summaryrefslogtreecommitdiffstats
path: root/drivers/infiniband/hw/hfi1/qsfp.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/infiniband/hw/hfi1/qsfp.c')
-rw-r--r--drivers/infiniband/hw/hfi1/qsfp.c858
1 files changed, 858 insertions, 0 deletions
diff --git a/drivers/infiniband/hw/hfi1/qsfp.c b/drivers/infiniband/hw/hfi1/qsfp.c
new file mode 100644
index 000000000..8386c84c2
--- /dev/null
+++ b/drivers/infiniband/hw/hfi1/qsfp.c
@@ -0,0 +1,858 @@
+/*
+ * Copyright(c) 2015, 2016 Intel Corporation.
+ *
+ * This file is provided under a dual BSD/GPLv2 license. When using or
+ * redistributing this file, you may do so under either license.
+ *
+ * GPL LICENSE SUMMARY
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * - Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * - Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * - Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#include <linux/delay.h>
+#include <linux/pci.h>
+#include <linux/vmalloc.h>
+
+#include "hfi.h"
+
+/* for the given bus number, return the CSR for reading an i2c line */
+static inline u32 i2c_in_csr(u32 bus_num)
+{
+ return bus_num ? ASIC_QSFP2_IN : ASIC_QSFP1_IN;
+}
+
+/* for the given bus number, return the CSR for writing an i2c line */
+static inline u32 i2c_oe_csr(u32 bus_num)
+{
+ return bus_num ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
+}
+
+static void hfi1_setsda(void *data, int state)
+{
+ struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
+ struct hfi1_devdata *dd = bus->controlling_dd;
+ u64 reg;
+ u32 target_oe;
+
+ target_oe = i2c_oe_csr(bus->num);
+ reg = read_csr(dd, target_oe);
+ /*
+ * The OE bit value is inverted and connected to the pin. When
+ * OE is 0 the pin is left to be pulled up, when the OE is 1
+ * the pin is driven low. This matches the "open drain" or "open
+ * collector" convention.
+ */
+ if (state)
+ reg &= ~QSFP_HFI0_I2CDAT;
+ else
+ reg |= QSFP_HFI0_I2CDAT;
+ write_csr(dd, target_oe, reg);
+ /* do a read to force the write into the chip */
+ (void)read_csr(dd, target_oe);
+}
+
+static void hfi1_setscl(void *data, int state)
+{
+ struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
+ struct hfi1_devdata *dd = bus->controlling_dd;
+ u64 reg;
+ u32 target_oe;
+
+ target_oe = i2c_oe_csr(bus->num);
+ reg = read_csr(dd, target_oe);
+ /*
+ * The OE bit value is inverted and connected to the pin. When
+ * OE is 0 the pin is left to be pulled up, when the OE is 1
+ * the pin is driven low. This matches the "open drain" or "open
+ * collector" convention.
+ */
+ if (state)
+ reg &= ~QSFP_HFI0_I2CCLK;
+ else
+ reg |= QSFP_HFI0_I2CCLK;
+ write_csr(dd, target_oe, reg);
+ /* do a read to force the write into the chip */
+ (void)read_csr(dd, target_oe);
+}
+
+static int hfi1_getsda(void *data)
+{
+ struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
+ u64 reg;
+ u32 target_in;
+
+ hfi1_setsda(data, 1); /* clear OE so we do not pull line down */
+ udelay(2); /* 1us pull up + 250ns hold */
+
+ target_in = i2c_in_csr(bus->num);
+ reg = read_csr(bus->controlling_dd, target_in);
+ return !!(reg & QSFP_HFI0_I2CDAT);
+}
+
+static int hfi1_getscl(void *data)
+{
+ struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
+ u64 reg;
+ u32 target_in;
+
+ hfi1_setscl(data, 1); /* clear OE so we do not pull line down */
+ udelay(2); /* 1us pull up + 250ns hold */
+
+ target_in = i2c_in_csr(bus->num);
+ reg = read_csr(bus->controlling_dd, target_in);
+ return !!(reg & QSFP_HFI0_I2CCLK);
+}
+
+/*
+ * Allocate and initialize the given i2c bus number.
