diff options
Diffstat (limited to '')
-rw-r--r-- | drivers/scsi/sym53c8xx_2/Makefile | 5 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym53c8xx.h | 202 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_defs.h | 779 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_fw.c | 537 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_fw.h | 192 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_fw1.h | 1777 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_fw2.h | 1862 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_glue.c | 2061 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_glue.h | 257 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_hipd.c | 5840 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_hipd.h | 1213 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_malloc.c | 365 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_misc.h | 177 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_nvram.c | 767 | ||||
-rw-r--r-- | drivers/scsi/sym53c8xx_2/sym_nvram.h | 201 |
15 files changed, 16235 insertions, 0 deletions
diff --git a/drivers/scsi/sym53c8xx_2/Makefile b/drivers/scsi/sym53c8xx_2/Makefile new file mode 100644 index 000000000..0751e2a0c --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/Makefile @@ -0,0 +1,5 @@ +# SPDX-License-Identifier: GPL-2.0-only +# Makefile for the NCR/SYMBIOS/LSI 53C8XX PCI SCSI controllers driver. + +sym53c8xx-objs := sym_fw.o sym_glue.o sym_hipd.o sym_malloc.o sym_nvram.o +obj-$(CONFIG_SCSI_SYM53C8XX_2) := sym53c8xx.o diff --git a/drivers/scsi/sym53c8xx_2/sym53c8xx.h b/drivers/scsi/sym53c8xx_2/sym53c8xx.h new file mode 100644 index 000000000..11f5dc29a --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym53c8xx.h @@ -0,0 +1,202 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#ifndef SYM53C8XX_H +#define SYM53C8XX_H + + +/* + * DMA addressing mode. + * + * 0 : 32 bit addressing for all chips. + * 1 : 40 bit addressing when supported by chip. + * 2 : 64 bit addressing when supported by chip, + * limited to 16 segments of 4 GB -> 64 GB max. + */ +#define SYM_CONF_DMA_ADDRESSING_MODE CONFIG_SCSI_SYM53C8XX_DMA_ADDRESSING_MODE + +/* + * NVRAM support. + */ +#if 1 +#define SYM_CONF_NVRAM_SUPPORT (1) +#endif + +/* + * These options are not tunable from 'make config' + */ +#if 1 +#define SYM_LINUX_PROC_INFO_SUPPORT +#define SYM_LINUX_USER_COMMAND_SUPPORT +#define SYM_LINUX_USER_INFO_SUPPORT +#define SYM_LINUX_DEBUG_CONTROL_SUPPORT +#endif + +/* + * Also handle old NCR chips if not (0). + */ +#define SYM_CONF_GENERIC_SUPPORT (1) + +/* + * Allow tags from 2 to 256, default 8 + */ +#ifndef CONFIG_SCSI_SYM53C8XX_MAX_TAGS +#define CONFIG_SCSI_SYM53C8XX_MAX_TAGS (8) +#endif + +#if CONFIG_SCSI_SYM53C8XX_MAX_TAGS < 2 +#define SYM_CONF_MAX_TAG (2) +#elif CONFIG_SCSI_SYM53C8XX_MAX_TAGS > 256 +#define SYM_CONF_MAX_TAG (256) +#else +#define SYM_CONF_MAX_TAG CONFIG_SCSI_SYM53C8XX_MAX_TAGS +#endif + +#ifndef CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS +#define CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS SYM_CONF_MAX_TAG +#endif + +/* + * Anyway, we configure the driver for at least 64 tags per LUN. :) + */ +#if SYM_CONF_MAX_TAG <= 64 +#define SYM_CONF_MAX_TAG_ORDER (6) +#elif SYM_CONF_MAX_TAG <= 128 +#define SYM_CONF_MAX_TAG_ORDER (7) +#else +#define SYM_CONF_MAX_TAG_ORDER (8) +#endif + +/* + * Max number of SG entries. + */ +#define SYM_CONF_MAX_SG (96) + +/* + * Driver setup structure. + * + * This structure is initialized from linux config options. + * It can be overridden at boot-up by the boot command line. + */ +struct sym_driver_setup { + u_short max_tag; + u_char burst_order; + u_char scsi_led; + u_char scsi_diff; + u_char irq_mode; + u_char scsi_bus_check; + u_char host_id; + + u_char verbose; + u_char settle_delay; + u_char use_nvram; + u_long excludes[8]; +}; + +#define SYM_SETUP_MAX_TAG sym_driver_setup.max_tag +#define SYM_SETUP_BURST_ORDER sym_driver_setup.burst_order +#define SYM_SETUP_SCSI_LED sym_driver_setup.scsi_led +#define SYM_SETUP_SCSI_DIFF sym_driver_setup.scsi_diff +#define SYM_SETUP_IRQ_MODE sym_driver_setup.irq_mode +#define SYM_SETUP_SCSI_BUS_CHECK sym_driver_setup.scsi_bus_check +#define SYM_SETUP_HOST_ID sym_driver_setup.host_id +#define boot_verbose sym_driver_setup.verbose + +/* + * Initial setup. + * + * Can be overriden at startup by a command line. + */ +#define SYM_LINUX_DRIVER_SETUP { \ + .max_tag = CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS, \ + .burst_order = 7, \ + .scsi_led = 1, \ + .scsi_diff = 1, \ + .irq_mode = 0, \ + .scsi_bus_check = 1, \ + .host_id = 7, \ + .verbose = 0, \ + .settle_delay = 3, \ + .use_nvram = 1, \ +} + +extern struct sym_driver_setup sym_driver_setup; +extern unsigned int sym_debug_flags; +#define DEBUG_FLAGS sym_debug_flags + +/* + * Max number of targets. + * Maximum is 16 and you are advised not to change this value. + */ +#ifndef SYM_CONF_MAX_TARGET +#define SYM_CONF_MAX_TARGET (16) +#endif + +/* + * Max number of logical units. + * SPI-2 allows up to 64 logical units, but in real life, target + * that implements more that 7 logical units are pretty rare. + * Anyway, the cost of accepting up to 64 logical unit is low in + * this driver, thus going with the maximum is acceptable. + */ +#ifndef SYM_CONF_MAX_LUN +#define SYM_CONF_MAX_LUN (64) +#endif + +/* + * Max number of IO control blocks queued to the controller. + * Each entry needs 8 bytes and the queues are allocated contiguously. + * Since we donnot want to allocate more than a page, the theorical + * maximum is PAGE_SIZE/8. For safety, we announce a bit less to the + * access method. :) + * When not supplied, as it is suggested, the driver compute some + * good value for this parameter. + */ +/* #define SYM_CONF_MAX_START (PAGE_SIZE/8 - 16) */ + +/* + * Support for Immediate Arbitration. + * Not advised. + */ +/* #define SYM_CONF_IARB_SUPPORT */ + +/* + * Only relevant if IARB support configured. + * - Max number of successive settings of IARB hints. + * - Set IARB on arbitration lost. + */ +#define SYM_CONF_IARB_MAX 3 +#define SYM_CONF_SET_IARB_ON_ARB_LOST 1 + +/* + * Returning wrong residuals may make problems. + * When zero, this define tells the driver to + * always return 0 as transfer residual. + * Btw, all my testings of residuals have succeeded. + */ +#define SYM_SETUP_RESIDUAL_SUPPORT 1 + +#endif /* SYM53C8XX_H */ diff --git a/drivers/scsi/sym53c8xx_2/sym_defs.h b/drivers/scsi/sym53c8xx_2/sym_defs.h new file mode 100644 index 000000000..317289ee0 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_defs.h @@ -0,0 +1,779 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#ifndef SYM_DEFS_H +#define SYM_DEFS_H + +#define SYM_VERSION "2.2.3" +#define SYM_DRIVER_NAME "sym-" SYM_VERSION + +/* + * SYM53C8XX device features descriptor. + */ +struct sym_chip { + u_short device_id; + u_short revision_id; + char *name; + u_char burst_max; /* log-base-2 of max burst */ + u_char offset_max; + u_char nr_divisor; + u_char lp_probe_bit; + u_int features; +#define FE_LED0 (1<<0) +#define FE_WIDE (1<<1) /* Wide data transfers */ +#define FE_ULTRA (1<<2) /* Ultra speed 20Mtrans/sec */ +#define FE_ULTRA2 (1<<3) /* Ultra 2 - 40 Mtrans/sec */ +#define FE_DBLR (1<<4) /* Clock doubler present */ +#define FE_QUAD (1<<5) /* Clock quadrupler present */ +#define FE_ERL (1<<6) /* Enable read line */ +#define FE_CLSE (1<<7) /* Cache line size enable */ +#define FE_WRIE (1<<8) /* Write & Invalidate enable */ +#define FE_ERMP (1<<9) /* Enable read multiple */ +#define FE_BOF (1<<10) /* Burst opcode fetch */ +#define FE_DFS (1<<11) /* DMA fifo size */ +#define FE_PFEN (1<<12) /* Prefetch enable */ +#define FE_LDSTR (1<<13) /* Load/Store supported */ +#define FE_RAM (1<<14) /* On chip RAM present */ +#define FE_VARCLK (1<<15) /* Clock frequency may vary */ +#define FE_RAM8K (1<<16) /* On chip RAM sized 8Kb */ +#define FE_64BIT (1<<17) /* 64-bit PCI BUS interface */ +#define FE_IO256 (1<<18) /* Requires full 256 bytes in PCI space */ +#define FE_NOPM (1<<19) /* Scripts handles phase mismatch */ +#define FE_LEDC (1<<20) /* Hardware control of LED */ +#define FE_ULTRA3 (1<<21) /* Ultra 3 - 80 Mtrans/sec DT */ +#define FE_66MHZ (1<<22) /* 66MHz PCI support */ +#define FE_CRC (1<<23) /* CRC support */ +#define FE_DIFF (1<<24) /* SCSI HVD support */ +#define FE_DFBC (1<<25) /* Have DFBC register */ +#define FE_LCKFRQ (1<<26) /* Have LCKFRQ */ +#define FE_C10 (1<<27) /* Various C10 core (mis)features */ +#define FE_U3EN (1<<28) /* U3EN bit usable */ +#define FE_DAC (1<<29) /* Support PCI DAC (64 bit addressing) */ +#define FE_ISTAT1 (1<<30) /* Have ISTAT1, MBOX0, MBOX1 registers */ + +#define FE_CACHE_SET (FE_ERL|FE_CLSE|FE_WRIE|FE_ERMP) +#define FE_CACHE0_SET (FE_CACHE_SET & ~FE_ERL) +}; + +/* + * SYM53C8XX IO register data structure. + */ +struct sym_reg { +/*00*/ u8 nc_scntl0; /* full arb., ena parity, par->ATN */ + +/*01*/ u8 nc_scntl1; /* no reset */ + #define ISCON 0x10 /* connected to scsi */ + #define CRST 0x08 /* force reset */ + #define IARB 0x02 /* immediate arbitration */ + +/*02*/ u8 nc_scntl2; /* no disconnect expected */ + #define SDU 0x80 /* cmd: disconnect will raise error */ + #define CHM 0x40 /* sta: chained mode */ + #define WSS 0x08 /* sta: wide scsi send [W]*/ + #define WSR 0x01 /* sta: wide scsi received [W]*/ + +/*03*/ u8 nc_scntl3; /* cnf system clock dependent */ + #define EWS 0x08 /* cmd: enable wide scsi [W]*/ + #define ULTRA 0x80 /* cmd: ULTRA enable */ + /* bits 0-2, 7 rsvd for C1010 */ + +/*04*/ u8 nc_scid; /* cnf host adapter scsi address */ + #define RRE 0x40 /* r/w:e enable response to resel. */ + #define SRE 0x20 /* r/w:e enable response to select */ + +/*05*/ u8 nc_sxfer; /* ### Sync speed and count */ + /* bits 6-7 rsvd for C1010 */ + +/*06*/ u8 nc_sdid; /* ### Destination-ID */ + +/*07*/ u8 nc_gpreg; /* ??? IO-Pins */ + +/*08*/ u8 nc_sfbr; /* ### First byte received */ + +/*09*/ u8 nc_socl; + #define CREQ 0x80 /* r/w: SCSI-REQ */ + #define CACK 0x40 /* r/w: SCSI-ACK */ + #define CBSY 0x20 /* r/w: SCSI-BSY */ + #define CSEL 0x10 /* r/w: SCSI-SEL */ + #define CATN 0x08 /* r/w: SCSI-ATN */ + #define CMSG 0x04 /* r/w: SCSI-MSG */ + #define CC_D 0x02 /* r/w: SCSI-C_D */ + #define CI_O 0x01 /* r/w: SCSI-I_O */ + +/*0a*/ u8 nc_ssid; + +/*0b*/ u8 nc_sbcl; + +/*0c*/ u8 nc_dstat; + #define DFE 0x80 /* sta: dma fifo empty */ + #define MDPE 0x40 /* int: master data parity error */ + #define BF 0x20 /* int: script: bus fault */ + #define ABRT 0x10 /* int: script: command aborted */ + #define SSI 0x08 /* int: script: single step */ + #define SIR 0x04 /* int: script: interrupt instruct. */ + #define IID 0x01 /* int: script: illegal instruct. */ + +/*0d*/ u8 nc_sstat0; + #define ILF 0x80 /* sta: data in SIDL register lsb */ + #define ORF 0x40 /* sta: data in SODR register lsb */ + #define OLF 0x20 /* sta: data in SODL register lsb */ + #define AIP 0x10 /* sta: arbitration in progress */ + #define LOA 0x08 /* sta: arbitration lost */ + #define WOA 0x04 /* sta: arbitration won */ + #define IRST 0x02 /* sta: scsi reset signal */ + #define SDP 0x01 /* sta: scsi parity signal */ + +/*0e*/ u8 nc_sstat1; + #define FF3210 0xf0 /* sta: bytes in the scsi fifo */ + +/*0f*/ u8 nc_sstat2; + #define ILF1 0x80 /* sta: data in SIDL register msb[W]*/ + #define ORF1 0x40 /* sta: data in SODR register msb[W]*/ + #define OLF1 0x20 /* sta: data in SODL register msb[W]*/ + #define DM 0x04 /* sta: DIFFSENS mismatch (895/6 only) */ + #define LDSC 0x02 /* sta: disconnect & reconnect */ + +/*10*/ u8 nc_dsa; /* --> Base page */ +/*11*/ u8 nc_dsa1; +/*12*/ u8 nc_dsa2; +/*13*/ u8 nc_dsa3; + +/*14*/ u8 nc_istat; /* --> Main Command and status */ + #define CABRT 0x80 /* cmd: abort current operation */ + #define SRST 0x40 /* mod: reset chip */ + #define SIGP 0x20 /* r/w: message from host to script */ + #define SEM 0x10 /* r/w: message between host + script */ + #define CON 0x08 /* sta: connected to scsi */ + #define INTF 0x04 /* sta: int on the fly (reset by wr)*/ + #define SIP 0x02 /* sta: scsi-interrupt */ + #define DIP 0x01 /* sta: host/script interrupt */ + +/*15*/ u8 nc_istat1; /* 896 only */ + #define FLSH 0x04 /* sta: chip is flushing */ + #define SCRUN 0x02 /* sta: scripts are running */ + #define SIRQD 0x01 /* r/w: disable INT pin */ + +/*16*/ u8 nc_mbox0; /* 896 only */ +/*17*/ u8 nc_mbox1; /* 896 only */ + +/*18*/ u8 nc_ctest0; +/*19*/ u8 nc_ctest1; + +/*1a*/ u8 nc_ctest2; + #define CSIGP 0x40 + /* bits 0-2,7 rsvd for C1010 */ + +/*1b*/ u8 nc_ctest3; + #define FLF 0x08 /* cmd: flush dma fifo */ + #define CLF 0x04 /* cmd: clear dma fifo */ + #define FM 0x02 /* mod: fetch pin mode */ + #define WRIE 0x01 /* mod: write and invalidate enable */ + /* bits 4-7 rsvd for C1010 */ + +/*1c*/ u32 nc_temp; /* ### Temporary stack */ + +/*20*/ u8 nc_dfifo; +/*21*/ u8 nc_ctest4; + #define BDIS 0x80 /* mod: burst disable */ + #define MPEE 0x08 /* mod: master parity error enable */ + +/*22*/ u8 nc_ctest5; + #define DFS 0x20 /* mod: dma fifo size */ + /* bits 0-1, 3-7 rsvd for C1010 */ + +/*23*/ u8 nc_ctest6; + +/*24*/ u32 nc_dbc; /* ### Byte count and command */ +/*28*/ u32 nc_dnad; /* ### Next command register */ +/*2c*/ u32 nc_dsp; /* --> Script Pointer */ +/*30*/ u32 nc_dsps; /* --> Script pointer save/opcode#2 */ + +/*34*/ u8 nc_scratcha; /* Temporary register a */ +/*35*/ u8 nc_scratcha1; +/*36*/ u8 nc_scratcha2; +/*37*/ u8 nc_scratcha3; + +/*38*/ u8 nc_dmode; + #define BL_2 0x80 /* mod: burst length shift value +2 */ + #define BL_1 0x40 /* mod: burst length shift value +1 */ + #define ERL 0x08 /* mod: enable read line */ + #define ERMP 0x04 /* mod: enable read multiple */ + #define BOF 0x02 /* mod: burst op code fetch */ + +/*39*/ u8 nc_dien; +/*3a*/ u8 nc_sbr; + +/*3b*/ u8 nc_dcntl; /* --> Script execution control */ + #define CLSE 0x80 /* mod: cache line size enable */ + #define PFF 0x40 /* cmd: pre-fetch flush */ + #define PFEN 0x20 /* mod: pre-fetch enable */ + #define SSM 0x10 /* mod: single step mode */ + #define IRQM 0x08 /* mod: irq mode (1 = totem pole !) */ + #define STD 0x04 /* cmd: start dma mode */ + #define IRQD 0x02 /* mod: irq disable */ + #define NOCOM 0x01 /* cmd: protect sfbr while reselect */ + /* bits 0-1 rsvd for C1010 */ + +/*3c*/ u32 nc_adder; + +/*40*/ u16 nc_sien; /* -->: interrupt enable */ +/*42*/ u16 nc_sist; /* <--: interrupt status */ + #define SBMC 0x1000/* sta: SCSI Bus Mode Change (895/6 only) */ + #define STO 0x0400/* sta: timeout (select) */ + #define GEN 0x0200/* sta: timeout (general) */ + #define HTH 0x0100/* sta: timeout (handshake) */ + #define MA 0x80 /* sta: phase mismatch */ + #define CMP 0x40 /* sta: arbitration complete */ + #define SEL 0x20 /* sta: selected by another device */ + #define RSL 0x10 /* sta: reselected by another device*/ + #define SGE 0x08 /* sta: gross error (over/underflow)*/ + #define UDC 0x04 /* sta: unexpected disconnect */ + #define RST 0x02 /* sta: scsi bus reset detected */ + #define PAR 0x01 /* sta: scsi parity error */ + +/*44*/ u8 nc_slpar; +/*45*/ u8 nc_swide; +/*46*/ u8 nc_macntl; +/*47*/ u8 nc_gpcntl; +/*48*/ u8 nc_stime0; /* cmd: timeout for select&handshake*/ +/*49*/ u8 nc_stime1; /* cmd: timeout user defined */ +/*4a*/ u16 nc_respid; /* sta: Reselect-IDs */ + +/*4c*/ u8 nc_stest0; + +/*4d*/ u8 nc_stest1; + #define SCLK 0x80 /* Use the PCI clock as SCSI clock */ + #define DBLEN 0x08 /* clock doubler running */ + #define DBLSEL 0x04 /* clock doubler selected */ + + +/*4e*/ u8 nc_stest2; + #define ROF 0x40 /* reset scsi offset (after gross error!) */ + #define EXT 0x02 /* extended filtering */ + +/*4f*/ u8 nc_stest3; + #define TE 0x80 /* c: tolerAnt enable */ + #define HSC 0x20 /* c: Halt SCSI Clock */ + #define CSF 0x02 /* c: clear scsi fifo */ + +/*50*/ u16 nc_sidl; /* Lowlevel: latched from scsi data */ +/*52*/ u8 nc_stest4; + #define SMODE 0xc0 /* SCSI bus mode (895/6 only) */ + #define SMODE_HVD 0x40 /* High Voltage Differential */ + #define SMODE_SE 0x80 /* Single Ended */ + #define SMODE_LVD 0xc0 /* Low Voltage Differential */ + #define LCKFRQ 0x20 /* Frequency Lock (895/6 only) */ + /* bits 0-5 rsvd for C1010 */ + +/*53*/ u8 nc_53_; +/*54*/ u16 nc_sodl; /* Lowlevel: data out to scsi data */ +/*56*/ u8 nc_ccntl0; /* Chip Control 0 (896) */ + #define ENPMJ 0x80 /* Enable Phase Mismatch Jump */ + #define PMJCTL 0x40 /* Phase Mismatch Jump Control */ + #define ENNDJ 0x20 /* Enable Non Data PM Jump */ + #define DISFC 0x10 /* Disable Auto FIFO Clear */ + #define DILS 0x02 /* Disable Internal Load/Store */ + #define DPR 0x01 /* Disable Pipe Req */ + +/*57*/ u8 nc_ccntl1; /* Chip Control 1 (896) */ + #define ZMOD 0x80 /* High Impedance Mode */ + #define DDAC 0x08 /* Disable Dual Address Cycle */ + #define XTIMOD 0x04 /* 64-bit Table Ind. Indexing Mode */ + #define EXTIBMV 0x02 /* Enable 64-bit Table Ind. BMOV */ + #define EXDBMV 0x01 /* Enable 64-bit Direct BMOV */ + +/*58*/ u16 nc_sbdl; /* Lowlevel: data from scsi data */ +/*5a*/ u16 nc_5a_; + +/*5c*/ u8 nc_scr0; /* Working register B */ +/*5d*/ u8 nc_scr1; +/*5e*/ u8 nc_scr2; +/*5f*/ u8 nc_scr3; + +/*60*/ u8 nc_scrx[64]; /* Working register C-R */ +/*a0*/ u32 nc_mmrs; /* Memory Move Read Selector */ +/*a4*/ u32 nc_mmws; /* Memory Move Write Selector */ +/*a8*/ u32 nc_sfs; /* Script Fetch Selector */ +/*ac*/ u32 nc_drs; /* DSA Relative Selector */ +/*b0*/ u32 nc_sbms; /* Static Block Move Selector */ +/*b4*/ u32 nc_dbms; /* Dynamic Block Move Selector */ +/*b8*/ u32 nc_dnad64; /* DMA Next Address 64 */ +/*bc*/ u16 nc_scntl4; /* C1010 only */ + #define U3EN 0x80 /* Enable Ultra 3 */ + #define AIPCKEN 0x40 /* AIP checking enable */ + /* Also enable AIP generation on C10-33*/ + #define XCLKH_DT 0x08 /* Extra clock of data hold on DT edge */ + #define XCLKH_ST 0x04 /* Extra clock of data hold on ST edge */ + #define XCLKS_DT 0x02 /* Extra clock of data set on DT edge */ + #define XCLKS_ST 0x01 /* Extra clock of data set on ST edge */ +/*be*/ u8 nc_aipcntl0; /* AIP Control 0 C1010 only */ +/*bf*/ u8 nc_aipcntl1; /* AIP Control 1 C1010 only */ + #define DISAIP 0x08 /* Disable AIP generation C10-66 only */ +/*c0*/ u32 nc_pmjad1; /* Phase Mismatch Jump Address 1 */ +/*c4*/ u32 nc_pmjad2; /* Phase Mismatch Jump Address 2 */ +/*c8*/ u8 nc_rbc; /* Remaining Byte Count */ +/*c9*/ u8 nc_rbc1; +/*ca*/ u8 nc_rbc2; +/*cb*/ u8 nc_rbc3; + +/*cc*/ u8 nc_ua; /* Updated Address */ +/*cd*/ u8 nc_ua1; +/*ce*/ u8 nc_ua2; +/*cf*/ u8 nc_ua3; +/*d0*/ u32 nc_esa; /* Entry Storage Address */ +/*d4*/ u8 nc_ia; /* Instruction Address */ +/*d5*/ u8 nc_ia1; +/*d6*/ u8 nc_ia2; +/*d7*/ u8 nc_ia3; +/*d8*/ u32 nc_sbc; /* SCSI Byte Count (3 bytes only) */ +/*dc*/ u32 nc_csbc; /* Cumulative SCSI Byte Count */ + /* Following for C1010 only */ +/*e0*/ u16 nc_crcpad; /* CRC Value */ +/*e2*/ u8 nc_crccntl0; /* CRC control register */ + #define SNDCRC 0x10 /* Send CRC Request */ +/*e3*/ u8 nc_crccntl1; /* CRC control register */ +/*e4*/ u32 nc_crcdata; /* CRC data register */ +/*e8*/ u32 nc_e8_; +/*ec*/ u32 nc_ec_; +/*f0*/ u16 nc_dfbc; /* DMA FIFO byte count */ +}; + +/*----------------------------------------------------------- + * + * Utility macros for the script. + * + *----------------------------------------------------------- + */ + +#define REGJ(p,r) (offsetof(struct sym_reg, p ## r)) +#define REG(r) REGJ (nc_, r) + +/*----------------------------------------------------------- + * + * SCSI phases + * + *----------------------------------------------------------- + */ + +#define SCR_DATA_OUT 0x00000000 +#define SCR_DATA_IN 0x01000000 +#define SCR_COMMAND 0x02000000 +#define SCR_STATUS 0x03000000 +#define SCR_DT_DATA_OUT 0x04000000 +#define SCR_DT_DATA_IN 0x05000000 +#define SCR_MSG_OUT 0x06000000 +#define SCR_MSG_IN 0x07000000 +/* DT phases are illegal for non Ultra3 mode */ +#define SCR_ILG_OUT 0x04000000 +#define SCR_ILG_IN 0x05000000 + +/*----------------------------------------------------------- + * + * Data transfer via SCSI. + * + *----------------------------------------------------------- + * + * MOVE_ABS (LEN) + * <<start address>> + * + * MOVE_IND (LEN) + * <<dnad_offset>> + * + * MOVE_TBL + * <<dnad_offset>> + * + *----------------------------------------------------------- + */ + +#define OPC_MOVE 0x08000000 + +#define SCR_MOVE_ABS(l) ((0x00000000 | OPC_MOVE) | (l)) +/* #define SCR_MOVE_IND(l) ((0x20000000 | OPC_MOVE) | (l)) */ +#define SCR_MOVE_TBL (0x10000000 | OPC_MOVE) + +#define SCR_CHMOV_ABS(l) ((0x00000000) | (l)) +/* #define SCR_CHMOV_IND(l) ((0x20000000) | (l)) */ +#define SCR_CHMOV_TBL (0x10000000) + +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT +/* We steal the `indirect addressing' flag for target mode MOVE in scripts */ + +#define OPC_TCHMOVE 0x08000000 + +#define SCR_TCHMOVE_ABS(l) ((0x20000000 | OPC_TCHMOVE) | (l)) +#define SCR_TCHMOVE_TBL (0x30000000 | OPC_TCHMOVE) + +#define SCR_TMOV_ABS(l) ((0x20000000) | (l)) +#define SCR_TMOV_TBL (0x30000000) +#endif + +struct sym_tblmove { + u32 size; + u32 addr; +}; + +/*----------------------------------------------------------- + * + * Selection + * + *----------------------------------------------------------- + * + * SEL_ABS | SCR_ID (0..15) [ | REL_JMP] + * <<alternate_address>> + * + * SEL_TBL | << dnad_offset>> [ | REL_JMP] + * <<alternate_address>> + * + *----------------------------------------------------------- + */ + +#define SCR_SEL_ABS 0x40000000 +#define SCR_SEL_ABS_ATN 0x41000000 +#define SCR_SEL_TBL 0x42000000 +#define SCR_SEL_TBL_ATN 0x43000000 + +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT +#define SCR_RESEL_ABS 0x40000000 +#define SCR_RESEL_ABS_ATN 0x41000000 +#define SCR_RESEL_TBL 0x42000000 +#define SCR_RESEL_TBL_ATN 0x43000000 +#endif + +struct sym_tblsel { + u_char sel_scntl4; /* C1010 only */ + u_char sel_sxfer; + u_char sel_id; + u_char sel_scntl3; +}; + +#define SCR_JMP_REL 0x04000000 +#define SCR_ID(id) (((u32)(id)) << 16) + +/*----------------------------------------------------------- + * + * Waiting for Disconnect or Reselect + * + *----------------------------------------------------------- + * + * WAIT_DISC + * dummy: <<alternate_address>> + * + * WAIT_RESEL + * <<alternate_address>> + * + *----------------------------------------------------------- + */ + +#define SCR_WAIT_DISC 0x48000000 +#define SCR_WAIT_RESEL 0x50000000 + +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT +#define SCR_DISCONNECT 0x48000000 +#endif + +/*----------------------------------------------------------- + * + * Bit Set / Reset + * + *----------------------------------------------------------- + * + * SET (flags {|.. }) + * + * CLR (flags {|.. }) + * + *----------------------------------------------------------- + */ + +#define SCR_SET(f) (0x58000000 | (f)) +#define SCR_CLR(f) (0x60000000 | (f)) + +#define SCR_CARRY 0x00000400 +#define SCR_TRG 0x00000200 +#define SCR_ACK 0x00000040 +#define SCR_ATN 0x00000008 + + +/*----------------------------------------------------------- + * + * Memory to memory move + * + *----------------------------------------------------------- + * + * COPY (bytecount) + * << source_address >> + * << destination_address >> + * + * SCR_COPY sets the NO FLUSH option by default. + * SCR_COPY_F does not set this option. + * + * For chips which do not support this option, + * sym_fw_bind_script() will remove this bit. + * + *----------------------------------------------------------- + */ + +#define SCR_NO_FLUSH 0x01000000 + +#define SCR_COPY(n) (0xc0000000 | SCR_NO_FLUSH | (n)) +#define SCR_COPY_F(n) (0xc0000000 | (n)) + +/*----------------------------------------------------------- + * + * Register move and binary operations + * + *----------------------------------------------------------- + * + * SFBR_REG (reg, op, data) reg = SFBR op data + * << 0 >> + * + * REG_SFBR (reg, op, data) SFBR = reg op data + * << 0 >> + * + * REG_REG (reg, op, data) reg = reg op data + * << 0 >> + * + *----------------------------------------------------------- + * + * On 825A, 875, 895 and 896 chips the content + * of SFBR register can be used as data (SCR_SFBR_DATA). + * The 896 has additionnal IO registers starting at + * offset 0x80. Bit 7 of register offset is stored in + * bit 7 of the SCRIPTS instruction first DWORD. + * + *----------------------------------------------------------- + */ + +#define SCR_REG_OFS(ofs) ((((ofs) & 0x7f) << 16ul) + ((ofs) & 0x80)) + +#define SCR_SFBR_REG(reg,op,data) \ + (0x68000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul)) + +#define SCR_REG_SFBR(reg,op,data) \ + (0x70000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul)) + +#define SCR_REG_REG(reg,op,data) \ + (0x78000000 | (SCR_REG_OFS(REG(reg))) | (op) | (((data)&0xff)<<8ul)) + + +#define SCR_LOAD 0x00000000 +#define SCR_SHL 0x01000000 +#define SCR_OR 0x02000000 +#define SCR_XOR 0x03000000 +#define SCR_AND 0x04000000 +#define SCR_SHR 0x05000000 +#define SCR_ADD 0x06000000 +#define SCR_ADDC 0x07000000 + +#define SCR_SFBR_DATA (0x00800000>>8ul) /* Use SFBR as data */ + +/*----------------------------------------------------------- + * + * FROM_REG (reg) SFBR = reg + * << 0 >> + * + * TO_REG (reg) reg = SFBR + * << 0 >> + * + * LOAD_REG (reg, data) reg = <data> + * << 0 >> + * + * LOAD_SFBR(data) SFBR = <data> + * << 0 >> + * + *----------------------------------------------------------- + */ + +#define SCR_FROM_REG(reg) \ + SCR_REG_SFBR(reg,SCR_OR,0) + +#define SCR_TO_REG(reg) \ + SCR_SFBR_REG(reg,SCR_OR,0) + +#define SCR_LOAD_REG(reg,data) \ + SCR_REG_REG(reg,SCR_LOAD,data) + +#define SCR_LOAD_SFBR(data) \ + (SCR_REG_SFBR (gpreg, SCR_LOAD, data)) + +/*----------------------------------------------------------- + * + * LOAD from memory to register. + * STORE from register to memory. + * + * Only supported by 810A, 860, 825A, 875, 895 and 896. + * + *----------------------------------------------------------- + * + * LOAD_ABS (LEN) + * <<start address>> + * + * LOAD_REL (LEN) (DSA relative) + * <<dsa_offset>> + * + *----------------------------------------------------------- + */ + +#define SCR_REG_OFS2(ofs) (((ofs) & 0xff) << 16ul) +#define SCR_NO_FLUSH2 0x02000000 +#define SCR_DSA_REL2 0x10000000 + +#define SCR_LOAD_R(reg, how, n) \ + (0xe1000000 | how | (SCR_REG_OFS2(REG(reg))) | (n)) + +#define SCR_STORE_R(reg, how, n) \ + (0xe0000000 | how | (SCR_REG_OFS2(REG(reg))) | (n)) + +#define SCR_LOAD_ABS(reg, n) SCR_LOAD_R(reg, SCR_NO_FLUSH2, n) +#define SCR_LOAD_REL(reg, n) SCR_LOAD_R(reg, SCR_NO_FLUSH2|SCR_DSA_REL2, n) +#define