summaryrefslogtreecommitdiffstats
path: root/drivers/md/persistent-data/dm-btree.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/md/persistent-data/dm-btree.h215
1 files changed, 215 insertions, 0 deletions
diff --git a/drivers/md/persistent-data/dm-btree.h b/drivers/md/persistent-data/dm-btree.h
new file mode 100644
index 000000000..3dc5bb1a4
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree.h
@@ -0,0 +1,215 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#ifndef _LINUX_DM_BTREE_H
+#define _LINUX_DM_BTREE_H
+
+#include "dm-block-manager.h"
+
+struct dm_transaction_manager;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Annotations used to check on-disk metadata is handled as little-endian.
+ */
+#ifdef __CHECKER__
+# define __dm_written_to_disk(x) __releases(x)
+# define __dm_reads_from_disk(x) __acquires(x)
+# define __dm_bless_for_disk(x) __acquire(x)
+# define __dm_unbless_for_disk(x) __release(x)
+#else
+# define __dm_written_to_disk(x)
+# define __dm_reads_from_disk(x)
+# define __dm_bless_for_disk(x)
+# define __dm_unbless_for_disk(x)
+#endif
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Manipulates hierarchical B+ trees with 64-bit keys and arbitrary-sized
+ * values.
+ */
+
+/*
+ * Information about the values stored within the btree.
+ */
+struct dm_btree_value_type {
+ void *context;
+
+ /*
+ * The size in bytes of each value.
+ */
+ uint32_t size;
+
+ /*
+ * Any of these methods can be safely set to NULL if you do not
+ * need the corresponding feature.
+ */
+
+ /*
+ * The btree is making a duplicate of the value, for instance
+ * because previously-shared btree nodes have now diverged.
+ * @value argument is the new copy that the copy function may modify.
+ * (Probably it just wants to increment a reference count
+ * somewhere.) This method is _not_ called for insertion of a new
+ * value: It is assumed the ref count is already 1.
+ */
+ void (*inc)(void *context, const void *value);
+
+ /*
+ * This value is being deleted. The btree takes care of freeing
+ * the memory pointed to by @value. Often the del function just
+ * needs to decrement a reference count somewhere.
+ */
+ void (*dec)(void *context, const void *value);
+
+ /*
+ * A test for equality between two values. When a value is
+ * overwritten with a new one, the old one has the dec method
+ * called _unless_ the new and old value are deemed equal.
+ */
+ int (*equal)(void *context, const void *value1, const void *value2);
+};
+
+/*
+ * The shape and contents of a btree.
+ */
+struct dm_btree_info {
+ struct dm_transaction_manager *tm;
+
+ /*
+ * Number of nested btrees. (Not the depth of a single tree.)
+ */
+ unsigned levels;
+ struct dm_btree_value_type value_type;
+};
+
+/*
+ * Set up an empty tree. O(1).
+ */
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root);
+
+/*
+ * Delete a tree. O(n) - this is the slow one! It can also block, so
+ * please don't call it on an IO path.
+ */
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root);
+
+/*
+ * All the lookup functions return -ENODATA if the key cannot be found.
+ */
+
+/*
+ * Tries to find a key that matches exactly. O(ln(n))
+ */
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value_le);
+
+/*
+ * Tries to find the first key where the bottom level key is >= to that
+ * given. Useful for skipping empty sections of the btree.
+ */
+int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, uint64_t *rkey, void *value_le);
+
+/*
+ * Insertion (or overwrite an existing value). O(ln(n))
+ */
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root)
+ __dm_written_to_disk(value);
+
+/*
+ * A variant of insert that indicates whether it actually inserted or just
+ * overwrote. Useful if you're keeping track of the number of entries in a
+ * tree.
+ */
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, void *value, dm_block_t *new_root,
+ int *inserted)
+ __dm_written_to_disk(value);
+
+/*
+ * Remove a key if present. This doesn't remove empty sub trees. Normally
+ * subtrees represent a separate entity, like a snapshot map, so this is
+ * correct behaviour. O(ln(n)).
+ */
+int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, dm_block_t *new_root);
+
+/*
+ * Removes a _contiguous_ run of values starting from 'keys' and not
+ * reaching keys2 (where keys2 is keys with the final key replaced with
+ * 'end_key'). 'end_key' is the one-past-the-end value. 'keys' may be
+ * altered.
+ */
+int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *keys, uint64_t end_key,
+ dm_block_t *new_root, unsigned *nr_removed);
+
+/*
+ * Returns < 0 on failure. Otherwise the number of key entries that have
+ * been filled out. Remember trees can have zero entries, and as such have
+ * no lowest key.
+ */
+int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys);
+
+/*
+ * Returns < 0 on failure. Otherwise the number of key entries that have
+ * been filled out. Remember trees can have zero entries, and as such have
+ * no highest key.
+ */
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys);
+
+/*
+ * Iterate through the a btree, calling fn() on each entry.
+ * It only works for single level trees and is internally recursive, so
+ * monitor stack usage carefully.
+ */
+int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
+ int (*fn)(void *context, uint64_t *keys, void *leaf),
+ void *context);
+
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Cursor API. This does not follow the rolling lock convention. Since we
+ * know the order that values are required we can issue prefetches to speed
+ * up iteration. Use on a single level btree only.
+ */
+#define DM_BTREE_CURSOR_MAX_DEPTH 16
+
+struct cursor_node {
+ struct dm_block *b;
+ unsigned index;
+};
+
+struct dm_btree_cursor {
+ struct dm_btree_info *info;
+ dm_block_t root;
+
+ bool prefetch_leaves;
+ unsigned depth;
+ struct cursor_node nodes[DM_BTREE_CURSOR_MAX_DEPTH];
+};
+
+/*
+ * Creates a fresh cursor. If prefetch_leaves is set then it is assumed
+ * the btree contains block indexes that will be prefetched. The cursor is
+ * quite large, so you probably don't want to put it on the stack.
+ */
+int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
+ bool prefetch_leaves, struct dm_btree_cursor *c);
+void dm_btree_cursor_end(struct dm_btree_cursor *c);
+int dm_btree_cursor_next(struct dm_btree_cursor *c);
+int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count);
+int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le);
+
+#endif /* _LINUX_DM_BTREE_H */