summaryrefslogtreecommitdiffstats
path: root/drivers/pwm/pwm-sun4i.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/pwm/pwm-sun4i.c517
1 files changed, 517 insertions, 0 deletions
diff --git a/drivers/pwm/pwm-sun4i.c b/drivers/pwm/pwm-sun4i.c
new file mode 100644
index 000000000..482d5b9ce
--- /dev/null
+++ b/drivers/pwm/pwm-sun4i.c
@@ -0,0 +1,517 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for Allwinner sun4i Pulse Width Modulation Controller
+ *
+ * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com>
+ *
+ * Limitations:
+ * - When outputing the source clock directly, the PWM logic will be bypassed
+ * and the currently running period is not guaranteed to be completed
+ */
+
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/jiffies.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pwm.h>
+#include <linux/reset.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/time.h>
+
+#define PWM_CTRL_REG 0x0
+
+#define PWM_CH_PRD_BASE 0x4
+#define PWM_CH_PRD_OFFSET 0x4
+#define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch))
+
+#define PWMCH_OFFSET 15
+#define PWM_PRESCAL_MASK GENMASK(3, 0)
+#define PWM_PRESCAL_OFF 0
+#define PWM_EN BIT(4)
+#define PWM_ACT_STATE BIT(5)
+#define PWM_CLK_GATING BIT(6)
+#define PWM_MODE BIT(7)
+#define PWM_PULSE BIT(8)
+#define PWM_BYPASS BIT(9)
+
+#define PWM_RDY_BASE 28
+#define PWM_RDY_OFFSET 1
+#define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch))
+
+#define PWM_PRD(prd) (((prd) - 1) << 16)
+#define PWM_PRD_MASK GENMASK(15, 0)
+
+#define PWM_DTY_MASK GENMASK(15, 0)
+
+#define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1)
+#define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK)
+#define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK)
+
+#define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET))
+
+static const u32 prescaler_table[] = {
+ 120,
+ 180,
+ 240,
+ 360,
+ 480,
+ 0,
+ 0,
+ 0,
+ 12000,
+ 24000,
+ 36000,
+ 48000,
+ 72000,
+ 0,
+ 0,
+ 0, /* Actually 1 but tested separately */
+};
+
+struct sun4i_pwm_data {
+ bool has_prescaler_bypass;
+ bool has_direct_mod_clk_output;
+ unsigned int npwm;
+};
+
+struct sun4i_pwm_chip {
+ struct pwm_chip chip;
+ struct clk *bus_clk;
+ struct clk *clk;
+ struct reset_control *rst;
+ void __iomem *base;
+ spinlock_t ctrl_lock;
+ const struct sun4i_pwm_data *data;
+ unsigned long next_period[2];
+};
+
+static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
+{
+ return container_of(chip, struct sun4i_pwm_chip, chip);
+}
+
+static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *chip,
+ unsigned long offset)
+{
+ return readl(chip->base + offset);
+}
+
+static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *chip,
+ u32 val, unsigned long offset)
+{
+ writel(val, chip->base + offset);
+}
+
+static void sun4i_pwm_get_state(struct pwm_chip *chip,
+ struct pwm_device *pwm,
+ struct pwm_state *state)
+{
+ struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
+ u64 clk_rate, tmp;
+ u32 val;
+ unsigned int prescaler;
+
+ clk_rate = clk_get_rate(sun4i_pwm->clk);
+
+ val = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
+
+ /*
+ * PWM chapter in H6 manual has a diagram which explains that if bypass
+ * bit is set, no other setting has any meaning. Even more, experiment
+ * proved that also enable bit is ignored in this case.
+ */
+ if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) &&
+ sun4i_pwm->data->has_direct_mod_clk_output) {
+ state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate);
+ state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2);
+ state->polarity = PWM_POLARITY_NORMAL;
+ state->enabled = true;
+ return;
+ }
+
+ if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) &&
+ sun4i_pwm->data->has_prescaler_bypass)
+ prescaler = 1;
+ else
+ prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)];
+
+ if (prescaler == 0)
+ return;
+
+ if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm))
+ state->polarity = PWM_POLARITY_NORMAL;
+ else
+ state->polarity = PWM_POLARITY_INVERSED;
+
+ if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) ==
+ BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm))
+ state->enabled = true;
+ else
+ state->enabled = false;
+
+ val = sun4i_pwm_readl(sun4i_pwm, PWM_CH_PRD(pwm->hwpwm));
+
+ tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val);
+ state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
+
+ tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val);
+ state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
+}
+
+static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
+ const struct pwm_state *state,
+ u32 *dty, u32 *prd, unsigned int *prsclr,
+ bool *bypass)
+{
+ u64 clk_rate, div = 0;
+ unsigned int prescaler = 0;
+
+ clk_rate = clk_get_rate(sun4i_pwm->clk);
+
+ *bypass = sun4i_pwm->data->has_direct_mod_clk_output &&
+ state->enabled &&
+ (state->period * clk_rate >= NSEC_PER_SEC) &&
+ (state->period * clk_rate < 2 * NSEC_PER_SEC) &&
+ (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC);
+
+ /* Skip calculation of other parameters if we bypass them */
+ if (*bypass)
+ return 0;
+
+ if (sun4i_pwm->data->has_prescaler_bypass) {
+ /* First, test without any prescaler when available */
+ prescaler = PWM_PRESCAL_MASK;
+ /*
+ * When not using any prescaler, the clock period in nanoseconds
+ * is not an integer so round it half up instead of
+ * truncating to get less surprising values.
