summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/ecc.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/mtd/nand/ecc.c484
1 files changed, 484 insertions, 0 deletions
diff --git a/drivers/mtd/nand/ecc.c b/drivers/mtd/nand/ecc.c
new file mode 100644
index 000000000..4a56e6c0d
--- /dev/null
+++ b/drivers/mtd/nand/ecc.c
@@ -0,0 +1,484 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Generic Error-Correcting Code (ECC) engine
+ *
+ * Copyright (C) 2019 Macronix
+ * Author:
+ * Miquèl RAYNAL <miquel.raynal@bootlin.com>
+ *
+ *
+ * This file describes the abstraction of any NAND ECC engine. It has been
+ * designed to fit most cases, including parallel NANDs and SPI-NANDs.
+ *
+ * There are three main situations where instantiating this ECC engine makes
+ * sense:
+ * - external: The ECC engine is outside the NAND pipeline, typically this
+ * is a software ECC engine, or an hardware engine that is
+ * outside the NAND controller pipeline.
+ * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
+ * controller's side. This is the case of most of the raw NAND
+ * controllers. In the pipeline case, the ECC bytes are
+ * generated/data corrected on the fly when a page is
+ * written/read.
+ * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
+ * Some NAND chips can correct themselves the data.
+ *
+ * Besides the initial setup and final cleanups, the interfaces are rather
+ * simple:
+ * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
+ * the I/O request type. In case of software correction or external
+ * engine, this step may involve to derive the ECC bytes and place
+ * them in the OOB area before a write.
+ * - finish: Finish an I/O request. Correct the data in case of a read
+ * request and report the number of corrected bits/uncorrectable
+ * errors. Most likely empty for write operations, unless you have
+ * hardware specific stuff to do, like shutting down the engine to
+ * save power.
+ *
+ * The I/O request should be enclosed in a prepare()/finish() pair of calls
+ * and will behave differently depending on the requested I/O type:
+ * - raw: Correction disabled
+ * - ecc: Correction enabled
+ *
+ * The request direction is impacting the logic as well:
+ * - read: Load data from the NAND chip
+ * - write: Store data in the NAND chip
+ *
+ * Mixing all this combinations together gives the following behavior.
+ * Those are just examples, drivers are free to add custom steps in their
+ * prepare/finish hook.
+ *
+ * [external ECC engine]
+ * - external + prepare + raw + read: do nothing
+ * - external + finish + raw + read: do nothing
+ * - external + prepare + raw + write: do nothing
+ * - external + finish + raw + write: do nothing
+ * - external + prepare + ecc + read: do nothing
+ * - external + finish + ecc + read: calculate expected ECC bytes, extract
+ * ECC bytes from OOB buffer, correct
+ * and report any bitflip/error
+ * - external + prepare + ecc + write: calculate ECC bytes and store them at
+ * the right place in the OOB buffer based
+ * on the OOB layout
+ * - external + finish + ecc + write: do nothing
+ *
+ * [pipelined ECC engine]
+ * - pipelined + prepare + raw + read: disable the controller's ECC engine if
+ * activated
+ * - pipelined + finish + raw + read: do nothing
+ * - pipelined + prepare + raw + write: disable the controller's ECC engine if
+ * activated
+ * - pipelined + finish + raw + write: do nothing
+ * - pipelined + prepare + ecc + read: enable the controller's ECC engine if
+ * deactivated
+ * - pipelined + finish + ecc + read: check the status, report any
+ * error/bitflip
+ * - pipelined + prepare + ecc + write: enable the controller's ECC engine if
+ * deactivated
+ * - pipelined + finish + ecc + write: do nothing
+ *
+ * [ondie ECC engine]
+ * - ondie + prepare + raw + read: send commands to disable the on-chip ECC
+ * engine if activated
+ * - ondie + finish + raw + read: do nothing
+ * - ondie + prepare + raw + write: send commands to disable the on-chip ECC
+ * engine if activated
+ * - ondie + finish + raw + write: do nothing
+ * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
+ * engine if deactivated
+ * - ondie + finish + ecc + read: send commands to check the status, report
+ * any error/bitflip
+ * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