+ * Returns NULL on failure.
+ */
+static struct hfi1_i2c_bus *init_i2c_bus(struct hfi1_devdata *dd,
+ struct hfi1_asic_data *ad, int num)
+{
+ struct hfi1_i2c_bus *bus;
+ int ret;
+
+ bus = kzalloc(sizeof(*bus), GFP_KERNEL);
+ if (!bus)
+ return NULL;
+
+ bus->controlling_dd = dd;
+ bus->num = num; /* our bus number */
+
+ bus->algo.setsda = hfi1_setsda;
+ bus->algo.setscl = hfi1_setscl;
+ bus->algo.getsda = hfi1_getsda;
+ bus->algo.getscl = hfi1_getscl;
+ bus->algo.udelay = 5;
+ bus->algo.timeout = usecs_to_jiffies(100000);
+ bus->algo.data = bus;
+
+ bus->adapter.owner = THIS_MODULE;
+ bus->adapter.algo_data = &bus->algo;
+ bus->adapter.dev.parent = &dd->pcidev->dev;
+ snprintf(bus->adapter.name, sizeof(bus->adapter.name),
+ "hfi1_i2c%d", num);
+
+ ret = i2c_bit_add_bus(&bus->adapter);
+ if (ret) {
+ dd_dev_info(dd, "%s: unable to add i2c bus %d, err %d\n",
+ __func__, num, ret);
+ kfree(bus);
+ return NULL;
+ }
+
+ return bus;
+}
+
+/*
+ * Initialize i2c buses.
+ * Return 0 on success, -errno on error.
+ */
+int set_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad)
+{
+ ad->i2c_bus0 = init_i2c_bus(dd, ad, 0);
+ ad->i2c_bus1 = init_i2c_bus(dd, ad, 1);
+ if (!ad->i2c_bus0 || !ad->i2c_bus1)
+ return -ENOMEM;
+ return 0;
+};
+
+static void clean_i2c_bus(struct hfi1_i2c_bus *bus)
+{
+ if (bus) {
+ i2c_del_adapter(&bus->adapter);
+ kfree(bus);
+ }
+}
+
+void clean_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad)
+{
+ if (!ad)
+ return;
+ clean_i2c_bus(ad->i2c_bus0);
+ ad->i2c_bus0 = NULL;
+ clean_i2c_bus(ad->i2c_bus1);
+ ad->i2c_bus1 = NULL;
+}
+
+static int i2c_bus_write(struct hfi1_devdata *dd, struct hfi1_i2c_bus *i2c,
+ u8 slave_addr, int offset, int offset_size,
+ u8 *data, u16 len)
+{
+ int ret;
+ int num_msgs;
+ u8 offset_bytes[2];
+ struct i2c_msg msgs[2];
+
+ switch (offset_size) {
+ case 0:
+ num_msgs = 1;
+ msgs[0].addr = slave_addr;
+ msgs[0].flags = 0;
+ msgs[0].len = len;
+ msgs[0].buf = data;
+ break;
+ case 2:
+ offset_bytes[1] = (offset >> 8) & 0xff;
+ fallthrough;
+ case 1:
+ num_msgs = 2;
+ offset_bytes[0] = offset & 0xff;
+
+ msgs[0].addr = slave_addr;
+ msgs[0].flags = 0;
+ msgs[0].len = offset_size;
+ msgs[0].buf = offset_bytes;
+
+ msgs[1].addr = slave_addr;
+ msgs[1].flags = I2C_M_NOSTART,
+ msgs[1].len = len;
+ msgs[1].buf = data;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ i2c->controlling_dd = dd;
+ ret = i2c_transfer(&i2c->adapter, msgs, num_msgs);
+ if (ret != num_msgs) {
+ dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; write failed, ret %d\n",
+ __func__, i2c->num, slave_addr, offset, len, ret);
+ return ret < 0 ? ret : -EIO;
+ }
+ return 0;
+}
+
+static int i2c_bus_read(struct hfi1_devdata *dd, struct hfi1_i2c_bus *bus,
+ u8 slave_addr, int offset, int offset_size,
+ u8 *data, u16 len)
+{
+ int ret;
+ int num_msgs;
+ u8 offset_bytes[2];
+ struct i2c_msg msgs[2];
+
+ switch (offset_size) {
