diff options
Diffstat (limited to 'drivers/mtd/nand/raw/marvell_nand.c')
-rw-r--r-- | drivers/mtd/nand/raw/marvell_nand.c | 3176 |
1 files changed, 3176 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c new file mode 100644 index 000000000..9ed3ff7f4 --- /dev/null +++ b/drivers/mtd/nand/raw/marvell_nand.c @@ -0,0 +1,3176 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Marvell NAND flash controller driver + * + * Copyright (C) 2017 Marvell + * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> + * + * + * This NAND controller driver handles two versions of the hardware, + * one is called NFCv1 and is available on PXA SoCs and the other is + * called NFCv2 and is available on Armada SoCs. + * + * The main visible difference is that NFCv1 only has Hamming ECC + * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA + * is not used with NFCv2. + * + * The ECC layouts are depicted in details in Marvell AN-379, but here + * is a brief description. + * + * When using Hamming, the data is split in 512B chunks (either 1, 2 + * or 4) and each chunk will have its own ECC "digest" of 6B at the + * beginning of the OOB area and eventually the remaining free OOB + * bytes (also called "spare" bytes in the driver). This engine + * corrects up to 1 bit per chunk and detects reliably an error if + * there are at most 2 bitflips. Here is the page layout used by the + * controller when Hamming is chosen: + * + * +-------------------------------------------------------------+ + * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | + * +-------------------------------------------------------------+ + * + * When using the BCH engine, there are N identical (data + free OOB + + * ECC) sections and potentially an extra one to deal with + * configurations where the chosen (data + free OOB + ECC) sizes do + * not align with the page (data + OOB) size. ECC bytes are always + * 30B per ECC chunk. Here is the page layout used by the controller + * when BCH is chosen: + * + * +----------------------------------------- + * | Data 1 | Free OOB bytes 1 | ECC 1 | ... + * +----------------------------------------- + * + * ------------------------------------------- + * ... | Data N | Free OOB bytes N | ECC N | + * ------------------------------------------- + * + * --------------------------------------------+ + * Last Data | Last Free OOB bytes | Last ECC | + * --------------------------------------------+ + * + * In both cases, the layout seen by the user is always: all data + * first, then all free OOB bytes and finally all ECC bytes. With BCH, + * ECC bytes are 30B long and are padded with 0xFF to align on 32 + * bytes. + * + * The controller has certain limitations that are handled by the + * driver: + * - It can only read 2k at a time. To overcome this limitation, the + * driver issues data cycles on the bus, without issuing new + * CMD + ADDR cycles. The Marvell term is "naked" operations. + * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 + * bits. What can be tuned is the ECC block size as long as it + * stays between 512B and 2kiB. It's usually chosen based on the + * chip ECC requirements. For instance, using 2kiB ECC chunks + * provides 4b/512B correctability. + * - The controller will always treat data bytes, free OOB bytes + * and ECC bytes in that order, no matter what the real layout is + * (which is usually all data then all OOB bytes). The + * marvell_nfc_layouts array below contains the currently + * supported layouts. + * - Because of these weird layouts, the Bad Block Markers can be + * located in data section. In this case, the NAND_BBT_NO_OOB_BBM + * option must be set to prevent scanning/writing bad block + * markers. + */ + +#include <linux/module.h> +#include <linux/clk.h> +#include <linux/mtd/rawnand.h> +#include <linux/of_platform.h> +#include <linux/iopoll.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <linux/mfd/syscon.h> +#include <linux/regmap.h> +#include <asm/unaligned.h> + +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/dma/pxa-dma.h> +#include <linux/platform_data/mtd-nand-pxa3xx.h> + +/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ +#define FIFO_DEPTH 8 +#define FIFO_REP(x) (x / sizeof(u32)) +#define BCH_SEQ_READS (32 / FIFO_DEPTH) +/* NFC does not support transfers of larger chunks at a time */ +#define MAX_CHUNK_SIZE 2112 +/* NFCv1 cannot read more that 7 bytes of ID */ +#define NFCV1_READID_LEN 7 +/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ +#define POLL_PERIOD 0 +#define POLL_TIMEOUT 100000 +/* Interrupt maximum wait period in ms */ +#define IRQ_TIMEOUT 1000 +/* Latency in clock cycles between SoC pins and NFC logic */ +#define MIN_RD_DEL_CNT 3 +/* Maximum number of contiguous address cycles */ +#define MAX_ADDRESS_CYC_NFCV1 5 +#define MAX_ADDRESS_CYC_NFCV2 7 +/* System control registers/bits to enable the NAND controller on some SoCs */ +#define GENCONF_SOC_DEVICE_MUX 0x208 +#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) +#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) +#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) +#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) +#define GENCONF_CLK_GATING_CTRL 0x220 +#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) +#define GENCONF_ND_CLK_CTRL 0x700 +#define GENCONF_ND_CLK_CTRL_EN BIT(0) + +/* NAND controller data flash control register */ +#define NDCR 0x00 +#define NDCR_ALL_INT GENMASK(11, 0) +#define NDCR_CS1_CMDDM BIT(7) +#define NDCR_CS0_CMDDM BIT(8) +#define NDCR_RDYM BIT(11) +#define NDCR_ND_ARB_EN BIT(12) +#define NDCR_RA_START BIT(15) +#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) +#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) +#define NDCR_DWIDTH_M BIT(26) +#define NDCR_DWIDTH_C BIT(27) +#define NDCR_ND_RUN BIT(28) +#define NDCR_DMA_EN BIT(29) +#define NDCR_ECC_EN BIT(30) +#define NDCR_SPARE_EN BIT(31) +#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ + NDCR_DWIDTH_M | NDCR_DWIDTH_C)) + +/* NAND interface timing parameter 0 register */ +#define NDTR0 0x04 +#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) +#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) +#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) +#define NDTR0_SEL_NRE_EDGE BIT(7) +#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) +#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) +#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) +#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) +#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) +#define NDTR0_SELCNTR BIT(26) +#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) + +/* NAND interface timing parameter 1 register */ +#define NDTR1 0x0C +#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) +#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) +#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) +#define NDTR1_PRESCALE BIT(14) +#define NDTR1_WAIT_MODE BIT(15) +#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) + +/* NAND controller status register */ +#define NDSR 0x14 +#define NDSR_WRCMDREQ BIT(0) +#define NDSR_RDDREQ BIT(1) +#define NDSR_WRDREQ BIT(2) +#define NDSR_CORERR BIT(3) +#define NDSR_UNCERR BIT(4) +#define NDSR_CMDD(cs) BIT(8 - cs) +#define NDSR_RDY(rb) BIT(11 + rb) +#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) + +/* NAND ECC control register */ +#define NDECCCTRL 0x28 +#define NDECCCTRL_BCH_EN BIT(0) + +/* NAND controller data buffer register */ +#define NDDB 0x40 + +/* NAND controller command buffer 0 register */ +#define NDCB0 0x48 +#define NDCB0_CMD1(x) ((x & 0xFF) << 0) +#define NDCB0_CMD2(x) ((x & 0xFF) << 8) +#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) +#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) +#define NDCB0_DBC BIT(19) +#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) +#define NDCB0_CSEL BIT(24) +#define NDCB0_RDY_BYP BIT(27) +#define NDCB0_LEN_OVRD BIT(28) +#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) + +/* NAND controller command buffer 1 register */ +#define NDCB1 0x4C +#define NDCB1_COLS(x) ((x & 0xFFFF) << 0) +#define NDCB1_ADDRS_PAGE(x) (x << 16) + +/* NAND controller command buffer 2 register */ +#define NDCB2 0x50 +#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) +#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) + +/* NAND controller command buffer 3 register */ +#define NDCB3 0x54 +#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) +#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) + +/* NAND controller command buffer 0 register 'type' and 'xtype' fields */ +#define TYPE_READ 0 +#define TYPE_WRITE 1 +#define TYPE_ERASE 2 +#define TYPE_READ_ID 3 +#define TYPE_STATUS 4 +#define TYPE_RESET 5 +#define TYPE_NAKED_CMD 6 +#define TYPE_NAKED_ADDR 7 +#define TYPE_MASK 7 +#define XTYPE_MONOLITHIC_RW 0 +#define XTYPE_LAST_NAKED_RW 1 +#define XTYPE_FINAL_COMMAND 3 +#define XTYPE_READ 4 +#define XTYPE_WRITE_DISPATCH 4 +#define XTYPE_NAKED_RW 5 +#define XTYPE_COMMAND_DISPATCH 6 +#define XTYPE_MASK 7 + +/** + * struct marvell_hw_ecc_layout - layout of Marvell ECC + * + * Marvell ECC engine works differently than the others, in order to limit the + * size of the IP, hardware engineers chose to set a fixed strength at 16 bits + * per subpage, and depending on a the desired strength needed