+ * engine if deactivated
+ * - ondie + finish + ecc + write: do nothing
+ */
+
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+
+/**
+ * nand_ecc_init_ctx - Init the ECC engine context
+ * @nand: the NAND device
+ *
+ * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
+ */
+int nand_ecc_init_ctx(struct nand_device *nand)
+{
+ if (!nand->ecc.engine->ops->init_ctx)
+ return 0;
+
+ return nand->ecc.engine->ops->init_ctx(nand);
+}
+EXPORT_SYMBOL(nand_ecc_init_ctx);
+
+/**
+ * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
+ * @nand: the NAND device
+ */
+void nand_ecc_cleanup_ctx(struct nand_device *nand)
+{
+ if (nand->ecc.engine->ops->cleanup_ctx)
+ nand->ecc.engine->ops->cleanup_ctx(nand);
+}
+EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
+
+/**
+ * nand_ecc_prepare_io_req - Prepare an I/O request
+ * @nand: the NAND device
+ * @req: the I/O request
+ */
+int nand_ecc_prepare_io_req(struct nand_device *nand,
+ struct nand_page_io_req *req)
+{
+ if (!nand->ecc.engine->ops->prepare_io_req)
+ return 0;
+
+ return nand->ecc.engine->ops->prepare_io_req(nand, req);
+}
+EXPORT_SYMBOL(nand_ecc_prepare_io_req);
+
+/**
+ * nand_ecc_finish_io_req - Finish an I/O request
+ * @nand: the NAND device
+ * @req: the I/O request
+ */
+int nand_ecc_finish_io_req(struct nand_device *nand,
+ struct nand_page_io_req *req)
+{
+ if (!nand->ecc.engine->ops->finish_io_req)
+ return 0;
+
+ return nand->ecc.engine->ops->finish_io_req(nand, req);
+}
+EXPORT_SYMBOL(nand_ecc_finish_io_req);
+
+/* Define default OOB placement schemes for large and small page devices */
+static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section > 1)
+ return -ERANGE;
+
+ if (!section) {
+ oobregion->offset = 0;
+ if (mtd->oobsize == 16)
+ oobregion->length = 4;
+ else
+ oobregion->length = 3;
+ } else {
+ if (mtd->oobsize == 8)
+ return -ERANGE;
+
+ oobregion->offset = 6;
+ oobregion->length = total_ecc_bytes - 4;
+ }
+
+ return 0;
+}
+
+static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ if (section > 1)
+ return -ERANGE;
+
+ if (mtd->oobsize == 16) {
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = 8;
+ oobregion->offset = 8;
+ } else {
+ oobregion->length = 2;
+ if (!section)
+ oobregion->offset = 3;
+ else
+ oobregion->offset = 6;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
+ .ecc = nand_ooblayout_ecc_sp,
+ .free = nand_ooblayout_free_sp,
+};
+
+const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
+{
+ return &nand_ooblayout_sp_ops;
+}
+EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
+
+static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section || !total_ecc_bytes)
+ return -ERANGE;
+
+ oobregion->length = total_ecc_bytes;
+ oobregion->offset = mtd->oobsize - oobregion->length;
+
+ return 0;
+}
+
+static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
+ oobregion->offset = 2;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
+ .ecc = nand_ooblayout_ecc_lp,
+ .free = nand_ooblayout_free_lp,
+};
+
+const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
+{
+ return &nand_ooblayout_lp_ops;
+}
+EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
+
+/*
+ * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
+ * are placed at a fixed offset.
+ */
+static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+
+ if (section)
+ return -ERANGE;
+
+ switch (mtd->oobsize) {
+ case 64:
+ oobregion->offset = 40;
+ break;
+ case 128:
+ oobregion->offset = 80;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ oobregion->length = total_ecc_bytes;
+ if (oobregion->offset + oobregion->length > mtd->oobsize)
+ return -ERANGE;
+
+ return 0;
+}
+
+static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_device *nand = mtd_to_nanddev(mtd);
+ unsigned int total_ecc_bytes = nand->ecc.ctx.total;
+ int ecc_offset = 0;
+
+ if (section < 0 || section > 1)
+ return -ERANGE;
+
+ switch (mtd->oobsize) {
+ case 64:
+ ecc_offset = 40;
+ break;
+ case 128:
+ ecc_offset = 80;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (section == 0) {
+ oobregion->offset = 2;
+ oobregion->length = ecc_offset - 2;
+ } else {
+ oobregion->offset = ecc_offset + total_ecc_bytes;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
+ .ecc = nand_ooblayout_ecc_lp_hamming,
