diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/firmware/efi/libstub/randomalloc.c | 128 |
1 files changed, 128 insertions, 0 deletions
diff --git a/drivers/firmware/efi/libstub/randomalloc.c b/drivers/firmware/efi/libstub/randomalloc.c new file mode 100644 index 000000000..724155b9e --- /dev/null +++ b/drivers/firmware/efi/libstub/randomalloc.c @@ -0,0 +1,128 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> + */ + +#include <linux/efi.h> +#include <linux/log2.h> +#include <asm/efi.h> + +#include "efistub.h" + +/* + * Return the number of slots covered by this entry, i.e., the number of + * addresses it covers that are suitably aligned and supply enough room + * for the allocation. + */ +static unsigned long get_entry_num_slots(efi_memory_desc_t *md, + unsigned long size, + unsigned long align_shift) +{ + unsigned long align = 1UL << align_shift; + u64 first_slot, last_slot, region_end; + + if (md->type != EFI_CONVENTIONAL_MEMORY) + return 0; + + if (efi_soft_reserve_enabled() && + (md->attribute & EFI_MEMORY_SP)) + return 0; + + region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1, + (u64)ULONG_MAX); + if (region_end < size) + return 0; + + first_slot = round_up(md->phys_addr, align); + last_slot = round_down(region_end - size + 1, align); + + if (first_slot > last_slot) + return 0; + + return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1; +} + +/* + * The UEFI memory descriptors have a virtual address field that is only used + * when installing the virtual mapping using SetVirtualAddressMap(). Since it + * is unused here, we can reuse it to keep track of each descriptor's slot + * count. + */ +#define MD_NUM_SLOTS(md) ((md)->virt_addr) + +efi_status_t efi_random_alloc(unsigned long size, + unsigned long align, + unsigned long *addr, + unsigned long random_seed) +{ + unsigned long map_size, desc_size, total_slots = 0, target_slot; + unsigned long buff_size; + efi_status_t status; + efi_memory_desc_t *memory_map; + int map_offset; + struct efi_boot_memmap map; + + map.map = &memory_map; + map.map_size = &map_size; + map.desc_size = &desc_size; + map.desc_ver = NULL; + map.key_ptr = NULL; + map.buff_size = &buff_size; + + status = efi_get_memory_map(&map); + if (status != EFI_SUCCESS) + return status; + + if (align < EFI_ALLOC_ALIGN) + align = EFI_ALLOC_ALIGN; + + size = round_up(size, EFI_ALLOC_ALIGN); + + /* count the suitable slots in each memory map entry */ + for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { + efi_memory_desc_t *md = (void *)memory_map + map_offset; + unsigned long slots; + + slots = get_entry_num_slots(md, size, ilog2(align)); + MD_NUM_SLOTS(md) = slots; + total_slots += slots; + } + + /* find a random number between 0 and total_slots */ + target_slot = (total_slots * (u64)(random_seed & U32_MAX)) >> 32; + + /* + * target_slot is now a value in the range [0, total_slots), and so + * it corresponds with exactly one of the suitable slots we recorded + * when iterating over the memory map the first time around. + * + * So iterate over the memory map again, subtracting the number of + * slots of each entry at each iteration, until we have found the entry + * that covers our chosen slot. Use the residual value of target_slot + * to calculate the randomly chosen address, and allocate it directly + * using EFI_ALLOCATE_ADDRESS. + */ + for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { + efi_memory_desc_t *md = (void *)memory_map + map_offset; + efi_physical_addr_t target; + unsigned long pages; + + if (target_slot >= MD_NUM_SLOTS(md)) { + target_slot -= MD_NUM_SLOTS(md); + continue; + } + + target = round_up(md->phys_addr, align) + target_slot * align; + pages = size / EFI_PAGE_SIZE; + + status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS, + EFI_LOADER_DATA, pages, &target); + if (status == EFI_SUCCESS) + *addr = target; + break; + } + + efi_bs_call(free_pool, memory_map); + + return status; +} |