by the NAND chip, + * a particular layout mixing data/spare/ecc is defined, with a possible last + * chunk smaller that the others. + * + * @writesize: Full page size on which the layout applies + * @chunk: Desired ECC chunk size on which the layout applies + * @strength: Desired ECC strength (per chunk size bytes) on which the + * layout applies + * @nchunks: Total number of chunks + * @full_chunk_cnt: Number of full-sized chunks, which is the number of + * repetitions of the pattern: + * (data_bytes + spare_bytes + ecc_bytes). + * @data_bytes: Number of data bytes per chunk + * @spare_bytes: Number of spare bytes per chunk + * @ecc_bytes: Number of ecc bytes per chunk + * @last_data_bytes: Number of data bytes in the last chunk + * @last_spare_bytes: Number of spare bytes in the last chunk + * @last_ecc_bytes: Number of ecc bytes in the last chunk + */ +struct marvell_hw_ecc_layout { + /* Constraints */ + int writesize; + int chunk; + int strength; + /* Corresponding layout */ + int nchunks; + int full_chunk_cnt; + int data_bytes; + int spare_bytes; + int ecc_bytes; + int last_data_bytes; + int last_spare_bytes; + int last_ecc_bytes; +}; + +#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ + { \ + .writesize = ws, \ + .chunk = dc, \ + .strength = ds, \ + .nchunks = nc, \ + .full_chunk_cnt = fcc, \ + .data_bytes = db, \ + .spare_bytes = sb, \ + .ecc_bytes = eb, \ + .last_data_bytes = ldb, \ + .last_spare_bytes = lsb, \ + .last_ecc_bytes = leb, \ + } + +/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ +static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { + MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 8, 2, 1, 1024, 0, 30,1024,32, 30), + MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), + MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), + MARVELL_LAYOUT( 8192, 512, 4, 4, 4, 2048, 0, 30, 0, 0, 0), + MARVELL_LAYOUT( 8192, 512, 8, 9, 8, 1024, 0, 30, 0, 160, 30), +}; + +/** + * struct marvell_nand_chip_sel - CS line description + * + * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection + * is made by a field in NDCB0 register, and in another field in NDCB2 register. + * The datasheet describes the logic with an error: ADDR5 field is once + * declared at the beginning of NDCB2, and another time at its end. Because the + * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical + * to use the last bit of this field instead of the first ones. + * + * @cs: Wanted CE lane. + * @ndcb0_csel: Value of the NDCB0 register with or without the flag + * selecting the wanted CE lane. This is set once when + * the Device Tree is probed. + * @rb: Ready/Busy pin for the flash chip + */ +struct marvell_nand_chip_sel { + unsigned int cs; + u32 ndcb0_csel; + unsigned int rb; +}; + +/** + * struct marvell_nand_chip - stores NAND chip device related information + * + * @chip: Base NAND chip structure + * @node: Used to store NAND chips into a list + * @layout: NAND layout when using hardware ECC + * @ndcr: Controller register value for this NAND chip + * @ndtr0: Timing registers 0 value for this NAND chip + * @ndtr1: Timing registers 1 value for this NAND chip + * @addr_cyc: Amount of cycles needed to pass column address + * @selected_die: Current active CS + * @nsels: Number of CS lines required by the NAND chip + * @sels: Array of CS lines descriptions + */ +struct marvell_nand_chip { + struct nand_chip chip; + struct list_head node; + const struct marvell_hw_ecc_layout *layout; + u32 ndcr; + u32 ndtr0; + u32 ndtr1; + int addr_cyc; + int selected_die; + unsigned int nsels; + struct marvell_nand_chip_sel sels[]; +}; + +static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) +{ + return container_of(chip, struct marvell_nand_chip, chip); +} + +static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip + *nand) +{ + return &nand->sels[nand->selected_die]; +} + +/** + * struct marvell_nfc_caps - NAND controller capabilities for distinction + * between compatible strings + * + * @max_cs_nb: Number of Chip Select lines available + * @max_rb_nb: Number of Ready/Busy lines available + * @need_system_controller: Indicates if the SoC needs to have access to the + * system controller (ie. to enable the NAND controller) + * @legacy_of_bindings: Indicates if DT parsing must be done using the old + * fashion way + * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. + * BCH error detection and correction algorithm, + * NDCB3 register has been added + * @use_dma: Use dma for data transfers + */ +struct marvell_nfc_caps { + unsigned int max_cs_nb; + unsigned int max_rb_nb; + bool need_system_controller; + bool legacy_of_bindings; + bool is_nfcv2; + bool use_dma; +}; + +/** + * struct marvell_nfc - stores Marvell NAND controller information + * + * @controller: Base controller structure + * @dev: Parent device (used to print error messages) + * @regs: NAND controller registers + * @core_clk: Core clock + * @reg_clk: Registers clock + * @complete: Completion object to wait for NAND controller events + * @assigned_cs: Bitmask describing already assigned CS lines + * @chips: List containing all the NAND chips attached to + * this NAND controller + * @selected_chip: Currently selected target chip + * @caps: NAND controller capabilities for each compatible string + * @use_dma: Whetner DMA is used + * @dma_chan: DMA channel (NFCv1 only) + * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) + */ +struct marvell_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *core_clk; + struct clk *reg_clk; + struct completion complete; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + const struct marvell_nfc_caps *caps; + + /* DMA (NFCv1 only) */ + bool use_dma; + struct dma_chan *dma_chan; + u8 *dma_buf; +}; + +static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct marvell_nfc, controller); +} + +/** + * struct marvell_nfc_timings - NAND controller timings expressed in NAND + * Controller clock cycles + * + * @tRP: ND_nRE pulse width + * @tRH: ND_nRE high duration + * @tWP: ND_nWE pulse time + * @tWH: ND_nWE high duration + * @tCS: Enable signal setup time + * @tCH: Enable signal hold time + * @tADL: Address to write data delay + * @tAR: ND_ALE low to ND_nRE low delay + * @tWHR: ND_nWE high to ND_nRE low for status read + * @tRHW: ND_nRE high duration, read to write delay + * @tR: ND_nWE high to ND_nRE low for read + */ +struct marvell_nfc_timings { + /* NDTR0 fields */ + unsigned int tRP; + unsigned int tRH; + unsigned int tWP; + unsigned int tWH; + unsigned int tCS; + unsigned int tCH; + unsigned int tADL; + /* NDTR1 fields */ + unsigned int tAR; + unsigned int tWHR; + unsigned int tRHW; + unsigned int tR; +}; + +/** + * Derives a duration in numbers of clock cycles. + * + * @ps: Duration in pico-seconds + * @period_ns: Clock period in nano-seconds + * + * Convert the duration in nano-seconds, then divide by the period and + * return the number of clock periods. + */ +#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) +#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +/** + * struct marvell_nfc_op - filled during the parsing of the ->exec_op() + * subop subset of instructions. + * + * @ndcb: Array of values written to NDCBx registers + * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin + * @rdy_delay_ns: Optional delay after waiting for the RB pin + * @data_delay_ns: Optional delay after the data xfer + * @data_instr_idx: Index of the data instruction in the subop + * @data_instr: Pointer to the data instruction in the subop + */ +struct marvell_nfc_op { + u32 ndcb[4]; + unsigned int cle_ale_delay_ns; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + unsigned int data_delay_ns; + unsigned int data_instr_idx; + const struct nand_op_instr *data_instr; +}; + +/* + * Internal helper to conditionnally apply a delay (from the above structure, + * most of the time). + */ +static void cond_delay(unsigned int ns) +{ + if (!ns) + return; + + if (ns < 10000) + ndelay(ns); + else + udelay(DIV_ROUND_UP(ns, 1000)); +} + +/* + * The controller has many flags that could generate interrupts, most of them + * are disabled and polling is used. For the very slow signals, using interrupts + * may relax the CPU charge. + */ +static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + /* Writing 1 disables the interrupt */ + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg | int_mask, nfc->regs + NDCR); +} + +static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + /* Writing 0 enables the interrupt */ + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); +} + +static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDSR); + writel_relaxed(int_mask, nfc->regs + NDSR); + + return reg & int_mask; +} + +static void marvell_nfc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr; + + /* + * Callers of this function do not verify if the NAND is using a 16-bit + * an 8-bit bus for normal operations, so we need to take care of that + * here by leaving the configuration unchanged if the NAND does not have + * the NAND_BUSWIDTH_16 flag set. + */ + if (!