SCR_LOAD_ABS_F(reg, n) SCR_LOAD_R(reg, 0, n) +#define SCR_LOAD_REL_F(reg, n) SCR_LOAD_R(reg, SCR_DSA_REL2, n) + +#define SCR_STORE_ABS(reg, n) SCR_STORE_R(reg, SCR_NO_FLUSH2, n) +#define SCR_STORE_REL(reg, n) SCR_STORE_R(reg, SCR_NO_FLUSH2|SCR_DSA_REL2,n) +#define SCR_STORE_ABS_F(reg, n) SCR_STORE_R(reg, 0, n) +#define SCR_STORE_REL_F(reg, n) SCR_STORE_R(reg, SCR_DSA_REL2, n) + + +/*----------------------------------------------------------- + * + * Waiting for Disconnect or Reselect + * + *----------------------------------------------------------- + * + * JUMP [ | IFTRUE/IFFALSE ( ... ) ] + * <<address>> + * + * JUMPR [ | IFTRUE/IFFALSE ( ... ) ] + * <<distance>> + * + * CALL [ | IFTRUE/IFFALSE ( ... ) ] + * <<address>> + * + * CALLR [ | IFTRUE/IFFALSE ( ... ) ] + * <<distance>> + * + * RETURN [ | IFTRUE/IFFALSE ( ... ) ] + * <<dummy>> + * + * INT [ | IFTRUE/IFFALSE ( ... ) ] + * <<ident>> + * + * INT_FLY [ | IFTRUE/IFFALSE ( ... ) ] + * <<ident>> + * + * Conditions: + * WHEN (phase) + * IF (phase) + * CARRYSET + * DATA (data, mask) + * + *----------------------------------------------------------- + */ + +#define SCR_NO_OP 0x80000000 +#define SCR_JUMP 0x80080000 +#define SCR_JUMP64 0x80480000 +#define SCR_JUMPR 0x80880000 +#define SCR_CALL 0x88080000 +#define SCR_CALLR 0x88880000 +#define SCR_RETURN 0x90080000 +#define SCR_INT 0x98080000 +#define SCR_INT_FLY 0x98180000 + +#define IFFALSE(arg) (0x00080000 | (arg)) +#define IFTRUE(arg) (0x00000000 | (arg)) + +#define WHEN(phase) (0x00030000 | (phase)) +#define IF(phase) (0x00020000 | (phase)) + +#define DATA(D) (0x00040000 | ((D) & 0xff)) +#define MASK(D,M) (0x00040000 | (((M ^ 0xff) & 0xff) << 8ul)|((D) & 0xff)) + +#define CARRYSET (0x00200000) + +/*----------------------------------------------------------- + * + * SCSI constants. + * + *----------------------------------------------------------- + */ + +/* + * Messages + */ + +#define M_COMPLETE COMMAND_COMPLETE +#define M_EXTENDED EXTENDED_MESSAGE +#define M_SAVE_DP SAVE_POINTERS +#define M_RESTORE_DP RESTORE_POINTERS +#define M_DISCONNECT DISCONNECT +#define M_ID_ERROR INITIATOR_ERROR +#define M_ABORT ABORT_TASK_SET +#define M_REJECT MESSAGE_REJECT +#define M_NOOP NOP +#define M_PARITY MSG_PARITY_ERROR +#define M_LCOMPLETE LINKED_CMD_COMPLETE +#define M_FCOMPLETE LINKED_FLG_CMD_COMPLETE +#define M_RESET TARGET_RESET +#define M_ABORT_TAG ABORT_TASK +#define M_CLEAR_QUEUE CLEAR_TASK_SET +#define M_INIT_REC INITIATE_RECOVERY +#define M_REL_REC RELEASE_RECOVERY +#define M_TERMINATE (0x11) +#define M_SIMPLE_TAG SIMPLE_QUEUE_TAG +#define M_HEAD_TAG HEAD_OF_QUEUE_TAG +#define M_ORDERED_TAG ORDERED_QUEUE_TAG +#define M_IGN_RESIDUE IGNORE_WIDE_RESIDUE + +#define M_X_MODIFY_DP EXTENDED_MODIFY_DATA_POINTER +#define M_X_SYNC_REQ EXTENDED_SDTR +#define M_X_WIDE_REQ EXTENDED_WDTR +#define M_X_PPR_REQ EXTENDED_PPR + +/* + * PPR protocol options + */ +#define PPR_OPT_IU (0x01) +#define PPR_OPT_DT (0x02) +#define PPR_OPT_QAS (0x04) +#define PPR_OPT_MASK (0x07) + +/* + * Status + */ + +#define S_GOOD SAM_STAT_GOOD +#define S_CHECK_COND SAM_STAT_CHECK_CONDITION +#define S_COND_MET SAM_STAT_CONDITION_MET +#define S_BUSY SAM_STAT_BUSY +#define S_INT SAM_STAT_INTERMEDIATE +#define S_INT_COND_MET SAM_STAT_INTERMEDIATE_CONDITION_MET +#define S_CONFLICT SAM_STAT_RESERVATION_CONFLICT +#define S_TERMINATED SAM_STAT_COMMAND_TERMINATED +#define S_QUEUE_FULL SAM_STAT_TASK_SET_FULL +#define S_ILLEGAL (0xff) + +#endif /* defined SYM_DEFS_H */ diff --git a/drivers/scsi/sym53c8xx_2/sym_fw.c b/drivers/scsi/sym53c8xx_2/sym_fw.c new file mode 100644 index 000000000..c536d2a9a --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_fw.c @@ -0,0 +1,537 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include "sym_glue.h" + +/* + * Macros used for all firmwares. + */ +#define SYM_GEN_A(s, label) ((short) offsetof(s, label)), +#define SYM_GEN_B(s, label) ((short) offsetof(s, label)), +#define SYM_GEN_Z(s, label) ((short) offsetof(s, label)), +#define PADDR_A(label) SYM_GEN_PADDR_A(struct SYM_FWA_SCR, label) +#define PADDR_B(label) SYM_GEN_PADDR_B(struct SYM_FWB_SCR, label) + + +#if SYM_CONF_GENERIC_SUPPORT +/* + * Allocate firmware #1 script area. + */ +#define SYM_FWA_SCR sym_fw1a_scr +#define SYM_FWB_SCR sym_fw1b_scr +#define SYM_FWZ_SCR sym_fw1z_scr +#include "sym_fw1.h" +static struct sym_fwa_ofs sym_fw1a_ofs = { + SYM_GEN_FW_A(struct SYM_FWA_SCR) +}; +static struct sym_fwb_ofs sym_fw1b_ofs = { + SYM_GEN_FW_B(struct SYM_FWB_SCR) +}; +static struct sym_fwz_ofs sym_fw1z_ofs = { + SYM_GEN_FW_Z(struct SYM_FWZ_SCR) +}; +#undef SYM_FWA_SCR +#undef SYM_FWB_SCR +#undef SYM_FWZ_SCR +#endif /* SYM_CONF_GENERIC_SUPPORT */ + +/* + * Allocate firmware #2 script area. + */ +#define SYM_FWA_SCR sym_fw2a_scr +#define SYM_FWB_SCR sym_fw2b_scr +#define SYM_FWZ_SCR sym_fw2z_scr +#include "sym_fw2.h" +static struct sym_fwa_ofs sym_fw2a_ofs = { + SYM_GEN_FW_A(struct SYM_FWA_SCR) +}; +static struct sym_fwb_ofs sym_fw2b_ofs = { + SYM_GEN_FW_B(struct SYM_FWB_SCR) + SYM_GEN_B(struct SYM_FWB_SCR, start64) + SYM_GEN_B(struct SYM_FWB_SCR, pm_handle) +}; +static struct sym_fwz_ofs sym_fw2z_ofs = { + SYM_GEN_FW_Z(struct SYM_FWZ_SCR) +}; +#undef SYM_FWA_SCR +#undef SYM_FWB_SCR +#undef SYM_FWZ_SCR + +#undef SYM_GEN_A +#undef SYM_GEN_B +#undef SYM_GEN_Z +#undef PADDR_A +#undef PADDR_B + +#if SYM_CONF_GENERIC_SUPPORT +/* + * Patch routine for firmware #1. + */ +static void +sym_fw1_patch(struct Scsi_Host *shost) +{ + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_fw1a_scr *scripta0; + struct sym_fw1b_scr *scriptb0; + + scripta0 = (struct sym_fw1a_scr *) np->scripta0; + scriptb0 = (struct sym_fw1b_scr *) np->scriptb0; + + /* + * Remove LED support if not needed. + */ + if (!(np->features & FE_LED0)) { + scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); + scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); + scripta0->start[0] = cpu_to_scr(SCR_NO_OP); + } + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user does not want to use IMMEDIATE ARBITRATION + * when we are reselected while attempting to arbitrate, + * patch the SCRIPTS accordingly with a SCRIPT NO_OP. + */ + if (!SYM_CONF_SET_IARB_ON_ARB_LOST) + scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); +#endif + /* + * Patch some data in SCRIPTS. + * - start and done queue initial bus address. + * - target bus address table bus address. + */ + scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); + scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); + scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); +} +#endif /* SYM_CONF_GENERIC_SUPPORT */ + +/* + * Patch routine for firmware #2. + */ +static void +sym_fw2_patch(struct Scsi_Host *shost) +{ + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + struct sym_hcb *np = sym_data->ncb; + struct sym_fw2a_scr *scripta0; + struct sym_fw2b_scr *scriptb0; + + scripta0 = (struct sym_fw2a_scr *) np->scripta0; + scriptb0 = (struct sym_fw2b_scr *) np->scriptb0; + + /* + * Remove LED support if not needed. + */ + if (!(np->features & FE_LED0)) { + scripta0->idle[0] = cpu_to_scr(SCR_NO_OP); + scripta0->reselected[0] = cpu_to_scr(SCR_NO_OP); + scripta0->start[0] = cpu_to_scr(SCR_NO_OP); + } + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * Remove useless 64 bit DMA specific SCRIPTS, + * when this feature is not available. + */ + if (!use_dac(np)) { + scripta0->is_dmap_dirty[0] = cpu_to_scr(SCR_NO_OP); + scripta0->is_dmap_dirty[1] = 0; + scripta0->is_dmap_dirty[2] = cpu_to_scr(SCR_NO_OP); + scripta0->is_dmap_dirty[3] = 0; + } +#endif + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user does not want to use IMMEDIATE ARBITRATION + * when we are reselected while attempting to arbitrate, + * patch the SCRIPTS accordingly with a SCRIPT NO_OP. + */ + if (!SYM_CONF_SET_IARB_ON_ARB_LOST) + scripta0->ungetjob[0] = cpu_to_scr(SCR_NO_OP); +#endif + /* + * Patch some variable in SCRIPTS. + * - start and done queue initial bus address. + * - target bus address table bus address. + */ + scriptb0->startpos[0] = cpu_to_scr(np->squeue_ba); + scriptb0->done_pos[0] = cpu_to_scr(np->dqueue_ba); + scriptb0->targtbl[0] = cpu_to_scr(np->targtbl_ba); + + /* + * Remove the load of SCNTL4 on reselection if not a C10. + */ + if (!(np->features & FE_C10)) { + scripta0->resel_scntl4[0] = cpu_to_scr(SCR_NO_OP); + scripta0->resel_scntl4[1] = cpu_to_scr(0); + } + + /* + * Remove a couple of work-arounds specific to C1010 if + * they are not desirable. See `sym_fw2.h' for more details. + */ + if (!(pdev->device == PCI_DEVICE_ID_LSI_53C1010_66 && + pdev->revision < 0x1 && + np->pciclk_khz < 60000)) { + scripta0->datao_phase[0] = cpu_to_scr(SCR_NO_OP); + scripta0->datao_phase[1] = cpu_to_scr(0); + } + if (!(pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 /* && + pdev->revision < 0xff */)) { + scripta0->sel_done[0] = cpu_to_scr(SCR_NO_OP); + scripta0->sel_done[1] = cpu_to_scr(0); + } + + /* + * Patch some other variables in SCRIPTS. + * These ones are loaded by the SCRIPTS processor. + */ + scriptb0->pm0_data_addr[0] = + cpu_to_scr(np->scripta_ba + + offsetof(struct sym_fw2a_scr, pm0_data)); + scriptb0->pm1_data_addr[0] = + cpu_to_scr(np->scripta_ba + + offsetof(struct sym_fw2a_scr, pm1_data)); +} + +/* + * Fill the data area in scripts. + * To be done for all firmwares. + */ +static void +sym_fw_fill_data (u32 *in, u32 *out) +{ + int i; + + for (i = 0; i < SYM_CONF_MAX_SG; i++) { + *in++ = SCR_CHMOV_TBL ^ SCR_DATA_IN; + *in++ = offsetof (struct sym_dsb, data[i]); + *out++ = SCR_CHMOV_TBL ^ SCR_DATA_OUT; + *out++ = offsetof (struct sym_dsb, data[i]); + } +} + +/* + * Setup useful script bus addresses. + * To be done for all firmwares. + */ +static void +sym_fw_setup_bus_addresses(struct sym_hcb *np, struct sym_fw *fw) +{ + u32 *pa; + u_short *po; + int i; + + /* + * Build the bus address table for script A + * from the script A offset table. + */ + po = (u_short *) fw->a_ofs; + pa = (u32 *) &np->fwa_bas; + for (i = 0 ; i < sizeof(np->fwa_bas)/sizeof(u32) ; i++) + pa[i] = np->scripta_ba + po[i]; + + /* + * Same for script B. + */ + po = (u_short *) fw->b_ofs; + pa = (u32 *) &np->fwb_bas; + for (i = 0 ; i < sizeof(np->fwb_bas)/sizeof(u32) ; i++) + pa[i] = np->scriptb_ba + po[i]; + + /* + * Same for script Z. + */ + po = (u_short *) fw->z_ofs; + pa = (u32 *) &np->fwz_bas; + for (i = 0 ; i < sizeof(np->fwz_bas)/sizeof(u32) ; i++) + pa[i] = np->scriptz_ba + po[i]; +} + +#if SYM_CONF_GENERIC_SUPPORT +/* + * Setup routine for firmware #1. + */ +static void +sym_fw1_setup(struct sym_hcb *np, struct sym_fw *fw) +{ + struct sym_fw1a_scr *scripta0; + + scripta0 = (struct sym_fw1a_scr *) np->scripta0; + + /* + * Fill variable parts in scripts. + */ + sym_fw_fill_data(scripta0->data_in, scripta0->data_out); + + /* + * Setup bus addresses used from the C code.. + */ + sym_fw_setup_bus_addresses(np, fw); +} +#endif /* SYM_CONF_GENERIC_SUPPORT */ + +/* + * Setup routine for firmware #2. + */ +static void +sym_fw2_setup(struct sym_hcb *np, struct sym_fw *fw) +{ + struct sym_fw2a_scr *scripta0; + + scripta0 = (struct sym_fw2a_scr *) np->scripta0; + + /* + * Fill variable parts in scripts. + */ + sym_fw_fill_data(scripta0->data_in, scripta0->data_out); + + /* + * Setup bus addresses used from the C code.. + */ + sym_fw_setup_bus_addresses(np, fw); +} + +/* + * Allocate firmware descriptors. + */ +#if SYM_CONF_GENERIC_SUPPORT +static struct sym_fw sym_fw1 = SYM_FW_ENTRY(sym_fw1, "NCR-generic"); +#endif /* SYM_CONF_GENERIC_SUPPORT */ +static struct sym_fw sym_fw2 = SYM_FW_ENTRY(sym_fw2, "LOAD/STORE-based"); + +/* + * Find the most appropriate firmware for a chip. + */ +struct sym_fw * +sym_find_firmware(struct sym_chip *chip) +{ + if (chip->features & FE_LDSTR) + return &sym_fw2; +#if SYM_CONF_GENERIC_SUPPORT + else if (!(chip->features & (FE_PFEN|FE_NOPM|FE_DAC))) + return &sym_fw1; +#endif + else + return NULL; +} + +/* + * Bind a script to physical addresses. + */ +void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len) +{ + u32 opcode, new, old, tmp1, tmp2; + u32 *end, *cur; + int relocs; + + cur = start; + end = start + len/4; + + while (cur < end) { + + opcode = *cur; + + /* + * If we forget to change the length + * in scripts, a field will be + * padded with 0. This is an illegal + * command. + */ + if (opcode == 0) { + printf ("%s: ERROR0 IN SCRIPT at %d.\n", + sym_name(np), (int) (cur-start)); + ++cur; + continue; + } + + /* + * We use the bogus value 0xf00ff00f ;-) + * to reserve data area in SCRIPTS. + */ + if (opcode == SCR_DATA_ZERO) { + *cur++ = 0; + continue; + } + + if (DEBUG_FLAGS & DEBUG_SCRIPT) + printf ("%d: <%x>\n", (int) (cur-start), + (unsigned)opcode); + + /* + * We don't have to decode ALL commands + */ + switch (opcode >> 28) { + case 0xf: + /* + * LOAD / STORE DSA relative, don't relocate. + */ + relocs = 0; + break; + case 0xe: + /* + * LOAD / STORE absolute. + */ + relocs = 1; + break; + case 0xc: + /* + * COPY has TWO arguments. + */ + relocs = 2; + tmp1 = cur[1]; + tmp2 = cur[2]; + if ((tmp1 ^ tmp2) & 3) { + printf ("%s: ERROR1 IN SCRIPT at %d.\n", + sym_name(np), (int) (cur-start)); + } + /* + * If PREFETCH feature not enabled, remove + * the NO FLUSH bit if present. + */ + if ((opcode & SCR_NO_FLUSH) && + !(np->features & FE_PFEN)) { + opcode = (opcode & ~SCR_NO_FLUSH); + } + break; + case 0x0: + /* + * MOVE/CHMOV (absolute address) + */ + if (!(np->features & FE_WIDE)) + opcode = (opcode | OPC_MOVE); + relocs = 1; + break; + case 0x1: + /* + * MOVE/CHMOV (table indirect) + */ + if (!(np->features & FE_WIDE)) + opcode = (opcode | OPC_MOVE); + relocs = 0; + break; +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + case 0x2: + /* + * MOVE/CHMOV in target role (absolute address) + */ + opcode &= ~0x20000000; + if (!(np->features & FE_WIDE)) + opcode = (opcode & ~OPC_TCHMOVE); + relocs = 1; + break; + case 0x3: + /* + * MOVE/CHMOV in target role (table indirect) + */ + opcode &= ~0x20000000; + if (!(np->features & FE_WIDE)) + opcode = (opcode & ~OPC_TCHMOVE); + relocs = 0; + break; +#endif + case 0x8: + /* + * JUMP / CALL + * don't relocate if relative :-) + */ + if (opcode & 0x00800000) + relocs = 0; + else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ + relocs = 2; + else + relocs = 1; + break; + case 0x4: + case 0x5: + case 0x6: + case 0x7: + relocs = 1; + break; + default: + relocs = 0; + break; + } + + /* + * Scriptify:) the opcode. + */ + *cur++ = cpu_to_scr(opcode); + + /* + * If no relocation, assume 1 argument + * and just scriptize:) it. + */ + if (!relocs) { + *cur = cpu_to_scr(*cur); + ++cur; + continue; + } + + /* + * Otherwise performs all needed relocations. + */ + while (relocs--) { + old = *cur; + + switch (old & RELOC_MASK) { + case RELOC_REGISTER: + new = (old & ~RELOC_MASK) + np->mmio_ba; + break; + case RELOC_LABEL_A: + new = (old & ~RELOC_MASK) + np->scripta_ba; + break; + case RELOC_LABEL_B: + new = (old & ~RELOC_MASK) + np->scriptb_ba; + break; + case RELOC_SOFTC: + new = (old & ~RELOC_MASK) + np->hcb_ba; + break; + case 0: + /* + * Don't relocate a 0 address. + * They are mostly used for patched or + * script self-modified areas. + */ + if (old == 0) { + new = old; + break; + } + fallthrough; + default: + new = 0; + panic("sym_fw_bind_script: " + "weird relocation %x\n", old); + break; + } + + *cur++ = cpu_to_scr(new); + } + } +} diff --git a/drivers/scsi/sym53c8xx_2/sym_fw.h b/drivers/scsi/sym53c8xx_2/sym_fw.h new file mode 100644 index 000000000..bbba011e7 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_fw.h @@ -0,0 +1,192 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#ifndef SYM_FW_H +#define SYM_FW_H +/* + * Macro used to generate interfaces for script A. + */ +#define SYM_GEN_FW_A(s) \ + SYM_GEN_A(s, start) SYM_GEN_A(s, getjob_begin) \ + SYM_GEN_A(s, getjob_end) \ + SYM_GEN_A(s, select) SYM_GEN_A(s, wf_sel_done) \ + SYM_GEN_A(s, send_ident) \ + SYM_GEN_A(s, dispatch) SYM_GEN_A(s, init) \ + SYM_GEN_A(s, clrack) SYM_GEN_A(s, complete_error) \ + SYM_GEN_A(s, done) SYM_GEN_A(s, done_end) \ + SYM_GEN_A(s, idle) SYM_GEN_A(s, ungetjob) \ + SYM_GEN_A(s, reselect) \ + SYM_GEN_A(s, resel_tag) SYM_GEN_A(s, resel_dsa) \ + SYM_GEN_A(s, resel_no_tag) \ + SYM_GEN_A(s, data_in) SYM_GEN_A(s, data_in2) \ + SYM_GEN_A(s, data_out) SYM_GEN_A(s, data_out2) \ + SYM_GEN_A(s, pm0_data) SYM_GEN_A(s, pm1_data) + +/* + * Macro used to generate interfaces for script B. + */ +#define SYM_GEN_FW_B(s) \ + SYM_GEN_B(s, no_data) \ + SYM_GEN_B(s, sel_for_abort) SYM_GEN_B(s, sel_for_abort_1) \ + SYM_GEN_B(s, msg_bad) SYM_GEN_B(s, msg_weird) \ + SYM_GEN_B(s, wdtr_resp) SYM_GEN_B(s, send_wdtr) \ + SYM_GEN_B(s, sdtr_resp) SYM_GEN_B(s, send_sdtr) \ + SYM_GEN_B(s, ppr_resp) SYM_GEN_B(s, send_ppr) \ + SYM_GEN_B(s, nego_bad_phase) \ + SYM_GEN_B(s, ident_break) SYM_GEN_B(s, ident_break_atn) \ + SYM_GEN_B(s, sdata_in) SYM_GEN_B(s, resel_bad_lun) \ + SYM_GEN_B(s, bad_i_t_l) SYM_GEN_B(s, bad_i_t_l_q) \ + SYM_GEN_B(s, wsr_ma_helper) + +/* + * Macro used to generate interfaces for script Z. + */ +#define SYM_GEN_FW_Z(s) \ + SYM_GEN_Z(s, snooptest) SYM_GEN_Z(s, snoopend) + +/* + * Generates structure interface that contains + * offsets within script A, B and Z. + */ +#define SYM_GEN_A(s, label) s label; +#define SYM_GEN_B(s, label) s label; +#define SYM_GEN_Z(s, label) s label; +struct sym_fwa_ofs { + SYM_GEN_FW_A(u_short) +}; +struct sym_fwb_ofs { + SYM_GEN_FW_B(u_short) + SYM_GEN_B(u_short, start64) + SYM_GEN_B(u_short, pm_handle) +}; +struct sym_fwz_ofs { + SYM_GEN_FW_Z(u_short) +}; + +/* + * Generates structure interface that contains + * bus addresses within script A, B and Z. + */ +struct sym_fwa_ba { + SYM_GEN_FW_A(u32) +}; +struct sym_fwb_ba { + SYM_GEN_FW_B(u32) + SYM_GEN_B(u32, start64); + SYM_GEN_B(u32, pm_handle); +}; +struct sym_fwz_ba { + SYM_GEN_FW_Z(u32) +}; +#undef SYM_GEN_A +#undef SYM_GEN_B +#undef SYM_GEN_Z + +/* + * Let cc know about the name of the controller data structure. + * We need this for function prototype declarations just below. + */ +struct sym_hcb; + +/* + * Generic structure that defines a firmware. + */ +struct sym_fw { + char *name; /* Name we want to print out */ + u32 *a_base; /* Pointer to script A template */ + int a_size; /* Size of script A */ + struct sym_fwa_ofs + *a_ofs; /* Useful offsets in script A */ + u32 *b_base; /* Pointer to script B template */ + int b_size; /* Size of script B */ + struct sym_fwb_ofs + *b_ofs; /* Useful offsets in script B */ + u32 *z_base; /* Pointer to script Z template */ + int z_size; /* Size of script Z */ + struct sym_fwz_ofs + *z_ofs; /* Useful offsets in script Z */ + /* Setup and patch methods for this firmware */ + void (*setup)(struct sym_hcb *, struct sym_fw *); + void (*patch)(struct Scsi_Host *); +}; + +/* + * Macro used to declare a firmware. + */ +#define SYM_FW_ENTRY(fw, name) \ +{ \ + name, \ + (u32 *) &fw##a_scr, sizeof(fw##a_scr), &fw##a_ofs, \ + (u32 *) &fw##b_scr, sizeof(fw##b_scr), &fw##b_ofs, \ + (u32 *) &fw##z_scr, sizeof(fw##z_scr), &fw##z_ofs, \ + fw##_setup, fw##_patch \ +} + +/* + * Macros used from the C code to get useful + * SCRIPTS bus addresses. + */ +#define SCRIPTA_BA(np, label) (np->fwa_bas.label) +#define SCRIPTB_BA(np, label) (np->fwb_bas.label) +#define SCRIPTZ_BA(np, label) (np->fwz_bas.label) + +/* + * Macros used by scripts definitions. + * + * HADDR_1 generates a reference to a field of the controller data. + * HADDR_2 generates a reference to a field of the controller data + * with offset. + * RADDR_1 generates a reference to a script processor register. + * RADDR_2 generates a reference to a script processor register + * with offset. + * PADDR_A generates a reference to another part of script A. + * PADDR_B generates a reference to another part of script B. + * + * SYM_GEN_PADDR_A and SYM_GEN_PADDR_B are used to define respectively + * the PADDR_A and PADDR_B macros for each firmware by setting argument + * `s' to the name of the corresponding structure. + * + * SCR_DATA_ZERO is used to allocate a DWORD of data in scripts areas. + */ + +#define RELOC_SOFTC 0x40000000 +#define RELOC_LABEL_A 0x50000000 +#define RELOC_REGISTER 0x60000000 +#define RELOC_LABEL_B 0x80000000 +#define RELOC_MASK 0xf0000000 + +#define HADDR_1(label) (RELOC_SOFTC | offsetof(struct sym_hcb, label)) +#define HADDR_2(label,ofs) (RELOC_SOFTC | \ + (offsetof(struct sym_hcb, label)+(ofs))) +#define RADDR_1(label) (RELOC_REGISTER | REG(label)) +#define RADDR_2(label,ofs) (RELOC_REGISTER | ((REG(label))+(ofs))) + +#define SYM_GEN_PADDR_A(s, label) (RELOC_LABEL_A | offsetof(s, label)) +#define SYM_GEN_PADDR_B(s, label) (RELOC_LABEL_B | offsetof(s, label)) + +#define SCR_DATA_ZERO 0xf00ff00f + +#endif /* SYM_FW_H */ diff --git a/drivers/scsi/sym53c8xx_2/sym_fw1.h b/drivers/scsi/sym53c8xx_2/sym_fw1.h new file mode 100644 index 000000000..d98ec67f0 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_fw1.h @@ -0,0 +1,1777 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +/* + * Scripts for SYMBIOS-Processor + * + * We have to know the offsets of all labels before we reach + * them (for forward jumps). Therefore we declare a struct + * here. If you make changes inside the script, + * + * DONT FORGET TO CHANGE THE LENGTHS HERE! + */ + +/* + * Script fragments which are loaded into the on-chip RAM + * of 825A, 875, 876, 895, 895A, 896 and 1010 chips. + * Must not exceed 4K bytes. + */ +struct SYM_FWA_SCR { + u32 start [ 11]; + u32 getjob_begin [ 4]; + u32 _sms_a10 [ 5]; + u32 getjob_end [ 4]; + u32 _sms_a20 [ 4]; +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + u32 select [ 8]; +#else + u32 select [ 6]; +#endif + u32 _sms_a30 [ 5]; + u32 wf_sel_done [ 2]; + u32 send_ident [ 2]; +#ifdef SYM_CONF_IARB_SUPPORT + u32 select2 [ 8]; +#else + u32 select2 [ 2]; +#endif + u32 command [ 2]; + u32 dispatch [ 28]; + u32 sel_no_cmd [ 10]; + u32 init [ 6]; + u32 clrack [ 4]; + u32 datai_done [ 11]; + u32 datai_done_wsr [ 20]; + u32 datao_done [ 11]; + u32 datao_done_wss [ 6]; + u32 datai_phase [ 5]; + u32 datao_phase [ 5]; + u32 msg_in [ 2]; + u32 msg_in2 [ 10]; +#ifdef SYM_CONF_IARB_SUPPORT + u32 status [ 14]; +#else + u32 status [ 10]; +#endif + u32 complete [ 6]; + u32 complete2 [ 8]; + u32 _sms_a40 [ 12]; + u32 done [ 5]; + u32 _sms_a50 [ 5]; + u32 _sms_a60 [ 2]; + u32 done_end [ 4]; + u32 complete_error [ 5]; + u32 save_dp [ 11]; + u32 restore_dp [ 7]; + u32 disconnect [ 11]; + u32 disconnect2 [ 5]; + u32 _sms_a65 [ 3]; +#ifdef SYM_CONF_IARB_SUPPORT + u32 idle [ 4]; +#else + u32 idle [ 2]; +#endif +#ifdef SYM_CONF_IARB_SUPPORT + u32 ungetjob [ 7]; +#else + u32 ungetjob [ 5]; +#endif +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + u32 reselect [ 4]; +#else + u32 reselect [ 2]; +#endif + u32 reselected [ 19]; + u32 _sms_a70 [ 6]; + u32 _sms_a80 [ 4]; + u32 reselected1 [ 25]; + u32 _sms_a90 [ 4]; + u32 resel_lun0 [ 7]; + u32 _sms_a100 [ 4]; + u32 resel_tag [ 8]; +#if SYM_CONF_MAX_TASK*4 > 512 + u32 _sms_a110 [ 23]; +#elif SYM_CONF_MAX_TASK*4 > 256 + u32 _sms_a110 [ 17]; +#else + u32 _sms_a110 [ 13]; +#endif + u32 _sms_a120 [ 2]; + u32 resel_go [ 4]; + u32 _sms_a130 [ 7]; + u32 resel_dsa [ 2]; + u32 resel_dsa1 [ 4]; + u32 _sms_a140 [ 7]; + u32 resel_no_tag [ 4]; + u32 _sms_a145 [ 7]; + u32 data_in [SYM_CONF_MAX_SG * 2]; + u32 data_in2 [ 4]; + u32 data_out [SYM_CONF_MAX_SG * 2]; + u32 data_out2 [ 4]; + u32 pm0_data [ 12]; + u32 pm0_data_out [ 6]; + u32 pm0_data_end [ 7]; + u32 pm_data_end [ 4]; + u32 _sms_a150 [ 4]; + u32 pm1_data [ 12]; + u32 pm1_data_out [ 6]; + u32 pm1_data_end [ 9]; +}; + +/* + * Script fragments which stay in main memory for all chips + * except for chips that support 8K on-chip RAM. + */ +struct SYM_FWB_SCR { + u32 no_data [ 2]; +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + u32 sel_for_abort [ 18]; +#else + u32 sel_for_abort [ 16]; +#endif + u32 sel_for_abort_1 [ 2]; + u32 msg_in_etc [ 12]; + u32 msg_received [ 5]; + u32 msg_weird_seen [ 5]; + u32 msg_extended [ 17]; + u32 _sms_b10 [ 4]; + u32 msg_bad [ 6]; + u32 msg_weird [ 4]; + u32 msg_weird1 [ 8]; + u32 wdtr_resp [ 6]; + u32 send_wdtr [ 4]; + u32 sdtr_resp [ 6]; + u32 send_sdtr [ 4]; + u32 ppr_resp [ 6]; + u32 send_ppr [ 4]; + u32 nego_bad_phase [ 4]; + u32 msg_out [ 4]; + u32 msg_out_done [ 4]; + u32 data_ovrun [ 3]; + u32 data_ovrun1 [ 22]; + u32 data_ovrun2 [ 8]; + u32 abort_resel [ 16]; + u32 resend_ident [ 4]; + u32 ident_break [ 4]; + u32 ident_break_atn [ 4]; + u32 sdata_in [ 6]; + u32 resel_bad_lun [ 4]; + u32 bad_i_t_l [ 4]; + u32 bad_i_t_l_q [ 4]; + u32 bad_status [ 7]; + u32 wsr_ma_helper [ 4]; + + /* Data area */ + u32 zero [ 1]; + u32 scratch [ 1]; + u32 scratch1 [ 1]; + u32 prev_done [ 1]; + u32 done_pos [ 1]; + u32 nextjob [ 1]; + u32 startpos [ 1]; + u32 targtbl [ 1]; +}; + +/* + * Script fragments used at initialisations. + * Only runs out of main memory. + */ +struct SYM_FWZ_SCR { + u32 snooptest [ 9]; + u32 snoopend [ 2]; +}; + +static struct SYM_FWA_SCR SYM_FWA_SCR = { +/*--------------------------< START >----------------------------*/ { + /* + * Switch the LED on. + * Will be patched with a NO_OP if LED + * not needed or not desired. + */ + SCR_REG_REG (gpreg, SCR_AND, 0xfe), + 0, + /* + * Clear SIGP. + */ + SCR_FROM_REG (ctest2), + 0, + /* + * Stop here if the C code wants to perform + * some error recovery procedure manually. + * (Indicate this by setting SEM in ISTAT) + */ + SCR_FROM_REG (istat), + 0, + /* + * Report to the C code the next position in + * the start queue the SCRIPTS will schedule. + * The C code must not change SCRATCHA. + */ + SCR_COPY (4), + PADDR_B (startpos), + RADDR_1 (scratcha), + SCR_INT ^ IFTRUE (MASK (SEM, SEM)), + SIR_SCRIPT_STOPPED, + /* + * Start the next job. + * + * @DSA = start point for this job. + * SCRATCHA = address of this job in the start queue. + * + * We will restore startpos with SCRATCHA if we fails the + * arbitration or if it is the idle job. + * + * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS + * is a critical path. If it is partially executed, it then + * may happen that the job address is not yet in the DSA + * and the next queue position points to the next JOB. + */ +}/*-------------------------< GETJOB_BEGIN >---------------------*/,{ + /* + * Copy to a fixed location both the next STARTPOS + * and the current JOB address, using self modifying + * SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (scratcha), + PADDR_A (_sms_a10), + SCR_COPY (8), +}/*-------------------------< _SMS_A10 >-------------------------*/,{ + 0, + PADDR_B (nextjob), + /* + * Move the start address to TEMP using self- + * modifying SCRIPTS and jump indirectly to + * that address. + */ + SCR_COPY (4), + PADDR_B (nextjob), + RADDR_1 (dsa), +}/*-------------------------< GETJOB_END >-----------------------*/,{ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a20), + SCR_COPY (4), +}/*-------------------------< _SMS_A20 >-------------------------*/,{ + 0, + RADDR_1 (temp), + SCR_RETURN, + 0, +}/*-------------------------< SELECT >---------------------------*/,{ + /* + * DSA contains the address of a scheduled + * data structure. + * + * SCRATCHA contains the address of the start queue + * entry which points to the next job. + * + * Set Initiator mode. + * + * (Target mode is left as an exercise for the reader) + */ +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + SCR_CLR (SCR_TRG), + 0, +#endif + /* + * And try to select this target. + */ + SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select), + PADDR_A (ungetjob), + /* + * Now there are 4 possibilities: + * + * (1) The chip loses arbitration. + * This is ok, because it will try again, + * when the bus becomes idle. + * (But beware of the timeout function!) + * + * (2) The chip is reselected. + * Then the script processor takes the jump + * to the RESELECT label. + * + * (3) The chip wins arbitration. + * Then it will execute SCRIPTS instruction until + * the next instruction that checks SCSI phase. + * Then will stop and wait for selection to be + * complete or selection time-out to occur. + * + * After having won arbitration, the SCRIPTS + * processor is able to execute instructions while + * the SCSI core is performing SCSI selection. + */ + + /* + * Copy the CCB header to a fixed location + * in the HCB using self-modifying SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a30), + SCR_COPY (sizeof(struct sym_ccbh)), +}/*-------------------------< _SMS_A30 >-------------------------*/,{ + 0, + HADDR_1 (ccb_head), + /* + * Initialize the status register + */ + SCR_COPY (4), + HADDR_1 (ccb_head.status), + RADDR_1 (scr0), +}/*-------------------------< WF_SEL_DONE >----------------------*/,{ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), + SIR_SEL_ATN_NO_MSG_OUT, +}/*-------------------------< SEND_IDENT >-----------------------*/,{ + /* + * Selection complete. + * Send the IDENTIFY and possibly the TAG message + * and negotiation message if present. + */ + SCR_MOVE_TBL ^ SCR_MSG_OUT, + offsetof (struct sym_dsb, smsg), +}/*-------------------------< SELECT2 >--------------------------*/,{ +#ifdef SYM_CONF_IARB_SUPPORT + /* + * Set IMMEDIATE ARBITRATION if we have been given + * a hint to do so. (Some job to do after this one). + */ + SCR_FROM_REG (HF_REG), + 0, + SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), + 8, + SCR_REG_REG (scntl1, SCR_OR, IARB), + 0, +#endif + /* + * Anticipate the COMMAND phase. + * This is the PHASE we expect at this point. