diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/md/dm-verity-fec.c | 823 |
1 files changed, 823 insertions, 0 deletions
diff --git a/drivers/md/dm-verity-fec.c b/drivers/md/dm-verity-fec.c new file mode 100644 index 000000000..442437e4e --- /dev/null +++ b/drivers/md/dm-verity-fec.c @@ -0,0 +1,823 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2015 Google, Inc. + * + * Author: Sami Tolvanen <samitolvanen@google.com> + */ + +#include "dm-verity-fec.h" +#include <linux/math64.h> + +#define DM_MSG_PREFIX "verity-fec" + +/* + * If error correction has been configured, returns true. + */ +bool verity_fec_is_enabled(struct dm_verity *v) +{ + return v->fec && v->fec->dev; +} + +/* + * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable + * length fields. + */ +static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) +{ + return (struct dm_verity_fec_io *) + ((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io)); +} + +/* + * Return an interleaved offset for a byte in RS block. + */ +static inline u64 fec_interleave(struct dm_verity *v, u64 offset) +{ + u32 mod; + + mod = do_div(offset, v->fec->rsn); + return offset + mod * (v->fec->rounds << v->data_dev_block_bits); +} + +/* + * Decode an RS block using Reed-Solomon. + */ +static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, + u8 *data, u8 *fec, int neras) +{ + int i; + uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; + + for (i = 0; i < v->fec->roots; i++) + par[i] = fec[i]; + + return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, + fio->erasures, 0, NULL); +} + +/* + * Read error-correcting codes for the requested RS block. Returns a pointer + * to the data block. Caller is responsible for releasing buf. + */ +static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, + unsigned *offset, struct dm_buffer **buf) +{ + u64 position, block, rem; + u8 *res; + + position = (index + rsb) * v->fec->roots; + block = div64_u64_rem(position, v->fec->io_size, &rem); + *offset = (unsigned)rem; + + res = dm_bufio_read(v->fec->bufio, block, buf); + if (IS_ERR(res)) { + DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", + v->data_dev->name, (unsigned long long)rsb, + (unsigned long long)block, PTR_ERR(res)); + *buf = NULL; + } + + return res; +} + +/* Loop over each preallocated buffer slot. */ +#define fec_for_each_prealloc_buffer(__i) \ + for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) + +/* Loop over each extra buffer slot. */ +#define fec_for_each_extra_buffer(io, __i) \ + for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) + +/* Loop over each allocated buffer. */ +#define fec_for_each_buffer(io, __i) \ + for (__i = 0; __i < (io)->nbufs; __i++) + +/* Loop over each RS block in each allocated buffer. */ +#define fec_for_each_buffer_rs_block(io, __i, __j) \ + fec_for_each_buffer(io, __i) \ + for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) + +/* + * Return a pointer to the current RS block when called inside + * fec_for_each_buffer_rs_block. + */ +static inline u8 *fec_buffer_rs_block(struct dm_verity *v, + struct dm_verity_fec_io *fio, + unsigned i, unsigned j) +{ + return &fio->bufs[i][j * v->fec->rsn]; +} + +/* + * Return an index to the current RS block when called inside + * fec_for_each_buffer_rs_block. + */ +static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j) +{ + return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; +} + +/* + * Decode all RS blocks from buffers and copy corrected bytes into fio->output + * starting from block_offset. + */ +static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, + u64 rsb, int byte_index, unsigned block_offset, + int neras) +{ + int r, corrected = 0, res; + struct dm_buffer *buf; + unsigned n, i, offset; + u8 *par, *block; + + par = fec_read_parity(v, rsb, block_offset, &offset, &buf); + if (IS_ERR(par)) + return PTR_ERR(par); + + /* + * Decode the RS blocks we have in bufs. Each RS block results in + * one corrected target byte and consumes fec->roots parity bytes. + */ + fec_for_each_buffer_rs_block(fio, n, i) { + block = fec_buffer_rs_block(v, fio, n, i); + res = fec_decode_rs8(v, fio, block, &par[offset], neras); + if (res < 0) { + r = res; + goto error; + } + + corrected += res; + fio->output[block_offset] = block[byte_index]; + + block_offset++; + if (block_offset >= 1 << v->data_dev_block_bits) + goto done; + + /* read the next block when we run out of parity bytes */ + offset += v->fec->roots; + if (offset >= v->fec->io_size) { + dm_bufio_release(buf); + + par = fec_read_parity(v, rsb, block_offset, &offset, &buf); + if (IS_ERR(par)) + return PTR_ERR(par); + } + } +done: + r = corrected; +error: + dm_bufio_release(buf); + + if (r < 0 && neras) + DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", + v->data_dev->name, (unsigned long long)rsb, r); + else if (r > 0) + DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", + v->data_dev->name, (unsigned long long)rsb, r); + + return r; +} + +/* + * Locate data block erasures using verity hashes. + */ +static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, + u8 *want_digest, u8 *data) +{ + if (unlikely(verity_hash(v, verity_io_hash_req(v, io), + data, 1 << v->data_dev_block_bits, + verity_io_real_digest(v, io)))) + return 0; + + return memcmp(verity_io_real_digest(v, io), want_digest, + v->digest_size) != 0; +} + +/* + * Read data blocks that are part of the RS block and deinterleave as much as + * fits into buffers. Check for erasure locations if @neras is non-NULL. + */ +static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, + u64 rsb, u64 target, unsigned block_offset, + int *neras) +{ + bool is_zero; + int i, j, target_index = -1; + struct dm_buffer *buf; + struct dm_bufio_client *bufio; + struct dm_verity_fec_io *fio = fec_io(io); + u64 block, ileaved; + u8 *bbuf, *rs_block; + u8 want_digest[HASH_MAX_DIGESTSIZE]; + unsigned n, k; + + if (neras) + *neras = 0; + + if (WARN_ON(v->digest_size > sizeof(want_digest))) + return -EINVAL; + + /* + * read each of the rsn data blocks that are part of the RS block, and + * interleave contents to available bufs + */ + for (i = 0; i < v->fec->rsn; i++) { + ileaved = fec_interleave(v, rsb * v->fec->rsn + i); + + /* + * target is the data block we want to correct, target_index is + * the index of this block within the rsn RS blocks + */ + if (ileaved == target) + target_index = i; + + block = ileaved >> v->data_dev_block_bits; + bufio = v->fec->data_bufio; + + if (block >= v->data_blocks) { + block -= v->data_blocks; + + /* + * blocks outside the area were assumed to contain + * zeros when encoding data was generated + */ + if (unlikely(block >= v->fec->hash_blocks)) + continue; + + block += v->hash_start; + bufio = v->bufio; + } + + bbuf = dm_bufio_read(bufio, block, &buf); + if (IS_ERR(bbuf)) { + DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", + v->data_dev->name, + (unsigned long long)rsb, + (unsigned long long)block, PTR_ERR(bbuf)); + + /* assume the block is corrupted */ + if (neras && *neras <= v->fec->roots) + fio->erasures[(*neras)++] = i; + + continue; + } + + /* locate erasures if the block is on the data device */ + if (bufio == v->fec->data_bufio && + verity_hash_for_block(v, io, block, want_digest, + &is_zero) == 0) { + /* skip known zero blocks entirely */ + if (is_zero) + goto done; + + /* + * skip if we have already found the theoretical + * maximum number (i.e. fec->roots) of erasures + */ + if (neras && *neras <= v->fec->roots && + fec_is_erasure(v, io, want_digest, bbuf)) + fio->erasures[(*neras)++] = i; + } + + /* + * deinterleave and copy the bytes that fit into bufs, + * starting from block_offset + */ + fec_for_each_buffer_rs_block(fio, n, j) { + k = fec_buffer_rs_index(n, j) + block_offset; + + if (k >= 1 << v->data_dev_block_bits) + goto done; + + rs_block = fec_buffer_rs_block(v, fio, n, j); + rs_block[i] = bbuf[k]; + } +done: + dm_bufio_release(buf); + } + + return target_index; +} + +/* + * Allocate RS control structure and FEC buffers from preallocated mempools, + * and attempt to allocate as many extra buffers as available. + */ +static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) +{ + unsigned n; + + if (!fio->rs) + fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO); + + fec_for_each_prealloc_buffer(n) { + if (fio->bufs[n]) + continue; + + fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT); + if (unlikely(!fio->bufs[n])) { + DMERR("failed to allocate FEC buffer"); + return -ENOMEM; + } + } + + /* try to allocate the maximum number of buffers */ + fec_for_each_extra_buffer(fio, n) { + if (fio->bufs[n]) + continue; + + fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT); + /* we can manage with even one buffer if necessary */ + if (unlikely(!fio->bufs[n])) + break; + } + fio->nbufs = n; + + if (!fio->output) + fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO); + + return 0; +} + +/* + * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are + * zeroed before deinterleaving. + */ +static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) +{ + unsigned n; + + fec_for_each_buffer(fio, n) + memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); + + memset(fio->erasures, 0, sizeof(fio->erasures)); +} + +/* + * Decode all RS blocks in a single data block and return the target block + * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses + * hashes to locate erasures. + */ +static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, + struct dm_verity_fec_io *fio, u64 rsb, u64 offset, + bool use_erasures) +{ + int r, neras = 0; + unsigned pos; + + r = fec_alloc_bufs(v, fio); + if (unlikely(r < 0)) + return r; + + for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { + fec_init_bufs(v, fio); + + r = fec_read_bufs(v, io, rsb, offset, pos, + use_erasures ? &neras : NULL); + if (unlikely(r < 0)) + return r; + + r = fec_decode_bufs(v, fio, rsb, r, pos, neras); + if (r < 0) + return r; + + pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; + } + + /* Always re-validate the corrected block against the expected hash */ + r = verity_hash(v, verity_io_hash_req(v, io), fio->output, + 1 << v->data_dev_block_bits, + verity_io_real_digest(v, io)); + if (unlikely(r < 0)) + return r; + + if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), + v->digest_size)) { + DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", + v->data_dev->name, (unsigned long long)rsb, neras); + return -EILSEQ; + } + + return 0; +} + +static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, + size_t len) +{ + struct dm_verity_fec_io *fio = fec_io(io); + + memcpy(data, &fio->output[fio->output_pos], len); + fio->output_pos += len; + + return 0; +} + +/* + * Correct errors in a block. Copies corrected block to dest if non-NULL, + * otherwise to a bio_vec starting from iter. + */ +int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, + enum verity_block_type type, sector_t block, u8 *dest, + struct bvec_iter *iter) +{ + int r; + struct dm_verity_fec_io *fio = fec_io(io); + u64 offset, res, rsb; + + if (!verity_fec_is_enabled(v)) + return -EOPNOTSUPP; + + if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { + DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); + return -EIO; + } + + fio->level++; + + if (type == DM_VERITY_BLOCK_TYPE_METADATA) + block = block - v->hash_start + v->data_blocks; + + /* + * For RS(M, N), the continuous FEC data is divided into blocks of N + * bytes. Since block size may not be divisible by N, the last block + * is zero padded when decoding. + * + * Each byte of the block is covered by a different RS(M, N) code, + * and each code is interleaved over N blocks to make it less likely + * that bursty corruption will leave us in unrecoverable state. + */ + + offset = block << v->data_dev_block_bits; + res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); + + /* + * The base RS block we can feed to the interleaver to find out all + * blocks required for decoding. + */ + rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); + + /* + * Locating erasures is slow, so attempt to recover the block without + * them first. Do a second attempt with erasures if the corruption is + * bad enough. + */ + r = fec_decode_rsb(v, io, fio, rsb, offset, false); + if (r < 0) { + r = fec_decode_rsb(v, io, fio, rsb, offset, true); + if (r < 0) + goto done; + } + + if (dest) + memcpy(dest, fio->output, 1 << v->data_dev_block_bits); + else if (iter) { + fio->output_pos = 0; + r = verity_for_bv_block(v, io, iter, fec_bv_copy); + } + +done: + fio->level--; + return r; +} + +/* + * Clean up per-bio data. + */ +void verity_fec_finish_io(struct dm_verity_io *io) +{ + unsigned n; + struct dm_verity_fec *f = io->v->fec; + struct