+ */
+ div = clk_rate * state->period + NSEC_PER_SEC / 2;
+ do_div(div, NSEC_PER_SEC);
+ if (div - 1 > PWM_PRD_MASK)
+ prescaler = 0;
+ }
+
+ if (prescaler == 0) {
+ /* Go up from the first divider */
+ for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
+ unsigned int pval = prescaler_table[prescaler];
+
+ if (!pval)
+ continue;
+
+ div = clk_rate;
+ do_div(div, pval);
+ div = div * state->period;
+ do_div(div, NSEC_PER_SEC);
+ if (div - 1 <= PWM_PRD_MASK)
+ break;
+ }
+
+ if (div - 1 > PWM_PRD_MASK)
+ return -EINVAL;
+ }
+
+ *prd = div;
+ div *= state->duty_cycle;
+ do_div(div, state->period);
+ *dty = div;
+ *prsclr = prescaler;
+
+ return 0;
+}
+
+static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
+ const struct pwm_state *state)
+{
+ struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
+ struct pwm_state cstate;
+ u32 ctrl, duty = 0, period = 0, val;
+ int ret;
+ unsigned int delay_us, prescaler = 0;
+ unsigned long now;
+ bool bypass;
+
+ pwm_get_state(pwm, &cstate);
+
+ if (!cstate.enabled) {
+ ret = clk_prepare_enable(sun4i_pwm->clk);
+ if (ret) {
+ dev_err(chip->dev, "failed to enable PWM clock\n");
+ return ret;
+ }
+ }
+
+ ret = sun4i_pwm_calculate(sun4i_pwm, state, &duty, &period, &prescaler,
+ &bypass);
+ if (ret) {
+ dev_err(chip->dev, "period exceeds the maximum value\n");
+ if (!cstate.enabled)
+ clk_disable_unprepare(sun4i_pwm->clk);
+ return ret;
+ }
+
+ spin_lock(&sun4i_pwm->ctrl_lock);
+ ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
+
+ if (sun4i_pwm->data->has_direct_mod_clk_output) {
+ if (bypass) {
+ ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm);
+ /* We can skip other parameter */
+ sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
+ spin_unlock(&sun4i_pwm->ctrl_lock);
+ return 0;
+ }
+
+ ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm);
+ }
+
+ if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
+ /* Prescaler changed, the clock has to be gated */
+ ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
+ sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
+
+ ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
+ ctrl |= BIT_CH(prescaler, pwm->hwpwm);
+ }
+
+ val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
+ sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
+ sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
+ nsecs_to_jiffies(cstate.period + 1000);
+
+ if (state->polarity != PWM_POLARITY_NORMAL)
+ ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
+ else
+ ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
+
+ ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
+
+ if (state->enabled)
+ ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
+
+ sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
+
+ spin_unlock(&sun4i_pwm->ctrl_lock);
+
+ if (state->enabled)
+ return 0;
+
+ /* We need a full period to elapse before disabling the channel. */
+ now = jiffies;
+ if (time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
+ delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
+ now);
+ if ((delay_us / 500) > MAX_UDELAY_MS)
+ msleep(delay_us / 1000 + 1);
+ else
+ usleep_range(delay_us, delay_us * 2);
+ }
+
+ spin_lock(&sun4i_pwm->ctrl_lock);
+ ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
+ ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
+ ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
+ sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
+ spin_unlock(&sun4i_pwm->ctrl_lock);
+
+ clk_disable_unprepare(sun4i_pwm->clk);
+
+ return 0;
+}
+
+static const struct pwm_ops sun4i_pwm_ops = {
+ .apply = sun4i_pwm_apply,
+ .get_state = sun4i_pwm_get_state,
+ .owner = THIS_MODULE,
+};
+
+static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = {
+ .has_prescaler_bypass = false,
+ .npwm = 2,
+};
+
+static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = {
+ .has_prescaler_bypass = true,
+ .npwm = 2,
+};
+
+static const struct sun4i_pwm_data sun4i_pwm_single_bypass = {
+ .has_prescaler_bypass = true,
+ .npwm = 1,
+};
+
+static const struct sun4i_pwm_data sun50i_a64_pwm_data = {
+ .has_prescaler_bypass = true,
+ .has_direct_mod_clk_output = true,
+ .npwm = 1,
+};
+
+static const struct sun4i_pwm_data sun50i_h6_pwm_data = {