+ case 0:
+ num_msgs = 1;
+ msgs[0].addr = slave_addr;
+ msgs[0].flags = I2C_M_RD;
+ msgs[0].len = len;
+ msgs[0].buf = data;
+ break;
+ case 2:
+ offset_bytes[1] = (offset >> 8) & 0xff;
+ fallthrough;
+ case 1:
+ num_msgs = 2;
+ offset_bytes[0] = offset & 0xff;
+
+ msgs[0].addr = slave_addr;
+ msgs[0].flags = 0;
+ msgs[0].len = offset_size;
+ msgs[0].buf = offset_bytes;
+
+ msgs[1].addr = slave_addr;
+ msgs[1].flags = I2C_M_RD,
+ msgs[1].len = len;
+ msgs[1].buf = data;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ bus->controlling_dd = dd;
+ ret = i2c_transfer(&bus->adapter, msgs, num_msgs);
+ if (ret != num_msgs) {
+ dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; read failed, ret %d\n",
+ __func__, bus->num, slave_addr, offset, len, ret);
+ return ret < 0 ? ret : -EIO;
+ }
+ return 0;
+}
+
+/*
+ * Raw i2c write. No set-up or lock checking.
+ *
+ * Return 0 on success, -errno on error.
+ */
+static int __i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr,
+ int offset, void *bp, int len)
+{
+ struct hfi1_devdata *dd = ppd->dd;
+ struct hfi1_i2c_bus *bus;
+ u8 slave_addr;
+ int offset_size;
+
+ bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0;
+ slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */
+ offset_size = (i2c_addr >> 8) & 0x3;
+ return i2c_bus_write(dd, bus, slave_addr, offset, offset_size, bp, len);
+}
+
+/*
+ * Caller must hold the i2c chain resource.
+ *
+ * Return number of bytes written, or -errno.
+ */
+int i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset,
+ void *bp, int len)
+{
+ int ret;
+
+ if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
+ return -EACCES;
+
+ ret = __i2c_write(ppd, target, i2c_addr, offset, bp, len);
+ if (ret)
+ return ret;
+
+ return len;
+}
+
+/*
+ * Raw i2c read. No set-up or lock checking.
+ *
+ * Return 0 on success, -errno on error.
+ */
+static int __i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr,
+ int offset, void *bp, int len)
+{
+ struct hfi1_devdata *dd = ppd->dd;
+ struct hfi1_i2c_bus *bus;
+ u8 slave_addr;
+ int offset_size;
+
+ bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0;
+ slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */
+ offset_size = (i2c_addr >> 8) & 0x3;
+ return i2c_bus_read(dd, bus, slave_addr, offset, offset_size, bp, len);
+}
+
+/*
+ * Caller must hold the i2c chain resource.
+ *
+ * Return number of bytes read, or -errno.
+ */
+int i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset,
+ void *bp, int len)
+{
+ int ret;
+
+ if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
+ return -EACCES;
+
+ ret = __i2c_read(ppd, target, i2c_addr, offset, bp, len);
+ if (ret)
+ return ret;
+
+ return len;
+}
+
+/*
+ * Write page n, offset m of QSFP memory as defined by SFF 8636
+ * by writing @addr = ((256 * n) + m)
+ *
+ * Caller must hold the i2c chain resource.
+ *
+ * Return number of bytes written or -errno.
