+ pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
+ & 255) << (i * 8);
+ for (cid = 0, i = 0; i < 4; i++)
+ cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
+ & 255) << (i * 8);
+
+ if (cid != AMBA_CID) {
+ d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
+ goto unmap_io;
+ }
+ if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
+ d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
+ AMBA_MANF_BITS(pid),
+ AMBA_VENDOR_ST);
+ goto unmap_io;
+ }
+ /*
+ * HW revision:
+ * DB8500ed has revision 0
+ * ? has revision 1
+ * DB8500v1 has revision 2
+ * DB8500v2 has revision 3
+ * AP9540v1 has revision 4
+ * DB8540v1 has revision 4
+ */
+ rev = AMBA_REV_BITS(pid);
+ if (rev < 2) {
+ d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
+ goto unmap_io;
+ }
+
+ /* The number of physical channels on this HW */
+ if (plat_data->num_of_phy_chans)
+ num_phy_chans = plat_data->num_of_phy_chans;
+ else
+ num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
+
+ /* The number of channels used for memcpy */
+ if (plat_data->num_of_memcpy_chans)
+ num_memcpy_chans = plat_data->num_of_memcpy_chans;
+ else
+ num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
+
+ num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
+
+ dev_info(&pdev->dev,
+ "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
+ rev, &res->start, num_phy_chans, num_log_chans);
+
+ base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
+ (num_phy_chans + num_log_chans + num_memcpy_chans) *
+ sizeof(struct d40_chan), GFP_KERNEL);
+
+ if (base == NULL)
+ goto unmap_io;
+
+ base->rev = rev;
+ base->clk = clk;
+ base->num_memcpy_chans = num_memcpy_chans;
+ base->num_phy_chans = num_phy_chans;
+ base->num_log_chans = num_log_chans;
+ base->phy_start = res->start;
+ base->phy_size = resource_size(res);
+ base->virtbase = virtbase;
+ base->plat_data = plat_data;
+ base->dev = &pdev->dev;
+ base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
+ base->log_chans = &base->phy_chans[num_phy_chans];
+
+ if (base->plat_data->num_of_phy_chans == 14) {
+ base->gen_dmac.backup = d40_backup_regs_v4b;
+ base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
+ base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
+ base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
+ base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
+ base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
+ base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
+ base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
+ base->gen_dmac.il = il_v4b;
+ base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
+ base->gen_dmac.init_reg = dma_init_reg_v4b;
+ base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
+ } else {
+ if (base->rev >= 3) {
+ base->gen_dmac.backup = d40_backup_regs_v4a;
+ base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
+ }
+ base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
+ base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
+ base->gen_dmac.realtime_en = D40_DREG_RSEG1;
+ base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
+ base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
+ base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
+ base->gen_dmac.il = il_v4a;
+ base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
+ base->gen_dmac.init_reg = dma_init_reg_v4a;
+ base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
+ }
+
+ base->phy_res = kcalloc(num_phy_chans,
+ sizeof(*base->phy_res),
+ GFP_KERNEL);
+ if (!base->phy_res)
+ goto free_base;
+
+ base->lookup_phy_chans = kcalloc(num_phy_chans,
+ sizeof(*base->lookup_phy_chans),
+ GFP_KERNEL);
+ if (!base->lookup_phy_chans)
+ goto free_phy_res;
+
+ base->lookup_log_chans = kcalloc(num_log_chans,
+ sizeof(*base->lookup_log_chans),
+ GFP_KERNEL);
+ if (!base->lookup_log_chans)
+ goto free_phy_chans;
+
+ base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
+ sizeof(d40_backup_regs_chan),
+ GFP_KERNEL);