+ .free = nand_ooblayout_free_lp_hamming,
+};
+
+const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
+{
+ return &nand_ooblayout_lp_hamming_ops;
+}
+EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
+
+static enum nand_ecc_engine_type
+of_get_nand_ecc_engine_type(struct device_node *np)
+{
+ struct device_node *eng_np;
+
+ if (of_property_read_bool(np, "nand-no-ecc-engine"))
+ return NAND_ECC_ENGINE_TYPE_NONE;
+
+ if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
+ return NAND_ECC_ENGINE_TYPE_SOFT;
+
+ eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
+ of_node_put(eng_np);
+
+ if (eng_np) {
+ if (eng_np == np)
+ return NAND_ECC_ENGINE_TYPE_ON_DIE;
+ else
+ return NAND_ECC_ENGINE_TYPE_ON_HOST;
+ }
+
+ return NAND_ECC_ENGINE_TYPE_INVALID;
+}
+
+static const char * const nand_ecc_placement[] = {
+ [NAND_ECC_PLACEMENT_OOB] = "oob",
+ [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
+};
+
+static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
+{
+ enum nand_ecc_placement placement;
+ const char *pm;
+ int err;
+
+ err = of_property_read_string(np, "nand-ecc-placement", &pm);
+ if (!err) {
+ for (placement = NAND_ECC_PLACEMENT_OOB;
+ placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
+ if (!strcasecmp(pm, nand_ecc_placement[placement]))
+ return placement;
+ }
+ }
+
+ return NAND_ECC_PLACEMENT_UNKNOWN;
+}
+
+static const char * const nand_ecc_algos[] = {
+ [NAND_ECC_ALGO_HAMMING] = "hamming",
+ [NAND_ECC_ALGO_BCH] = "bch",
+ [NAND_ECC_ALGO_RS] = "rs",
+};
+
+static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
+{
+ enum nand_ecc_algo ecc_algo;
+ const char *pm;
+ int err;
+
+ err = of_property_read_string(np, "nand-ecc-algo", &pm);
+ if (!err) {
+ for (ecc_algo = NAND_ECC_ALGO_HAMMING;
+ ecc_algo < ARRAY_SIZE(nand_ecc_algos);
+ ecc_algo++) {
+ if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
+ return ecc_algo;
+ }
+ }
+
+ return NAND_ECC_ALGO_UNKNOWN;
+}
+
+static int of_get_nand_ecc_step_size(struct device_node *np)
+{
+ int ret;
+ u32 val;
+
+ ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
+ return ret ? ret : val;
+}
+
+static int of_get_nand_ecc_strength(struct device_node *np)
+{
+ int ret;
+ u32 val;
+
+ ret = of_property_read_u32(np, "nand-ecc-strength", &val);
+ return ret ? ret : val;
+}
+
+void of_get_nand_ecc_user_config(struct nand_device *nand)
+{
+ struct device_node *dn = nanddev_get_of_node(nand);
+ int strength, size;
+
+ nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
+ nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
+ nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
+
+ strength = of_get_nand_ecc_strength(dn);
+ if (strength >= 0)
+ nand->ecc.user_conf.strength = strength;
+
+ size = of_get_nand_ecc_step_size(dn);
+ if (size >= 0)
+ nand->ecc.user_conf.step_size = size;
+
+ if (of_property_read_bool(dn, "nand-ecc-maximize"))
+ nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
+}
+EXPORT_SYMBOL(of_get_nand_ecc_user_config);
+
+/**
+ * nand_ecc_is_strong_enough - Check if the chip configuration meets the
+ * datasheet requirements.
+ *
+ * @nand: Device to check
+ *
+ * If our configuration corrects A bits per B bytes and the minimum
+ * required correction level is X bits per Y bytes, then we must ensure
+ * both of the following are true:
+ *
+ * (1) A / B >= X / Y
+ * (2) A >= X
+ *
+ * Requirement (1) ensures we can correct for the required bitflip density.
+ * Requirement (2) ensures we can correct even when all bitflips are clumped
+ * in the same sector.
+ */
+bool nand_ecc_is_strong_enough(struct nand_device *nand)
+{
+ const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
+ const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
+ struct mtd_info *mtd = nanddev_to_mtd(nand);
+ int corr, ds_corr;
+
+ if (conf->step_size == 0 || reqs->step_size == 0)
+ /* Not enough information */
+ return true;
+
+ /*
+ * We get the number of corrected bits per page to compare
+ * the correction density.
+ */
+ corr = (mtd->writesize * conf->strength) / conf->step_size;
+ ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
+
+ return corr >= ds_corr && conf->strength >= reqs->strength;
+}
+EXPORT_SYMBOL(nand_ecc_is_strong_enough);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
+MODULE_DESCRIPTION("Generic ECC engine");