+ */
+int qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
+ int len)
+{
+ int count = 0;
+ int offset;
+ int nwrite;
+ int ret = 0;
+ u8 page;
+
+ if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
+ return -EACCES;
+
+ while (count < len) {
+ /*
+ * Set the qsfp page based on a zero-based address
+ * and a page size of QSFP_PAGESIZE bytes.
+ */
+ page = (u8)(addr / QSFP_PAGESIZE);
+
+ ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
+ QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1);
+ /* QSFPs require a 5-10msec delay after write operations */
+ mdelay(5);
+ if (ret) {
+ hfi1_dev_porterr(ppd->dd, ppd->port,
+ "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n",
+ target, ret);
+ break;
+ }
+
+ offset = addr % QSFP_PAGESIZE;
+ nwrite = len - count;
+ /* truncate write to boundary if crossing boundary */
+ if (((addr % QSFP_RW_BOUNDARY) + nwrite) > QSFP_RW_BOUNDARY)
+ nwrite = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY);
+
+ ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
+ offset, bp + count, nwrite);
+ /* QSFPs require a 5-10msec delay after write operations */
+ mdelay(5);
+ if (ret) /* stop on error */
+ break;
+
+ count += nwrite;
+ addr += nwrite;
+ }
+
+ if (ret < 0)
+ return ret;
+ return count;
+}
+
+/*
+ * Perform a stand-alone single QSFP write. Acquire the resource, do the
+ * write, then release the resource.
+ */
+int one_qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
+ int len)
+{
+ struct hfi1_devdata *dd = ppd->dd;
+ u32 resource = qsfp_resource(dd);
+ int ret;
+
+ ret = acquire_chip_resource(dd, resource, QSFP_WAIT);
+ if (ret)
+ return ret;
+ ret = qsfp_write(ppd, target, addr, bp, len);
+ release_chip_resource(dd, resource);
+
+ return ret;
+}
+
+/*
+ * Access page n, offset m of QSFP memory as defined by SFF 8636
+ * by reading @addr = ((256 * n) + m)
+ *
+ * Caller must hold the i2c chain resource.
+ *
+ * Return the number of bytes read or -errno.
+ */
+int qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
+ int len)
+{
+ int count = 0;
+ int offset;
+ int nread;
+ int ret = 0;
+ u8 page;
+
+ if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
+ return -EACCES;
+
+ while (count < len) {
+ /*
+ * Set the qsfp page based on a zero-based address
+ * and a page size of QSFP_PAGESIZE bytes.
+ */
+ page = (u8)(addr / QSFP_PAGESIZE);
+ ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
+ QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1);
+ /* QSFPs require a 5-10msec delay after write operations */
+ mdelay(5);
+ if (ret) {
+ hfi1_dev_porterr(ppd->dd, ppd->port,
+ "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n",
+ target, ret);
+ break;
+ }
+
+ offset = addr % QSFP_PAGESIZE;
+ nread = len - count;
+ /* truncate read to boundary if crossing boundary */
+ if (((addr % QSFP_RW_BOUNDARY) + nread) > QSFP_RW_BOUNDARY)
+ nread = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY);
+
+ ret = __i2c_read(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
+ offset, bp + count, nread);
+ if (ret) /* stop on error */
+ break;
+
+ count += nread;
+ addr += nread;
+ }
+
+ if (ret < 0)
+ return ret;
+ return count;
+}
+
+/*
+ * Perform a stand-alone single QSFP read. Acquire the resource, do the
+ * read, then release the resource.
+ */
+int one_qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
+ int len)
+{
+ struct hfi1_devdata *dd = ppd->dd;
+ u32 resource = qsfp_resource(dd);
+ int ret;
+
+ ret = acquire_chip_resource(dd, resource, QSFP_WAIT);
+ if (ret)
+ return ret;
+ ret = qsfp_read(ppd, target, addr, bp, len);
+ release_chip_resource(dd, resource);
+
+ return ret;
+}
+
+/*
+ * This function caches the QSFP memory range in 128 byte chunks.