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), + PADDR_A (sel_no_cmd), +}/*-------------------------< COMMAND >--------------------------*/,{ + /* + * ... and send the command + */ + SCR_MOVE_TBL ^ SCR_COMMAND, + offsetof (struct sym_dsb, cmd), +}/*-------------------------< DISPATCH >-------------------------*/,{ + /* + * MSG_IN is the only phase that shall be + * entered at least once for each (re)selection. + * So we test it first. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (msg_in), + SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), + PADDR_A (datao_phase), + SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), + PADDR_A (datai_phase), + SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), + PADDR_A (status), + SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), + PADDR_A (command), + SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), + PADDR_B (msg_out), + /* + * Discard as many illegal phases as + * required and tell the C code about. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)), + 16, + SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, + HADDR_1 (scratch), + SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)), + -16, + SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)), + 16, + SCR_MOVE_ABS (1) ^ SCR_ILG_IN, + HADDR_1 (scratch), + SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)), + -16, + SCR_INT, + SIR_BAD_PHASE, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< SEL_NO_CMD >-----------------------*/,{ + /* + * The target does not switch to command + * phase after IDENTIFY has been sent. + * + * If it stays in MSG OUT phase send it + * the IDENTIFY again. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), + PADDR_B (resend_ident), + /* + * If target does not switch to MSG IN phase + * and we sent a negotiation, assert the + * failure immediately. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (dispatch), + SCR_FROM_REG (HS_REG), + 0, + SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), + SIR_NEGO_FAILED, + /* + * Jump to dispatcher. + */ + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< INIT >-----------------------------*/,{ + /* + * Wait for the SCSI RESET signal to be + * inactive before restarting operations, + * since the chip may hang on SEL_ATN + * if SCSI RESET is active. + */ + SCR_FROM_REG (sstat0), + 0, + SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), + -16, + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< CLRACK >---------------------------*/,{ + /* + * Terminate possible pending message phase. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAI_DONE >-----------------------*/,{ + /* + * Save current pointer to LASTP. + */ + SCR_COPY (4), + RADDR_1 (temp), + HADDR_1 (ccb_head.lastp), + /* + * If the SWIDE is not full, jump to dispatcher. + * We anticipate a STATUS phase. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)), + PADDR_A (datai_done_wsr), + SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), + PADDR_A (status), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{ + /* + * The SWIDE is full. + * Clear this condition. + */ + SCR_REG_REG (scntl2, SCR_OR, WSR), + 0, + /* + * We are expecting an IGNORE RESIDUE message + * from the device, otherwise we are in data + * overrun condition. Check against MSG_IN phase. + */ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), + SIR_SWIDE_OVERRUN, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), + PADDR_A (dispatch), + /* + * We are in MSG_IN phase, + * Read the first byte of the message. + * If it is not an IGNORE RESIDUE message, + * signal overrun and jump to message + * processing. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[0]), + SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)), + SIR_SWIDE_OVERRUN, + SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), + PADDR_A (msg_in2), + /* + * We got the message we expected. + * Read the 2nd byte, and jump to dispatcher. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[1]), + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAO_DONE >-----------------------*/,{ + /* + * Save current pointer to LASTP. + */ + SCR_COPY (4), + RADDR_1 (temp), + HADDR_1 (ccb_head.lastp), + /* + * If the SODL is not full jump to dispatcher. + * We anticipate a STATUS phase. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)), + PADDR_A (datao_done_wss), + SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), + PADDR_A (status), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{ + /* + * The SODL is full, clear this condition. + */ + SCR_REG_REG (scntl2, SCR_OR, WSS), + 0, + /* + * And signal a DATA UNDERRUN condition + * to the C code. + */ + SCR_INT, + SIR_SODL_UNDERRUN, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAI_PHASE >----------------------*/,{ + /* + * Jump to current pointer. + */ + SCR_COPY (4), + HADDR_1 (ccb_head.lastp), + RADDR_1 (temp), + SCR_RETURN, + 0, +}/*-------------------------< DATAO_PHASE >----------------------*/,{ + /* + * Jump to current pointer. + */ + SCR_COPY (4), + HADDR_1 (ccb_head.lastp), + RADDR_1 (temp), + SCR_RETURN, + 0, +}/*-------------------------< MSG_IN >---------------------------*/,{ + /* + * Get the first byte of the message. + * + * The script processor doesn't negate the + * ACK signal after this transfer. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[0]), +}/*-------------------------< MSG_IN2 >--------------------------*/,{ + /* + * Check first against 1 byte messages + * that we handle from SCRIPTS. + */ + SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), + PADDR_A (complete), + SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), + PADDR_A (disconnect), + SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), + PADDR_A (save_dp), + SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), + PADDR_A (restore_dp), + /* + * We handle all other messages from the + * C code, so no need to waste on-chip RAM + * for those ones. + */ + SCR_JUMP, + PADDR_B (msg_in_etc), +}/*-------------------------< STATUS >---------------------------*/,{ + /* + * get the status + */ + SCR_MOVE_ABS (1) ^ SCR_STATUS, + HADDR_1 (scratch), +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, + * since we may have to tamper the start queue from + * the C code. + */ + SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), + 8, + SCR_REG_REG (scntl1, SCR_AND, ~IARB), + 0, +#endif + /* + * save status to scsi_status. + * mark as complete. + */ + SCR_TO_REG (SS_REG), + 0, + SCR_LOAD_REG (HS_REG, HS_COMPLETE), + 0, + /* + * Anticipate the MESSAGE PHASE for + * the TASK COMPLETE message. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (msg_in), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< COMPLETE >-------------------------*/,{ + /* + * Complete message. + * + * When we terminate the cycle by clearing ACK, + * the target may disconnect immediately. + * + * We don't want to be told of an "unexpected disconnect", + * so we disable this feature. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + /* + * Terminate cycle ... + */ + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + /* + * ... and wait for the disconnect. + */ + SCR_WAIT_DISC, + 0, +}/*-------------------------< COMPLETE2 >------------------------*/,{ + /* + * Save host status. + */ + SCR_COPY (4), + RADDR_1 (scr0), + HADDR_1 (ccb_head.status), + /* + * Move back the CCB header using self-modifying + * SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a40), + SCR_COPY (sizeof(struct sym_ccbh)), + HADDR_1 (ccb_head), +}/*-------------------------< _SMS_A40 >-------------------------*/,{ + 0, + /* + * Some bridges may reorder DMA writes to memory. + * We donnot want the CPU to deal with completions + * without all the posted write having been flushed + * to memory. This DUMMY READ should flush posted + * buffers prior to the CPU having to deal with + * completions. + */ + SCR_COPY (4), /* DUMMY READ */ + HADDR_1 (ccb_head.status), + RADDR_1 (scr0), + /* + * If command resulted in not GOOD status, + * call the C code if needed. + */ + SCR_FROM_REG (SS_REG), + 0, + SCR_CALL ^ IFFALSE (DATA (S_GOOD)), + PADDR_B (bad_status), + /* + * If we performed an auto-sense, call + * the C code to synchronyze task aborts + * with UNIT ATTENTION conditions. + */ + SCR_FROM_REG (HF_REG), + 0, + SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))), + PADDR_A (complete_error), +}/*-------------------------< DONE >-----------------------------*/,{ + /* + * Copy the DSA to the DONE QUEUE and + * signal completion to the host. + * If we are interrupted between DONE + * and DONE_END, we must reset, otherwise + * the completed CCB may be lost. + */ + SCR_COPY (4), + PADDR_B (done_pos), + PADDR_A (_sms_a50), + SCR_COPY (4), + RADDR_1 (dsa), +}/*-------------------------< _SMS_A50 >-------------------------*/,{ + 0, + SCR_COPY (4), + PADDR_B (done_pos), + PADDR_A (_sms_a60), + /* + * The instruction below reads the DONE QUEUE next + * free position from memory. + * In addition it ensures that all PCI posted writes + * are flushed and so the DSA value of the done + * CCB is visible by the CPU before INTFLY is raised. + */ + SCR_COPY (8), +}/*-------------------------< _SMS_A60 >-------------------------*/,{ + 0, + PADDR_B (prev_done), +}/*-------------------------< DONE_END >-------------------------*/,{ + SCR_INT_FLY, + 0, + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< COMPLETE_ERROR >-------------------*/,{ + SCR_COPY (4), + PADDR_B (startpos), + RADDR_1 (scratcha), + SCR_INT, + SIR_COMPLETE_ERROR, +}/*-------------------------< SAVE_DP >--------------------------*/,{ + /* + * Clear ACK immediately. + * No need to delay it. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * Keep track we received a SAVE DP, so + * we will switch to the other PM context + * on the next PM since the DP may point + * to the current PM context. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), + 0, + /* + * SAVE_DP message: + * Copy LASTP to SAVEP. + */ + SCR_COPY (4), + HADDR_1 (ccb_head.lastp), + HADDR_1 (ccb_head.savep), + /* + * Anticipate the MESSAGE PHASE for + * the DISCONNECT message. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (msg_in), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< RESTORE_DP >-----------------------*/,{ + /* + * Clear ACK immediately. + * No need to delay it. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * Copy SAVEP to LASTP. + */ + SCR_COPY (4), + HADDR_1 (ccb_head.savep), + HADDR_1 (ccb_head.lastp), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DISCONNECT >-----------------------*/,{ + /* + * DISCONNECTing ... + * + * disable the "unexpected disconnect" feature, + * and remove the ACK signal. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + /* + * Wait for the disconnect. + */ + SCR_WAIT_DISC, + 0, + /* + * Status is: DISCONNECTED. + */ + SCR_LOAD_REG (HS_REG, HS_DISCONNECT), + 0, + /* + * Save host status. + */ + SCR_COPY (4), + RADDR_1 (scr0), + HADDR_1 (ccb_head.status), +}/*-------------------------< DISCONNECT2 >----------------------*/,{ + /* + * Move back the CCB header using self-modifying + * SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a65), + SCR_COPY (sizeof(struct sym_ccbh)), + HADDR_1 (ccb_head), +}/*-------------------------< _SMS_A65 >-------------------------*/,{ + 0, + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< IDLE >-----------------------------*/,{ + /* + * Nothing to do? + * Switch the LED off and wait for reselect. + * Will be patched with a NO_OP if LED + * not needed or not desired. + */ + SCR_REG_REG (gpreg, SCR_OR, 0x01), + 0, +#ifdef SYM_CONF_IARB_SUPPORT + SCR_JUMPR, + 8, +#endif +}/*-------------------------< UNGETJOB >-------------------------*/,{ +#ifdef SYM_CONF_IARB_SUPPORT + /* + * Set IMMEDIATE ARBITRATION, for the next time. + * This will give us better chance to win arbitration + * for the job we just wanted to do. + */ + SCR_REG_REG (scntl1, SCR_OR, IARB), + 0, +#endif + /* + * We are not able to restart the SCRIPTS if we are + * interrupted and these instruction haven't been + * all executed. BTW, this is very unlikely to + * happen, but we check that from the C code. + */ + SCR_LOAD_REG (dsa, 0xff), + 0, + SCR_COPY (4), + RADDR_1 (scratcha), + PADDR_B (startpos), +}/*-------------------------< RESELECT >-------------------------*/,{ +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + /* + * Make sure we are in initiator mode. + */ + SCR_CLR (SCR_TRG), + 0, +#endif + /* + * Sleep waiting for a reselection. + */ + SCR_WAIT_RESEL, + PADDR_A(start), +}/*-------------------------< RESELECTED >-----------------------*/,{ + /* + * Switch the LED on. + * Will be patched with a NO_OP if LED + * not needed or not desired. + */ + SCR_REG_REG (gpreg, SCR_AND, 0xfe), + 0, + /* + * load the target id into the sdid + */ + SCR_REG_SFBR (ssid, SCR_AND, 0x8F), + 0, + SCR_TO_REG (sdid), + 0, + /* + * Load the target control block address + */ + SCR_COPY (4), + PADDR_B (targtbl), + RADDR_1 (dsa), + SCR_SFBR_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_AND, 0x3c), + 0, + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a70), + SCR_COPY (4), +}/*-------------------------< _SMS_A70 >-------------------------*/,{ + 0, + RADDR_1 (dsa), + /* + * Copy the TCB header to a fixed place in + * the HCB. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a80), + SCR_COPY (sizeof(struct sym_tcbh)), +}/*-------------------------< _SMS_A80 >-------------------------*/,{ + 0, + HADDR_1 (tcb_head), + /* + * We expect MESSAGE IN phase. + * If not, get help from the C code. + */ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), + SIR_RESEL_NO_MSG_IN, +}/*-------------------------< RESELECTED1 >----------------------*/,{ + /* + * Load the synchronous transfer registers. + */ + SCR_COPY (1), + HADDR_1 (tcb_head.wval), + RADDR_1 (scntl3), + SCR_COPY (1), + HADDR_1 (tcb_head.sval), + RADDR_1 (sxfer), + /* + * Get the IDENTIFY message. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin), + /* + * If IDENTIFY LUN #0, use a faster path + * to find the LCB structure. + */ + SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)), + PADDR_A (resel_lun0), + /* + * If message isn't an IDENTIFY, + * tell the C code about. + */ + SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), + SIR_RESEL_NO_IDENTIFY, + /* + * It is an IDENTIFY message, + * Load the LUN control block address. + */ + SCR_COPY (4), + HADDR_1 (tcb_head.luntbl_sa), + RADDR_1 (dsa), + SCR_SFBR_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_AND, 0xfc), + 0, + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a90), + SCR_COPY (4), +}/*-------------------------< _SMS_A90 >-------------------------*/,{ + 0, + RADDR_1 (dsa), + SCR_JUMPR, + 12, +}/*-------------------------< RESEL_LUN0 >-----------------------*/,{ + /* + * LUN 0 special case (but usual one :)) + */ + SCR_COPY (4), + HADDR_1 (tcb_head.lun0_sa), + RADDR_1 (dsa), + /* + * Jump indirectly to the reselect action for this LUN. + * (lcb.head.resel_sa assumed at offset zero of lcb). + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a100), + SCR_COPY (4), +}/*-------------------------< _SMS_A100 >------------------------*/,{ + 0, + RADDR_1 (temp), + SCR_RETURN, + 0, + /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */ +}/*-------------------------< RESEL_TAG >------------------------*/,{ + /* + * ACK the IDENTIFY previously received. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * It shall be a tagged command. + * Read SIMPLE+TAG. + * The C code will deal with errors. + * Aggressive optimization, isn't it? :) + */ + SCR_MOVE_ABS (2) ^ SCR_MSG_IN, + HADDR_1 (msgin), + /* + * Copy the LCB header to a fixed place in + * the HCB using self-modifying SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a110), + SCR_COPY (sizeof(struct sym_lcbh)), +}/*-------------------------< _SMS_A110 >------------------------*/,{ + 0, + HADDR_1 (lcb_head), + /* + * Load the pointer to the tagged task + * table for this LUN. + */ + SCR_COPY (4), + HADDR_1 (lcb_head.itlq_tbl_sa), + RADDR_1 (dsa), + /* + * The SIDL still contains the TAG value. + * Aggressive optimization, isn't it? :):) + */ + SCR_REG_SFBR (sidl, SCR_SHL, 0), + 0, +#if SYM_CONF_MAX_TASK*4 > 512 + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 2), + 0, + SCR_REG_REG (sfbr, SCR_SHL, 0), + 0, + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 1), + 0, +#elif SYM_CONF_MAX_TASK*4 > 256 + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 1), + 0, +#endif + /* + * Retrieve the DSA of this task. + * JUMP indirectly to the restart point of the CCB. + */ + SCR_SFBR_REG (dsa, SCR_AND, 0xfc), + 0, + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a120), + SCR_COPY (4), +}/*-------------------------< _SMS_A120 >------------------------*/,{ + 0, + RADDR_1 (dsa), +}/*-------------------------< RESEL_GO >-------------------------*/,{ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a130), + /* + * Move 'ccb.phys.head.go' action to + * scratch/scratch1. So scratch1 will + * contain the 'restart' field of the + * 'go' structure. + */ + SCR_COPY (8), +}/*-------------------------< _SMS_A130 >------------------------*/,{ + 0, + PADDR_B (scratch), + SCR_COPY (4), + PADDR_B (scratch1), /* phys.head.go.restart */ + RADDR_1 (temp), + SCR_RETURN, + 0, + /* In normal situations we branch to RESEL_DSA */ +}/*-------------------------< RESEL_DSA >------------------------*/,{ + /* + * ACK the IDENTIFY or TAG previously received. + */ + SCR_CLR (SCR_ACK), + 0, +}/*-------------------------< RESEL_DSA1 >-----------------------*/,{ + /* + * Copy the CCB header to a fixed location + * in the HCB using self-modifying SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a140), + SCR_COPY (sizeof(struct sym_ccbh)), +}/*-------------------------< _SMS_A140 >------------------------*/,{ + 0, + HADDR_1 (ccb_head), + /* + * Initialize the status register + */ + SCR_COPY (4), + HADDR_1 (ccb_head.status), + RADDR_1 (scr0), + /* + * Jump to dispatcher. + */ + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< RESEL_NO_TAG >---------------------*/,{ + /* + * Copy the LCB header to a fixed place in + * the HCB using self-modifying SCRIPTS. + */ + SCR_COPY (4), + RADDR_1 (dsa), + PADDR_A (_sms_a145), + SCR_COPY (sizeof(struct sym_lcbh)), +}/*-------------------------< _SMS_A145 >------------------------*/,{ + 0, + HADDR_1 (lcb_head), + /* + * Load the DSA with the unique ITL task. + */ + SCR_COPY (4), + HADDR_1 (lcb_head.itl_task_sa), + RADDR_1 (dsa), + SCR_JUMP, + PADDR_A (resel_go), +}/*-------------------------< DATA_IN >--------------------------*/,{ +/* + * Because the size depends on the + * #define SYM_CONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i<SYM_CONF_MAX_SG >========= + * || SCR_CHMOV_TBL ^ SCR_DATA_IN, + * || offsetof (struct sym_dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DATA_IN2 >-------------------------*/,{ + SCR_CALL, + PADDR_A (datai_done), + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< DATA_OUT >-------------------------*/,{ +/* + * Because the size depends on the + * #define SYM_CONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i<SYM_CONF_MAX_SG >========= + * || SCR_CHMOV_TBL ^ SCR_DATA_OUT, + * || offsetof (struct sym_dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DATA_OUT2 >------------------------*/,{ + SCR_CALL, + PADDR_A (datao_done), + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< PM0_DATA >-------------------------*/,{ + /* + * Read our host flags to SFBR, so we will be able + * to check against the data direction we expect. + */ + SCR_FROM_REG (HF_REG), + 0, + /* + * Check against actual DATA PHASE. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), + PADDR_A (pm0_data_out), + /* + * Actual phase is DATA IN. + * Check against expected direction. + */ + SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), + 0, + /* + * Move the data to memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm0.sg), + SCR_JUMP, + PADDR_A (pm0_data_end), +}/*-------------------------< PM0_DATA_OUT >---------------------*/,{ + /* + * Actual phase is DATA OUT. + * Check against expected direction. + */ + SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), + 0, + /* + * Move the data from memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm0.sg), +}/*-------------------------< PM0_DATA_END >---------------------*/,{ + /* + * Clear the flag that told we were moving + * data from the PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), + 0, + /* + * Return to the previous DATA script which + * is guaranteed by design (if no bug) to be + * the main DATA script for this transfer. + */ + SCR_COPY (4), + RADDR_1 (dsa), + RADDR_1 (scratcha), + SCR_REG_REG (scratcha, SCR_ADD, offsetof (struct sym_ccb,phys.pm0.ret)), + 0, +}/*-------------------------< PM_DATA_END >----------------------*/,{ + SCR_COPY (4), + RADDR_1 (scratcha), + PADDR_A (_sms_a150), + SCR_COPY (4), +}/*-------------------------< _SMS_A150 >------------------------*/,{ + 0, + RADDR_1 (temp), + SCR_RETURN, + 0, +}/*-------------------------< PM1_DATA >-------------------------*/,{ + /* + * Read our host flags to SFBR, so we will be able + * to check against the data direction we expect. + */ + SCR_FROM_REG (HF_REG), + 0, + /* + * Check against actual DATA PHASE. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), + PADDR_A (pm1_data_out), + /* + * Actual phase is DATA IN. + * Check against expected direction. + */ + SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), + 0, + /* + * Move the data to memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm1.sg), + SCR_JUMP, + PADDR_A (pm1_data_end), +}/*-------------------------< PM1_DATA_OUT >---------------------*/,{ + /* + * Actual phase is DATA OUT. + * Check against expected direction. + */ + SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), + 0, + /* + * Move the data from memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm1.sg), +}/*-------------------------< PM1_DATA_END >---------------------*/,{ + /* + * Clear the flag that told we were moving + * data from the PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), + 0, + /* + * Return to the previous DATA script which + * is guaranteed by design (if no bug) to be + * the main DATA script for this transfer. + */ + SCR_COPY (4), + RADDR_1 (dsa), + RADDR_1 (scratcha), + SCR_REG_REG (scratcha, SCR_ADD, offsetof (struct sym_ccb,phys.pm1.ret)), + 0, + SCR_JUMP, + PADDR_A (pm_data_end), +}/*--------------------------<>----------------------------------*/ +}; + +static struct SYM_FWB_SCR SYM_FWB_SCR = { +/*-------------------------< NO_DATA >--------------------------*/ { + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{ + /* + * We are jumped here by the C code, if we have + * some target to reset or some disconnected + * job to abort. Since error recovery is a serious + * busyness, we will really reset the SCSI BUS, if + * case of a SCSI interrupt occurring in this path. + */ + +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + /* + * Set initiator mode. + */ + SCR_CLR (SCR_TRG), + 0, +#endif + /* + * And try to select this target. + */ + SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel), + PADDR_A (reselect), + /* + * Wait for the selection to complete or + * the selection to time out. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), + -8, + /* + * Call the C code. + */ + SCR_INT, + SIR_TARGET_SELECTED, + /* + * The C code should let us continue here. + * Send the 'kiss of death' message. + * We expect an immediate disconnect once + * the target has eaten the message. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_MOVE_TBL ^ SCR_MSG_OUT, + offsetof (struct sym_hcb, abrt_tbl), + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + SCR_WAIT_DISC, + 0, + /* + * Tell the C code that we are done. + */ + SCR_INT, + SIR_ABORT_SENT, +}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{ + /* + * Jump at scheduler. + */ + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< MSG_IN_ETC >-----------------------*/,{ + /* + * If it is an EXTENDED (variable size message) + * Handle it. + */ + SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), + PADDR_B (msg_extended), + /* + * Let the C code handle any other + * 1 byte message. + */ + SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)), + PADDR_B (msg_received), + SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)), + PADDR_B (msg_received), + /* + * We donnot handle 2 bytes messages from SCRIPTS. + * So, let the C code deal with these ones too. + */ + SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)), + PADDR_B (msg_weird_seen), + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[1]), +}/*-------------------------< MSG_RECEIVED >---------------------*/,{ + SCR_COPY (4), /* DUMMY READ */ + HADDR_1 (scratch), + RADDR_1 (scratcha), + SCR_INT, + SIR_MSG_RECEIVED, +}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{ + SCR_COPY (4), /* DUMMY READ */ + HADDR_1 (scratch), + RADDR_1 (scratcha), + SCR_INT, + SIR_MSG_WEIRD, +}/*-------------------------< MSG_EXTENDED >---------------------*/,{ + /* + * Clear ACK and get the next byte + * assumed to be the message length. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[1]), + /* + * Try to catch some unlikely situations as 0 length + * or too large the length. + */ + SCR_JUMP ^ IFTRUE (DATA (0)), + PADDR_B (msg_weird_seen), + SCR_TO_REG (scratcha), + 0, + SCR_REG_REG (sfbr, SCR_ADD, (256-8)), + 0, + SCR_JUMP ^ IFTRUE (CARRYSET), + PADDR_B (msg_weird_seen), + /* + * We donnot handle extended messages from SCRIPTS. + * Read the amount of data corresponding to the + * message length and call the C code. + */ + SCR_COPY (1), + RADDR_1 (scratcha), + PADDR_B (_sms_b10), + SCR_CLR (SCR_ACK), + 0, +}/*-------------------------< _SMS_B10 >-------------------------*/,{ + SCR_MOVE_ABS (0) ^ SCR_MSG_IN, + HADDR_1 (msgin[2]), + SCR_JUMP, + PADDR_B (msg_received), +}/*-------------------------< MSG_BAD >--------------------------*/,{ + /* + * unimplemented message - reject it. + */ + SCR_INT, + SIR_REJECT_TO_SEND, + SCR_SET (SCR_ATN), + 0, + SCR_JUMP, + PADDR_A (clrack), +}/*-------------------------< MSG_WEIRD >------------------------*/,{ + /* + * weird message received + * ignore all MSG IN phases and reject it. + */ + SCR_INT, + SIR_REJECT_TO_SEND, + SCR_SET (SCR_ATN), + 0, +}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{ + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), + PADDR_A (dispatch), + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (scratch), + SCR_JUMP, + PADDR_B (msg_weird1), +}/*-------------------------< WDTR_RESP >------------------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDR_B (nego_bad_phase), +}/*-------------------------< SEND_WDTR >------------------------*/,{ + /* + * Send the M_X_WIDE_REQ + */ + SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_JUMP, + PADDR_B (msg_out_done), +}/*-------------------------< SDTR_RESP >------------------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDR_B (nego_bad_phase), +}/*-------------------------< SEND_SDTR >------------------------*/,{ + /* + * Send the M_X_SYNC_REQ + */ + SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_JUMP, + PADDR_B (msg_out_done), +}/*-------------------------< PPR_RESP >-------------------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDR_B (nego_bad_phase), +}/*-------------------------< SEND_PPR >-------------------------*/,{ + /* + * Send the M_X_PPR_REQ + */ + SCR_MOVE_ABS (8) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_JUMP, + PADDR_B (msg_out_done), +}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{ + SCR_INT, + SIR_NEGO_PROTO, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< MSG_OUT >--------------------------*/,{ + /* + * The target requests a message. + * We donnot send messages that may + * require the device to go to bus free. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + /* + * ... wait for the next phase + * if it's a message out, send it again, ... + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), + PADDR_B (msg_out), +}/*-------------------------< MSG_OUT_DONE >---------------------*/,{ + /* + * Let the C code be aware of the + * sent message and clear the message. + */ + SCR_INT, + SIR_MSG_OUT_DONE, + /* + * ... and process the next phase + */ + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATA_OVRUN >-----------------------*/,{ + /* + * Zero scratcha that will count the + * extras bytes. + */ + SCR_COPY (4), + PADDR_B (zero), + RADDR_1 (scratcha), +}/*-------------------------< DATA_OVRUN1 >----------------------*/,{ + /* + * The target may want to transfer too much data. + * + * If phase is DATA OUT write 1 byte and count it. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), + 16, + SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT, + HADDR_1 (scratch), + SCR_JUMP, + PADDR_B (data_ovrun2), + /* + * If WSR is set, clear this condition, and + * count this byte. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), + 16, + SCR_REG_REG (scntl2, SCR_OR, WSR), + 0, + SCR_JUMP, + PADDR_B (data_ovrun2), + /* + * Finally check against DATA IN phase. + * Signal data overrun to the C code + * and jump to dispatcher if not so. + * Read 1 byte otherwise and count it. + */ + SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)), + 16, + SCR_INT, + SIR_DATA_OVERRUN, + SCR_JUMP, + PADDR_A (dispatch), + SCR_CHMOV_ABS (1) ^ SCR_DATA_IN, + HADDR_1 (scratch), +}/*-------------------------< DATA_OVRUN2 >----------------------*/,{ + /* + * Count this byte. + * This will allow to return a negative + * residual to user. + */ + SCR_REG_REG (scratcha, SCR_ADD, 0x01), + 0, + SCR_REG_REG (scratcha1, SCR_ADDC, 0), + 0, + SCR_REG_REG (scratcha2, SCR_ADDC, 0), + 0, + /* + * .. and repeat as required. + */ + SCR_JUMP, + PADDR_B (data_ovrun1), +}/*-------------------------< ABORT_RESEL >----------------------*/,{ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + /* + * send the abort/abortag/reset message + * we expect an immediate disconnect + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + SCR_WAIT_DISC, + 0, + SCR_INT, + SIR_RESEL_ABORTED, + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< RESEND_IDENT >---------------------*/,{ + /* + * The target stays in MSG OUT phase after having acked + * Identify [+ Tag [+ Extended message ]]. Targets shall + * behave this way on parity error. + * We must send it again all the messages. + */ + SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ + 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */ + SCR_JUMP, + PADDR_A (send_ident), +}/*-------------------------< IDENT_BREAK >----------------------*/,{ + SCR_CLR (SCR_ATN), + 0, + SCR_JUMP, + PADDR_A (select2), +}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{ + SCR_SET (SCR_ATN), + 0, + SCR_JUMP, + PADDR_A (select2), +}/*-------------------------< SDATA_IN >-------------------------*/,{ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_dsb, sense), + SCR_CALL, + PADDR_A (datai_done), + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{ + /* + * Message is an IDENTIFY, but lun is unknown. + * Signal problem to C code for logging the event. + * Send a M_ABORT to clear all pending tasks. + */ + SCR_INT, + SIR_RESEL_BAD_LUN, + SCR_JUMP, + PADDR_B (abort_resel), +}/*-------------------------< BAD_I_T_L >------------------------*/,{ + /* + * We donnot have a task for that I_T_L. + * Signal problem to C code for logging the event. + * Send a M_ABORT message. + */ + SCR_INT, + SIR_RESEL_BAD_I_T_L, + SCR_JUMP, + PADDR_B (abort_resel), +}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{ + /* + * We donnot have a task that matches the tag. + * Signal problem to C code for logging the event. + * Send a M_ABORTTAG message. + */ + SCR_INT, + SIR_RESEL_BAD_I_T_L_Q, + SCR_JUMP, + PADDR_B (abort_resel), +}/*-------------------------< BAD_STATUS >-----------------------*/,{ + /* + * Anything different from INTERMEDIATE + * CONDITION MET should be a bad SCSI status, + * given that GOOD status has already been tested. + * Call the C code. + */ + SCR_COPY (4), + PADDR_B (startpos), + RADDR_1 (scratcha), + SCR_INT ^ IFFALSE (DATA (S_COND_MET)), + SIR_BAD_SCSI_STATUS, + SCR_RETURN, + 0, +}/*-------------------------< WSR_MA_HELPER >--------------------*/,{ + /* + * Helper for the C code when WSR bit is set. + * Perform the move of the residual byte. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.wresid), + SCR_JUMP, + PADDR_A (dispatch), + +}/*-------------------------< ZERO >-----------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< SCRATCH >--------------------------*/,{ + SCR_DATA_ZERO, /* MUST BE BEFORE SCRATCH1 */ +}/*-------------------------< SCRATCH1 >-------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< PREV_DONE >------------------------*/,{ + SCR_DATA_ZERO, /* MUST BE BEFORE DONE_POS ! */ +}/*-------------------------< DONE_POS >-------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< NEXTJOB >--------------------------*/,{ + SCR_DATA_ZERO, /* MUST BE BEFORE STARTPOS ! */ +}/*-------------------------< STARTPOS >-------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< TARGTBL >--------------------------*/,{ + SCR_DATA_ZERO, +}/*--------------------------<>----------------------------------*/ +}; + +static struct SYM_FWZ_SCR SYM_FWZ_SCR = { + /*-------------------------< SNOOPTEST >------------------------*/{ + /* + * Read the variable. + */ + SCR_COPY (4), + HADDR_1 (scratch), + RADDR_1 (scratcha), + /* + * Write the variable. + */ + SCR_COPY (4), + RADDR_1 (temp), + HADDR_1 (scratch), + /* + * Read back the variable. + */ + SCR_COPY (4), + HADDR_1 (scratch), + RADDR_1 (temp), +}/*-------------------------< SNOOPEND >-------------------------*/,{ + /* + * And stop. + */ + SCR_INT, + 99, +}/*--------------------------<>----------------------------------*/ +}; diff --git a/drivers/scsi/sym53c8xx_2/sym_fw2.h b/drivers/scsi/sym53c8xx_2/sym_fw2.h new file mode 100644 index 000000000..4d1779b2a --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_fw2.h @@ -0,0 +1,1862 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +/* + * Scripts for SYMBIOS-Processor + * + * We have to know the offsets of all labels before we reach + * them (for forward jumps). Therefore we declare a struct + * here. If you make changes inside the script, + * + * DONT FORGET TO CHANGE THE LENGTHS HERE! + */ + +/* + * Script fragments which are loaded into the on-chip RAM + * of 825A, 875, 876, 895, 895A, 896 and 1010 chips. + * Must not exceed 4K bytes. + */ +struct SYM_FWA_SCR { + u32 start [ 14]; + u32 getjob_begin [ 4]; + u32 getjob_end [ 4]; +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + u32 select [ 6]; +#else + u32 select [ 4]; +#endif +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + u32 is_dmap_dirty [ 4]; +#endif + u32 wf_sel_done [ 2]; + u32 sel_done [ 2]; + u32 send_ident [ 2]; +#ifdef SYM_CONF_IARB_SUPPORT + u32 select2 [ 8]; +#else + u32 select2 [ 2]; +#endif + u32 command [ 2]; + u32 dispatch [ 28]; + u32 sel_no_cmd [ 10]; + u32 init [ 6]; + u32 clrack [ 4]; + u32 datai_done [ 10]; + u32 datai_done_wsr [ 20]; + u32 datao_done [ 10]; + u32 datao_done_wss [ 6]; + u32 datai_phase [ 4]; + u32 datao_phase [ 6]; + u32 msg_in [ 2]; + u32 msg_in2 [ 10]; +#ifdef SYM_CONF_IARB_SUPPORT + u32 status [ 14]; +#else + u32 status [ 10]; +#endif + u32 complete [ 6]; + u32 complete2 [ 12]; + u32 done [ 14]; + u32 done_end [ 2]; + u32 complete_error [ 4]; + u32 save_dp [ 12]; + u32 restore_dp [ 8]; + u32 disconnect [ 12]; +#ifdef SYM_CONF_IARB_SUPPORT + u32 idle [ 4]; +#else + u32 idle [ 2]; +#endif +#ifdef SYM_CONF_IARB_SUPPORT + u32 ungetjob [ 6]; +#else + u32 ungetjob [ 4]; +#endif +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + u32 reselect [ 4]; +#else + u32 reselect [ 2]; +#endif + u32 reselected [ 22]; + u32 resel_scntl4 [ 20]; + u32 resel_lun0 [ 6]; +#if SYM_CONF_MAX_TASK*4 > 512 + u32 resel_tag [ 26]; +#elif SYM_CONF_MAX_TASK*4 > 256 + u32 resel_tag [ 20]; +#else + u32 resel_tag [ 16]; +#endif + u32 resel_dsa [ 2]; + u32 resel_dsa1 [ 4]; + u32 resel_no_tag [ 6]; + u32 data_in [SYM_CONF_MAX_SG * 2]; + u32 data_in2 [ 4]; + u32 data_out [SYM_CONF_MAX_SG * 2]; + u32 data_out2 [ 4]; + u32 pm0_data [ 12]; + u32 pm0_data_out [ 6]; + u32 pm0_data_end [ 6]; + u32 pm1_data [ 12]; + u32 pm1_data_out [ 6]; + u32 pm1_data_end [ 6]; +}; + +/* + * Script fragments which stay in main memory for all chips + * except for chips that support 8K on-chip RAM. + */ +struct SYM_FWB_SCR { + u32 start64 [ 2]; + u32 no_data [ 2]; +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + u32 sel_for_abort [ 18]; +#else + u32 sel_for_abort [ 16]; +#endif + u32 sel_for_abort_1 [ 2]; + u32 msg_in_etc [ 12]; + u32 msg_received [ 4]; + u32 msg_weird_seen [ 4]; + u32 msg_extended [ 20]; + u32 msg_bad [ 6]; + u32 msg_weird [ 4]; + u32 msg_weird1 [ 8]; + + u32 wdtr_resp [ 6]; + u32 send_wdtr [ 4]; + u32 sdtr_resp [ 6]; + u32 send_sdtr [ 4]; + u32 ppr_resp [ 6]; + u32 send_ppr [ 4]; + u32 nego_bad_phase [ 4]; + u32 msg_out [ 4]; + u32 msg_out_done [ 4]; + u32 data_ovrun [ 2]; + u32 data_ovrun1 [ 22]; + u32 data_ovrun2 [ 8]; + u32 abort_resel [ 16]; + u32 resend_ident [ 4]; + u32 ident_break [ 4]; + u32 ident_break_atn [ 4]; + u32 sdata_in [ 6]; + u32 resel_bad_lun [ 4]; + u32 bad_i_t_l [ 4]; + u32 bad_i_t_l_q [ 4]; + u32 bad_status [ 6]; + u32 pm_handle [ 20]; + u32 pm_handle1 [ 4]; + u32 pm_save [ 4]; + u32 pm0_save [ 12]; + u32 pm_save_end [ 4]; + u32 pm1_save [ 14]; + + /* WSR handling */ + u32 pm_wsr_handle [ 38]; + u32 wsr_ma_helper [ 4]; + + /* Data area */ + u32 zero [ 1]; + u32 scratch [ 1]; + u32 pm0_data_addr [ 1]; + u32 pm1_data_addr [ 1]; + u32 done_pos [ 1]; + u32 startpos [ 1]; + u32 targtbl [ 1]; +}; + +/* + * Script fragments used at initialisations. + * Only runs out of main memory. + */ +struct SYM_FWZ_SCR { + u32 snooptest [ 6]; + u32 snoopend [ 2]; +}; + +static struct SYM_FWA_SCR SYM_FWA_SCR = { +/*--------------------------< START >----------------------------*/ { + /* + * Switch the LED on. + * Will be patched with a NO_OP if LED + * not needed or not desired. + */ + SCR_REG_REG (gpreg, SCR_AND, 0xfe), + 0, + /* + * Clear SIGP. + */ + SCR_FROM_REG (ctest2), + 0, + /* + * Stop here if the C code wants to perform + * some error recovery procedure manually. + * (Indicate this by setting SEM in ISTAT) + */ + SCR_FROM_REG (istat), + 0, + /* + * Report to the C code the next position in + * the start queue the SCRIPTS will schedule. + * The C code must not change SCRATCHA. + */ + SCR_LOAD_ABS (scratcha, 4), + PADDR_B (startpos), + SCR_INT ^ IFTRUE (MASK (SEM, SEM)), + SIR_SCRIPT_STOPPED, + /* + * Start the next job. + * + * @DSA = start point for this job. + * SCRATCHA = address of this job in the start queue. + * + * We will restore startpos with SCRATCHA if we fails the + * arbitration or if it is the idle job. + * + * The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS + * is a critical path. If it is partially executed, it then + * may happen that the job address is not yet in the DSA + * and the next queue position points to the next JOB. + */ + SCR_LOAD_ABS (dsa, 4), + PADDR_B (startpos), + SCR_LOAD_REL (temp, 4), + 4, +}/*-------------------------< GETJOB_BEGIN >---------------------*/,{ + SCR_STORE_ABS (temp, 4), + PADDR_B (startpos), + SCR_LOAD_REL (dsa, 4), + 0, +}/*-------------------------< GETJOB_END >-----------------------*/,{ + SCR_LOAD_REL (temp, 4), + 0, + SCR_RETURN, + 0, +}/*-------------------------< SELECT >---------------------------*/,{ + /* + * DSA contains the address of a scheduled + * data structure. + * + * SCRATCHA contains the address of the start queue + * entry which points to the next job. + * + * Set Initiator mode. + * + * (Target mode is left as an exercise for the reader) + */ +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + SCR_CLR (SCR_TRG), + 0, +#endif + /* + * And try to select this target. + */ + SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select), + PADDR_A (ungetjob), + /* + * Now there are 4 possibilities: + * + * (1) The chip loses arbitration. + * This is ok, because it will try again, + * when the bus becomes idle. + * (But beware of the timeout function!) + * + * (2) The chip is reselected. + * Then the script processor takes the jump + * to the RESELECT label. + * + * (3) The chip wins arbitration. + * Then it will execute SCRIPTS instruction until + * the next instruction that checks SCSI phase. + * Then will stop and wait for selection to be + * complete or selection time-out to occur. + * + * After having won arbitration, the SCRIPTS + * processor is able to execute instructions while + * the SCSI core is performing SCSI selection. + */ + /* + * Initialize the status registers + */ + SCR_LOAD_REL (scr0, 4), + offsetof (struct sym_ccb, phys.head.status), + /* + * We may need help from CPU if the DMA segment + * registers aren't up-to-date for this IO. + * Patched with NOOP for chips that donnot + * support DAC addressing. + */ +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 +}/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{ + SCR_FROM_REG (HX_REG), + 0, + SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)), + SIR_DMAP_DIRTY, +#endif +}/*-------------------------< WF_SEL_DONE >----------------------*/,{ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)), + SIR_SEL_ATN_NO_MSG_OUT, +}/*-------------------------< SEL_DONE >-------------------------*/,{ + /* + * C1010-33 errata work-around. + * Due to a race, the SCSI core may not have + * loaded SCNTL3 on SEL_TBL instruction. + * We reload it once phase is stable. + * Patched with a NOOP for other chips. + */ + SCR_LOAD_REL (scntl3, 1), + offsetof(struct sym_dsb, select.sel_scntl3), +}/*-------------------------< SEND_IDENT >-----------------------*/,{ + /* + * Selection complete. + * Send the IDENTIFY and possibly the TAG message + * and negotiation message if present. + */ + SCR_MOVE_TBL ^ SCR_MSG_OUT, + offsetof (struct sym_dsb, smsg), +}/*-------------------------< SELECT2 >--------------------------*/,{ +#ifdef SYM_CONF_IARB_SUPPORT + /* + * Set IMMEDIATE ARBITRATION if we have been given + * a hint to do so. (Some job to do after this one). + */ + SCR_FROM_REG (HF_REG), + 0, + SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)), + 8, + SCR_REG_REG (scntl1, SCR_OR, IARB), + 0, +#endif + /* + * Anticipate the COMMAND phase. + * This is the PHASE we expect at this point. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)), + PADDR_A (sel_no_cmd), +}/*-------------------------< COMMAND >--------------------------*/,{ + /* + * ... and send the command + */ + SCR_MOVE_TBL ^ SCR_COMMAND, + offsetof (struct sym_dsb, cmd), +}/*-------------------------< DISPATCH >-------------------------*/,{ + /* + * MSG_IN is the only phase that shall be + * entered at least once for each (re)selection. + * So we test it first. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (msg_in), + SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)), + PADDR_A (datao_phase), + SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)), + PADDR_A (datai_phase), + SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)), + PADDR_A (status), + SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)), + PADDR_A (command), + SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)), + PADDR_B (msg_out), + /* + * Discard as many illegal phases as + * required and tell the C code about. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)), + 16, + SCR_MOVE_ABS (1) ^ SCR_ILG_OUT, + HADDR_1 (scratch), + SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)), + -16, + SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)), + 16, + SCR_MOVE_ABS (1) ^ SCR_ILG_IN, + HADDR_1 (scratch), + SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)), + -16, + SCR_INT, + SIR_BAD_PHASE, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< SEL_NO_CMD >-----------------------*/,{ + /* + * The target does not switch to command + * phase after IDENTIFY has been sent. + * + * If it stays in MSG OUT phase send it + * the IDENTIFY again. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), + PADDR_B (resend_ident), + /* + * If target does not switch to MSG IN phase + * and we sent a negotiation, assert the + * failure immediately. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (dispatch), + SCR_FROM_REG (HS_REG), + 0, + SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)), + SIR_NEGO_FAILED, + /* + * Jump to dispatcher. + */ + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< INIT >-----------------------------*/,{ + /* + * Wait for the SCSI RESET signal to be + * inactive before restarting operations, + * since the chip may hang on SEL_ATN + * if SCSI RESET is active. + */ + SCR_FROM_REG (sstat0), + 0, + SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)), + -16, + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< CLRACK >---------------------------*/,{ + /* + * Terminate possible pending message phase. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAI_DONE >-----------------------*/,{ + /* + * Save current pointer to LASTP. + */ + SCR_STORE_REL (temp, 4), + offsetof (struct sym_ccb, phys.head.lastp), + /* + * If the SWIDE is not full, jump to dispatcher. + * We anticipate a STATUS phase. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)), + PADDR_A (datai_done_wsr), + SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), + PADDR_A (status), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAI_DONE_WSR >-------------------*/,{ + /* + * The SWIDE is full. + * Clear this condition. + */ + SCR_REG_REG (scntl2, SCR_OR, WSR), + 0, + /* + * We are expecting an IGNORE RESIDUE message + * from the device, otherwise we are in data + * overrun condition. Check against MSG_IN phase. + */ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), + SIR_SWIDE_OVERRUN, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), + PADDR_A (dispatch), + /* + * We are in MSG_IN phase, + * Read the first byte of the message. + * If it is not an IGNORE RESIDUE message, + * signal overrun and jump to message + * processing. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[0]), + SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)), + SIR_SWIDE_OVERRUN, + SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)), + PADDR_A (msg_in2), + /* + * We got the message we expected. + * Read the 2nd byte, and jump to dispatcher. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[1]), + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAO_DONE >-----------------------*/,{ + /* + * Save current pointer to LASTP. + */ + SCR_STORE_REL (temp, 4), + offsetof (struct sym_ccb, phys.head.lastp), + /* + * If the SODL is not full jump to dispatcher. + * We anticipate a STATUS phase. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)), + PADDR_A (datao_done_wss), + SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)), + PADDR_A (status), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAO_DONE_WSS >-------------------*/,{ + /* + * The SODL is full, clear this condition. + */ + SCR_REG_REG (scntl2, SCR_OR, WSS), + 0, + /* + * And signal a DATA UNDERRUN condition + * to the C code. + */ + SCR_INT, + SIR_SODL_UNDERRUN, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATAI_PHASE >----------------------*/,{ + /* + * Jump to current pointer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.head.lastp), + SCR_RETURN, + 0, +}/*-------------------------< DATAO_PHASE >----------------------*/,{ + /* + * C1010-66 errata work-around. + * Extra clocks of data hold must be inserted + * in DATA OUT phase on 33 MHz PCI BUS. + * Patched with a NOOP for other chips. + */ + SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)), + 0, + /* + * Jump to current pointer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.head.lastp), + SCR_RETURN, + 0, +}/*-------------------------< MSG_IN >---------------------------*/,{ + /* + * Get the first byte of the message. + * + * The script processor doesn't negate the + * ACK signal after this transfer. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[0]), +}/*-------------------------< MSG_IN2 >--------------------------*/,{ + /* + * Check first against 1 byte messages + * that we handle from SCRIPTS. + */ + SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)), + PADDR_A (complete), + SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)), + PADDR_A (disconnect), + SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)), + PADDR_A (save_dp), + SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)), + PADDR_A (restore_dp), + /* + * We handle all other messages from the + * C code, so no need to waste on-chip RAM + * for those ones. + */ + SCR_JUMP, + PADDR_B (msg_in_etc), +}/*-------------------------< STATUS >---------------------------*/,{ + /* + * get the status + */ + SCR_MOVE_ABS (1) ^ SCR_STATUS, + HADDR_1 (scratch), +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, + * since we may have to tamper the start queue from + * the C code. + */ + SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)), + 8, + SCR_REG_REG (scntl1, SCR_AND, ~IARB), + 0, +#endif + /* + * save status to scsi_status. + * mark as complete. + */ + SCR_TO_REG (SS_REG), + 0, + SCR_LOAD_REG (HS_REG, HS_COMPLETE), + 0, + /* + * Anticipate the MESSAGE PHASE for + * the TASK COMPLETE message. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (msg_in), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< COMPLETE >-------------------------*/,{ + /* + * Complete message. + * + * When we terminate the cycle by clearing ACK, + * the target may disconnect immediately. + * + * We don't want to be told of an "unexpected disconnect", + * so we disable this feature. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + /* + * Terminate cycle ... + */ + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + /* + * ... and wait for the disconnect. + */ + SCR_WAIT_DISC, + 0, +}/*-------------------------< COMPLETE2 >------------------------*/,{ + /* + * Save host status. + */ + SCR_STORE_REL (scr0, 4), + offsetof (struct sym_ccb, phys.head.status), + /* + * Some bridges may reorder DMA writes to memory. + * We donnot want the CPU to deal with completions + * without all the posted write having been flushed + * to memory. This DUMMY READ should flush posted + * buffers prior to the CPU having to deal with + * completions. + */ + SCR_LOAD_REL (scr0, 4), /* DUMMY READ */ + offsetof (struct sym_ccb, phys.head.status), + + /* + * If command resulted in not GOOD status, + * call the C code if needed. + */ + SCR_FROM_REG (SS_REG), + 0, + SCR_CALL ^ IFFALSE (DATA (S_GOOD)), + PADDR_B (bad_status), + /* + * If we performed an auto-sense, call + * the C code to synchronyze task aborts + * with UNIT ATTENTION conditions. + */ + SCR_FROM_REG (HF_REG), + 0, + SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))), + PADDR_A (complete_error), +}/*-------------------------< DONE >-----------------------------*/,{ + /* + * Copy the DSA to the DONE QUEUE and + * signal completion to the host. + * If we are interrupted between DONE + * and DONE_END, we must reset, otherwise + * the completed CCB may be lost. + */ + SCR_STORE_ABS (dsa, 4), + PADDR_B (scratch), + SCR_LOAD_ABS (dsa, 4), + PADDR_B (done_pos), + SCR_LOAD_ABS (scratcha, 4), + PADDR_B (scratch), + SCR_STORE_REL (scratcha, 4), + 0, + /* + * The instruction below reads the DONE QUEUE next + * free position from memory. + * In addition it ensures that all PCI posted writes + * are flushed and so the DSA value of the done + * CCB is visible by the CPU before INTFLY is raised. + */ + SCR_LOAD_REL (scratcha, 4), + 4, + SCR_INT_FLY, + 0, + SCR_STORE_ABS (scratcha, 4), + PADDR_B (done_pos), +}/*-------------------------< DONE_END >-------------------------*/,{ + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< COMPLETE_ERROR >-------------------*/,{ + SCR_LOAD_ABS (scratcha, 4), + PADDR_B (startpos), + SCR_INT, + SIR_COMPLETE_ERROR, +}/*-------------------------< SAVE_DP >--------------------------*/,{ + /* + * Clear ACK immediately. + * No need to delay it. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * Keep track we received a SAVE DP, so + * we will switch to the other PM context + * on the next PM since the DP may point + * to the current PM context. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED), + 0, + /* + * SAVE_DP message: + * Copy LASTP to SAVEP. + */ + SCR_LOAD_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.head.lastp), + SCR_STORE_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.head.savep), + /* + * Anticipate the MESSAGE PHASE for + * the DISCONNECT message. + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)), + PADDR_A (msg_in), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< RESTORE_DP >-----------------------*/,{ + /* + * Clear ACK immediately. + * No need to delay it. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * Copy SAVEP to LASTP. + */ + SCR_LOAD_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.head.savep), + SCR_STORE_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.head.lastp), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DISCONNECT >-----------------------*/,{ + /* + * DISCONNECTing ... + * + * disable the "unexpected disconnect" feature, + * and remove the ACK signal. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + /* + * Wait for the disconnect. + */ + SCR_WAIT_DISC, + 0, + /* + * Status is: DISCONNECTED. + */ + SCR_LOAD_REG (HS_REG, HS_DISCONNECT), + 0, + /* + * Save host status. + */ + SCR_STORE_REL (scr0, 4), + offsetof (struct sym_ccb, phys.head.status), + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< IDLE >-----------------------------*/,{ + /* + * Nothing to do? + * Switch the LED off and wait for reselect. + * Will be patched with a NO_OP if LED + * not needed or not desired. + */ + SCR_REG_REG (gpreg, SCR_OR, 0x01), + 0, +#ifdef SYM_CONF_IARB_SUPPORT + SCR_JUMPR, + 8, +#endif +}/*-------------------------< UNGETJOB >-------------------------*/,{ +#ifdef SYM_CONF_IARB_SUPPORT + /* + * Set IMMEDIATE ARBITRATION, for the next time. + * This will give us better chance to win arbitration + * for the job we just wanted to do. + */ + SCR_REG_REG (scntl1, SCR_OR, IARB), + 0, +#endif + /* + * We are not able to restart the SCRIPTS if we are + * interrupted and these instruction haven't been + * all executed. BTW, this is very unlikely to + * happen, but we check that from the C code. + */ + SCR_LOAD_REG (dsa, 0xff), + 0, + SCR_STORE_ABS (scratcha, 4), + PADDR_B (startpos), +}/*-------------------------< RESELECT >-------------------------*/,{ +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + /* + * Make sure we are in initiator mode. + */ + SCR_CLR (SCR_TRG), + 0, +#endif + /* + * Sleep waiting for a reselection. + */ + SCR_WAIT_RESEL, + PADDR_A(start), +}/*-------------------------< RESELECTED >-----------------------*/,{ + /* + * Switch the LED on. + * Will be patched with a NO_OP if LED + * not needed or not desired. + */ + SCR_REG_REG (gpreg, SCR_AND, 0xfe), + 0, + /* + * load the target id into the sdid + */ + SCR_REG_SFBR (ssid, SCR_AND, 0x8F), + 0, + SCR_TO_REG (sdid), + 0, + /* + * Load the target control block address + */ + SCR_LOAD_ABS (dsa, 4), + PADDR_B (targtbl), + SCR_SFBR_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_AND, 0x3c), + 0, + SCR_LOAD_REL (dsa, 4), + 0, + /* + * We expect MESSAGE IN phase. + * If not, get help from the C code. + */ + SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)), + SIR_RESEL_NO_MSG_IN, + /* + * Load the legacy synchronous transfer registers. + */ + SCR_LOAD_REL (scntl3, 1), + offsetof(struct sym_tcb, head.wval), + SCR_LOAD_REL (sxfer, 1), + offsetof(struct sym_tcb, head.sval), +}/*-------------------------< RESEL_SCNTL4 >---------------------*/,{ + /* + * The C1010 uses a new synchronous timing scheme. + * Will be patched with a NO_OP if not a C1010. + */ + SCR_LOAD_REL (scntl4, 1), + offsetof(struct sym_tcb, head.uval), + /* + * Get the IDENTIFY message. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin), + /* + * If IDENTIFY LUN #0, use a faster path + * to find the LCB structure. + */ + SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)), + PADDR_A (resel_lun0), + /* + * If message isn't an IDENTIFY, + * tell the C code about. + */ + SCR_INT ^ IFFALSE (MASK (0x80, 0x80)), + SIR_RESEL_NO_IDENTIFY, + /* + * It is an IDENTIFY message, + * Load the LUN control block address. + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_tcb, head.luntbl_sa), + SCR_SFBR_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_SHL, 0), + 0, + SCR_REG_REG (dsa, SCR_AND, 0xfc), + 0, + SCR_LOAD_REL (dsa, 4), + 0, + SCR_JUMPR, + 8, +}/*-------------------------< RESEL_LUN0 >-----------------------*/,{ + /* + * LUN 0 special case (but usual one :)) + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_tcb, head.lun0_sa), + /* + * Jump indirectly to the reselect action for this LUN. + */ + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_lcb, head.resel_sa), + SCR_RETURN, + 0, + /* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */ +}/*-------------------------< RESEL_TAG >------------------------*/,{ + /* + * ACK the IDENTIFY previously received. + */ + SCR_CLR (SCR_ACK), + 0, + /* + * It shall be a tagged command. + * Read SIMPLE+TAG. + * The C code will deal with errors. + * Aggressive optimization, isn't it? :) + */ + SCR_MOVE_ABS (2) ^ SCR_MSG_IN, + HADDR_1 (msgin), + /* + * Load the pointer to the tagged task + * table for this LUN. + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_lcb, head.itlq_tbl_sa), + /* + * The SIDL still contains the TAG value. + * Aggressive optimization, isn't it? :):) + */ + SCR_REG_SFBR (sidl, SCR_SHL, 0), + 0, +#if SYM_CONF_MAX_TASK*4 > 512 + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 2), + 0, + SCR_REG_REG (sfbr, SCR_SHL, 0), + 0, + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 1), + 0, +#elif SYM_CONF_MAX_TASK*4 > 256 + SCR_JUMPR ^ IFFALSE (CARRYSET), + 8, + SCR_REG_REG (dsa1, SCR_OR, 1), + 0, +#endif + /* + * Retrieve the DSA of this task. + * JUMP indirectly to the restart point of the CCB. + */ + SCR_SFBR_REG (dsa, SCR_AND, 0xfc), + 0, + SCR_LOAD_REL (dsa, 4), + 0, + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_ccb, phys.head.go.restart), + SCR_RETURN, + 0, + /* In normal situations we branch to RESEL_DSA */ +}/*-------------------------< RESEL_DSA >------------------------*/,{ + /* + * ACK the IDENTIFY or TAG previously received. + */ + SCR_CLR (SCR_ACK), + 0, +}/*-------------------------< RESEL_DSA1 >-----------------------*/,{ + /* + * Initialize the status registers + */ + SCR_LOAD_REL (scr0, 4), + offsetof (struct sym_ccb, phys.head.status), + /* + * Jump to dispatcher. + */ + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< RESEL_NO_TAG >---------------------*/,{ + /* + * Load the DSA with the unique ITL task. + */ + SCR_LOAD_REL (dsa, 4), + offsetof(struct sym_lcb, head.itl_task_sa), + /* + * JUMP indirectly to the restart point of the CCB. + */ + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_ccb, phys.head.go.restart), + SCR_RETURN, + 0, + /* In normal situations we branch to RESEL_DSA */ +}/*-------------------------< DATA_IN >--------------------------*/,{ +/* + * Because the size depends on the + * #define SYM_CONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i<SYM_CONF_MAX_SG >========= + * || SCR_CHMOV_TBL ^ SCR_DATA_IN, + * || offsetof (struct sym_dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DATA_IN2 >-------------------------*/,{ + SCR_CALL, + PADDR_A (datai_done), + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< DATA_OUT >-------------------------*/,{ +/* + * Because the size depends on the + * #define SYM_CONF_MAX_SG parameter, + * it is filled in at runtime. + * + * ##===========< i=0; i<SYM_CONF_MAX_SG >========= + * || SCR_CHMOV_TBL ^ SCR_DATA_OUT, + * || offsetof (struct sym_dsb, data[ i]), + * ##========================================== + */ +0 +}/*-------------------------< DATA_OUT2 >------------------------*/,{ + SCR_CALL, + PADDR_A (datao_done), + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< PM0_DATA >-------------------------*/,{ + /* + * Read our host flags to SFBR, so we will be able + * to check against the data direction we expect. + */ + SCR_FROM_REG (HF_REG), + 0, + /* + * Check against actual DATA PHASE. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), + PADDR_A (pm0_data_out), + /* + * Actual phase is DATA IN. + * Check against expected direction. + */ + SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), + 0, + /* + * Move the data to memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm0.sg), + SCR_JUMP, + PADDR_A (pm0_data_end), +}/*-------------------------< PM0_DATA_OUT >---------------------*/,{ + /* + * Actual phase is DATA OUT. + * Check against expected direction. + */ + SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0), + 0, + /* + * Move the data from memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm0.sg), +}/*-------------------------< PM0_DATA_END >---------------------*/,{ + /* + * Clear the flag that told we were moving + * data from the PM0 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)), + 0, + /* + * Return to the previous DATA script which + * is guaranteed by design (if no bug) to be + * the main DATA script for this transfer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.pm0.ret), + SCR_RETURN, + 0, +}/*-------------------------< PM1_DATA >-------------------------*/,{ + /* + * Read our host flags to SFBR, so we will be able + * to check against the data direction we expect. + */ + SCR_FROM_REG (HF_REG), + 0, + /* + * Check against actual DATA PHASE. + */ + SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)), + PADDR_A (pm1_data_out), + /* + * Actual phase is DATA IN. + * Check against expected direction. + */ + SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), + 0, + /* + * Move the data to memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.pm1.sg), + SCR_JUMP, + PADDR_A (pm1_data_end), +}/*-------------------------< PM1_DATA_OUT >---------------------*/,{ + /* + * Actual phase is DATA OUT. + * Check against expected direction. + */ + SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)), + PADDR_B (data_ovrun), + /* + * Keep track we are moving data from the + * PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1), + 0, + /* + * Move the data from memory. + */ + SCR_CHMOV_TBL ^ SCR_DATA_OUT, + offsetof (struct sym_ccb, phys.pm1.sg), +}/*-------------------------< PM1_DATA_END >---------------------*/,{ + /* + * Clear the flag that told we were moving + * data from the PM1 DATA mini-script. + */ + SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)), + 0, + /* + * Return to the previous DATA script which + * is guaranteed by design (if no bug) to be + * the main DATA script for this transfer. + */ + SCR_LOAD_REL (temp, 4), + offsetof (struct sym_ccb, phys.pm1.ret), + SCR_RETURN, + 0, +}/*-------------------------<>-----------------------------------*/ +}; + +static struct SYM_FWB_SCR SYM_FWB_SCR = { +/*--------------------------< START64 >--------------------------*/ { + /* + * SCRIPT entry point for the 895A, 896 and 1010. + * For now, there is no specific stuff for those + * chips at this point, but this may come. + */ + SCR_JUMP, + PADDR_A (init), +}/*-------------------------< NO_DATA >--------------------------*/,{ + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< SEL_FOR_ABORT >--------------------*/,{ + /* + * We are jumped here by the C code, if we have + * some target to reset or some disconnected + * job to abort. Since error recovery is a serious + * busyness, we will really reset the SCSI BUS, if + * case of a SCSI interrupt occurring in this path. + */ +#ifdef SYM_CONF_TARGET_ROLE_SUPPORT + /* + * Set initiator mode. + */ + SCR_CLR (SCR_TRG), + 0, +#endif + /* + * And try to select this target. + */ + SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel), + PADDR_A (reselect), + /* + * Wait for the selection to complete or + * the selection to time out. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)), + -8, + /* + * Call the C code. + */ + SCR_INT, + SIR_TARGET_SELECTED, + /* + * The C code should let us continue here. + * Send the 'kiss of death' message. + * We expect an immediate disconnect once + * the target has eaten the message. + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_MOVE_TBL ^ SCR_MSG_OUT, + offsetof (struct sym_hcb, abrt_tbl), + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + SCR_WAIT_DISC, + 0, + /* + * Tell the C code that we are done. + */ + SCR_INT, + SIR_ABORT_SENT, +}/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{ + /* + * Jump at scheduler. + */ + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< MSG_IN_ETC >-----------------------*/,{ + /* + * If it is an EXTENDED (variable size message) + * Handle it. + */ + SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)), + PADDR_B (msg_extended), + /* + * Let the C code handle any other + * 1 byte message. + */ + SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)), + PADDR_B (msg_received), + SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)), + PADDR_B (msg_received), + /* + * We donnot handle 2 bytes messages from SCRIPTS. + * So, let the C code deal with these ones too. + */ + SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)), + PADDR_B (msg_weird_seen), + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[1]), +}/*-------------------------< MSG_RECEIVED >---------------------*/,{ + SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ + 0, + SCR_INT, + SIR_MSG_RECEIVED, +}/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{ + SCR_LOAD_REL (scratcha, 4), /* DUMMY READ */ + 0, + SCR_INT, + SIR_MSG_WEIRD, +}/*-------------------------< MSG_EXTENDED >---------------------*/,{ + /* + * Clear ACK and get the next byte + * assumed to be the message length. + */ + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (msgin[1]), + /* + * Try to catch some unlikely situations as 0 length + * or too large the length. + */ + SCR_JUMP ^ IFTRUE (DATA (0)), + PADDR_B (msg_weird_seen), + SCR_TO_REG (scratcha), + 0, + SCR_REG_REG (sfbr, SCR_ADD, (256-8)), + 0, + SCR_JUMP ^ IFTRUE (CARRYSET), + PADDR_B (msg_weird_seen), + /* + * We donnot handle extended messages from SCRIPTS. + * Read the amount of data corresponding to the + * message length and call the C code. + */ + SCR_STORE_REL (scratcha, 1), + offsetof (struct sym_dsb, smsg_ext.size), + SCR_CLR (SCR_ACK), + 0, + SCR_MOVE_TBL ^ SCR_MSG_IN, + offsetof (struct sym_dsb, smsg_ext), + SCR_JUMP, + PADDR_B (msg_received), +}/*-------------------------< MSG_BAD >--------------------------*/,{ + /* + * unimplemented message - reject it. + */ + SCR_INT, + SIR_REJECT_TO_SEND, + SCR_SET (SCR_ATN), + 0, + SCR_JUMP, + PADDR_A (clrack), +}/*-------------------------< MSG_WEIRD >------------------------*/,{ + /* + * weird message received + * ignore all MSG IN phases and reject it. + */ + SCR_INT, + SIR_REJECT_TO_SEND, + SCR_SET (SCR_ATN), + 0, +}/*-------------------------< MSG_WEIRD1 >-----------------------*/,{ + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)), + PADDR_A (dispatch), + SCR_MOVE_ABS (1) ^ SCR_MSG_IN, + HADDR_1 (scratch), + SCR_JUMP, + PADDR_B (msg_weird1), +}/*-------------------------< WDTR_RESP >------------------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDR_B (nego_bad_phase), +}/*-------------------------< SEND_WDTR >------------------------*/,{ + /* + * Send the M_X_WIDE_REQ + */ + SCR_MOVE_ABS (4) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_JUMP, + PADDR_B (msg_out_done), +}/*-------------------------< SDTR_RESP >------------------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDR_B (nego_bad_phase), +}/*-------------------------< SEND_SDTR >------------------------*/,{ + /* + * Send the M_X_SYNC_REQ + */ + SCR_MOVE_ABS (5) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_JUMP, + PADDR_B (msg_out_done), +}/*-------------------------< PPR_RESP >-------------------------*/,{ + /* + * let the target fetch our answer. + */ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)), + PADDR_B (nego_bad_phase), +}/*-------------------------< SEND_PPR >-------------------------*/,{ + /* + * Send the M_X_PPR_REQ + */ + SCR_MOVE_ABS (8) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_JUMP, + PADDR_B (msg_out_done), +}/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{ + SCR_INT, + SIR_NEGO_PROTO, + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< MSG_OUT >--------------------------*/,{ + /* + * The target requests a message. + * We donnot send messages that may + * require the device to go to bus free. + */ + SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + /* + * ... wait for the next phase + * if it's a message out, send it again, ... + */ + SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)), + PADDR_B (msg_out), +}/*-------------------------< MSG_OUT_DONE >---------------------*/,{ + /* + * Let the C code be aware of the + * sent message and clear the message. + */ + SCR_INT, + SIR_MSG_OUT_DONE, + /* + * ... and process the next phase + */ + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< DATA_OVRUN >-----------------------*/,{ + /* + * Use scratcha to count the extra bytes. + */ + SCR_LOAD_ABS (scratcha, 4), + PADDR_B (zero), +}/*-------------------------< DATA_OVRUN1 >----------------------*/,{ + /* + * The target may want to transfer too much data. + * + * If phase is DATA OUT write 1 byte and count it. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)), + 16, + SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT, + HADDR_1 (scratch), + SCR_JUMP, + PADDR_B (data_ovrun2), + /* + * If WSR is set, clear this condition, and + * count this byte. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)), + 16, + SCR_REG_REG (scntl2, SCR_OR, WSR), + 0, + SCR_JUMP, + PADDR_B (data_ovrun2), + /* + * Finally check against DATA IN phase. + * Signal data overrun to the C code + * and jump to dispatcher if not so. + * Read 1 byte otherwise and count it. + */ + SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)), + 16, + SCR_INT, + SIR_DATA_OVERRUN, + SCR_JUMP, + PADDR_A (dispatch), + SCR_CHMOV_ABS (1) ^ SCR_DATA_IN, + HADDR_1 (scratch), +}/*-------------------------< DATA_OVRUN2 >----------------------*/,{ + /* + * Count this byte. + * This will allow to return a negative + * residual to user. + */ + SCR_REG_REG (scratcha, SCR_ADD, 0x01), + 0, + SCR_REG_REG (scratcha1, SCR_ADDC, 0), + 0, + SCR_REG_REG (scratcha2, SCR_ADDC, 0), + 0, + /* + * .. and repeat as required. + */ + SCR_JUMP, + PADDR_B (data_ovrun1), +}/*-------------------------< ABORT_RESEL >----------------------*/,{ + SCR_SET (SCR_ATN), + 0, + SCR_CLR (SCR_ACK), + 0, + /* + * send the abort/abortag/reset message + * we expect an immediate disconnect + */ + SCR_REG_REG (scntl2, SCR_AND, 0x7f), + 0, + SCR_MOVE_ABS (1) ^ SCR_MSG_OUT, + HADDR_1 (msgout), + SCR_CLR (SCR_ACK|SCR_ATN), + 0, + SCR_WAIT_DISC, + 0, + SCR_INT, + SIR_RESEL_ABORTED, + SCR_JUMP, + PADDR_A (start), +}/*-------------------------< RESEND_IDENT >---------------------*/,{ + /* + * The target stays in MSG OUT phase after having acked + * Identify [+ Tag [+ Extended message ]]. Targets shall + * behave this way on parity error. + * We must send it again all the messages. + */ + SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */ + 0, /* 1rst ACK = 90 ns. Hope the chip isn't too fast */ + SCR_JUMP, + PADDR_A (send_ident), +}/*-------------------------< IDENT_BREAK >----------------------*/,{ + SCR_CLR (SCR_ATN), + 0, + SCR_JUMP, + PADDR_A (select2), +}/*-------------------------< IDENT_BREAK_ATN >------------------*/,{ + SCR_SET (SCR_ATN), + 0, + SCR_JUMP, + PADDR_A (select2), +}/*-------------------------< SDATA_IN >-------------------------*/,{ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_dsb, sense), + SCR_CALL, + PADDR_A (datai_done), + SCR_JUMP, + PADDR_B (data_ovrun), +}/*-------------------------< RESEL_BAD_LUN >--------------------*/,{ + /* + * Message is an IDENTIFY, but lun is unknown. + * Signal problem to C code for logging the event. + * Send a M_ABORT to clear all pending tasks. + */ + SCR_INT, + SIR_RESEL_BAD_LUN, + SCR_JUMP, + PADDR_B (abort_resel), +}/*-------------------------< BAD_I_T_L >------------------------*/,{ + /* + * We donnot have a task for that I_T_L. + * Signal problem to C code for logging the event. + * Send a M_ABORT message. + */ + SCR_INT, + SIR_RESEL_BAD_I_T_L, + SCR_JUMP, + PADDR_B (abort_resel), +}/*-------------------------< BAD_I_T_L_Q >----------------------*/,{ + /* + * We donnot have a task that matches the tag. + * Signal problem to C code for logging the event. + * Send a M_ABORTTAG message. + */ + SCR_INT, + SIR_RESEL_BAD_I_T_L_Q, + SCR_JUMP, + PADDR_B (abort_resel), +}/*-------------------------< BAD_STATUS >-----------------------*/,{ + /* + * Anything different from INTERMEDIATE + * CONDITION MET should be a bad SCSI status, + * given that GOOD status has already been tested. + * Call the C code. + */ + SCR_LOAD_ABS (scratcha, 4), + PADDR_B (startpos), + SCR_INT ^ IFFALSE (DATA (S_COND_MET)), + SIR_BAD_SCSI_STATUS, + SCR_RETURN, + 0, +}/*-------------------------< PM_HANDLE >------------------------*/,{ + /* + * Phase mismatch handling. + * + * Since we have to deal with 2 SCSI data pointers + * (current and saved), we need at least 2 contexts. + * Each context (pm0 and pm1) has a saved area, a + * SAVE mini-script and a DATA phase mini-script. + */ + /* + * Get the PM handling flags. + */ + SCR_FROM_REG (HF_REG), + 0, + /* + * If no flags (1rst PM for example), avoid + * all the below heavy flags testing. + * This makes the normal case a bit faster. + */ + SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))), + PADDR_B (pm_handle1), + /* + * If we received a SAVE DP, switch to the + * other PM context since the savep may point + * to the current PM context. + */ + SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)), + 8, + SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM), + 0, + /* + * If we have been interrupt in a PM DATA mini-script, + * we take the return address from the corresponding + * saved area. + * This ensure the return address always points to the + * main DATA script for this transfer. + */ + SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))), + PADDR_B (pm_handle1), + SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)), + 16, + SCR_LOAD_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm0.ret), + SCR_JUMP, + PADDR_B (pm_save), + SCR_LOAD_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm1.ret), + SCR_JUMP, + PADDR_B (pm_save), +}/*-------------------------< PM_HANDLE1 >-----------------------*/,{ + /* + * Normal case. + * Update the return address so that it + * will point after the interrupted MOVE. + */ + SCR_REG_REG (ia, SCR_ADD, 8), + 0, + SCR_REG_REG (ia1, SCR_ADDC, 0), + 0, +}/*-------------------------< PM_SAVE >--------------------------*/,{ + /* + * Clear all the flags that told us if we were + * interrupted in a PM DATA mini-script and/or + * we received a SAVE DP. + */ + SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))), + 0, + /* + * Choose the current PM context. + */ + SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)), + PADDR_B (pm1_save), +}/*-------------------------< PM0_SAVE >-------------------------*/,{ + SCR_STORE_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm0.ret), + /* + * If WSR bit is set, either UA and RBC may + * have to be changed whether the device wants + * to ignore this residue or not. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), + PADDR_B (pm_wsr_handle), + /* + * Save the remaining byte count, the updated + * address and the return address. + */ + SCR_STORE_REL (rbc, 4), + offsetof(struct sym_ccb, phys.pm0.sg.size), + SCR_STORE_REL (ua, 4), + offsetof(struct sym_ccb, phys.pm0.sg.addr), + /* + * Set the current pointer at the PM0 DATA mini-script. + */ + SCR_LOAD_ABS (ia, 4), + PADDR_B (pm0_data_addr), +}/*-------------------------< PM_SAVE_END >----------------------*/,{ + SCR_STORE_REL (ia, 4), + offsetof(struct sym_ccb, phys.head.lastp), + SCR_JUMP, + PADDR_A (dispatch), +}/*-------------------------< PM1_SAVE >-------------------------*/,{ + SCR_STORE_REL (ia, 4), + offsetof(struct sym_ccb, phys.pm1.ret), + /* + * If WSR bit is set, either UA and RBC may + * have to be changed whether the device wants + * to ignore this residue or not. + */ + SCR_FROM_REG (scntl2), + 0, + SCR_CALL ^ IFTRUE (MASK (WSR, WSR)), + PADDR_B (pm_wsr_handle), + /* + * Save the remaining byte count, the updated + * address and the return address. + */ + SCR_STORE_REL (rbc, 4), + offsetof(struct sym_ccb, phys.pm1.sg.size), + SCR_STORE_REL (ua, 4), + offsetof(struct sym_ccb, phys.pm1.sg.addr), + /* + * Set the current pointer at the PM1 DATA mini-script. + */ + SCR_LOAD_ABS (ia, 4), + PADDR_B (pm1_data_addr), + SCR_JUMP, + PADDR_B (pm_save_end), +}/*-------------------------< PM_WSR_HANDLE >--------------------*/,{ + /* + * Phase mismatch handling from SCRIPT with WSR set. + * Such a condition can occur if the chip wants to + * execute a CHMOV(size > 1) when the WSR bit is + * set and the target changes PHASE. + * + * We must move the residual byte to memory. + * + * UA contains bit 0..31 of the address to + * move the residual byte. + * Move it to the table indirect. + */ + SCR_STORE_REL (ua, 4), + offsetof (struct sym_ccb, phys.wresid.addr), + /* + * Increment UA (move address to next position). + */ + SCR_REG_REG (ua, SCR_ADD, 1), + 0, + SCR_REG_REG (ua1, SCR_ADDC, 0), + 0, + SCR_REG_REG (ua2, SCR_ADDC, 0), + 0, + SCR_REG_REG (ua3, SCR_ADDC, 0), + 0, + /* + * Compute SCRATCHA as: + * - size to transfer = 1 byte. + * - bit 24..31 = high address bit [32...39]. + */ + SCR_LOAD_ABS (scratcha, 4), + PADDR_B (zero), + SCR_REG_REG (scratcha, SCR_OR, 1), + 0, + SCR_FROM_REG (rbc3), + 0, + SCR_TO_REG (scratcha3), + 0, + /* + * Move this value to the table indirect. + */ + SCR_STORE_REL (scratcha, 4), + offsetof (struct sym_ccb, phys.wresid.size), + /* + * Wait for a valid phase. + * While testing with bogus QUANTUM drives, the C1010 + * sometimes raised a spurious phase mismatch with + * WSR and the CHMOV(1) triggered another PM. + * Waiting explicitly for the PHASE seemed to avoid + * the nested phase mismatch. Btw, this didn't happen + * using my IBM drives. + */ + SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)), + 0, + /* + * Perform the move of the residual byte. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.wresid), + /* + * We can now handle the phase mismatch with UA fixed. + * RBC[0..23]=0 is a special case that does not require + * a PM context. The C code also checks against this. + */ + SCR_FROM_REG (rbc), + 0, + SCR_RETURN ^ IFFALSE (DATA (0)), + 0, + SCR_FROM_REG (rbc1), + 0, + SCR_RETURN ^ IFFALSE (DATA (0)), + 0, + SCR_FROM_REG (rbc2), + 0, + SCR_RETURN ^ IFFALSE (DATA (0)), + 0, + /* + * RBC[0..23]=0. + * Not only we donnot need a PM context, but this would + * lead to a bogus CHMOV(0). This condition means that + * the residual was the last byte to move from this CHMOV. + * So, we just have to move the current data script pointer + * (i.e. TEMP) to the SCRIPTS address following the + * interrupted CHMOV and jump to dispatcher. + * IA contains the data pointer to save. + */ + SCR_JUMP, + PADDR_B (pm_save_end), +}/*-------------------------< WSR_MA_HELPER >--------------------*/,{ + /* + * Helper for the C code when WSR bit is set. + * Perform the move of the residual byte. + */ + SCR_CHMOV_TBL ^ SCR_DATA_IN, + offsetof (struct sym_ccb, phys.wresid), + SCR_JUMP, + PADDR_A (dispatch), + +}/*-------------------------< ZERO >-----------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< SCRATCH >--------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< PM0_DATA_ADDR >--------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< PM1_DATA_ADDR >--------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< DONE_POS >-------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< STARTPOS >-------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------< TARGTBL >--------------------------*/,{ + SCR_DATA_ZERO, +}/*-------------------------<>-----------------------------------*/ +}; + +static struct SYM_FWZ_SCR SYM_FWZ_SCR = { + /*-------------------------< SNOOPTEST >------------------------*/{ + /* + * Read the variable from memory. + */ + SCR_LOAD_REL (scratcha, 4), + offsetof(struct sym_hcb, scratch), + /* + * Write the variable to memory. + */ + SCR_STORE_REL (temp, 4), + offsetof(struct sym_hcb, scratch), + /* + * Read back the variable from memory. + */ + SCR_LOAD_REL (temp, 4), + offsetof(struct sym_hcb, scratch), +}/*-------------------------< SNOOPEND >-------------------------*/,{ + /* + * And stop. + */ + SCR_INT, + 99, +}/*-------------------------<>-----------------------------------*/ +}; diff --git a/drivers/scsi/sym53c8xx_2/sym_glue.c b/drivers/scsi/sym53c8xx_2/sym_glue.c new file mode 100644 index 000000000..d9a045f98 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_glue.c @@ -0,0 +1,2061 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ +#include <linux/ctype.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/spinlock.h> +#include <scsi/scsi.h> +#include <scsi/scsi_tcq.h> +#include <scsi/scsi_device.h> +#include <scsi/scsi_transport.h> + +#include "sym_glue.h" +#include "sym_nvram.h" + +#define NAME53C "sym53c" +#define NAME53C8XX "sym53c8xx" + +struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP; +unsigned int sym_debug_flags = 0; + +static char *excl_string; +static char *safe_string; +module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0); +module_param_named(burst, sym_driver_setup.burst_order, byte, 0); +module_param_named(led, sym_driver_setup.scsi_led, byte, 0); +module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0); +module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0); +module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0); +module_param_named(hostid, sym_driver_setup.host_id, byte, 0); +module_param_named(verb, sym_driver_setup.verbose, byte, 0); +module_param_named(debug, sym_debug_flags, uint, 0); +module_param_named(settle, sym_driver_setup.settle_delay, byte, 0); +module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0); +module_param_named(excl, excl_string, charp, 0); +module_param_named(safe, safe_string, charp, 0); + +MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default"); +MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers"); +MODULE_PARM_DESC(led, "Set to 1 to enable LED support"); +MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3"); +MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole"); +MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error"); +MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters"); +MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive"); +MODULE_PARM_DESC(debug, "Set bits to enable debugging"); +MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3"); +MODULE_PARM_DESC(nvram, "Option currently not used"); +MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached"); +MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\""); + +MODULE_LICENSE("GPL"); +MODULE_VERSION(SYM_VERSION); +MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>"); +MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters"); + +static void sym2_setup_params(void) +{ + char *p = excl_string; + int xi = 0; + + while (p && (xi < 8)) { + char *next_p; + int val = (int) simple_strtoul(p, &next_p, 0); + sym_driver_setup.excludes[xi++] = val; + p = next_p; + } + + if (safe_string) { + if (*safe_string == 'y') { + sym_driver_setup.max_tag = 0; + sym_driver_setup.burst_order = 0; + sym_driver_setup.scsi_led = 0; + sym_driver_setup.scsi_diff = 1; + sym_driver_setup.irq_mode = 0; + sym_driver_setup.scsi_bus_check = 2; + sym_driver_setup.host_id = 7; + sym_driver_setup.verbose = 2; + sym_driver_setup.settle_delay = 10; + sym_driver_setup.use_nvram = 1; + } else if (*safe_string != 'n') { + printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s" + " passed to safe option", safe_string); + } + } +} + +static struct scsi_transport_template *sym2_transport_template = NULL; + +/* + * Driver private area in the SCSI command structure. + */ +struct sym_ucmd { /* Override the SCSI pointer structure */ + struct completion *eh_done; /* SCSI error handling */ +}; + +#define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) +#define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host) + +/* + * Complete a pending CAM CCB. + */ +void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd) +{ + struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); + BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd)); + + if (ucmd->eh_done) + complete(ucmd->eh_done); + + scsi_dma_unmap(cmd); + cmd->scsi_done(cmd); +} + +/* + * Tell the SCSI layer about a BUS RESET. + */ +void sym_xpt_async_bus_reset(struct sym_hcb *np) +{ + printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); + np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; + np->s.settle_time_valid = 1; + if (sym_verbose >= 2) + printf_info("%s: command processing suspended for %d seconds\n", + sym_name(np), sym_driver_setup.settle_delay); +} + +/* + * Choose the more appropriate CAM status if + * the IO encountered an extended error. + */ +static int sym_xerr_cam_status(int cam_status, int x_status) +{ + if (x_status) { + if (x_status & XE_PARITY_ERR) + cam_status = DID_PARITY; + else + cam_status = DID_ERROR; + } + return cam_status; +} + +/* + * Build CAM result for a failed or auto-sensed IO. + */ +void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) +{ + struct scsi_cmnd *cmd = cp->cmd; + u_int cam_status, scsi_status, drv_status; + + drv_status = 0; + cam_status = DID_OK; + scsi_status = cp->ssss_status; + + if (cp->host_flags & HF_SENSE) { + scsi_status = cp->sv_scsi_status; + resid = cp->sv_resid; + if (sym_verbose && cp->sv_xerr_status) + sym_print_xerr(cmd, cp->sv_xerr_status); + if (cp->host_status == HS_COMPLETE && + cp->ssss_status == S_GOOD && + cp->xerr_status == 0) { + cam_status = sym_xerr_cam_status(DID_OK, + cp->sv_xerr_status); + drv_status = DRIVER_SENSE; + /* + * Bounce back the sense data to user. + */ + memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); + memcpy(cmd->sense_buffer, cp->sns_bbuf, + min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN)); +#if 0 + /* + * If the device reports a UNIT ATTENTION condition + * due to a RESET condition, we should consider all + * disconnect CCBs for this unit as aborted. + */ + if (1) { + u_char *p; + p = (u_char *) cmd->sense_data; + if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) + sym_clear_tasks(np, DID_ABORT, + cp->target,cp->lun, -1); + } +#endif + } else { + /* + * Error return from our internal request sense. This + * is bad: we must clear the contingent allegiance + * condition otherwise the device will always return + * BUSY. Use a big stick. + */ + sym_reset_scsi_target(np, cmd->device->id); + cam_status = DID_ERROR; + } + } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ + cam_status = DID_OK; + else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ + cam_status = DID_NO_CONNECT; + else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ + cam_status = DID_ERROR; + else { /* Extended error */ + if (sym_verbose) { + sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n", + cp->host_status, cp->ssss_status, + cp->xerr_status); + } + /* + * Set the most appropriate value for CAM status. + */ + cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); + } + scsi_set_resid(cmd, resid); + cmd->result = (drv_status << 24) | (cam_status << 16) | scsi_status; +} + +static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) +{ + int segment; + int use_sg; + + cp->data_len = 0; + + use_sg = scsi_dma_map(cmd); + if (use_sg > 0) { + struct scatterlist *sg; + struct sym_tcb *tp = &np->target[cp->target]; + struct sym_tblmove *data; + + if (use_sg > SYM_CONF_MAX_SG) { + scsi_dma_unmap(cmd); + return -1; + } + + data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; + + scsi_for_each_sg(cmd, sg, use_sg, segment) { + dma_addr_t baddr = sg_dma_address(sg); + unsigned int len = sg_dma_len(sg); + + if ((len & 1) && (tp->head.wval & EWS)) { + len++; + cp->odd_byte_adjustment++; + } + + sym_build_sge(np, &data[segment], baddr, len); + cp->data_len += len; + } + } else { + segment = -2; + } + + return segment; +} + +/* + * Queue a SCSI command. + */ +static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd) +{ + struct scsi_device *sdev = cmd->device; + struct sym_tcb *tp; + struct sym_lcb *lp; + struct sym_ccb *cp; + int order; + + /* + * Retrieve the target descriptor. + */ + tp = &np->target[sdev->id]; + + /* + * Select tagged/untagged. + */ + lp = sym_lp(tp, sdev->lun); + order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; + + /* + * Queue the SCSI IO. + */ + cp = sym_get_ccb(np, cmd, order); + if (!cp) + return 1; /* Means resource shortage */ + sym_queue_scsiio(np, cmd, cp); + return 0; +} + +/* + * Setup buffers and pointers that address the CDB. + */ +static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) +{ + memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len); + + cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]); + cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); + + return 0; +} + +/* + * Setup pointers that address the data and start the I/O. + */ +int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) +{ + u32 lastp, goalp; + int dir; + + /* + * Build the CDB. + */ + if (sym_setup_cdb(np, cmd, cp)) + goto out_abort; + + /* + * No direction means no data. + */ + dir = cmd->sc_data_direction; + if (dir != DMA_NONE) { + cp->segments = sym_scatter(np, cp, cmd); + if (cp->segments < 0) { + sym_set_cam_status(cmd, DID_ERROR); + goto out_abort; + } + + /* + * No segments means no data. + */ + if (!cp->segments) + dir = DMA_NONE; + } else { + cp->data_len = 0; + cp->segments = 0; + } + + /* + * Set the data pointer. + */ + switch (dir) { + case DMA_BIDIRECTIONAL: + scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command"); + sym_set_cam_status(cmd, DID_ERROR); + goto out_abort; + case DMA_TO_DEVICE: + goalp = SCRIPTA_BA(np, data_out2) + 8; + lastp = goalp - 8 - (cp->segments * (2*4)); + break; + case DMA_FROM_DEVICE: + cp->host_flags |= HF_DATA_IN; + goalp = SCRIPTA_BA(np, data_in2) + 8; + lastp = goalp - 8 - (cp->segments * (2*4)); + break; + case DMA_NONE: + default: + lastp = goalp = SCRIPTB_BA(np, no_data); + break; + } + + /* + * Set all pointers values needed by SCRIPTS. + */ + cp->phys.head.lastp = cpu_to_scr(lastp); + cp->phys.head.savep = cpu_to_scr(lastp); + cp->startp = cp->phys.head.savep; + cp->goalp = cpu_to_scr(goalp); + + /* + * When `#ifed 1', the code below makes the driver + * panic on the first attempt to write to a SCSI device. + * It is the first test we want to do after a driver + * change that does not seem obviously safe. :) + */ +#if 0 + switch (cp->cdb_buf[0]) { + case 0x0A: case 0x2A: case 0xAA: + panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); + break; + default: + break; + } +#endif + + /* + * activate this job. + */ + sym_put_start_queue(np, cp); + return 0; + +out_abort: + sym_free_ccb(np, cp); + sym_xpt_done(np, cmd); + return 0; +} + + +/* + * timer daemon. + * + * Misused to keep the driver running when + * interrupts are not configured correctly. + */ +static void sym_timer(struct sym_hcb *np) +{ + unsigned long thistime = jiffies; + + /* + * Restart the timer. + */ + np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; + add_timer(&np->s.timer); + + /* + * If we are resetting the ncr, wait for settle_time before + * clearing it. Then command processing will be resumed. + */ + if (np->s.settle_time_valid) { + if (time_before_eq(np->s.settle_time, thistime)) { + if (sym_verbose >= 2 ) + printk("%s: command processing resumed\n", + sym_name(np)); + np->s.settle_time_valid = 0; + } + return; + } + + /* + * Nothing to do for now, but that may come. + */ + if (np->s.lasttime + 4*HZ < thistime) { + np->s.lasttime = thistime; + } + +#ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS + /* + * Some way-broken PCI bridges may lead to + * completions being lost when the clearing + * of the INTFLY flag by the CPU occurs + * concurrently with the chip raising this flag. + * If this ever happen, lost completions will + * be reaped here. + */ + sym_wakeup_done(np); +#endif +} + + +/* + * PCI BUS error handler. + */ +void sym_log_bus_error(struct Scsi_Host *shost) +{ + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + unsigned short pci_sts; + pci_read_config_word(pdev, PCI_STATUS, &pci_sts); + if (pci_sts & 0xf900) { + pci_write_config_word(pdev, PCI_STATUS, pci_sts); + shost_printk(KERN_WARNING, shost, + "PCI bus error: status = 0x%04x\n", pci_sts & 0xf900); + } +} + +/* + * queuecommand method. Entered with the host adapter lock held and + * interrupts disabled. + */ +static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd, + void (*done)(struct scsi_cmnd *)) +{ + struct sym_hcb *np = SYM_SOFTC_PTR(cmd); + struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); + int sts = 0; + + cmd->scsi_done = done; + memset(ucp, 0, sizeof(*ucp)); + + /* + * Shorten our settle_time if needed for + * this command not to time out. + */ + if (np->s.settle_time_valid && cmd->request->timeout) { + unsigned long tlimit = jiffies + cmd->request->timeout; + tlimit -= SYM_CONF_TIMER_INTERVAL*2; + if (time_after(np->s.settle_time, tlimit)) { + np->s.settle_time = tlimit; + } + } + + if (np->s.settle_time_valid) + return SCSI_MLQUEUE_HOST_BUSY; + + sts = sym_queue_command(np, cmd); + if (sts) + return SCSI_MLQUEUE_HOST_BUSY; + return 0; +} + +static DEF_SCSI_QCMD(sym53c8xx_queue_command) + +/* + * Linux entry point of the interrupt handler. + */ +static irqreturn_t sym53c8xx_intr(int irq, void *dev_id) +{ + struct Scsi_Host *shost = dev_id; + struct sym_data *sym_data = shost_priv(shost); + irqreturn_t result; + + /* Avoid spinloop trying to handle interrupts on frozen device */ + if (pci_channel_offline(sym_data->pdev)) + return IRQ_NONE; + + if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); + + spin_lock(shost->host_lock); + result = sym_interrupt(shost); + spin_unlock(shost->host_lock); + + if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); + + return result; +} + +/* + * Linux entry point of the timer handler + */ +static void sym53c8xx_timer(struct timer_list *t) +{ + struct sym_hcb *np = from_timer(np, t, s.timer); + unsigned long flags; + + spin_lock_irqsave(np->s.host->host_lock, flags); + sym_timer(np); + spin_unlock_irqrestore(np->s.host->host_lock, flags); +} + + +/* + * What the eh thread wants us to perform. + */ +#define SYM_EH_ABORT 0 +#define SYM_EH_DEVICE_RESET 1 +#define SYM_EH_BUS_RESET 2 +#define SYM_EH_HOST_RESET 3 + +/* + * Generic method for our eh processing. + * The 'op' argument tells what we have to do. + */ +static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) +{ + struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); + struct Scsi_Host *shost = cmd->device->host; + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + struct sym_hcb *np = sym_data->ncb; + SYM_QUEHEAD *qp; + int cmd_queued = 0; + int sts = -1; + struct completion eh_done; + + scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname); + + /* We may be in an error condition because the PCI bus + * went down. In this case, we need to wait until the + * PCI bus is reset, the card is reset, and only then + * proceed with the scsi error recovery. There's no + * point in hurrying; take a leisurely wait. + */ +#define WAIT_FOR_PCI_RECOVERY 35 + if (pci_channel_offline(pdev)) { + int finished_reset = 0; + init_completion(&eh_done); + spin_lock_irq(shost->host_lock); + /* Make sure we didn't race */ + if (pci_channel_offline(pdev)) { + BUG_ON(sym_data->io_reset); + sym_data->io_reset = &eh_done; + } else { + finished_reset = 1; + } + spin_unlock_irq(shost->host_lock); + if (!finished_reset) + finished_reset = wait_for_completion_timeout + (sym_data->io_reset, + WAIT_FOR_PCI_RECOVERY*HZ); + spin_lock_irq(shost->host_lock); + sym_data->io_reset = NULL; + spin_unlock_irq(shost->host_lock); + if (!finished_reset) + return SCSI_FAILED; + } + + spin_lock_irq(shost->host_lock); + /* This one is queued in some place -> to wait for completion */ + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->cmd == cmd) { + cmd_queued = 1; + break; + } + } + + /* Try to proceed the operation we have been asked for */ + sts = -1; + switch(op) { + case SYM_EH_ABORT: + sts = sym_abort_scsiio(np, cmd, 1); + break; + case SYM_EH_DEVICE_RESET: + sts = sym_reset_scsi_target(np, cmd->device->id); + break; + case SYM_EH_BUS_RESET: + sym_reset_scsi_bus(np, 1); + sts = 0; + break; + case SYM_EH_HOST_RESET: + sym_reset_scsi_bus(np, 0); + sym_start_up(shost, 1); + sts = 0; + break; + default: + break; + } + + /* On error, restore everything and cross fingers :) */ + if (sts) + cmd_queued = 0; + + if (cmd_queued) { + init_completion(&eh_done); + ucmd->eh_done = &eh_done; + spin_unlock_irq(shost->host_lock); + if (!wait_for_completion_timeout(&eh_done, 5*HZ)) { + ucmd->eh_done = NULL; + sts = -2; + } + } else { + spin_unlock_irq(shost->host_lock); + } + + dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname, + sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed"); + return sts ? SCSI_FAILED : SCSI_SUCCESS; +} + + +/* + * Error handlers called from the eh thread (one thread per HBA). + */ +static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) +{ + return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); +} + +static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) +{ + return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); +} + +static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) +{ + return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); +} + +static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) +{ + return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); +} + +/* + * Tune device queuing depth, according to various limits. + */ +static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags) +{ + struct sym_lcb *lp = sym_lp(tp, lun); + u_short oldtags; + + if (!lp) + return; + + oldtags = lp->s.reqtags; + + if (reqtags > lp->s.scdev_depth) + reqtags = lp->s.scdev_depth; + + lp->s.reqtags = reqtags; + + if (reqtags != oldtags) { + dev_info(&tp->starget->dev, + "tagged command queuing %s, command queue depth %d.\n", + lp->s.reqtags ? "enabled" : "disabled", reqtags); + } +} + +static int sym53c8xx_slave_alloc(struct scsi_device *sdev) +{ + struct sym_hcb *np = sym_get_hcb(sdev->host); + struct sym_tcb *tp = &np->target[sdev->id]; + struct sym_lcb *lp; + unsigned long flags; + int error; + + if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN) + return -ENXIO; + + spin_lock_irqsave(np->s.host->host_lock, flags); + + /* + * Fail the device init if the device is flagged NOSCAN at BOOT in + * the NVRAM. This may speed up boot and maintain coherency with + * BIOS device numbering. Clearing the flag allows the user to + * rescan skipped devices later. We also return an error for + * devices not flagged for SCAN LUNS in the NVRAM since some single + * lun devices behave badly when asked for a non zero LUN. + */ + + if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) { + tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; + starget_printk(KERN_INFO, sdev->sdev_target, + "Scan at boot disabled in NVRAM\n"); + error = -ENXIO; + goto out; + } + + if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) { + if (sdev->lun != 0) { + error = -ENXIO; + goto out; + } + starget_printk(KERN_INFO, sdev->sdev_target, + "Multiple LUNs disabled in NVRAM\n"); + } + + lp = sym_alloc_lcb(np, sdev->id, sdev->lun); + if (!lp) { + error = -ENOMEM; + goto out; + } + if (tp->nlcb == 1) + tp->starget = sdev->sdev_target; + + spi_min_period(tp->starget) = tp->usr_period; + spi_max_width(tp->starget) = tp->usr_width; + + error = 0; +out: + spin_unlock_irqrestore(np->s.host->host_lock, flags); + + return error; +} + +/* + * Linux entry point for device queue sizing. + */ +static int sym53c8xx_slave_configure(struct scsi_device *sdev) +{ + struct sym_hcb *np = sym_get_hcb(sdev->host); + struct sym_tcb *tp = &np->target[sdev->id]; + struct sym_lcb *lp = sym_lp(tp, sdev->lun); + int reqtags, depth_to_use; + + /* + * Get user flags. + */ + lp->curr_flags = lp->user_flags; + + /* + * Select queue depth from driver setup. + * Do not use more than configured by user. + * Use at least 1. + * Do not use more than our maximum. + */ + reqtags = sym_driver_setup.max_tag; + if (reqtags > tp->usrtags) + reqtags = tp->usrtags; + if (!sdev->tagged_supported) + reqtags = 0; + if (reqtags > SYM_CONF_MAX_TAG) + reqtags = SYM_CONF_MAX_TAG; + depth_to_use = reqtags ? reqtags : 1; + scsi_change_queue_depth(sdev, depth_to_use); + lp->s.scdev_depth = depth_to_use; + sym_tune_dev_queuing(tp, sdev->lun, reqtags); + + if (!spi_initial_dv(sdev->sdev_target)) + spi_dv_device(sdev); + + return 0; +} + +static void sym53c8xx_slave_destroy(struct scsi_device *sdev) +{ + struct sym_hcb *np = sym_get_hcb(sdev->host); + struct sym_tcb *tp = &np->target[sdev->id]; + struct sym_lcb *lp = sym_lp(tp, sdev->lun); + unsigned long flags; + + /* if slave_alloc returned before allocating a sym_lcb, return */ + if (!lp) + return; + + spin_lock_irqsave(np->s.host->host_lock, flags); + + if (lp->busy_itlq || lp->busy_itl) { + /* + * This really shouldn't happen, but we can't return an error + * so let's try to stop all on-going I/O. + */ + starget_printk(KERN_WARNING, tp->starget, + "Removing busy LCB (%d)\n", (u8)sdev->lun); + sym_reset_scsi_bus(np, 1); + } + + if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) { + /* + * It was the last unit for this target. + */ + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + tp->tgoal.check_nego = 1; + tp->starget = NULL; + } + + spin_unlock_irqrestore(np->s.host->host_lock, flags); +} + +/* + * Linux entry point for info() function + */ +static const char *sym53c8xx_info (struct Scsi_Host *host) +{ + return SYM_DRIVER_NAME; +} + + +#ifdef SYM_LINUX_PROC_INFO_SUPPORT +/* + * Proc file system stuff + * + * A read operation returns adapter information. + * A write operation is a control command. + * The string is parsed in the driver code and the command is passed + * to the sym_usercmd() function. + */ + +#ifdef SYM_LINUX_USER_COMMAND_SUPPORT + +struct sym_usrcmd { + u_long target; + u_long lun; + u_long data; + u_long cmd; +}; + +#define UC_SETSYNC 10 +#define UC_SETTAGS 11 +#define UC_SETDEBUG 12 +#define UC_SETWIDE 14 +#define UC_SETFLAG 15 +#define UC_SETVERBOSE 17 +#define UC_RESETDEV 18 +#define UC_CLEARDEV 19 + +static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) +{ + struct sym_tcb *tp; + int t, l; + + switch (uc->cmd) { + case 0: return; + +#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT + case UC_SETDEBUG: + sym_debug_flags = uc->data; + break; +#endif + case UC_SETVERBOSE: + np->verbose = uc->data; + break; + default: + /* + * We assume that other commands apply to targets. + * This should always be the case and avoid the below + * 4 lines to be repeated 6 times. + */ + for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { + if (!