+ .has_prescaler_bypass = true,
+ .has_direct_mod_clk_output = true,
+ .npwm = 2,
+};
+
+static const struct of_device_id sun4i_pwm_dt_ids[] = {
+ {
+ .compatible = "allwinner,sun4i-a10-pwm",
+ .data = &sun4i_pwm_dual_nobypass,
+ }, {
+ .compatible = "allwinner,sun5i-a10s-pwm",
+ .data = &sun4i_pwm_dual_bypass,
+ }, {
+ .compatible = "allwinner,sun5i-a13-pwm",
+ .data = &sun4i_pwm_single_bypass,
+ }, {
+ .compatible = "allwinner,sun7i-a20-pwm",
+ .data = &sun4i_pwm_dual_bypass,
+ }, {
+ .compatible = "allwinner,sun8i-h3-pwm",
+ .data = &sun4i_pwm_single_bypass,
+ }, {
+ .compatible = "allwinner,sun50i-a64-pwm",
+ .data = &sun50i_a64_pwm_data,
+ }, {
+ .compatible = "allwinner,sun50i-h6-pwm",
+ .data = &sun50i_h6_pwm_data,
+ }, {
+ /* sentinel */
+ },
+};
+MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids);
+
+static int sun4i_pwm_probe(struct platform_device *pdev)
+{
+ struct sun4i_pwm_chip *pwm;
+ struct resource *res;
+ int ret;
+
+ pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
+ if (!pwm)
+ return -ENOMEM;
+
+ pwm->data = of_device_get_match_data(&pdev->dev);
+ if (!pwm->data)
+ return -ENODEV;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ pwm->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(pwm->base))
+ return PTR_ERR(pwm->base);
+
+ /*
+ * All hardware variants need a source clock that is divided and
+ * then feeds the counter that defines the output wave form. In the
+ * device tree this clock is either unnamed or called "mod".
+ * Some variants (e.g. H6) need another clock to access the
+ * hardware registers; this is called "bus".
+ * So we request "mod" first (and ignore the corner case that a
+ * parent provides a "mod" clock while the right one would be the
+ * unnamed one of the PWM device) and if this is not found we fall
+ * back to the first clock of the PWM.
+ */
+ pwm->clk = devm_clk_get_optional(&pdev->dev, "mod");
+ if (IS_ERR(pwm->clk))
+ return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk),
+ "get mod clock failed\n");
+
+ if (!pwm->clk) {
+ pwm->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(pwm->clk))
+ return dev_err_probe(&pdev->dev, PTR_ERR(pwm->clk),
+ "get unnamed clock failed\n");
+ }
+
+ pwm->bus_clk = devm_clk_get_optional(&pdev->dev, "bus");
+ if (IS_ERR(pwm->bus_clk))
+ return dev_err_probe(&pdev->dev, PTR_ERR(pwm->bus_clk),
+ "get bus clock failed\n");
+
+ pwm->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
+ if (IS_ERR(pwm->rst))
+ return dev_err_probe(&pdev->dev, PTR_ERR(pwm->rst),
+ "get reset failed\n");
+
+ /* Deassert reset */
+ ret = reset_control_deassert(pwm->rst);
+ if (ret) {
+ dev_err(&pdev->dev, "cannot deassert reset control: %pe\n",
+ ERR_PTR(ret));
+ return ret;
+ }
+
+ /*
+ * We're keeping the bus clock on for the sake of simplicity.
+ * Actually it only needs to be on for hardware register accesses.
+ */
+ ret = clk_prepare_enable(pwm->bus_clk);
+ if (ret) {
+ dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n",
+ ERR_PTR(ret));
+ goto err_bus;
+ }
+
+ pwm->chip.dev = &pdev->dev;
+ pwm->chip.ops = &sun4i_pwm_ops;
+ pwm->chip.base = -1;
+ pwm->chip.npwm = pwm->data->npwm;
+ pwm->chip.of_xlate = of_pwm_xlate_with_flags;
+ pwm->chip.of_pwm_n_cells = 3;
+
+ spin_lock_init(&pwm->ctrl_lock);
+
+ ret = pwmchip_add(&pwm->chip);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
+ goto err_pwm_add;
+ }
+
+ platform_set_drvdata(pdev, pwm);
+
+ return 0;
+
+err_pwm_add:
+ clk_disable_unprepare(pwm->bus_clk);
+err_bus:
+ reset_control_assert(pwm->rst);
+
+ return ret;
+}
+
+static int sun4i_pwm_remove(struct platform_device *pdev)
+{
+ struct sun4i_pwm_chip *pwm = platform_get_drvdata(pdev);
+ int ret;
+
+ ret = pwmchip_remove(&pwm->chip);
+ if (ret)
+ return ret;
+
+ clk_disable_unprepare(pwm->bus_clk);
+ reset_control_assert(pwm->rst);
+
+ return 0;
+}
+
+static struct platform_driver sun4i_pwm_driver = {
+ .driver = {
+ .name = "sun4i-pwm",
+ .of_match_table = sun4i_pwm_dt_ids,
+ },
+ .probe = sun4i_pwm_probe,
+ .remove = sun4i_pwm_remove,
+};
+module_platform_driver(sun4i_pwm_driver);
+
+MODULE_ALIAS("platform:sun4i-pwm");
+MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");
+MODULE_DESCRIPTION("Allwinner sun4i PWM driver");
+MODULE_LICENSE("GPL v2");