+ if (!base->reg_val_backup_chan)
+ goto free_log_chans;
+
+ base->lcla_pool.alloc_map = kcalloc(num_phy_chans
+ * D40_LCLA_LINK_PER_EVENT_GRP,
+ sizeof(*base->lcla_pool.alloc_map),
+ GFP_KERNEL);
+ if (!base->lcla_pool.alloc_map)
+ goto free_backup_chan;
+
+ base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
+ sizeof(*base->regs_interrupt),
+ GFP_KERNEL);
+ if (!base->regs_interrupt)
+ goto free_map;
+
+ base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
+ 0, SLAB_HWCACHE_ALIGN,
+ NULL);
+ if (base->desc_slab == NULL)
+ goto free_regs;
+
+
+ return base;
+ free_regs:
+ kfree(base->regs_interrupt);
+ free_map:
+ kfree(base->lcla_pool.alloc_map);
+ free_backup_chan:
+ kfree(base->reg_val_backup_chan);
+ free_log_chans:
+ kfree(base->lookup_log_chans);
+ free_phy_chans:
+ kfree(base->lookup_phy_chans);
+ free_phy_res:
+ kfree(base->phy_res);
+ free_base:
+ kfree(base);
+ unmap_io:
+ iounmap(virtbase);
+ release_region:
+ release_mem_region(res->start, resource_size(res));
+ check_prepare_enabled:
+ if (!clk_ret)
+ disable_unprepare:
+ clk_disable_unprepare(clk);
+ if (!IS_ERR(clk))
+ clk_put(clk);
+ return NULL;
+}
+
+static void __init d40_hw_init(struct d40_base *base)
+{
+
+ int i;
+ u32 prmseo[2] = {0, 0};
+ u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
+ u32 pcmis = 0;
+ u32 pcicr = 0;
+ struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
+ u32 reg_size = base->gen_dmac.init_reg_size;
+
+ for (i = 0; i < reg_size; i++)
+ writel(dma_init_reg[i].val,
+ base->virtbase + dma_init_reg[i].reg);
+
+ /* Configure all our dma channels to default settings */
+ for (i = 0; i < base->num_phy_chans; i++) {
+
+ activeo[i % 2] = activeo[i % 2] << 2;
+
+ if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
+ == D40_ALLOC_PHY) {
+ activeo[i % 2] |= 3;
+ continue;
+ }
+
+ /* Enable interrupt # */
+ pcmis = (pcmis << 1) | 1;
+
+ /* Clear interrupt # */
+ pcicr = (pcicr << 1) | 1;
+
+ /* Set channel to physical mode */
+ prmseo[i % 2] = prmseo[i % 2] << 2;
+ prmseo[i % 2] |= 1;
+
+ }
+
+ writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
+ writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
+ writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
+ writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
+
+ /* Write which interrupt to enable */
+ writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
+
+ /* Write which interrupt to clear */
+ writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
+
+ /* These are __initdata and cannot be accessed after init */
+ base->gen_dmac.init_reg = NULL;
+ base->gen_dmac.init_reg_size = 0;
+}
+
+static int __init d40_lcla_allocate(struct d40_base *base)
+{
+ struct d40_lcla_pool *pool = &base->lcla_pool;
+ unsigned long *page_list;
+ int i, j;
+ int ret;
+
+ /*
+ * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
+ * To full fill this hardware requirement without wasting 256 kb
+ * we allocate pages until we get an aligned one.
+ */
+ page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
+ sizeof(*page_list),
+ GFP_KERNEL);
+ if (!page_list)
+ return -ENOMEM;
+
+ /* Calculating how many pages that are required */
+ base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
+
+ for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
+ page_list[i] = __get_free_pages(GFP_KERNEL,
+ base->lcla_pool.pages);
+ if (!page_list[i]) {
+
+ d40_err(base->dev, "Failed to allocate %d pages.\n",
+ base->lcla_pool.pages);
+ ret = -ENOMEM;
+
+ for (j = 0; j < i; j++)
+ free_pages(page_list[j], base->lcla_pool.pages);
+ goto free_page_list;
+ }
+
+ if ((virt_to_phys((void *)page_list[i]) &
+ (LCLA_ALIGNMENT - 1)) == 0)
+ break;
+ }
+
+ for (j = 0; j < i; j++)
+ free_pages(page_list[j], base->lcla_pool.pages);
+
+ if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
+ base->lcla_pool.base = (void *)page_list[i];
+ } else {
+ /*
+ * After many attempts and no succees with finding the correct
+ * alignment, try with allocating a big buffer.