(chip->options & NAND_BUSWIDTH_16)) + return; + + ndcr = readl_relaxed(nfc->regs + NDCR); + + if (force_8bit) + ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); + else + ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; + + writel_relaxed(ndcr, nfc->regs + NDCR); +} + +static int marvell_nfc_wait_ndrun(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 val; + int ret; + + /* + * The command is being processed, wait for the ND_RUN bit to be + * cleared by the NFC. If not, we must clear it by hand. + */ + ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, + (val & NDCR_ND_RUN) == 0, + POLL_PERIOD, POLL_TIMEOUT); + if (ret) { + dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + return ret; + } + + return 0; +} + +/* + * Any time a command has to be sent to the controller, the following sequence + * has to be followed: + * - call marvell_nfc_prepare_cmd() + * -> activate the ND_RUN bit that will kind of 'start a job' + * -> wait the signal indicating the NFC is waiting for a command + * - send the command (cmd and address cycles) + * - enventually send or receive the data + * - call marvell_nfc_end_cmd() with the corresponding flag + * -> wait the flag to be triggered or cancel the job with a timeout + * + * The following helpers are here to factorize the code a bit so that + * specialized functions responsible for executing the actual NAND + * operations do not have to replicate the same code blocks. + */ +static int marvell_nfc_prepare_cmd(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr, val; + int ret; + + /* Poll ND_RUN and clear NDSR before issuing any command */ + ret = marvell_nfc_wait_ndrun(chip); + if (ret) { + dev_err(nfc->dev, "Last operation did not succeed\n"); + return ret; + } + + ndcr = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); + + /* Assert ND_RUN bit and wait the NFC to be ready */ + writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, + val & NDSR_WRCMDREQ, + POLL_PERIOD, POLL_TIMEOUT); + if (ret) { + dev_err(nfc->dev, "Timeout on WRCMDRE\n"); + return -ETIMEDOUT; + } + + /* Command may be written, clear WRCMDREQ status bit */ + writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); + + return 0; +} + +static void marvell_nfc_send_cmd(struct nand_chip *chip, + struct marvell_nfc_op *nfc_op) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" + "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", + (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], + nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); + + writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], + nfc->regs + NDCB0); + writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); + writel(nfc_op->ndcb[2], nfc->regs + NDCB0); + + /* + * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 + * fields are used (only available on NFCv2). + */ + if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || + NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { + if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) + writel(nfc_op->ndcb[3], nfc->regs + NDCB0); + } +} + +static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, + const char *label) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, + val & flag, + POLL_PERIOD, POLL_TIMEOUT); + + if (ret) { + dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", + label, val); + if (nfc->dma_chan) + dmaengine_terminate_all(nfc->dma_chan); + return ret; + } + + /* + * DMA function uses this helper to poll on CMDD bits without wanting + * them to be cleared. + */ + if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) + return 0; + + writel_relaxed(flag, nfc->regs + NDSR); + + return 0; +} + +static int marvell_nfc_wait_cmdd(struct nand_chip *chip) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); + + return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); +} + +static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask, + u32 expected_val, unsigned long timeout_ms) +{ + unsigned long limit; + u32 st; + + limit = jiffies + msecs_to_jiffies(timeout_ms); + do { + st = readl_relaxed(nfc->regs + NDSR); + if (st & NDSR_RDY(1)) + st |= NDSR_RDY(0); + + if ((st & mask) == expected_val) + return 0; + + cpu_relax(); + } while (time_after(limit, jiffies)); + + return -ETIMEDOUT; +} + +static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 pending; + int ret; + + /* Timeout is expressed in ms */ + if (!timeout_ms) + timeout_ms = IRQ_TIMEOUT; + + if (mtd->oops_panic_write) { + ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0), + NDSR_RDY(0), + timeout_ms); + } else { + init_completion(&nfc->complete); + + marvell_nfc_enable_int(nfc, NDCR_RDYM); + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + marvell_nfc_disable_int(nfc, NDCR_RDYM); + } + pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); + + /* + * In case the interrupt was not served in the required time frame, + * check if the ISR was not served or if something went actually wrong. + */ + if (!ret && !pending) { + dev_err(nfc->dev, "Timeout waiting for RB signal\n"); + return -ETIMEDOUT; + } + + return 0; +} + +static void marvell_nfc_select_target(struct nand_chip *chip, + unsigned int die_nr) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr_generic; + + /* + * Reset the NDCR register to a clean state for this particular chip, + * also clear ND_RUN bit. + */ + ndcr_generic = readl_relaxed(nfc->regs + NDCR) & + NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; + writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); + + /* Also reset the interrupt status register */ + marvell_nfc_clear_int(nfc, NDCR_ALL_INT); + + if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) + return; + + writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); + writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); + + nfc->selected_chip = chip; + marvell_nand->selected_die = die_nr; +} + +static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) +{ + struct marvell_nfc *nfc = dev_id; + u32 st = readl_relaxed(nfc->regs + NDSR); + u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; + + /* + * RDY interrupt mask is one bit in NDCR while there are two status + * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). + */ + if (st & NDSR_RDY(1)) + st |= NDSR_RDY(0); + + if (!(st & ien)) + return IRQ_NONE; + + marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); + + if (st & (NDSR_RDY(0) | NDSR_RDY(1))) + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +/* HW ECC related functions */ +static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr = readl_relaxed(nfc->regs + NDCR); + + if (!(ndcr & NDCR_ECC_EN)) { + writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); + + /* + * When enabling BCH, set threshold to 0 to always know the + * number of corrected bitflips. + */ + if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); + } +} + +static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr = readl_relaxed(nfc->regs + NDCR); + + if (ndcr & NDCR_ECC_EN) { + writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); + if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + writel_relaxed(0, nfc->regs + NDECCCTRL); + } +} + +/* DMA related helpers */ +static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); +} + +static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); +} + +/* Read/write PIO/DMA accessors */ +static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, + enum dma_data_direction direction, + unsigned int len) +{ + unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); + struct dma_async_tx_descriptor *tx; + struct scatterlist sg; + dma_cookie_t cookie; + int ret; + + marvell_nfc_enable_dma(nfc); + /* Prepare the DMA transfer */ + sg_init_one(&sg, nfc->dma_buf, dma_len); + dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, + direction == DMA_FROM_DEVICE ? + DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); + return -ENXIO; + } + + /* Do the task and wait for it to finish */ + cookie = dmaengine_submit(tx); + ret = dma_submit_error(cookie); + if (ret) + return -EIO; + + dma_async_issue_pending(nfc->dma_chan); + ret = marvell_nfc_wait_cmdd(nfc->selected_chip); + dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + marvell_nfc_disable_dma(nfc); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", + dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); + dmaengine_terminate_all(nfc->dma_chan); + return -ETIMEDOUT; + } + + return 0; +} + +static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, + unsigned int len) +{ + unsigned int last_len = len % FIFO_DEPTH; + unsigned int last_full_offset = round_down(len, FIFO_DEPTH); + int i; + + for (i = 0; i < last_full_offset; i += FIFO_DEPTH) + ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); + + if (last_len) { + u8 tmp_buf[FIFO_DEPTH]; + + ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); + memcpy(in + last_full_offset, tmp_buf, last_len); + } + + return 0; +} + +static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, + unsigned int len) +{ + unsigned int last_len = len % FIFO_DEPTH; + unsigned int last_full_offset = round_down(len, FIFO_DEPTH); + int i; + + for (i = 0; i < last_full_offset; i += FIFO_DEPTH) + iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); + + if (last_len) { + u8 tmp_buf[FIFO_DEPTH]; + + memcpy(tmp_buf, out + last_full_offset, last_len); + iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); + } + + return 0; +} + +static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, + u8 *data, int