+ * As an example, the next byte after address 255 is byte 128 from
+ * upper page 01H (if existing) rather than byte 0 from lower page 00H.
+ * Access page n, offset m of QSFP memory as defined by SFF 8636
+ * in the cache by reading byte ((128 * n) + m)
+ * The calls to qsfp_{read,write} in this function correctly handle the
+ * address map difference between this mapping and the mapping implemented
+ * by those functions
+ *
+ * The caller must be holding the QSFP i2c chain resource.
+ */
+int refresh_qsfp_cache(struct hfi1_pportdata *ppd, struct qsfp_data *cp)
+{
+ u32 target = ppd->dd->hfi1_id;
+ int ret;
+ unsigned long flags;
+ u8 *cache = &cp->cache[0];
+
+ /* ensure sane contents on invalid reads, for cable swaps */
+ memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128));
+ spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
+ ppd->qsfp_info.cache_valid = 0;
+ spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
+
+ if (!qsfp_mod_present(ppd)) {
+ ret = -ENODEV;
+ goto bail;
+ }
+
+ ret = qsfp_read(ppd, target, 0, cache, QSFP_PAGESIZE);
+ if (ret != QSFP_PAGESIZE) {
+ dd_dev_info(ppd->dd,
+ "%s: Page 0 read failed, expected %d, got %d\n",
+ __func__, QSFP_PAGESIZE, ret);
+ goto bail;
+ }
+
+ /* Is paging enabled? */
+ if (!(cache[2] & 4)) {
+ /* Paging enabled, page 03 required */
+ if ((cache[195] & 0xC0) == 0xC0) {
+ /* all */
+ ret = qsfp_read(ppd, target, 384, cache + 256, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ ret = qsfp_read(ppd, target, 640, cache + 384, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ ret = qsfp_read(ppd, target, 896, cache + 512, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ } else if ((cache[195] & 0x80) == 0x80) {
+ /* only page 2 and 3 */
+ ret = qsfp_read(ppd, target, 640, cache + 384, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ ret = qsfp_read(ppd, target, 896, cache + 512, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ } else if ((cache[195] & 0x40) == 0x40) {
+ /* only page 1 and 3 */
+ ret = qsfp_read(ppd, target, 384, cache + 256, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ ret = qsfp_read(ppd, target, 896, cache + 512, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ } else {
+ /* only page 3 */
+ ret = qsfp_read(ppd, target, 896, cache + 512, 128);
+ if (ret <= 0 || ret != 128) {
+ dd_dev_info(ppd->dd, "%s failed\n", __func__);
+ goto bail;
+ }
+ }
+ }
+
+ spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
+ ppd->qsfp_info.cache_valid = 1;
+ ppd->qsfp_info.cache_refresh_required = 0;
+ spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
+
+ return 0;
+
+bail:
+ memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128));
+ return ret;
+}
+
+const char * const hfi1_qsfp_devtech[16] = {
+ "850nm VCSEL", "1310nm VCSEL", "1550nm VCSEL", "1310nm FP",
+ "1310nm DFB", "1550nm DFB", "1310nm EML", "1550nm EML",