((uc->target >> t) & 1)) + continue; + tp = &np->target[t]; + if (!tp->nlcb) + continue; + + switch (uc->cmd) { + + case UC_SETSYNC: + if (!uc->data || uc->data >= 255) { + tp->tgoal.iu = tp->tgoal.dt = + tp->tgoal.qas = 0; + tp->tgoal.offset = 0; + } else if (uc->data <= 9 && np->minsync_dt) { + if (uc->data < np->minsync_dt) + uc->data = np->minsync_dt; + tp->tgoal.iu = tp->tgoal.dt = + tp->tgoal.qas = 1; + tp->tgoal.width = 1; + tp->tgoal.period = uc->data; + tp->tgoal.offset = np->maxoffs_dt; + } else { + if (uc->data < np->minsync) + uc->data = np->minsync; + tp->tgoal.iu = tp->tgoal.dt = + tp->tgoal.qas = 0; + tp->tgoal.period = uc->data; + tp->tgoal.offset = np->maxoffs; + } + tp->tgoal.check_nego = 1; + break; + case UC_SETWIDE: + tp->tgoal.width = uc->data ? 1 : 0; + tp->tgoal.check_nego = 1; + break; + case UC_SETTAGS: + for (l = 0; l < SYM_CONF_MAX_LUN; l++) + sym_tune_dev_queuing(tp, l, uc->data); + break; + case UC_RESETDEV: + tp->to_reset = 1; + np->istat_sem = SEM; + OUTB(np, nc_istat, SIGP|SEM); + break; + case UC_CLEARDEV: + for (l = 0; l < SYM_CONF_MAX_LUN; l++) { + struct sym_lcb *lp = sym_lp(tp, l); + if (lp) lp->to_clear = 1; + } + np->istat_sem = SEM; + OUTB(np, nc_istat, SIGP|SEM); + break; + case UC_SETFLAG: + tp->usrflags = uc->data; + break; + } + } + break; + } +} + +static int sym_skip_spaces(char *ptr, int len) +{ + int cnt, c; + + for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); + + return (len - cnt); +} + +static int get_int_arg(char *ptr, int len, u_long *pv) +{ + char *end; + + *pv = simple_strtoul(ptr, &end, 10); + return (end - ptr); +} + +static int is_keyword(char *ptr, int len, char *verb) +{ + int verb_len = strlen(verb); + + if (len >= verb_len && !memcmp(verb, ptr, verb_len)) + return verb_len; + else + return 0; +} + +#define SKIP_SPACES(ptr, len) \ + if ((arg_len = sym_skip_spaces(ptr, len)) < 1) \ + return -EINVAL; \ + ptr += arg_len; len -= arg_len; + +#define GET_INT_ARG(ptr, len, v) \ + if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ + return -EINVAL; \ + ptr += arg_len; len -= arg_len; + + +/* + * Parse a control command + */ + +static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length) +{ + struct sym_hcb *np = sym_get_hcb(shost); + char *ptr = buffer; + int len = length; + struct sym_usrcmd cmd, *uc = &cmd; + int arg_len; + u_long target; + + memset(uc, 0, sizeof(*uc)); + + if (len > 0 && ptr[len-1] == '\n') + --len; + + if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) + uc->cmd = UC_SETSYNC; + else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) + uc->cmd = UC_SETTAGS; + else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) + uc->cmd = UC_SETVERBOSE; + else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) + uc->cmd = UC_SETWIDE; +#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT + else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) + uc->cmd = UC_SETDEBUG; +#endif + else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) + uc->cmd = UC_SETFLAG; + else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) + uc->cmd = UC_RESETDEV; + else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) + uc->cmd = UC_CLEARDEV; + else + arg_len = 0; + +#ifdef DEBUG_PROC_INFO +printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); +#endif + + if (!arg_len) + return -EINVAL; + ptr += arg_len; len -= arg_len; + + switch(uc->cmd) { + case UC_SETSYNC: + case UC_SETTAGS: + case UC_SETWIDE: + case UC_SETFLAG: + case UC_RESETDEV: + case UC_CLEARDEV: + SKIP_SPACES(ptr, len); + if ((arg_len = is_keyword(ptr, len, "all")) != 0) { + ptr += arg_len; len -= arg_len; + uc->target = ~0; + } else { + GET_INT_ARG(ptr, len, target); + uc->target = (1<<target); +#ifdef DEBUG_PROC_INFO +printk("sym_user_command: target=%ld\n", target); +#endif + } + break; + } + + switch(uc->cmd) { + case UC_SETVERBOSE: + case UC_SETSYNC: + case UC_SETTAGS: + case UC_SETWIDE: + SKIP_SPACES(ptr, len); + GET_INT_ARG(ptr, len, uc->data); +#ifdef DEBUG_PROC_INFO +printk("sym_user_command: data=%ld\n", uc->data); +#endif + break; +#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT + case UC_SETDEBUG: + while (len > 0) { + SKIP_SPACES(ptr, len); + if ((arg_len = is_keyword(ptr, len, "alloc"))) + uc->data |= DEBUG_ALLOC; + else if ((arg_len = is_keyword(ptr, len, "phase"))) + uc->data |= DEBUG_PHASE; + else if ((arg_len = is_keyword(ptr, len, "queue"))) + uc->data |= DEBUG_QUEUE; + else if ((arg_len = is_keyword(ptr, len, "result"))) + uc->data |= DEBUG_RESULT; + else if ((arg_len = is_keyword(ptr, len, "scatter"))) + uc->data |= DEBUG_SCATTER; + else if ((arg_len = is_keyword(ptr, len, "script"))) + uc->data |= DEBUG_SCRIPT; + else if ((arg_len = is_keyword(ptr, len, "tiny"))) + uc->data |= DEBUG_TINY; + else if ((arg_len = is_keyword(ptr, len, "timing"))) + uc->data |= DEBUG_TIMING; + else if ((arg_len = is_keyword(ptr, len, "nego"))) + uc->data |= DEBUG_NEGO; + else if ((arg_len = is_keyword(ptr, len, "tags"))) + uc->data |= DEBUG_TAGS; + else if ((arg_len = is_keyword(ptr, len, "pointer"))) + uc->data |= DEBUG_POINTER; + else + return -EINVAL; + ptr += arg_len; len -= arg_len; + } +#ifdef DEBUG_PROC_INFO +printk("sym_user_command: data=%ld\n", uc->data); +#endif + break; +#endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ + case UC_SETFLAG: + while (len > 0) { + SKIP_SPACES(ptr, len); + if ((arg_len = is_keyword(ptr, len, "no_disc"))) + uc->data &= ~SYM_DISC_ENABLED; + else + return -EINVAL; + ptr += arg_len; len -= arg_len; + } + break; + default: + break; + } + + if (len) + return -EINVAL; + else { + unsigned long flags; + + spin_lock_irqsave(shost->host_lock, flags); + sym_exec_user_command(np, uc); + spin_unlock_irqrestore(shost->host_lock, flags); + } + return length; +} + +#endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ + + +/* + * Copy formatted information into the input buffer. + */ +static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost) +{ +#ifdef SYM_LINUX_USER_INFO_SUPPORT + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + struct sym_hcb *np = sym_data->ncb; + + seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, " + "revision id 0x%x\n", np->s.chip_name, + pdev->device, pdev->revision); + seq_printf(m, "At PCI address %s, IRQ %u\n", + pci_name(pdev), pdev->irq); + seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n", + (int) (np->minsync_dt ? np->minsync_dt : np->minsync), + np->maxwide ? "Wide" : "Narrow", + np->minsync_dt ? ", DT capable" : ""); + + seq_printf(m, "Max. started commands %d, " + "max. commands per LUN %d\n", + SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); + + return 0; +#else + return -EINVAL; +#endif /* SYM_LINUX_USER_INFO_SUPPORT */ +} + +#endif /* SYM_LINUX_PROC_INFO_SUPPORT */ + +/* + * Free resources claimed by sym_iomap_device(). Note that + * sym_free_resources() should be used instead of this function after calling + * sym_attach(). + */ +static void sym_iounmap_device(struct sym_device *device) +{ + if (device->s.ioaddr) + pci_iounmap(device->pdev, device->s.ioaddr); + if (device->s.ramaddr) + pci_iounmap(device->pdev, device->s.ramaddr); +} + +/* + * Free controller resources. + */ +static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev, + int do_free_irq) +{ + /* + * Free O/S specific resources. + */ + if (do_free_irq) + free_irq(pdev->irq, np->s.host); + if (np->s.ioaddr) + pci_iounmap(pdev, np->s.ioaddr); + if (np->s.ramaddr) + pci_iounmap(pdev, np->s.ramaddr); + /* + * Free O/S independent resources. + */ + sym_hcb_free(np); + + sym_mfree_dma(np, sizeof(*np), "HCB"); +} + +/* + * Host attach and initialisations. + * + * Allocate host data and ncb structure. + * Remap MMIO region. + * Do chip initialization. + * If all is OK, install interrupt handling and + * start the timer daemon. + */ +static struct Scsi_Host *sym_attach(struct scsi_host_template *tpnt, int unit, + struct sym_device *dev) +{ + struct sym_data *sym_data; + struct sym_hcb *np = NULL; + struct Scsi_Host *shost = NULL; + struct pci_dev *pdev = dev->pdev; + unsigned long flags; + struct sym_fw *fw; + int do_free_irq = 0; + + printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n", + unit, dev->chip.name, pdev->revision, pci_name(pdev), + pdev->irq); + + /* + * Get the firmware for this chip. + */ + fw = sym_find_firmware(&dev->chip); + if (!fw) + goto attach_failed; + + shost = scsi_host_alloc(tpnt, sizeof(*sym_data)); + if (!shost) + goto attach_failed; + sym_data = shost_priv(shost); + + /* + * Allocate immediately the host control block, + * since we are only expecting to succeed. :) + * We keep track in the HCB of all the resources that + * are to be released on error. + */ + np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB"); + if (!np) + goto attach_failed; + np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */ + sym_data->ncb = np; + sym_data->pdev = pdev; + np->s.host = shost; + + pci_set_drvdata(pdev, shost); + + /* + * Copy some useful infos to the HCB. + */ + np->hcb_ba = vtobus(np); + np->verbose = sym_driver_setup.verbose; + np->s.unit = unit; + np->features = dev->chip.features; + np->clock_divn = dev->chip.nr_divisor; + np->maxoffs = dev->chip.offset_max; + np->maxburst = dev->chip.burst_max; + np->myaddr = dev->host_id; + np->mmio_ba = (u32)dev->mmio_base; + np->ram_ba = (u32)dev->ram_base; + np->s.ioaddr = dev->s.ioaddr; + np->s.ramaddr = dev->s.ramaddr; + + /* + * Edit its name. + */ + strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); + sprintf(np->s.inst_name, "sym%d", np->s.unit); + + if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) && + !dma_set_mask(&pdev->dev, DMA_DAC_MASK)) { + set_dac(np); + } else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { + printf_warning("%s: No suitable DMA available\n", sym_name(np)); + goto attach_failed; + } + + if (sym_hcb_attach(shost, fw, dev->nvram)) + goto attach_failed; + + /* + * Install the interrupt handler. + * If we synchonize the C code with SCRIPTS on interrupt, + * we do not want to share the INTR line at all. + */ + if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, + shost)) { + printf_err("%s: request irq %u failure\n", + sym_name(np), pdev->irq); + goto attach_failed; + } + do_free_irq = 1; + + /* + * After SCSI devices have been opened, we cannot + * reset the bus safely, so we do it here. + */ + spin_lock_irqsave(shost->host_lock, flags); + if (sym_reset_scsi_bus(np, 0)) + goto reset_failed; + + /* + * Start the SCRIPTS. + */ + sym_start_up(shost, 1); + + /* + * Start the timer daemon + */ + timer_setup(&np->s.timer, sym53c8xx_timer, 0); + np->s.lasttime=0; + sym_timer (np); + + /* + * Fill Linux host instance structure + * and return success. + */ + shost->max_channel = 0; + shost->this_id = np->myaddr; + shost->max_id = np->maxwide ? 16 : 8; + shost->max_lun = SYM_CONF_MAX_LUN; + shost->unique_id = pci_resource_start(pdev, 0); + shost->cmd_per_lun = SYM_CONF_MAX_TAG; + shost->can_queue = (SYM_CONF_MAX_START-2); + shost->sg_tablesize = SYM_CONF_MAX_SG; + shost->max_cmd_len = 16; + BUG_ON(sym2_transport_template == NULL); + shost->transportt = sym2_transport_template; + + /* 53c896 rev 1 errata: DMA may not cross 16MB boundary */ + if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2) + shost->dma_boundary = 0xFFFFFF; + + spin_unlock_irqrestore(shost->host_lock, flags); + + return shost; + + reset_failed: + printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " + "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); + spin_unlock_irqrestore(shost->host_lock, flags); + attach_failed: + printf_info("sym%d: giving up ...\n", unit); + if (np) + sym_free_resources(np, pdev, do_free_irq); + else + sym_iounmap_device(dev); + if (shost) + scsi_host_put(shost); + + return NULL; +} + + +/* + * Detect and try to read SYMBIOS and TEKRAM NVRAM. + */ +#if SYM_CONF_NVRAM_SUPPORT +static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) +{ + devp->nvram = nvp; + nvp->type = 0; + + sym_read_nvram(devp, nvp); +} +#else +static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) +{ +} +#endif /* SYM_CONF_NVRAM_SUPPORT */ + +static int sym_check_supported(struct sym_device *device) +{ + struct sym_chip *chip; + struct pci_dev *pdev = device->pdev; + unsigned long io_port = pci_resource_start(pdev, 0); + int i; + + /* + * If user excluded this chip, do not initialize it. + * I hate this code so much. Must kill it. + */ + if (io_port) { + for (i = 0 ; i < 8 ; i++) { + if (sym_driver_setup.excludes[i] == io_port) + return -ENODEV; + } + } + + /* + * Check if the chip is supported. Then copy the chip description + * to our device structure so we can make it match the actual device + * and options. + */ + chip = sym_lookup_chip_table(pdev->device, pdev->revision); + if (!chip) { + dev_info(&pdev->dev, "device not supported\n"); + return -ENODEV; + } + memcpy(&device->chip, chip, sizeof(device->chip)); + + return 0; +} + +/* + * Ignore Symbios chips controlled by various RAID controllers. + * These controllers set value 0x52414944 at RAM end - 16. + */ +static int sym_check_raid(struct sym_device *device) +{ + unsigned int ram_size, ram_val; + + if (!device->s.ramaddr) + return 0; + + if (device->chip.features & FE_RAM8K) + ram_size = 8192; + else + ram_size = 4096; + + ram_val = readl(device->s.ramaddr + ram_size - 16); + if (ram_val != 0x52414944) + return 0; + + dev_info(&device->pdev->dev, + "not initializing, driven by RAID controller.\n"); + return -ENODEV; +} + +static int sym_set_workarounds(struct sym_device *device) +{ + struct sym_chip *chip = &device->chip; + struct pci_dev *pdev = device->pdev; + u_short status_reg; + + /* + * (ITEM 12 of a DEL about the 896 I haven't yet). + * We must ensure the chip will use WRITE AND INVALIDATE. + * The revision number limit is for now arbitrary. + */ + if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) { + chip->features |= (FE_WRIE | FE_CLSE); + } + + /* If the chip can do Memory Write Invalidate, enable it */ + if (chip->features & FE_WRIE) { + if (pci_set_mwi(pdev)) + return -ENODEV; + } + + /* + * Work around for errant bit in 895A. The 66Mhz + * capable bit is set erroneously. Clear this bit. + * (Item 1 DEL 533) + * + * Make sure Config space and Features agree. + * + * Recall: writes are not normal to status register - + * write a 1 to clear and a 0 to leave unchanged. + * Can only reset bits. + */ + pci_read_config_word(pdev, PCI_STATUS, &status_reg); + if (chip->features & FE_66MHZ) { + if (!(status_reg & PCI_STATUS_66MHZ)) + chip->features &= ~FE_66MHZ; + } else { + if (status_reg & PCI_STATUS_66MHZ) { + status_reg = PCI_STATUS_66MHZ; + pci_write_config_word(pdev, PCI_STATUS, status_reg); + pci_read_config_word(pdev, PCI_STATUS, &status_reg); + } + } + + return 0; +} + +/* + * Map HBA registers and on-chip SRAM (if present). + */ +static int sym_iomap_device(struct sym_device *device) +{ + struct pci_dev *pdev = device->pdev; + struct pci_bus_region bus_addr; + int i = 2; + + pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]); + device->mmio_base = bus_addr.start; + + if (device->chip.features & FE_RAM) { + /* + * If the BAR is 64-bit, resource 2 will be occupied by the + * upper 32 bits + */ + if (!pdev->resource[i].flags) + i++; + pcibios_resource_to_bus(pdev->bus, &bus_addr, + &pdev->resource[i]); + device->ram_base = bus_addr.start; + } + +#ifdef CONFIG_SCSI_SYM53C8XX_MMIO + if (device->mmio_base) + device->s.ioaddr = pci_iomap(pdev, 1, + pci_resource_len(pdev, 1)); +#endif + if (!device->s.ioaddr) + device->s.ioaddr = pci_iomap(pdev, 0, + pci_resource_len(pdev, 0)); + if (!device->s.ioaddr) { + dev_err(&pdev->dev, "could not map registers; giving up.\n"); + return -EIO; + } + if (device->ram_base) { + device->s.ramaddr = pci_iomap(pdev, i, + pci_resource_len(pdev, i)); + if (!device->s.ramaddr) { + dev_warn(&pdev->dev, + "could not map SRAM; continuing anyway.\n"); + device->ram_base = 0; + } + } + + return 0; +} + +/* + * The NCR PQS and PDS cards are constructed as a DEC bridge + * behind which sits a proprietary NCR memory controller and + * either four or two 53c875s as separate devices. We can tell + * if an 875 is part of a PQS/PDS or not since if it is, it will + * be on the same bus as the memory controller. In its usual + * mode of operation, the 875s are slaved to the memory + * controller for all transfers. To operate with the Linux + * driver, the memory controller is disabled and the 875s + * freed to function independently. The only wrinkle is that + * the preset SCSI ID (which may be zero) must be read in from + * a special configuration space register of the 875. + */ +static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) +{ + int slot; + u8 tmp; + + for (slot = 0; slot < 256; slot++) { + struct pci_dev *memc = pci_get_slot(pdev->bus, slot); + + if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { + pci_dev_put(memc); + continue; + } + + /* bit 1: allow individual 875 configuration */ + pci_read_config_byte(memc, 0x44, &tmp); + if ((tmp & 0x2) == 0) { + tmp |= 0x2; + pci_write_config_byte(memc, 0x44, tmp); + } + + /* bit 2: drive individual 875 interrupts to the bus */ + pci_read_config_byte(memc, 0x45, &tmp); + if ((tmp & 0x4) == 0) { + tmp |= 0x4; + pci_write_config_byte(memc, 0x45, tmp); + } + + pci_dev_put(memc); + break; + } + + pci_read_config_byte(pdev, 0x84, &tmp); + sym_dev->host_id = tmp; +} + +/* + * Called before unloading the module. + * Detach the host. + * We have to free resources and halt the NCR chip. + */ +static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev) +{ + struct sym_hcb *np = sym_get_hcb(shost); + printk("%s: detaching ...\n", sym_name(np)); + + del_timer_sync(&np->s.timer); + + /* + * Reset NCR chip. + * We should use sym_soft_reset(), but we don't want to do + * so, since we may not be safe if interrupts occur. + */ + printk("%s: resetting chip\n", sym_name(np)); + OUTB(np, nc_istat, SRST); + INB(np, nc_mbox1); + udelay(10); + OUTB(np, nc_istat, 0); + + sym_free_resources(np, pdev, 1); + scsi_host_put(shost); + + return 1; +} + +/* + * Driver host template. + */ +static struct scsi_host_template sym2_template = { + .module = THIS_MODULE, + .name = "sym53c8xx", + .info = sym53c8xx_info, + .queuecommand = sym53c8xx_queue_command, + .slave_alloc = sym53c8xx_slave_alloc, + .slave_configure = sym53c8xx_slave_configure, + .slave_destroy = sym53c8xx_slave_destroy, + .eh_abort_handler = sym53c8xx_eh_abort_handler, + .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, + .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, + .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, + .this_id = 7, + .max_sectors = 0xFFFF, +#ifdef SYM_LINUX_PROC_INFO_SUPPORT + .show_info = sym_show_info, +#ifdef SYM_LINUX_USER_COMMAND_SUPPORT + .write_info = sym_user_command, +#endif + .proc_name = NAME53C8XX, +#endif +}; + +static int attach_count; + +static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + struct sym_device sym_dev; + struct sym_nvram nvram; + struct Scsi_Host *shost; + int do_iounmap = 0; + int do_disable_device = 1; + + memset(&sym_dev, 0, sizeof(sym_dev)); + memset(&nvram, 0, sizeof(nvram)); + sym_dev.pdev = pdev; + sym_dev.host_id = SYM_SETUP_HOST_ID; + + if (pci_enable_device(pdev)) + goto leave; + + pci_set_master(pdev); + + if (pci_request_regions(pdev, NAME53C8XX)) + goto disable; + + if (sym_check_supported(&sym_dev)) + goto free; + + if (sym_iomap_device(&sym_dev)) + goto free; + do_iounmap = 1; + + if (sym_check_raid(&sym_dev)) { + do_disable_device = 0; /* Don't disable the device */ + goto free; + } + + if (sym_set_workarounds(&sym_dev)) + goto free; + + sym_config_pqs(pdev, &sym_dev); + + sym_get_nvram(&sym_dev, &nvram); + + do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */ + shost = sym_attach(&sym2_template, attach_count, &sym_dev); + if (!shost) + goto free; + + if (scsi_add_host(shost, &pdev->dev)) + goto detach; + scsi_scan_host(shost); + + attach_count++; + + return 0; + + detach: + sym_detach(pci_get_drvdata(pdev), pdev); + free: + if (do_iounmap) + sym_iounmap_device(&sym_dev); + pci_release_regions(pdev); + disable: + if (do_disable_device) + pci_disable_device(pdev); + leave: + return -ENODEV; +} + +static void sym2_remove(struct pci_dev *pdev) +{ + struct Scsi_Host *shost = pci_get_drvdata(pdev); + + scsi_remove_host(shost); + sym_detach(shost, pdev); + pci_release_regions(pdev); + pci_disable_device(pdev); + + attach_count--; +} + +/** + * sym2_io_error_detected() - called when PCI error is detected + * @pdev: pointer to PCI device + * @state: current state of the PCI slot + */ +static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev, + pci_channel_state_t state) +{ + /* If slot is permanently frozen, turn everything off */ + if (state == pci_channel_io_perm_failure) { + sym2_remove(pdev); + return PCI_ERS_RESULT_DISCONNECT; + } + + disable_irq(pdev->irq); + pci_disable_device(pdev); + + /* Request that MMIO be enabled, so register dump can be taken. */ + return PCI_ERS_RESULT_CAN_RECOVER; +} + +/** + * sym2_io_slot_dump - Enable MMIO and dump debug registers + * @pdev: pointer to PCI device + */ +static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev) +{ + struct Scsi_Host *shost = pci_get_drvdata(pdev); + + sym_dump_registers(shost); + + /* Request a slot reset. */ + return PCI_ERS_RESULT_NEED_RESET; +} + +/** + * sym2_reset_workarounds - hardware-specific work-arounds + * @pdev: pointer to PCI device + * + * This routine is similar to sym_set_workarounds(), except + * that, at this point, we already know that the device was + * successfully initialized at least once before, and so most + * of the steps taken there are un-needed here. + */ +static void sym2_reset_workarounds(struct pci_dev *pdev) +{ + u_short status_reg; + struct sym_chip *chip; + + chip = sym_lookup_chip_table(pdev->device, pdev->revision); + + /* Work around for errant bit in 895A, in a fashion + * similar to what is done in sym_set_workarounds(). + */ + pci_read_config_word(pdev, PCI_STATUS, &status_reg); + if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) { + status_reg = PCI_STATUS_66MHZ; + pci_write_config_word(pdev, PCI_STATUS, status_reg); + pci_read_config_word(pdev, PCI_STATUS, &status_reg); + } +} + +/** + * sym2_io_slot_reset() - called when the pci bus has been reset. + * @pdev: pointer to PCI device + * + * Restart the card from scratch. + */ +static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev) +{ + struct Scsi_Host *shost = pci_get_drvdata(pdev); + struct sym_hcb *np = sym_get_hcb(shost); + + printk(KERN_INFO "%s: recovering from a PCI slot reset\n", + sym_name(np)); + + if (pci_enable_device(pdev)) { + printk(KERN_ERR "%s: Unable to enable after PCI reset\n", + sym_name(np)); + return PCI_ERS_RESULT_DISCONNECT; + } + + pci_set_master(pdev); + enable_irq(pdev->irq); + + /* If the chip can do Memory Write Invalidate, enable it */ + if (np->features & FE_WRIE) { + if (pci_set_mwi(pdev)) + return PCI_ERS_RESULT_DISCONNECT; + } + + /* Perform work-arounds, analogous to sym_set_workarounds() */ + sym2_reset_workarounds(pdev); + + /* Perform host reset only on one instance of the card */ + if (PCI_FUNC(pdev->devfn) == 0) { + if (sym_reset_scsi_bus(np, 0)) { + printk(KERN_ERR "%s: Unable to reset scsi host\n", + sym_name(np)); + return PCI_ERS_RESULT_DISCONNECT; + } + sym_start_up(shost, 1); + } + + return PCI_ERS_RESULT_RECOVERED; +} + +/** + * sym2_io_resume() - resume normal ops after PCI reset + * @pdev: pointer to PCI device + * + * Called when the error recovery driver tells us that its + * OK to resume normal operation. Use completion to allow + * halted scsi ops to resume. + */ +static void sym2_io_resume(struct pci_dev *pdev) +{ + struct Scsi_Host *shost = pci_get_drvdata(pdev); + struct sym_data *sym_data = shost_priv(shost); + + spin_lock_irq(shost->host_lock); + if (sym_data->io_reset) + complete(sym_data->io_reset); + spin_unlock_irq(shost->host_lock); +} + +static void sym2_get_signalling(struct Scsi_Host *shost) +{ + struct sym_hcb *np = sym_get_hcb(shost); + enum spi_signal_type type; + + switch (np->scsi_mode) { + case SMODE_SE: + type = SPI_SIGNAL_SE; + break; + case SMODE_LVD: + type = SPI_SIGNAL_LVD; + break; + case SMODE_HVD: + type = SPI_SIGNAL_HVD; + break; + default: + type = SPI_SIGNAL_UNKNOWN; + break; + } + spi_signalling(shost) = type; +} + +static void sym2_set_offset(struct scsi_target *starget, int offset) +{ + struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_tcb *tp = &np->target[starget->id]; + + tp->tgoal.offset = offset; + tp->tgoal.check_nego = 1; +} + +static void sym2_set_period(struct scsi_target *starget, int period) +{ + struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_tcb *tp = &np->target[starget->id]; + + /* have to have DT for these transfers, but DT will also + * set width, so check that this is allowed */ + if (period <= np->minsync && spi_width(starget)) + tp->tgoal.dt = 1; + + tp->tgoal.period = period; + tp->tgoal.check_nego = 1; +} + +static void sym2_set_width(struct scsi_target *starget, int width) +{ + struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_tcb *tp = &np->target[starget->id]; + + /* It is illegal to have DT set on narrow transfers. If DT is + * clear, we must also clear IU and QAS. */ + if (width == 0) + tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; + + tp->tgoal.width = width; + tp->tgoal.check_nego = 1; +} + +static void sym2_set_dt(struct scsi_target *starget, int dt) +{ + struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_tcb *tp = &np->target[starget->id]; + + /* We must clear QAS and IU if DT is clear */ + if (dt) + tp->tgoal.dt = 1; + else + tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; + tp->tgoal.check_nego = 1; +} + +#if 0 +static void sym2_set_iu(struct scsi_target *starget, int iu) +{ + struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_tcb *tp = &np->target[starget->id]; + + if (iu) + tp->tgoal.iu = tp->tgoal.dt = 1; + else + tp->tgoal.iu = 0; + tp->tgoal.check_nego = 1; +} + +static void sym2_set_qas(struct scsi_target *starget, int qas) +{ + struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); + struct sym_hcb *np = sym_get_hcb(shost); + struct sym_tcb *tp = &np->target[starget->id]; + + if (qas) + tp->tgoal.dt = tp->tgoal.qas = 1; + else + tp->tgoal.qas = 0; + tp->tgoal.check_nego = 1; +} +#endif + +static struct spi_function_template sym2_transport_functions = { + .set_offset = sym2_set_offset, + .show_offset = 1, + .set_period = sym2_set_period, + .show_period = 1, + .set_width = sym2_set_width, + .show_width = 1, + .set_dt = sym2_set_dt, + .show_dt = 1, +#if 0 + .set_iu = sym2_set_iu, + .show_iu = 1, + .set_qas = sym2_set_qas, + .show_qas = 1, +#endif + .get_signalling = sym2_get_signalling, +}; + +static struct pci_device_id sym2_id_table[] = { + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, + PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, + PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, /* new */ + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, + { 0, } +}; + +MODULE_DEVICE_TABLE(pci, sym2_id_table); + +static const struct pci_error_handlers sym2_err_handler = { + .error_detected = sym2_io_error_detected, + .mmio_enabled = sym2_io_slot_dump, + .slot_reset = sym2_io_slot_reset, + .resume = sym2_io_resume, +}; + +static struct pci_driver sym2_driver = { + .name = NAME53C8XX, + .id_table = sym2_id_table, + .probe = sym2_probe, + .remove = sym2_remove, + .err_handler = &sym2_err_handler, +}; + +static int __init sym2_init(void) +{ + int error; + + sym2_setup_params(); + sym2_transport_template = spi_attach_transport(&sym2_transport_functions); + if (!sym2_transport_template) + return -ENODEV; + + error = pci_register_driver(&sym2_driver); + if (error) + spi_release_transport(sym2_transport_template); + return error; +} + +static void __exit sym2_exit(void) +{ + pci_unregister_driver(&sym2_driver); + spi_release_transport(sym2_transport_template); +} + +module_init(sym2_init); +module_exit(sym2_exit); diff --git a/drivers/scsi/sym53c8xx_2/sym_glue.h b/drivers/scsi/sym53c8xx_2/sym_glue.h new file mode 100644 index 000000000..7d5c9b988 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_glue.h @@ -0,0 +1,257 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#ifndef SYM_GLUE_H +#define SYM_GLUE_H + +#include <linux/completion.