dm_verity_fec_io *fio = fec_io(io); + + if (!verity_fec_is_enabled(io->v)) + return; + + mempool_free(fio->rs, &f->rs_pool); + + fec_for_each_prealloc_buffer(n) + mempool_free(fio->bufs[n], &f->prealloc_pool); + + fec_for_each_extra_buffer(fio, n) + mempool_free(fio->bufs[n], &f->extra_pool); + + mempool_free(fio->output, &f->output_pool); +} + +/* + * Initialize per-bio data. + */ +void verity_fec_init_io(struct dm_verity_io *io) +{ + struct dm_verity_fec_io *fio = fec_io(io); + + if (!verity_fec_is_enabled(io->v)) + return; + + fio->rs = NULL; + memset(fio->bufs, 0, sizeof(fio->bufs)); + fio->nbufs = 0; + fio->output = NULL; + fio->level = 0; +} + +/* + * Append feature arguments and values to the status table. + */ +unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz, + char *result, unsigned maxlen) +{ + if (!verity_fec_is_enabled(v)) + return sz; + + DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " + DM_VERITY_OPT_FEC_BLOCKS " %llu " + DM_VERITY_OPT_FEC_START " %llu " + DM_VERITY_OPT_FEC_ROOTS " %d", + v->fec->dev->name, + (unsigned long long)v->fec->blocks, + (unsigned long long)v->fec->start, + v->fec->roots); + + return sz; +} + +void verity_fec_dtr(struct dm_verity *v) +{ + struct dm_verity_fec *f = v->fec; + + if (!verity_fec_is_enabled(v)) + goto out; + + mempool_exit(&f->rs_pool); + mempool_exit(&f->prealloc_pool); + mempool_exit(&f->extra_pool); + mempool_exit(&f->output_pool); + kmem_cache_destroy(f->cache); + + if (f->data_bufio) + dm_bufio_client_destroy(f->data_bufio); + if (f->bufio) + dm_bufio_client_destroy(f->bufio); + + if (f->dev) + dm_put_device(v->ti, f->dev); +out: + kfree(f); + v->fec = NULL; +} + +static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) +{ + struct dm_verity *v = (struct dm_verity *)pool_data; + + return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask); +} + +static void fec_rs_free(void *element, void *pool_data) +{ + struct rs_control *rs = (struct rs_control *)element; + + if (rs) + free_rs(rs); +} + +bool verity_is_fec_opt_arg(const char *arg_name) +{ + return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || + !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || + !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || + !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); +} + +int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, + unsigned *argc, const char *arg_name) +{ + int r; + struct dm_target *ti = v->ti; + const char *arg_value; + unsigned long long num_ll; + unsigned char num_c; + char dummy; + + if (!*argc) { + ti->error = "FEC feature arguments require a value"; + return -EINVAL; + } + + arg_value = dm_shift_arg(as); + (*argc)--; + + if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { + r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev); + if (r) { + ti->error = "FEC device lookup failed"; + return r; + } + + } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { + if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || + ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) + >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { + ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; + return -EINVAL; + } + v->fec->blocks = num_ll; + + } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { + if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || + ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> + (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { + ti->error = "Invalid " DM_VERITY_OPT_FEC_START; + return -EINVAL; + } + v->fec->start = num_ll; + + } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { + if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || + num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || + num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { + ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; + return -EINVAL; + } + v->fec->roots = num_c; + + } else { + ti->error = "Unrecognized verity FEC feature request"; + return -EINVAL; + } + + return 0; +} + +/* + * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. + */ +int verity_fec_ctr_alloc(struct dm_verity *v) +{ + struct dm_verity_fec *f; + + f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); + if (!f) { + v->ti->error = "Cannot allocate FEC structure"; + return -ENOMEM; + } + v->fec = f; + + return 0; +} + +/* + * Validate arguments and preallocate memory. Must be called after arguments + * have been parsed using verity_fec_parse_opt_args. + */ +int verity_fec_ctr(struct dm_verity *v) +{ + struct dm_verity_fec *f = v->fec; + struct dm_target *ti = v->ti; + u64 hash_blocks, fec_blocks; + int ret; + + if (!verity_fec_is_enabled(v)) { + verity_fec_dtr(v); + return 0; + } + + /* + * FEC is computed over data blocks, possible metadata, and + * hash blocks. In other words, FEC covers total of fec_blocks + * blocks consisting of the following: + * + * data blocks | hash blocks | metadata (optional) + * + * We allow metadata after hash blocks to support a use case + * where all data is stored on the same device and FEC covers + * the entire area. + * + * If metadata is included, we require it to be available on the + * hash device after the hash blocks. + */ + + hash_blocks = v->hash_blocks - v->hash_start; + + /* + * Require matching block sizes for data and hash devices for + * simplicity. + */ + if (v->data_dev_block_bits != v->hash_dev_block_bits) { + ti->error = "Block sizes must match to use FEC"; + return -EINVAL; + } + + if (!f->roots) { + ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; + return -EINVAL; + } + f->rsn = DM_VERITY_FEC_RSM - f->roots; + + if (!f->blocks) { + ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; + return -EINVAL; + } + + f->rounds = f->blocks; + if (sector_div(f->rounds, f->rsn)) + f->rounds++; + + /* + * Due to optional metadata, f->blocks can be larger than + * data_blocks and hash_blocks combined. + */ + if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { + ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; + return -EINVAL; + } + + /* + * Metadata is accessed through the hash device, so we require + * it to be large enough. + */ + f->hash_blocks = f->blocks - v->data_blocks; + if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { + ti->error = "Hash device is too small for " + DM_VERITY_OPT_FEC_BLOCKS; + return -E2BIG; + } + + if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1)) + f->io_size = 1 << v->data_dev_block_bits; + else + f->io_size = v->fec->roots << SECTOR_SHIFT; + + f->bufio = dm_bufio_client_create(f->dev->bdev, + f->io_size, + 1, 0, NULL, NULL); + if (IS_ERR(f->bufio)) { + ti->error = "Cannot initialize FEC bufio client"; + return PTR_ERR(f->bufio); + } + + dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT)); + + fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT); + if (dm_bufio_get_device_size(f->bufio) < fec_blocks) { + ti->error = "FEC device is too small"; + return -E2BIG; + } + + f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, + 1 << v->data_dev_block_bits, + 1, 0, NULL, NULL); + if (IS_ERR(f->data_bufio)) { + ti->error = "Cannot initialize FEC data bufio client"; + return PTR_ERR(f->data_bufio); + } + + if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { + ti->error = "Data device is too small"; + return -E2BIG; + } + + /* Preallocate an rs_control structure for each worker thread */ + ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc, + fec_rs_free, (void *) v); + if (ret) { + ti->error = "Cannot allocate RS pool"; + return ret; + } + + f->cache = kmem_cache_create("dm_verity_fec_buffers", + f->rsn << DM_VERITY_FEC_BUF_RS_BITS, + 0, 0, NULL); + if (!f->cache) { + ti->error = "Cannot create FEC buffer cache"; + return -ENOMEM; + } + + /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ + ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() * + DM_VERITY_FEC_BUF_PREALLOC, + f->cache); + if (ret) { + ti->error = "Cannot allocate FEC buffer prealloc pool"; + return ret; + } + + ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache); + if (ret) { + ti->error = "Cannot allocate FEC buffer extra pool"; + return ret; + } + + /* Preallocate an output buffer for each thread */ + ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(), + 1 << v->data_dev_block_bits); + if (ret) { + ti->error = "Cannot allocate FEC output pool"; + return ret; + } + + /* Reserve space for our per-bio data */ + ti->per_io_data_size += sizeof(struct dm_verity_fec_io); + + return 0; +} |