+ */
+ dev_warn(base->dev,
+ "[%s] Failed to get %d pages @ 18 bit align.\n",
+ __func__, base->lcla_pool.pages);
+ base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
+ base->num_phy_chans +
+ LCLA_ALIGNMENT,
+ GFP_KERNEL);
+ if (!base->lcla_pool.base_unaligned) {
+ ret = -ENOMEM;
+ goto free_page_list;
+ }
+
+ base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
+ LCLA_ALIGNMENT);
+ }
+
+ pool->dma_addr = dma_map_single(base->dev, pool->base,
+ SZ_1K * base->num_phy_chans,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(base->dev, pool->dma_addr)) {
+ pool->dma_addr = 0;
+ ret = -ENOMEM;
+ goto free_page_list;
+ }
+
+ writel(virt_to_phys(base->lcla_pool.base),
+ base->virtbase + D40_DREG_LCLA);
+ ret = 0;
+ free_page_list:
+ kfree(page_list);
+ return ret;
+}
+
+static int __init d40_of_probe(struct platform_device *pdev,
+ struct device_node *np)
+{
+ struct stedma40_platform_data *pdata;
+ int num_phy = 0, num_memcpy = 0, num_disabled = 0;
+ const __be32 *list;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ /* If absent this value will be obtained from h/w. */
+ of_property_read_u32(np, "dma-channels", &num_phy);
+ if (num_phy > 0)
+ pdata->num_of_phy_chans = num_phy;
+
+ list = of_get_property(np, "memcpy-channels", &num_memcpy);
+ num_memcpy /= sizeof(*list);
+
+ if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
+ d40_err(&pdev->dev,
+ "Invalid number of memcpy channels specified (%d)\n",
+ num_memcpy);
+ return -EINVAL;
+ }
+ pdata->num_of_memcpy_chans = num_memcpy;
+
+ of_property_read_u32_array(np, "memcpy-channels",
+ dma40_memcpy_channels,
+ num_memcpy);
+
+ list = of_get_property(np, "disabled-channels", &num_disabled);
+ num_disabled /= sizeof(*list);
+
+ if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
+ d40_err(&pdev->dev,
+ "Invalid number of disabled channels specified (%d)\n",
+ num_disabled);
+ return -EINVAL;
+ }
+
+ of_property_read_u32_array(np, "disabled-channels",
+ pdata->disabled_channels,
+ num_disabled);
+ pdata->disabled_channels[num_disabled] = -1;
+
+ pdev->dev.platform_data = pdata;
+
+ return 0;
+}
+
+static int __init d40_probe(struct platform_device *pdev)
+{
+ struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
+ struct device_node *np = pdev->dev.of_node;
+ int ret = -ENOENT;
+ struct d40_base *base;
+ struct resource *res;
+ int num_reserved_chans;
+ u32 val;
+
+ if (!plat_data) {
+ if (np) {
+ if (d40_of_probe(pdev, np)) {
+ ret = -ENOMEM;
+ goto report_failure;
+ }
+ } else {
+ d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
+ goto report_failure;
+ }
+ }
+
+ base = d40_hw_detect_init(pdev);
+ if (!base)
+ goto report_failure;
+
+ num_reserved_chans = d40_phy_res_init(base);
+
+ platform_set_drvdata(pdev, base);
+
+ spin_lock_init(&base->interrupt_lock);
+ spin_lock_init(&base->execmd_lock);
+
+ /* Get IO for logical channel parameter address */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
+ if (!res) {
+ ret = -ENOENT;
+ d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
+ goto destroy_cache;
+ }
+ base->lcpa_size = resource_size(res);
+ base->phy_lcpa = res->start;
+
+ if (request_mem_region(res->start, resource_size(res),
+ D40_NAME " I/O lcpa") == NULL) {
+ ret = -EBUSY;
+ d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
+ goto destroy_cache;
+ }
+
+ /* We make use of ESRAM memory for this. */
+ val = readl(base->virtbase + D40_DREG_LCPA);
+ if (res->start != val && val != 0) {
+ dev_warn(&pdev->dev,
+ "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
+ __func__, val, &res->start);
+ } else
+ writel(res->start, base->virtbase + D40_DREG_LCPA);
+
+ base->lcpa_base = ioremap(res->start, resource_size(res));
+ if (!base->lcpa_base) {
+ ret = -ENOMEM;
+ d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
+ goto destroy_cache;
+ }
+ /* If lcla has to be located in ESRAM we don't need to allocate */