data_len, + u8 *spare, int spare_len, + u8 *ecc, int ecc_len, + unsigned int *max_bitflips) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int bf; + + /* + * Blank pages (all 0xFF) that have not been written may be recognized + * as bad if bitflips occur, so whenever an uncorrectable error occurs, + * check if the entire page (with ECC bytes) is actually blank or not. + */ + if (!data) + data_len = 0; + if (!spare) + spare_len = 0; + if (!ecc) + ecc_len = 0; + + bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, + spare, spare_len, chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + return; + } + + /* Update the stats and max_bitflips */ + mtd->ecc_stats.corrected += bf; + *max_bitflips = max_t(unsigned int, *max_bitflips, bf); +} + +/* + * Check if a chunk is correct or not according to the hardware ECC engine. + * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however + * mtd->ecc_stats.failure is not, the function will instead return a non-zero + * value indicating that a check on the emptyness of the subpage must be + * performed before actually declaring the subpage as "corrupted". + */ +static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip, + unsigned int *max_bitflips) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int bf = 0; + u32 ndsr; + + ndsr = readl_relaxed(nfc->regs + NDSR); + + /* Check uncorrectable error flag */ + if (ndsr & NDSR_UNCERR) { + writel_relaxed(ndsr, nfc->regs + NDSR); + + /* + * Do not increment ->ecc_stats.failed now, instead, return a + * non-zero value to indicate that this chunk was apparently + * bad, and it should be check to see if it empty or not. If + * the chunk (with ECC bytes) is not declared empty, the calling + * function must increment the failure count. + */ + return -EBADMSG; + } + + /* Check correctable error flag */ + if (ndsr & NDSR_CORERR) { + writel_relaxed(ndsr, nfc->regs + NDSR); + + if (chip->ecc.algo == NAND_ECC_ALGO_BCH) + bf = NDSR_ERRCNT(ndsr); + else + bf = 1; + } + + /* Update the stats and max_bitflips */ + mtd->ecc_stats.corrected += bf; + *max_bitflips = max_t(unsigned int, *max_bitflips, bf); + + return 0; +} + +/* Hamming read helpers */ +static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, + u8 *data_buf, u8 *oob_buf, + bool raw, int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_DBC | + NDCB0_CMD1(NAND_CMD_READ0) | + NDCB0_CMD2(NAND_CMD_READSTART), + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + }; + unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); + int ret; + + /* NFCv2 needs more information about the operation being executed */ + if (nfc->caps->is_nfcv2) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (data/oob)"); + if (ret) + return ret; + + /* + * Read the page then the OOB area. Unlike what is shown in current + * documentation, spare bytes are protected by the ECC engine, and must + * be at the beginning of the OOB area or running this driver on legacy + * systems will prevent the discovery of the BBM/BBT. + */ + if (nfc->use_dma) { + marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, + lt->data_bytes + oob_bytes); + memcpy(data_buf, nfc->dma_buf, lt->data_bytes); + memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); + } else { + marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); + marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); + } + + ret = marvell_nfc_wait_cmdd(chip); + return ret; +} + +static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, + true, page); +} + +static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int max_bitflips = 0, ret; + u8 *raw_buf; + + marvell_nfc_select_target(chip, chip->cur_cs); + marvell_nfc_enable_hw_ecc(chip); + marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, + page); + ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); + marvell_nfc_disable_hw_ecc(chip); + + if (!ret) + return max_bitflips; + + /* + * When ECC failures are detected, check if the full page has been + * written or not. Ignore the failure if it is actually empty. + */ + raw_buf = kmalloc(full_sz, GFP_KERNEL); + if (!raw_buf) + return -ENOMEM; + + marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + + lt->data_bytes, true, page); + marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, + &max_bitflips); + kfree(raw_buf); + + return max_bitflips; +} + +/* + * Spare area in Hamming layouts is not protected by the ECC engine (even if + * it appears before the ECC bytes when reading), the ->read_oob_raw() function + * also stands for ->read_oob(). + */ +static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page) +{ + u8 *buf = nand_get_data_buf(chip); + + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, + true, page); +} + +/* Hamming write helpers */ +static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, + const u8 *data_buf, + const u8 *oob_buf, bool raw, + int page) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_CMD1(NAND_CMD_SEQIN) | + NDCB0_CMD2(NAND_CMD_PAGEPROG) | + NDCB0_DBC, + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + }; + unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); + u8 status; + int ret; + + /* NFCv2 needs more information about the operation being executed */ + if (nfc->caps->is_nfcv2) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, + "WRDREQ while loading FIFO (data)"); + if (ret) + return ret; + + /* Write the page then the OOB area */ + if (nfc->use_dma) { + memcpy(nfc->dma_buf, data_buf, lt->data_bytes); + memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); + marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + + lt->ecc_bytes + lt->spare_bytes); + } else { + marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); + marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); + } + + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + ret = marvell_nfc_wait_op(chip, + PSEC_TO_MSEC(sdr->tPROG_max)); + if (ret) + return ret; + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + true, page); +} + +static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + int ret; + + marvell_nfc_select_target(chip, chip->cur_cs); + marvell_nfc_enable_hw_ecc(chip); + ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + false, page); + marvell_nfc_disable_hw_ecc(chip); + + return ret; +} + +/* + * Spare area in Hamming layouts is not protected by the ECC engine (even if + * it appears before the ECC bytes when reading), the ->write_oob_raw() function + * also stands for ->write_oob(). + */ +static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *buf = nand_get_data_buf(chip); + + memset(buf, 0xFF, mtd->writesize); + + marvell_nfc_select_target(chip, chip->cur_cs); + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + true, page); +} + +/* BCH read helpers */ +static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + u8 *oob = chip->oob_poi; + int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int ecc_len = lt->ecc_bytes; + int chunk; + + marvell_nfc_select_target(chip, chip->cur_cs); + + if (oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + nand_read_page_op(chip, page, 0, NULL, 0); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* Update last chunk length */ + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + ecc_len = lt->last_ecc_bytes; + } + + /* Read data bytes*/ + nand_change_read_column_op(chip, chunk * chunk_size, + buf + (lt->data_bytes * chunk), + data_len, false); + + /* Read spare bytes */ + nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), + spare_len, false, false); + + /* Read ECC bytes */ + nand_read_data_op(chip, oob + ecc_offset + + (ALIGN(lt->ecc_bytes, 32) * chunk), + ecc_len, false, false); + } + + return 0; +} + +static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, + u8 *data, unsigned int data_len, + u8 *spare, unsigned int spare_len, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int i, ret; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_LEN_OVRD, + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + .ndcb[3] = data_len + spare_len, + }; + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return; + + if (chunk == 0) + nfc_op.ndcb[0] |= NDCB0_DBC | + NDCB0_CMD1(NAND_CMD_READ0) | + NDCB0_CMD2(NAND_CMD_READSTART); + + /* + * Trigger the monolithic read on the first chunk, then naked read on + * intermediate chunks and finally a last naked read on the last chunk. + */ + if (chunk == 0) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + else if (chunk < lt->nchunks - 1) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); + else + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + + marvell_nfc_send_cmd(chip, &nfc_op); + + /* + * According to the datasheet, when reading from NDDB + * with BCH enabled, after each 32 bytes reads, we + * have to make sure that the NDSR.RDDREQ bit is set. + * + * Drain the FIFO, 8 32-bit reads at a time, and skip + * the polling on the last read. + * + * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. + */ + for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { + marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (data)"); + marvell_nfc_xfer_data_in_pio(nfc, data, + FIFO_DEPTH * BCH_SEQ_READS); + data += FIFO_DEPTH * BCH_SEQ_READS; + } + + for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { + marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (OOB)"); + marvell_nfc_xfer_data_in_pio(nfc, spare, + FIFO_DEPTH * BCH_SEQ_READS); + spare += FIFO_DEPTH * BCH_SEQ_READS; + } +} + +static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int data_len = lt->data_bytes, spare_len = lt->spare_bytes; + u8 *data = buf, *spare = chip->oob_poi; + int max_bitflips = 0; + u32 failure_mask = 0; + int chunk, ret; + + marvell_nfc_select_target(chip, chip->cur_cs); + + /* + * With BCH, OOB is not fully used (and thus not read entirely), not + * expected bytes could show up at the end of the OOB buffer if not + * explicitly erased. + */ + if (oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + marvell_nfc_enable_hw_ecc(chip); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* Update length for the last chunk */ + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + } + + /* Read the chunk and detect number of bitflips */ + marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, + spare, spare_len, page); + ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips); + if (ret) + failure_mask |= BIT(chunk); + + data += data_len; + spare += spare_len; + } + + marvell_nfc_disable_hw_ecc(chip); + + if (!failure_mask) + return max_bitflips; + + /* + * Please note that dumping the ECC bytes during a normal read with OOB + * area would add a significant overhead as ECC bytes are "consumed" by + * the controller in normal mode and must be re-read in raw mode. To + * avoid dropping the performances, we prefer not to include them. The + * user should re-read the page in raw mode if ECC bytes are required. + */ + + /* + * In case there is any subpage read error, we usually re-read only ECC + * bytes in raw mode and check if the whole page is empty. In this case, + * it is normal that the ECC check failed and we just ignore the error. + * + * However, it has been empirically observed that for some layouts (e.g + * 2k page, 8b strength per 512B chunk), the controller tries to correct + * bits and may create itself bitflips in the erased area. To overcome + * this strange behavior, the whole page is re-read in raw mode, not + * only the ECC bytes. + */ + for (chunk = 0; chunk < lt->nchunks; chunk++) { + int data_off_in_page, spare_off_in_page, ecc_off_in_page; + int data_off, spare_off, ecc_off; + int data_len, spare_len, ecc_len; + + /* No failure reported for this chunk, move to the next one */ + if (!(failure_mask & BIT(chunk))) + continue; + + data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes + + lt->ecc_bytes); + spare_off_in_page = data_off_in_page + + (chunk < lt->full_chunk_cnt ? lt->data_bytes : + lt->last_data_bytes); + ecc_off_in_page = spare_off_in_page + + (chunk < lt->full_chunk_cnt ? lt->spare_bytes : + lt->last_spare_bytes); + + data_off = chunk * lt->data_bytes; + spare_off = chunk * lt->spare_bytes; + ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes + + (chunk * (lt->ecc_bytes + 2)); + + data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes : + lt->last_data_bytes; + spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes : + lt->last_spare_bytes; + ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes : + lt->last_ecc_bytes; + + /* + * Only re-read the ECC bytes, unless we are using the 2k/8b + * layout which is buggy in the sense that the ECC engine will + * try to correct data bytes anyway, creating bitflips. In this + * case, re-read the entire page. + */ + if (lt->writesize == 2048 && lt->strength == 8) { + nand_change_read_column_op(chip, data_off_in_page, + buf + data_off, data_len, + false); + nand_change_read_column_op(chip, spare_off_in_page, + chip->oob_poi + spare_off, spare_len, + false); + } + + nand_change_read_column_op(chip, ecc_off_in_page, + chip->oob_poi + ecc_off, ecc_len, + false); + + /* Check the entire chunk (data + spare + ecc) for emptyness */ + marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len, + chip->oob_poi + spare_off, spare_len, + chip->oob_poi + ecc_off, ecc_len, + &max_bitflips); + } + + return max_bitflips; +} + +static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page) +{ + u8 *buf = nand_get_data_buf(chip); + + return chip->ecc.read_page_raw(chip, buf, true, page); +} + +static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page) +{ + u8 *buf = nand_get_data_buf(chip); + + return chip->ecc.read_page(chip, buf, true, page); +} + +/* BCH write helpers */ +static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int ecc_len = lt->ecc_bytes; + int spare_offset = 0; + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes; + int chunk; + + marvell_nfc_select_target(chip, chip->cur_cs); + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + ecc_len = lt->last_ecc_bytes; + } + + /* Point to the column of the next chunk */ + nand_change_write_column_op(chip, chunk * full_chunk_size, + NULL, 0, false); + + /* Write the data */ + nand_write_data_op(chip, buf + (chunk * lt->data_bytes), + data_len, false); + + if (!oob_required) + continue; + + /* Write the spare bytes */ + if (spare_len) + nand_write_data_op(chip, chip->oob_poi + spare_offset, + spare_len, false); + + /* Write the ECC bytes */ + if (ecc_len) + nand_write_data_op(chip, chip->oob_poi + ecc_offset, + ecc_len, false); + + spare_offset += spare_len; + ecc_offset += ALIGN(ecc_len, 32); + } + + return nand_prog_page_end_op(chip); +} + +static int +marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, + const u8 *data, unsigned int data_len, + const u8 *spare, unsigned int spare_len, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + u32 xtype; + int ret; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, + .ndcb[3] = data_len + spare_len, + }; + + /* + * First operation dispatches the CMD_SEQIN command, issue the address + * cycles and asks for the first chunk of data. + * All operations in the middle (if any) will issue a naked write and + * also ask for data. + * Last operation (if any) asks for the last chunk of data through a + * last naked write. + */ + if (chunk == 0) { + if (lt->nchunks == 1) + xtype = XTYPE_MONOLITHIC_RW; + else + xtype = XTYPE_WRITE_DISPATCH; + + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_CMD1(NAND_CMD_SEQIN); + nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); + nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); + } else if (chunk < lt->nchunks - 1) { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); + } else { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + } + + /* Always dispatch the PAGEPROG command on the last chunk */ + if (chunk == lt->nchunks - 1) + nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, + "WRDREQ while loading FIFO (data)"); + if (ret) + return ret; + + /* Transfer the contents */ + iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); + iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); + + return 0; +} + +static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct mtd_info *mtd = nand_to_mtd(chip); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + const u8 *data = buf; + const u8 *spare = chip->oob_poi; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int chunk, ret; + u8 status; + + marvell_nfc_select_target(chip, chip->cur_cs); + + /* Spare data will be written anyway, so clear it to avoid garbage */ + if (!oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + marvell_nfc_enable_hw_ecc(chip); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + } + + marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, + spare, spare_len, page); + data += data_len; + spare += spare_len; + + /* + * Waiting only for CMDD or PAGED is not enough, ECC are + * partially written. No flag is set once the operation is + * really finished but the ND_RUN bit is cleared, so wait for it + * before stepping into the next command. + */ + marvell_nfc_wait_ndrun(chip); + } + + ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max)); + + marvell_nfc_disable_hw_ecc(chip); + + if (ret) + return ret; + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *buf = nand_get_data_buf(chip); + + memset(buf, 0xFF, mtd->writesize); + + return chip->ecc.write_page_raw(chip, buf, true, page); +} + +static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *buf = nand_get_data_buf(chip); + + memset(buf, 0xFF, mtd->writesize); + + return chip->ecc.write_page(chip, buf, true, page); +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void marvell_nfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct marvell_nfc_op *nfc_op) +{ + const struct nand_op_instr *instr = NULL; + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + bool first_cmd = true; + unsigned int op_id; + int i; + + /* Reset the input structure as most of its fields will be OR'ed */ + memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs; + const u8 *addrs; + int len; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) + nfc_op->ndcb[0] |= + NDCB0_CMD1(instr->ctx.cmd.opcode); + else + nfc_op->ndcb[0] |= + NDCB0_CMD2(instr->ctx.cmd.opcode) | + NDCB0_DBC; + + nfc_op->cle_ale_delay_ns = instr->delay_ns; + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); + + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + nfc_op->ndcb[1] |= addrs[i] << (8 * i); + + if (naddrs >= 5) + nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); + if (naddrs >= 6) + nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); + if (naddrs == 7) + nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); + + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_IN_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); + if (nfc->caps->is_nfcv2) { + nfc_op->ndcb[0] |= + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | + NDCB0_LEN_OVRD; + len = nand_subop_get_data_len(subop, op_id); + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); + } + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_OUT_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); + if (nfc->caps->is_nfcv2) { + nfc_op->ndcb[0] |= + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | + NDCB0_LEN_OVRD; + len = nand_subop_get_data_len(subop, op_id); + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); + } + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op->rdy_delay_ns = instr->delay_ns; + break; + } + } +} + +static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, + const struct nand_subop *subop, + struct marvell_nfc_op *nfc_op) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct nand_op_instr *instr = nfc_op->data_instr; + unsigned int op_id = nfc_op->data_instr_idx; + unsigned int len = nand_subop_get_data_len(subop, op_id); + unsigned int offset = nand_subop_get_data_start_off(subop, op_id); + bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); + int ret; + + if (instr->ctx.data.force_8bit) + marvell_nfc_force_byte_access(chip, true); + + if (reading) { + u8 *in = instr->ctx.data.buf.in + offset; + + ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); + } else { + const u8 *out = instr->ctx.data.buf.out + offset; + + ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); + } + + if (instr->ctx.data.force_8bit) + marvell_nfc_force_byte_access(chip, false); + + return ret; +} + +static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + bool reading; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, + "RDDREQ/WRDREQ while draining raw data"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (reading) { + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + } + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + if (!reading) { + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + } + + /* + * NDCR ND_RUN bit should be cleared automatically at the end of each + * operation but experience shows that the behavior is buggy when it + * comes to writes (with LEN_OVRD). Clear it by hand in this case. + */ + if (!reading) { + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + } + + return 0; +} + +static int marvell_nfc_naked_access_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + + /* + * Naked access are different in that they need to be flagged as naked + * by the controller. Reset the controller registers fields that inform + * on the type and refill them according to the ongoing operation. + */ + nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | + NDCB0_CMD_XTYPE(XTYPE_MASK)); + switch (subop->instrs[0].type) { + case NAND_OP_CMD_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); + break; + case NAND_OP_ADDR_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + break; + case NAND_OP_DATA_OUT_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + break; + default: + /* This should never happen */ + break; + } + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + + if (!nfc_op.data_instr) { + ret = marvell_nfc_wait_cmdd(chip); + cond_delay(nfc_op.cle_ale_delay_ns); + return ret; + } + + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, + "RDDREQ/WRDREQ while draining raw data"); + if (ret) + return ret; + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + /* + * NDCR ND_RUN bit should be cleared automatically at the end of each + * operation but experience shows that the behavior is buggy when it + * comes to writes (with LEN_OVRD). Clear it by hand in this case. + */ + if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + } + + return 0; +} + +static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + cond_delay(nfc_op.rdy_delay_ns); + + return ret; +} + +static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while reading ID"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static int marvell_nfc_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while reading status"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + + cond_delay(nfc_op.rdy_delay_ns); + + return 0; +} + +static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + + cond_delay(nfc_op.rdy_delay_ns); + + return 0; +} + +static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( + /* Monolithic reads/writes */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_monolithic_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_monolithic_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + /* Naked commands */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_waitrdy_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( + /* Naked commands not supported, use a function for each pattern */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_read_id_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_erase_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_reset_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_waitrdy_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int marvell_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + if (!check_only) + marvell_nfc_select_target(chip, op->cs); + + if (nfc->caps->is_nfcv2) + return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, + op, check_only); + else + return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, + op, check_only); +} + +/* + * Layouts were broken in old pxa3xx_nand driver, these are supposed to be + * usable. + */ +static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + + if (section) + return -ERANGE; + + oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + + lt->last_ecc_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + + if (section) + return -ERANGE; + + /* + * Bootrom looks in bytes 0 & 5 for bad blocks for the + * 4KB page / 4bit BCH combination. + */ + if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) + oobregion->offset = 6; + else + oobregion->offset = 2; + + oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { + .ecc = marvell_nand_ooblayout_ecc, + .free = marvell_nand_ooblayout_free, +}; + +static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *l; + int i; + + if (!nfc->caps->is_nfcv2 && + (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { + dev_err(nfc->dev, + "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", + mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); + return -ENOTSUPP; + } + + to_marvell_nand(chip)->layout = NULL; + for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { + l = &marvell_nfc_layouts[i]; + if (mtd->writesize == l->writesize && + ecc->size == l->chunk && ecc->strength == l->strength) { + to_marvell_nand(chip)->layout = l; + break; + } + } + + if (!to_marvell_nand(chip)->layout || + (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { + dev_err(nfc->dev, + "ECC strength %d at page size %d is not supported\n", + ecc->strength, mtd->writesize); + return -ENOTSUPP; + } + + /* Special care for the layout 2k/8-bit/512B */ + if (l->writesize == 2048 && l->strength == 8) { + if (mtd->oobsize < 128) { + dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n"); + return -ENOTSUPP; + } else { + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + } + } + + mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); + ecc->steps = l->nchunks; + ecc->size = l->data_bytes; + + if (ecc->strength == 1) { + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; + ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; + ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; + ecc->read_oob = ecc->read_oob_raw; + ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; + ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; + ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; + ecc->write_oob = ecc->write_oob_raw; + } else { + chip->ecc.algo = NAND_ECC_ALGO_BCH; + ecc->strength = 16; + ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; + ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; + ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; + ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; + ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; + ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; + ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; + ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; + } + + return 0; +} + +static int marvell_nand_ecc_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_info(nfc->dev, + "No minimum ECC strength, using 1b/512B\n"); + ecc->size = 512; + ecc->strength = 1; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = marvell_nand_hw_ecc_controller_init(mtd, ecc); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && + mtd->writesize != SZ_2K) { + dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", + mtd->writesize); + return -EINVAL; + } + break; + default: + return -EINVAL; + } + + return 0; +} + +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_mirror_pattern +}; + +static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; + const