+ "Cu Misc", "1490nm DFB", "Cu NoEq", "Cu Eq",
+ "Undef", "Cu Active BothEq", "Cu FarEq", "Cu NearEq"
+};
+
+#define QSFP_DUMP_CHUNK 16 /* Holds longest string */
+#define QSFP_DEFAULT_HDR_CNT 224
+
+#define QSFP_PWR(pbyte) (((pbyte) >> 6) & 3)
+#define QSFP_HIGH_PWR(pbyte) ((pbyte) & 3)
+/* For use with QSFP_HIGH_PWR macro */
+#define QSFP_HIGH_PWR_UNUSED 0 /* Bits [1:0] = 00 implies low power module */
+
+/*
+ * Takes power class byte [Page 00 Byte 129] in SFF 8636
+ * Returns power class as integer (1 through 7, per SFF 8636 rev 2.4)
+ */
+int get_qsfp_power_class(u8 power_byte)
+{
+ if (QSFP_HIGH_PWR(power_byte) == QSFP_HIGH_PWR_UNUSED)
+ /* power classes count from 1, their bit encodings from 0 */
+ return (QSFP_PWR(power_byte) + 1);
+ /*
+ * 00 in the high power classes stands for unused, bringing
+ * balance to the off-by-1 offset above, we add 4 here to
+ * account for the difference between the low and high power
+ * groups
+ */
+ return (QSFP_HIGH_PWR(power_byte) + 4);
+}
+
+int qsfp_mod_present(struct hfi1_pportdata *ppd)
+{
+ struct hfi1_devdata *dd = ppd->dd;
+ u64 reg;
+
+ reg = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
+ return !(reg & QSFP_HFI0_MODPRST_N);
+}
+
+/*
+ * This function maps QSFP memory addresses in 128 byte chunks in the following
+ * fashion per the CableInfo SMA query definition in the IBA 1.3 spec/OPA Gen 1
+ * spec
+ * For addr 000-127, lower page 00h
+ * For addr 128-255, upper page 00h
+ * For addr 256-383, upper page 01h
+ * For addr 384-511, upper page 02h
+ * For addr 512-639, upper page 03h
+ *
+ * For addresses beyond this range, it returns the invalid range of data buffer
+ * set to 0.
+ * For upper pages that are optional, if they are not valid, returns the
+ * particular range of bytes in the data buffer set to 0.
+ */
+int get_cable_info(struct hfi1_devdata *dd, u32 port_num, u32 addr, u32 len,
+ u8 *data)
+{
+ struct hfi1_pportdata *ppd;
+ u32 excess_len = len;
+ int ret = 0, offset = 0;
+
+ if (port_num > dd->num_pports || port_num < 1) {
+ dd_dev_info(dd, "%s: Invalid port number %d\n",
+ __func__, port_num);
+ ret = -EINVAL;
+ goto set_zeroes;
+ }
+
+ ppd = dd->pport + (port_num - 1);
+ if (!qsfp_mod_present(ppd)) {
+ ret = -ENODEV;
+ goto set_zeroes;
+ }
+
+ if (!ppd->qsfp_info.cache_valid) {
+ ret = -EINVAL;
+ goto set_zeroes;
+ }
+
+ if (addr >= (QSFP_MAX_NUM_PAGES * 128)) {
+ ret = -ERANGE;
+ goto set_zeroes;
+ }
+
+ if ((addr + len) > (QSFP_MAX_NUM_PAGES * 128)) {
+ excess_len = (addr + len) - (QSFP_MAX_NUM_PAGES * 128);
+ memcpy(data, &ppd->qsfp_info.cache[addr], (len - excess_len));
+ data += (len - excess_len);
+ goto set_zeroes;
+ }
+
+ memcpy(data, &ppd->qsfp_info.cache[addr], len);
+
+ if (addr <= QSFP_MONITOR_VAL_END &&
+ (addr + len) >= QSFP_MONITOR_VAL_START) {
+ /* Overlap with the dynamic channel monitor range */
+ if (addr < QSFP_MONITOR_VAL_START) {