+ if (base->plat_data->use_esram_lcla) {
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "lcla_esram");
+ if (!res) {
+ ret = -ENOENT;
+ d40_err(&pdev->dev,
+ "No \"lcla_esram\" memory resource\n");
+ goto destroy_cache;
+ }
+ base->lcla_pool.base = ioremap(res->start,
+ resource_size(res));
+ if (!base->lcla_pool.base) {
+ ret = -ENOMEM;
+ d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
+ goto destroy_cache;
+ }
+ writel(res->start, base->virtbase + D40_DREG_LCLA);
+
+ } else {
+ ret = d40_lcla_allocate(base);
+ if (ret) {
+ d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
+ goto destroy_cache;
+ }
+ }
+
+ spin_lock_init(&base->lcla_pool.lock);
+
+ base->irq = platform_get_irq(pdev, 0);
+ if (base->irq < 0) {
+ ret = base->irq;
+ goto destroy_cache;
+ }
+
+ ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
+ if (ret) {
+ d40_err(&pdev->dev, "No IRQ defined\n");
+ goto destroy_cache;
+ }
+
+ if (base->plat_data->use_esram_lcla) {
+
+ base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
+ if (IS_ERR(base->lcpa_regulator)) {
+ d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
+ ret = PTR_ERR(base->lcpa_regulator);
+ base->lcpa_regulator = NULL;
+ goto destroy_cache;
+ }
+
+ ret = regulator_enable(base->lcpa_regulator);
+ if (ret) {
+ d40_err(&pdev->dev,
+ "Failed to enable lcpa_regulator\n");
+ regulator_put(base->lcpa_regulator);
+ base->lcpa_regulator = NULL;
+ goto destroy_cache;
+ }
+ }
+
+ writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
+
+ pm_runtime_irq_safe(base->dev);
+ pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
+ pm_runtime_use_autosuspend(base->dev);
+ pm_runtime_mark_last_busy(base->dev);
+ pm_runtime_set_active(base->dev);
+ pm_runtime_enable(base->dev);
+
+ ret = d40_dmaengine_init(base, num_reserved_chans);
+ if (ret)
+ goto destroy_cache;
+
+ ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
+ if (ret) {
+ d40_err(&pdev->dev, "Failed to set dma max seg size\n");
+ goto destroy_cache;
+ }
+
+ d40_hw_init(base);
+
+ if (np) {
+ ret = of_dma_controller_register(np, d40_xlate, NULL);
+ if (ret)
+ dev_err(&pdev->dev,
+ "could not register of_dma_controller\n");
+ }
+
+ dev_info(base->dev, "initialized\n");
+ return 0;
+ destroy_cache:
+ kmem_cache_destroy(base->desc_slab);
+ if (base->virtbase)
+ iounmap(base->virtbase);
+
+ if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
+ iounmap(base->lcla_pool.base);
+ base->lcla_pool.base = NULL;
+ }
+
+ if (base->lcla_pool.dma_addr)
+ dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
+ SZ_1K * base->num_phy_chans,
+ DMA_TO_DEVICE);
+
+ if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
+ free_pages((unsigned long)base->lcla_pool.base,
+ base->lcla_pool.pages);
+
+ kfree(base->lcla_pool.base_unaligned);
+
+ if (base->lcpa_base)
+ iounmap(base->lcpa_base);
+
+ if (base->phy_lcpa)
+ release_mem_region(base->phy_lcpa,
+ base->lcpa_size);
+ if (base->phy_start)
+ release_mem_region(base->phy_start,
+ base->phy_size);
+ if (base->clk) {
+ clk_disable_unprepare(base->clk);
+ clk_put(base->clk);
+ }
+
+ if (base->lcpa_regulator) {
+ regulator_disable(base->lcpa_regulator);
+ regulator_put(base->lcpa_regulator);
+ }
+ pm_runtime_disable(base->dev);
+
+ kfree(base->lcla_pool.alloc_map);
+ kfree(base->lookup_log_chans);
+ kfree(base->lookup_phy_chans);
+ kfree(base->phy_res);
+ kfree(base);
+ report_failure:
+ d40_err(&pdev->dev, "probe failed\n");
+ return ret;
+}
+
+static const struct of_device_id d40_match[] = {
+ { .compatible = "stericsson,dma40", },
+ {}
+};
+
+static struct platform_driver d40_driver = {
+ .driver = {
+ .name = D40_NAME,
+ .pm = &dma40_pm_ops,
+ .of_match_table = d40_match,
+ },
+};
+
+static int __init stedma40_init(void)
+{
+ return platform_driver_probe(&d40_driver, d40_probe);
+}
+subsys_initcall(stedma40_init);