struct nand_sdr_timings *sdr; + struct marvell_nfc_timings nfc_tmg; + int read_delay; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles, which is half of the + * frequency of the accessible ECC clock retrieved by clk_get_rate(). + * This is not written anywhere in the datasheet but was observed + * with an oscilloscope. + * + * NFC datasheet gives equations from which thoses calculations + * are derived, they tend to be slightly more restrictives than the + * given core timings and may improve the overall speed. + */ + nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; + nfc_tmg.tRH = nfc_tmg.tRP; + nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; + nfc_tmg.tWH = nfc_tmg.tWP; + nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); + nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; + nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); + /* + * Read delay is the time of propagation from SoC pins to NFC internal + * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In + * EDO mode, an additional delay of tRH must be taken into account so + * the data is sampled on the falling edge instead of the rising edge. + */ + read_delay = sdr->tRC_min >= 30000 ? + MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; + + nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); + /* + * tWHR and tRHW are supposed to be read to write delays (and vice + * versa) but in some cases, ie. when doing a change column, they must + * be greater than that to be sure tCCS delay is respected. + */ + nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), + period_ns) - 2, + nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), + period_ns); + + /* + * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. + * NFCv1: No WAIT_MODE, tR must be maximal. + */ + if (nfc->caps->is_nfcv2) { + nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); + } else { + nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, + period_ns); + if (nfc_tmg.tR + 3 > nfc_tmg.tCH) + nfc_tmg.tR = nfc_tmg.tCH - 3; + else + nfc_tmg.tR = 0; + } + + if (chipnr < 0) + return 0; + + marvell_nand->ndtr0 = + NDTR0_TRP(nfc_tmg.tRP) | + NDTR0_TRH(nfc_tmg.tRH) | + NDTR0_ETRP(nfc_tmg.tRP) | + NDTR0_TWP(nfc_tmg.tWP) | + NDTR0_TWH(nfc_tmg.tWH) | + NDTR0_TCS(nfc_tmg.tCS) | + NDTR0_TCH(nfc_tmg.tCH); + + marvell_nand->ndtr1 = + NDTR1_TAR(nfc_tmg.tAR) | + NDTR1_TWHR(nfc_tmg.tWHR) | + NDTR1_TR(nfc_tmg.tR); + + if (nfc->caps->is_nfcv2) { + marvell_nand->ndtr0 |= + NDTR0_RD_CNT_DEL(read_delay) | + NDTR0_SELCNTR | + NDTR0_TADL(nfc_tmg.tADL); + + marvell_nand->ndtr1 |= + NDTR1_TRHW(nfc_tmg.tRHW) | + NDTR1_WAIT_MODE; + } + + /* + * Reset nfc->selected_chip so the next command will cause the timing + * registers to be updated in marvell_nfc_select_target(). + */ + nfc->selected_chip = NULL; + + return 0; +} + +static int marvell_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev); + int ret; + + if (pdata && pdata->flash_bbt) + chip->bbt_options |= NAND_BBT_USE_FLASH; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + /* + * We'll use a bad block table stored in-flash and don't + * allow writing the bad block marker to the flash. + */ + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* Save the chip-specific fields of NDCR */ + marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); + if (chip->options & NAND_BUSWIDTH_16) + marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; + + /* + * On small page NANDs, only one cycle is needed to pass the + * column address. + */ + if (mtd->writesize <= 512) { + marvell_nand->addr_cyc = 1; + } else { + marvell_nand->addr_cyc = 2; + marvell_nand->ndcr |= NDCR_RA_START; + } + + /* + * Now add the number of cycles needed to pass the row + * address. + * + * Addressing a chip using CS 2 or 3 should also need the third row + * cycle but due to inconsistance in the documentation and lack of + * hardware to test this situation, this case is not supported. + */ + if (chip->options & NAND_ROW_ADDR_3) + marvell_nand->addr_cyc += 3; + else + marvell_nand->addr_cyc += 2; + + if (pdata) { + chip->ecc.size = pdata->ecc_step_size; + chip->ecc.strength = pdata->ecc_strength; + } + + ret = marvell_nand_ecc_init(mtd, &chip->ecc); + if (ret) { + dev_err(nfc->dev, "ECC init failed: %d\n", ret); + return ret; + } + + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + /* + * Subpage write not available with hardware ECC, prohibit also + * subpage read as in userspace subpage access would still be + * allowed and subpage write, if used, would lead to numerous + * uncorrectable ECC errors. + */ + chip->options |= NAND_NO_SUBPAGE_WRITE; + } + + if (pdata || nfc->caps->legacy_of_bindings) { + /* + * We keep the MTD name unchanged to avoid breaking platforms + * where the MTD cmdline parser is used and the bootloader + * has not been updated to use the new naming scheme. + */ + mtd->name = "pxa3xx_nand-0"; + } else if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your NAND node, ie: + * + * label = "main-storage"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s:nand.%d", dev_name(nfc->dev), + marvell_nand->sels[0].cs); + if (!mtd->name) { + dev_err(nfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + return 0; +} + +static const struct nand_controller_ops marvell_nand_controller_ops = { + .attach_chip = marvell_nand_attach_chip, + .exec_op = marvell_nfc_exec_op, + .setup_interface = marvell_nfc_setup_interface, +}; + +static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, + struct device_node *np) +{ + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); + struct marvell_nand_chip *marvell_nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs, rb; + + /* + * The legacy "num-cs" property indicates the number of CS on the only + * chip connected to the controller (legacy bindings does not support + * more than one chip). The CS and RB pins are always the #0. + * + * When not using legacy bindings, a couple of "reg" and "nand-rb" + * properties must be filled. For each chip, expressed as a subnode, + * "reg" points to the CS lines and "nand-rb" to the RB line. + */ + if (pdata || nfc->caps->legacy_of_bindings) { + nsels = 1; + } else { + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + dev_err(dev, "missing/invalid reg property\n"); + return -EINVAL; + } + } + + /* Alloc the nand chip structure */ + marvell_nand = devm_kzalloc(dev, + struct_size(marvell_nand, sels, nsels), + GFP_KERNEL); + if (!marvell_nand) { + dev_err(dev, "could not allocate chip structure\n"); + return -ENOMEM; + } + + marvell_nand->nsels = nsels; + marvell_nand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + if (pdata || nfc->caps->legacy_of_bindings) { + /* + * Legacy bindings use the CS lines in natural + * order (0, 1, ...) + */ + cs = i; + } else { + /* Retrieve CS id */ + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + } + + if (cs >= nfc->caps->max_cs_nb) { + dev_err(dev, "invalid reg value: %u (max CS = %d)\n", + cs, nfc->caps->max_cs_nb); + return -EINVAL; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * The cs variable represents the chip select id, which must be + * converted in bit fields for NDCB0 and NDCB2 to select the + * right chip. Unfortunately, due to a lack of information on + * the subject and incoherent documentation, the user should not + * use CS1 and CS3 at all as asserting them is not supported in + * a reliable way (due to multiplexing inside ADDR5 field). + */ + marvell_nand->sels[i].cs = cs; + switch (cs) { + case 0: + case 2: + marvell_nand->sels[i].ndcb0_csel = 0; + break; + case 1: + case 3: + marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; + break; + default: + return -EINVAL; + } + + /* Retrieve RB id */ + if (pdata || nfc->caps->legacy_of_bindings) { + /* Legacy bindings always use RB #0 */ + rb = 0; + } else { + ret = of_property_read_u32_index(np, "nand-rb", i, + &rb); + if (ret) { + dev_err(dev, + "could not retrieve RB property: %d\n", + ret); + return ret; + } + } + + if (rb >= nfc->caps->max_rb_nb) { + dev_err(dev, "invalid reg value: %u (max RB = %d)\n", + rb, nfc->caps->max_rb_nb); + return -EINVAL; + } + + marvell_nand->sels[i].rb = rb; + } + + chip = &marvell_nand->chip; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + if (of_property_read_bool(np, "marvell,nand-keep-config")) + chip->options |= NAND_KEEP_TIMINGS; + + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + /* + * Default to HW ECC engine mode. If the nand-ecc-mode property is given + * in the DT node, this entry will be overwritten in nand_scan_ident(). + */ + chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + + /* + * Save a reference value for timing registers before + * ->setup_interface() is called. + */ + marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); + marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); + + chip->options |= NAND_BUSWIDTH_AUTO; + + ret = nand_scan(chip, marvell_nand->nsels); + if (ret) { + dev_err(dev, "could not scan the nand chip\n"); + return ret; + } + + if (pdata) + /* Legacy bindings support only one chip */ + ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); + else + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&marvell_nand->node, &nfc->chips); + + return 