+ if (addr + len <= QSFP_MONITOR_VAL_END)
+ len = addr + len - QSFP_MONITOR_VAL_START;
+ else
+ len = QSFP_MONITOR_RANGE;
+ offset = QSFP_MONITOR_VAL_START - addr;
+ addr = QSFP_MONITOR_VAL_START;
+ } else if (addr == QSFP_MONITOR_VAL_START) {
+ offset = 0;
+ if (addr + len > QSFP_MONITOR_VAL_END)
+ len = QSFP_MONITOR_RANGE;
+ } else {
+ offset = 0;
+ if (addr + len > QSFP_MONITOR_VAL_END)
+ len = QSFP_MONITOR_VAL_END - addr + 1;
+ }
+ /* Refresh the values of the dynamic monitors from the cable */
+ ret = one_qsfp_read(ppd, dd->hfi1_id, addr, data + offset, len);
+ if (ret != len) {
+ ret = -EAGAIN;
+ goto set_zeroes;
+ }
+ }
+
+ return 0;
+
+set_zeroes:
+ memset(data, 0, excess_len);
+ return ret;
+}
+
+static const char *pwr_codes[8] = {"N/AW",
+ "1.5W",
+ "2.0W",
+ "2.5W",
+ "3.5W",
+ "4.0W",
+ "4.5W",
+ "5.0W"
+ };
+
+int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len)
+{
+ u8 *cache = &ppd->qsfp_info.cache[0];
+ u8 bin_buff[QSFP_DUMP_CHUNK];
+ char lenstr[6];
+ int sofar;
+ int bidx = 0;
+ u8 *atten = &cache[QSFP_ATTEN_OFFS];
+ u8 *vendor_oui = &cache[QSFP_VOUI_OFFS];
+ u8 power_byte = 0;
+
+ sofar = 0;
+ lenstr[0] = ' ';
+ lenstr[1] = '\0';
+
+ if (ppd->qsfp_info.cache_valid) {
+ if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS]))
+ snprintf(lenstr, sizeof(lenstr), "%dM ",
+ cache[QSFP_MOD_LEN_OFFS]);
+
+ power_byte = cache[QSFP_MOD_PWR_OFFS];
+ sofar += scnprintf(buf + sofar, len - sofar, "PWR:%.3sW\n",
+ pwr_codes[get_qsfp_power_class(power_byte)]);
+
+ sofar += scnprintf(buf + sofar, len - sofar, "TECH:%s%s\n",
+ lenstr,
+ hfi1_qsfp_devtech[(cache[QSFP_MOD_TECH_OFFS]) >> 4]);
+
+ sofar += scnprintf(buf + sofar, len - sofar, "Vendor:%.*s\n",
+ QSFP_VEND_LEN, &cache[QSFP_VEND_OFFS]);
+
+ sofar += scnprintf(buf + sofar, len - sofar, "OUI:%06X\n",
+ QSFP_OUI(vendor_oui));
+
+ sofar += scnprintf(buf + sofar, len - sofar, "Part#:%.*s\n",
+ QSFP_PN_LEN, &cache[QSFP_PN_OFFS]);
+
+ sofar += scnprintf(buf + sofar, len - sofar, "Rev:%.*s\n",
+ QSFP_REV_LEN, &cache[QSFP_REV_OFFS]);
+
+ if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS]))
+ sofar += scnprintf(buf + sofar, len - sofar,
+ "Atten:%d, %d\n",
+ QSFP_ATTEN_SDR(atten),
+ QSFP_ATTEN_DDR(atten));
+
+ sofar += scnprintf(buf + sofar, len - sofar, "Serial:%.*s\n",
+ QSFP_SN_LEN, &cache[QSFP_SN_OFFS]);
+
+ sofar += scnprintf(buf + sofar, len - sofar, "Date:%.*s\n",
+ QSFP_DATE_LEN, &cache[QSFP_DATE_OFFS]);
+
+ sofar += scnprintf(buf + sofar, len - sofar, "Lot:%.*s\n",
+ QSFP_LOT_LEN, &cache[QSFP_LOT_OFFS]);
+
+ while (bidx < QSFP_DEFAULT_HDR_CNT) {
+ int iidx;
+
+ memcpy(bin_buff, &cache[bidx], QSFP_DUMP_CHUNK);
+ for (iidx = 0; iidx < QSFP_DUMP_CHUNK; ++iidx) {
+ sofar += scnprintf(buf + sofar, len - sofar,
+ " %02X", bin_buff[iidx]);
+ }
+ sofar += scnprintf(buf + sofar, len - sofar, "\n");
+ bidx += QSFP_DUMP_CHUNK;
+ }
+ }
+ return sofar;
+}