0; +} + +static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) +{ + struct marvell_nand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int max_cs = nfc->caps->max_cs_nb; + int nchips; + int ret; + + if (!np) + nchips = 1; + else + nchips = of_get_child_count(np); + + if (nchips > max_cs) { + dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, + max_cs); + return -EINVAL; + } + + /* + * Legacy bindings do not use child nodes to exhibit NAND chip + * properties and layout. Instead, NAND properties are mixed with the + * controller ones, and partitions are defined as direct subnodes of the + * NAND controller node. + */ + if (nfc->caps->legacy_of_bindings) { + ret = marvell_nand_chip_init(dev, nfc, np); + return ret; + } + + for_each_child_of_node(np, nand_np) { + ret = marvell_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + marvell_nand_chips_cleanup(nfc); + + return ret; +} + +static int marvell_nfc_init_dma(struct marvell_nfc *nfc) +{ + struct platform_device *pdev = container_of(nfc->dev, + struct platform_device, + dev); + struct dma_slave_config config = {}; + struct resource *r; + int ret; + + if (!IS_ENABLED(CONFIG_PXA_DMA)) { + dev_warn(nfc->dev, + "DMA not enabled in configuration\n"); + return -ENOTSUPP; + } + + ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + nfc->dma_chan = dma_request_chan(nfc->dev, "data"); + if (IS_ERR(nfc->dma_chan)) { + ret = PTR_ERR(nfc->dma_chan); + nfc->dma_chan = NULL; + return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n"); + } + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + ret = -ENXIO; + goto release_channel; + } + + config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.src_addr = r->start + NDDB; + config.dst_addr = r->start + NDDB; + config.src_maxburst = 32; + config.dst_maxburst = 32; + ret = dmaengine_slave_config(nfc->dma_chan, &config); + if (ret < 0) { + dev_err(nfc->dev, "Failed to configure DMA channel\n"); + goto release_channel; + } + + /* + * DMA must act on length multiple of 32 and this length may be + * bigger than the destination buffer. Use this buffer instead + * for DMA transfers and then copy the desired amount of data to + * the provided buffer. + */ + nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); + if (!nfc->dma_buf) { + ret = -ENOMEM; + goto release_channel; + } + + nfc->use_dma = true; + + return 0; + +release_channel: + dma_release_channel(nfc->dma_chan); + nfc->dma_chan = NULL; + + return ret; +} + +static void marvell_nfc_reset(struct marvell_nfc *nfc) +{ + /* + * ECC operations and interruptions are only enabled when specifically + * needed. ECC shall not be activated in the early stages (fails probe). + * Arbiter flag, even if marked as "reserved", must be set (empirical). + * SPARE_EN bit must always be set or ECC bytes will not be at the same + * offset in the read page and this will fail the protection. + */ + writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | + NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); + writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); + writel_relaxed(0, nfc->regs + NDECCCTRL); +} + +static int marvell_nfc_init(struct marvell_nfc *nfc) +{ + struct device_node *np = nfc->dev->of_node; + + /* + * Some SoCs like A7k/A8k need to enable manually the NAND + * controller, gated clocks and reset bits to avoid being bootloader + * dependent. This is done through the use of the System Functions + * registers. + */ + if (nfc->caps->need_system_controller) { + struct regmap *sysctrl_base = + syscon_regmap_lookup_by_phandle(np, + "marvell,system-controller"); + + if (IS_ERR(sysctrl_base)) + return PTR_ERR(sysctrl_base); + + regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, + GENCONF_SOC_DEVICE_MUX_NFC_EN | + GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | + GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | + GENCONF_SOC_DEVICE_MUX_NFC_INT_EN); + + regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL, + GENCONF_CLK_GATING_CTRL_ND_GATE, + GENCONF_CLK_GATING_CTRL_ND_GATE); + } + + /* Configure the DMA if appropriate */ + if (!nfc->caps->is_nfcv2) + marvell_nfc_init_dma(nfc); + + marvell_nfc_reset(nfc); + + return 0; +} + +static int marvell_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct marvell_nfc *nfc; + int ret; + int irq; + + nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), + GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &marvell_nand_controller_ops; + INIT_LIST_HEAD(&nfc->chips); + + nfc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + nfc->core_clk = devm_clk_get(&pdev->dev, "core"); + + /* Managed the legacy case (when the first clock was not named) */ + if (nfc->core_clk == ERR_PTR(-ENOENT)) + nfc->core_clk = devm_clk_get(&pdev->dev, NULL); + + if (IS_ERR(nfc->core_clk)) + return PTR_ERR(nfc->core_clk); + + ret = clk_prepare_enable(nfc->core_clk); + if (ret) + return ret; + + nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); + if (IS_ERR(nfc->reg_clk)) { + if (PTR_ERR(nfc->reg_clk) != -ENOENT) { + ret = PTR_ERR(nfc->reg_clk); + goto unprepare_core_clk; + } + + nfc->reg_clk = NULL; + } + + ret = clk_prepare_enable(nfc->reg_clk); + if (ret) + goto unprepare_core_clk; + + marvell_nfc_disable_int(nfc, NDCR_ALL_INT); + marvell_nfc_clear_int(nfc, NDCR_ALL_INT); + ret = devm_request_irq(dev, irq, marvell_nfc_isr, + 0, "marvell-nfc", nfc); + if (ret) + goto unprepare_reg_clk; + + /* Get NAND controller capabilities */ + if (pdev->id_entry) + nfc->caps = (void *)pdev->id_entry->driver_data; + else + nfc->caps = of_device_get_match_data(&pdev->dev); + + if (!nfc->caps) { + dev_err(dev, "Could not retrieve NFC caps\n"); + ret = -EINVAL; + goto unprepare_reg_clk; + } + + /* Init the controller and then probe the chips */ + ret = marvell_nfc_init(nfc); + if (ret) + goto unprepare_reg_clk; + + platform_set_drvdata(pdev, nfc); + + ret = marvell_nand_chips_init(dev, nfc); + if (ret) + goto release_dma; + + return 0; + +release_dma: + if (nfc->use_dma) + dma_release_channel(nfc->dma_chan); +unprepare_reg_clk: + clk_disable_unprepare(nfc->reg_clk); +unprepare_core_clk: + clk_disable_unprepare(nfc->core_clk); + + return ret; +} + +static int marvell_nfc_remove(struct platform_device *pdev) +{ + struct marvell_nfc *nfc = platform_get_drvdata(pdev); + + marvell_nand_chips_cleanup(nfc); + + if (nfc->use_dma) { + dmaengine_terminate_all(nfc->dma_chan); + dma_release_channel(nfc->dma_chan); + } + + clk_disable_unprepare(nfc->reg_clk); + clk_disable_unprepare(nfc->core_clk); + + return 0; +} + +static int __maybe_unused marvell_nfc_suspend(struct device *dev) +{ + struct marvell_nfc *nfc = dev_get_drvdata(dev); + struct marvell_nand_chip *chip; + + list_for_each_entry(chip, &nfc->chips, node) + marvell_nfc_wait_ndrun(&chip->chip); + + clk_disable_unprepare(nfc->reg_clk); + clk_disable_unprepare(nfc->core_clk); + + return 0; +} + +static int __maybe_unused marvell_nfc_resume(struct device *dev) +{ + struct marvell_nfc *nfc = dev_get_drvdata(dev); + int ret; + + ret = clk_prepare_enable(nfc->core_clk); + if (ret < 0) + return ret; + + ret = clk_prepare_enable(nfc->reg_clk); + if (ret < 0) { + clk_disable_unprepare(nfc->core_clk); + return ret; + } + + /* + * Reset nfc->selected_chip so the next command will cause the timing + * registers to be restored in marvell_nfc_select_target(). + */ + nfc->selected_chip = NULL; + + /* Reset registers that have lost their contents */ + marvell_nfc_reset(nfc); + + return 0; +} + +static const struct dev_pm_ops marvell_nfc_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume) +}; + +static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .need_system_controller = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .use_dma = true, +}; + +static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .need_system_controller = true, + .legacy_of_bindings = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .legacy_of_bindings = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .legacy_of_bindings = true, + .use_dma = true, +}; + +static const struct platform_device_id marvell_nfc_platform_ids[] = { + { + .name = "pxa3xx-nand", + .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); + +static const struct of_device_id marvell_nfc_of_ids[] = { + { + .compatible = "marvell,armada-8k-nand-controller", + .data = &marvell_armada_8k_nfc_caps, + }, + { + .compatible = "marvell,armada370-nand-controller", + .data = &marvell_armada370_nfc_caps, + }, + { + .compatible = "marvell,pxa3xx-nand-controller", + .data = &marvell_pxa3xx_nfc_caps, + }, + /* Support for old/deprecated bindings: */ + { + .compatible = "marvell,armada-8k-nand", + .data = &marvell_armada_8k_nfc_legacy_caps, + }, + { + .compatible = "marvell,armada370-nand", + .data = &marvell_armada370_nfc_legacy_caps, + }, + { + .compatible = "marvell,pxa3xx-nand", + .data = &marvell_pxa3xx_nfc_legacy_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); + +static struct platform_driver marvell_nfc_driver = { + .driver = { + .name = "marvell-nfc", + .of_match_table = marvell_nfc_of_ids, + .pm = &marvell_nfc_pm_ops, + }, + .id_table = marvell_nfc_platform_ids, + .probe = marvell_nfc_probe, + .remove = marvell_nfc_remove, +}; +module_platform_driver(marvell_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Marvell NAND controller driver"); |