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/ioport.h> +#include <linux/pci.h> +#include <linux/string.h> +#include <linux/timer.h> +#include <linux/types.h> + +#include <asm/io.h> +#ifdef __sparc__ +# include <asm/irq.h> +#endif + +#include <scsi/scsi.h> +#include <scsi/scsi_cmnd.h> +#include <scsi/scsi_device.h> +#include <scsi/scsi_transport_spi.h> +#include <scsi/scsi_host.h> + +#include "sym53c8xx.h" +#include "sym_defs.h" +#include "sym_misc.h" + +/* + * Configuration addendum for Linux. + */ +#define SYM_CONF_TIMER_INTERVAL ((HZ+1)/2) + +#undef SYM_OPT_HANDLE_DEVICE_QUEUEING +#define SYM_OPT_LIMIT_COMMAND_REORDERING + +/* + * Print a message with severity. + */ +#define printf_emerg(args...) printk(KERN_EMERG args) +#define printf_alert(args...) printk(KERN_ALERT args) +#define printf_crit(args...) printk(KERN_CRIT args) +#define printf_err(args...) printk(KERN_ERR args) +#define printf_warning(args...) printk(KERN_WARNING args) +#define printf_notice(args...) printk(KERN_NOTICE args) +#define printf_info(args...) printk(KERN_INFO args) +#define printf_debug(args...) printk(KERN_DEBUG args) +#define printf(args...) printk(args) + +/* + * A 'read barrier' flushes any data that have been prefetched + * by the processor due to out of order execution. Such a barrier + * must notably be inserted prior to looking at data that have + * been DMAed, assuming that program does memory READs in proper + * order and that the device ensured proper ordering of WRITEs. + * + * A 'write barrier' prevents any previous WRITEs to pass further + * WRITEs. Such barriers must be inserted each time another agent + * relies on ordering of WRITEs. + * + * Note that, due to posting of PCI memory writes, we also must + * insert dummy PCI read transactions when some ordering involving + * both directions over the PCI does matter. PCI transactions are + * fully ordered in each direction. + */ + +#define MEMORY_READ_BARRIER() rmb() +#define MEMORY_WRITE_BARRIER() wmb() + +/* + * IO functions definition for big/little endian CPU support. + * For now, PCI chips are only supported in little endian addressing mode, + */ + +#ifdef __BIG_ENDIAN + +#define readw_l2b readw +#define readl_l2b readl +#define writew_b2l writew +#define writel_b2l writel + +#else /* little endian */ + +#define readw_raw readw +#define readl_raw readl +#define writew_raw writew +#define writel_raw writel + +#endif /* endian */ + +#ifdef SYM_CONF_CHIP_BIG_ENDIAN +#error "Chips in BIG ENDIAN addressing mode are not (yet) supported" +#endif + +/* + * If the CPU and the chip use same endian-ness addressing, + * no byte reordering is needed for script patching. + * Macro cpu_to_scr() is to be used for script patching. + * Macro scr_to_cpu() is to be used for getting a DWORD + * from the script. + */ + +#define cpu_to_scr(dw) cpu_to_le32(dw) +#define scr_to_cpu(dw) le32_to_cpu(dw) + +/* + * These ones are used as return code from + * error recovery handlers under Linux. + */ +#define SCSI_SUCCESS SUCCESS +#define SCSI_FAILED FAILED + +/* + * System specific target data structure. + * None for now, under Linux. + */ +/* #define SYM_HAVE_STCB */ + +/* + * System specific lun data structure. + */ +#define SYM_HAVE_SLCB +struct sym_slcb { + u_short reqtags; /* Number of tags requested by user */ + u_short scdev_depth; /* Queue depth set in select_queue_depth() */ +}; + +/* + * System specific command data structure. + * Not needed under Linux. + */ +/* struct sym_sccb */ + +/* + * System specific host data structure. + */ +struct sym_shcb { + /* + * Chip and controller identification. + */ + int unit; + char inst_name[16]; + char chip_name[8]; + + struct Scsi_Host *host; + + void __iomem * ioaddr; /* MMIO kernel io address */ + void __iomem * ramaddr; /* RAM kernel io address */ + + struct timer_list timer; /* Timer handler link header */ + u_long lasttime; + u_long settle_time; /* Resetting the SCSI BUS */ + u_char settle_time_valid; +}; + +/* + * Return the name of the controller. + */ +#define sym_name(np) (np)->s.inst_name + +struct sym_nvram; + +/* + * The IO macros require a struct called 's' and are abused in sym_nvram.c + */ +struct sym_device { + struct pci_dev *pdev; + unsigned long mmio_base; + unsigned long ram_base; + struct { + void __iomem *ioaddr; + void __iomem *ramaddr; + } s; + struct sym_chip chip; + struct sym_nvram *nvram; + u_char host_id; +}; + +/* + * Driver host data structure. + */ +struct sym_data { + struct sym_hcb *ncb; + struct completion *io_reset; /* PCI error handling */ + struct pci_dev *pdev; +}; + +static inline struct sym_hcb * sym_get_hcb(struct Scsi_Host *host) +{ + return ((struct sym_data *)host->hostdata)->ncb; +} + +#include "sym_fw.h" +#include "sym_hipd.h" + +/* + * Set the status field of a CAM CCB. + */ +static inline void +sym_set_cam_status(struct scsi_cmnd *cmd, int status) +{ + cmd->result &= ~(0xff << 16); + cmd->result |= (status << 16); +} + +/* + * Get the status field of a CAM CCB. + */ +static inline int +sym_get_cam_status(struct scsi_cmnd *cmd) +{ + return host_byte(cmd->result); +} + +/* + * Build CAM result for a successful IO and for a failed IO. + */ +static inline void sym_set_cam_result_ok(struct sym_ccb *cp, struct scsi_cmnd *cmd, int resid) +{ + scsi_set_resid(cmd, resid); + cmd->result = (DID_OK << 16) | (cp->ssss_status & 0x7f); +} +void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid); + +void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *ccb); +#define sym_print_addr(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg) +void sym_xpt_async_bus_reset(struct sym_hcb *np); +int sym_setup_data_and_start (struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp); +void sym_log_bus_error(struct Scsi_Host *); +void sym_dump_registers(struct Scsi_Host *); + +#endif /* SYM_GLUE_H */ diff --git a/drivers/scsi/sym53c8xx_2/sym_hipd.c b/drivers/scsi/sym53c8xx_2/sym_hipd.c new file mode 100644 index 000000000..a9fe092a4 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_hipd.c @@ -0,0 +1,5840 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include <linux/slab.h> +#include <asm/param.h> /* for timeouts in units of HZ */ + +#include "sym_glue.h" +#include "sym_nvram.h" + +#if 0 +#define SYM_DEBUG_GENERIC_SUPPORT +#endif + +/* + * Needed function prototypes. + */ +static void sym_int_ma (struct sym_hcb *np); +static void sym_int_sir(struct sym_hcb *); +static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); +static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); +static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); +static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); +static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); +static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); + +/* + * Print a buffer in hexadecimal format with a ".\n" at end. + */ +static void sym_printl_hex(u_char *p, int n) +{ + while (n-- > 0) + printf (" %x", *p++); + printf (".\n"); +} + +static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) +{ + sym_print_addr(cp->cmd, "%s: ", label); + + spi_print_msg(msg); + printf("\n"); +} + +static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) +{ + struct sym_tcb *tp = &np->target[target]; + dev_info(&tp->starget->dev, "%s: ", label); + + spi_print_msg(msg); + printf("\n"); +} + +/* + * Print something that tells about extended errors. + */ +void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) +{ + if (x_status & XE_PARITY_ERR) { + sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); + } + if (x_status & XE_EXTRA_DATA) { + sym_print_addr(cmd, "extraneous data discarded.\n"); + } + if (x_status & XE_BAD_PHASE) { + sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); + } + if (x_status & XE_SODL_UNRUN) { + sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); + } + if (x_status & XE_SWIDE_OVRUN) { + sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); + } +} + +/* + * Return a string for SCSI BUS mode. + */ +static char *sym_scsi_bus_mode(int mode) +{ + switch(mode) { + case SMODE_HVD: return "HVD"; + case SMODE_SE: return "SE"; + case SMODE_LVD: return "LVD"; + } + return "??"; +} + +/* + * Soft reset the chip. + * + * Raising SRST when the chip is running may cause + * problems on dual function chips (see below). + * On the other hand, LVD devices need some delay + * to settle and report actual BUS mode in STEST4. + */ +static void sym_chip_reset (struct sym_hcb *np) +{ + OUTB(np, nc_istat, SRST); + INB(np, nc_mbox1); + udelay(10); + OUTB(np, nc_istat, 0); + INB(np, nc_mbox1); + udelay(2000); /* For BUS MODE to settle */ +} + +/* + * Really soft reset the chip.:) + * + * Some 896 and 876 chip revisions may hang-up if we set + * the SRST (soft reset) bit at the wrong time when SCRIPTS + * are running. + * So, we need to abort the current operation prior to + * soft resetting the chip. + */ +static void sym_soft_reset (struct sym_hcb *np) +{ + u_char istat = 0; + int i; + + if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) + goto do_chip_reset; + + OUTB(np, nc_istat, CABRT); + for (i = 100000 ; i ; --i) { + istat = INB(np, nc_istat); + if (istat & SIP) { + INW(np, nc_sist); + } + else if (istat & DIP) { + if (INB(np, nc_dstat) & ABRT) + break; + } + udelay(5); + } + OUTB(np, nc_istat, 0); + if (!i) + printf("%s: unable to abort current chip operation, " + "ISTAT=0x%02x.\n", sym_name(np), istat); +do_chip_reset: + sym_chip_reset(np); +} + +/* + * Start reset process. + * + * The interrupt handler will reinitialize the chip. + */ +static void sym_start_reset(struct sym_hcb *np) +{ + sym_reset_scsi_bus(np, 1); +} + +int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) +{ + u32 term; + int retv = 0; + + sym_soft_reset(np); /* Soft reset the chip */ + if (enab_int) + OUTW(np, nc_sien, RST); + /* + * Enable Tolerant, reset IRQD if present and + * properly set IRQ mode, prior to resetting the bus. + */ + OUTB(np, nc_stest3, TE); + OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); + OUTB(np, nc_scntl1, CRST); + INB(np, nc_mbox1); + udelay(200); + + if (!SYM_SETUP_SCSI_BUS_CHECK) + goto out; + /* + * Check for no terminators or SCSI bus shorts to ground. + * Read SCSI data bus, data parity bits and control signals. + * We are expecting RESET to be TRUE and other signals to be + * FALSE. + */ + term = INB(np, nc_sstat0); + term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ + term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ + ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ + ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ + INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ + + if (!np->maxwide) + term &= 0x3ffff; + + if (term != (2<<7)) { + printf("%s: suspicious SCSI data while resetting the BUS.\n", + sym_name(np)); + printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " + "0x%lx, expecting 0x%lx\n", + sym_name(np), + (np->features & FE_WIDE) ? "dp1,d15-8," : "", + (u_long)term, (u_long)(2<<7)); + if (SYM_SETUP_SCSI_BUS_CHECK == 1) + retv = 1; + } +out: + OUTB(np, nc_scntl1, 0); + return retv; +} + +/* + * Select SCSI clock frequency + */ +static void sym_selectclock(struct sym_hcb *np, u_char scntl3) +{ + /* + * If multiplier not present or not selected, leave here. + */ + if (np->multiplier <= 1) { + OUTB(np, nc_scntl3, scntl3); + return; + } + + if (sym_verbose >= 2) + printf ("%s: enabling clock multiplier\n", sym_name(np)); + + OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ + /* + * Wait for the LCKFRQ bit to be set if supported by the chip. + * Otherwise wait 50 micro-seconds (at least). + */ + if (np->features & FE_LCKFRQ) { + int i = 20; + while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) + udelay(20); + if (!i) + printf("%s: the chip cannot lock the frequency\n", + sym_name(np)); + } else { + INB(np, nc_mbox1); + udelay(50+10); + } + OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ + OUTB(np, nc_scntl3, scntl3); + OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ + OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ +} + + +/* + * Determine the chip's clock frequency. + * + * This is essential for the negotiation of the synchronous + * transfer rate. + * + * Note: we have to return the correct value. + * THERE IS NO SAFE DEFAULT VALUE. + * + * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. + * 53C860 and 53C875 rev. 1 support fast20 transfers but + * do not have a clock doubler and so are provided with a + * 80 MHz clock. All other fast20 boards incorporate a doubler + * and so should be delivered with a 40 MHz clock. + * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base + * clock and provide a clock quadrupler (160 Mhz). + */ + +/* + * calculate SCSI clock frequency (in KHz) + */ +static unsigned getfreq (struct sym_hcb *np, int gen) +{ + unsigned int ms = 0; + unsigned int f; + + /* + * Measure GEN timer delay in order + * to calculate SCSI clock frequency + * + * This code will never execute too + * many loop iterations (if DELAY is + * reasonably correct). It could get + * too low a delay (too high a freq.) + * if the CPU is slow executing the + * loop for some reason (an NMI, for + * example). For this reason we will + * if multiple measurements are to be + * performed trust the higher delay + * (lower frequency returned). + */ + OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ + INW(np, nc_sist); /* clear pending scsi interrupt */ + OUTB(np, nc_dien, 0); /* mask all dma interrupts */ + INW(np, nc_sist); /* another one, just to be sure :) */ + /* + * The C1010-33 core does not report GEN in SIST, + * if this interrupt is masked in SIEN. + * I don't know yet if the C1010-66 behaves the same way. + */ + if (np->features & FE_C10) { + OUTW(np, nc_sien, GEN); + OUTB(np, nc_istat1, SIRQD); + } + OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ + OUTB(np, nc_stime1, 0); /* disable general purpose timer */ + OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ + while (!(INW(np, nc_sist) & GEN) && ms++ < 100000) + udelay(1000/4); /* count in 1/4 of ms */ + OUTB(np, nc_stime1, 0); /* disable general purpose timer */ + /* + * Undo C1010-33 specific settings. + */ + if (np->features & FE_C10) { + OUTW(np, nc_sien, 0); + OUTB(np, nc_istat1, 0); + } + /* + * set prescaler to divide by whatever 0 means + * 0 ought to choose divide by 2, but appears + * to set divide by 3.5 mode in my 53c810 ... + */ + OUTB(np, nc_scntl3, 0); + + /* + * adjust for prescaler, and convert into KHz + */ + f = ms ? ((1 << gen) * (4340*4)) / ms : 0; + + /* + * The C1010-33 result is biased by a factor + * of 2/3 compared to earlier chips. + */ + if (np->features & FE_C10) + f = (f * 2) / 3; + + if (sym_verbose >= 2) + printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", + sym_name(np), gen, ms/4, f); + + return f; +} + +static unsigned sym_getfreq (struct sym_hcb *np) +{ + u_int f1, f2; + int gen = 8; + + getfreq (np, gen); /* throw away first result */ + f1 = getfreq (np, gen); + f2 = getfreq (np, gen); + if (f1 > f2) f1 = f2; /* trust lower result */ + return f1; +} + +/* + * Get/probe chip SCSI clock frequency + */ +static void sym_getclock (struct sym_hcb *np, int mult) +{ + unsigned char scntl3 = np->sv_scntl3; + unsigned char stest1 = np->sv_stest1; + unsigned f1; + + np->multiplier = 1; + f1 = 40000; + /* + * True with 875/895/896/895A with clock multiplier selected + */ + if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier found\n", sym_name(np)); + np->multiplier = mult; + } + + /* + * If multiplier not found or scntl3 not 7,5,3, + * reset chip and get frequency from general purpose timer. + * Otherwise trust scntl3 BIOS setting. + */ + if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { + OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ + f1 = sym_getfreq (np); + + if (sym_verbose) + printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); + + if (f1 < 45000) f1 = 40000; + else if (f1 < 55000) f1 = 50000; + else f1 = 80000; + + if (f1 < 80000 && mult > 1) { + if (sym_verbose >= 2) + printf ("%s: clock multiplier assumed\n", + sym_name(np)); + np->multiplier = mult; + } + } else { + if ((scntl3 & 7) == 3) f1 = 40000; + else if ((scntl3 & 7) == 5) f1 = 80000; + else f1 = 160000; + + f1 /= np->multiplier; + } + + /* + * Compute controller synchronous parameters. + */ + f1 *= np->multiplier; + np->clock_khz = f1; +} + +/* + * Get/probe PCI clock frequency + */ +static int sym_getpciclock (struct sym_hcb *np) +{ + int f = 0; + + /* + * For now, we only need to know about the actual + * PCI BUS clock frequency for C1010-66 chips. + */ +#if 1 + if (np->features & FE_66MHZ) { +#else + if (1) { +#endif + OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ + f = sym_getfreq(np); + OUTB(np, nc_stest1, 0); + } + np->pciclk_khz = f; + + return f; +} + +/* + * SYMBIOS chip clock divisor table. + * + * Divisors are multiplied by 10,000,000 in order to make + * calculations more simple. + */ +#define _5M 5000000 +static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; + +/* + * Get clock factor and sync divisor for a given + * synchronous factor period. + */ +static int +sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) +{ + u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ + int div = np->clock_divn; /* Number of divisors supported */ + u32 fak; /* Sync factor in sxfer */ + u32 per; /* Period in tenths of ns */ + u32 kpc; /* (per * clk) */ + int ret; + + /* + * Compute the synchronous period in tenths of nano-seconds + */ + if (dt && sfac <= 9) per = 125; + else if (sfac <= 10) per = 250; + else if (sfac == 11) per = 303; + else if (sfac == 12) per = 500; + else per = 40 * sfac; + ret = per; + + kpc = per * clk; + if (dt) + kpc <<= 1; + + /* + * For earliest C10 revision 0, we cannot use extra + * clocks for the setting of the SCSI clocking. + * Note that this limits the lowest sync data transfer + * to 5 Mega-transfers per second and may result in + * using higher clock divisors. + */ +#if 1 + if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { + /* + * Look for the lowest clock divisor that allows an + * output speed not faster than the period. + */ + while (div > 0) { + --div; + if (kpc > (div_10M[div] << 2)) { + ++div; + break; + } + } + fak = 0; /* No extra clocks */ + if (div == np->clock_divn) { /* Are we too fast ? */ + ret = -1; + } + *divp = div; + *fakp = fak; + return ret; + } +#endif + + /* + * Look for the greatest clock divisor that allows an + * input speed faster than the period. + */ + while (--div > 0) + if (kpc >= (div_10M[div] << 2)) break; + + /* + * Calculate the lowest clock factor that allows an output + * speed not faster than the period, and the max output speed. + * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. + * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. + */ + if (dt) { + fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; + /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ + } else { + fak = (kpc - 1) / div_10M[div] + 1 - 4; + /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ + } + + /* + * Check against our hardware limits, or bugs :). + */ + if (fak > 2) { + fak = 2; + ret = -1; + } + + /* + * Compute and return sync parameters. + */ + *divp = div; + *fakp = fak; + + return ret; +} + +/* + * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, + * 128 transfers. All chips support at least 16 transfers + * bursts. The 825A, 875 and 895 chips support bursts of up + * to 128 transfers and the 895A and 896 support bursts of up + * to 64 transfers. All other chips support up to 16 + * transfers bursts. + * + * For PCI 32 bit data transfers each transfer is a DWORD. + * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. + * + * We use log base 2 (burst length) as internal code, with + * value 0 meaning "burst disabled". + */ + +/* + * Burst length from burst code. + */ +#define burst_length(bc) (!(bc))? 0 : 1 << (bc) + +/* + * Burst code from io register bits. + */ +#define burst_code(dmode, ctest4, ctest5) \ + (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 + +/* + * Set initial io register bits from burst code. + */ +static inline void sym_init_burst(struct sym_hcb *np, u_char bc) +{ + np->rv_ctest4 &= ~0x80; + np->rv_dmode &= ~(0x3 << 6); + np->rv_ctest5 &= ~0x4; + + if (!bc) { + np->rv_ctest4 |= 0x80; + } + else { + --bc; + np->rv_dmode |= ((bc & 0x3) << 6); + np->rv_ctest5 |= (bc & 0x4); + } +} + +/* + * Save initial settings of some IO registers. + * Assumed to have been set by BIOS. + * We cannot reset the chip prior to reading the + * IO registers, since informations will be lost. + * Since the SCRIPTS processor may be running, this + * is not safe on paper, but it seems to work quite + * well. :) + */ +static void sym_save_initial_setting (struct sym_hcb *np) +{ + np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; + np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; + np->sv_dmode = INB(np, nc_dmode) & 0xce; + np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; + np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; + np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; + np->sv_gpcntl = INB(np, nc_gpcntl); + np->sv_stest1 = INB(np, nc_stest1); + np->sv_stest2 = INB(np, nc_stest2) & 0x20; + np->sv_stest4 = INB(np, nc_stest4); + if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ + np->sv_scntl4 = INB(np, nc_scntl4); + np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; + } + else + np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; +} + +/* + * Set SCSI BUS mode. + * - LVD capable chips (895/895A/896/1010) report the current BUS mode + * through the STEST4 IO register. + * - For previous generation chips (825/825A/875), the user has to tell us + * how to check against HVD, since a 100% safe algorithm is not possible. + */ +static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram) +{ + if (np->scsi_mode) + return; + + np->scsi_mode = SMODE_SE; + if (np->features & (FE_ULTRA2|FE_ULTRA3)) + np->scsi_mode = (np->sv_stest4 & SMODE); + else if (np->features & FE_DIFF) { + if (SYM_SETUP_SCSI_DIFF == 1) { + if (np->sv_scntl3) { + if (np->sv_stest2 & 0x20) + np->scsi_mode = SMODE_HVD; + } else if (nvram->type == SYM_SYMBIOS_NVRAM) { + if (!(INB(np, nc_gpreg) & 0x08)) + np->scsi_mode = SMODE_HVD; + } + } else if (SYM_SETUP_SCSI_DIFF == 2) + np->scsi_mode = SMODE_HVD; + } + if (np->scsi_mode == SMODE_HVD) + np->rv_stest2 |= 0x20; +} + +/* + * Prepare io register values used by sym_start_up() + * according to selected and supported features. + */ +static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) +{ + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + u_char burst_max; + u32 period; + int i; + + np->maxwide = (np->features & FE_WIDE) ? 1 : 0; + + /* + * Guess the frequency of the chip's clock. + */ + if (np->features & (FE_ULTRA3 | FE_ULTRA2)) + np->clock_khz = 160000; + else if (np->features & FE_ULTRA) + np->clock_khz = 80000; + else + np->clock_khz = 40000; + + /* + * Get the clock multiplier factor. + */ + if (np->features & FE_QUAD) + np->multiplier = 4; + else if (np->features & FE_DBLR) + np->multiplier = 2; + else + np->multiplier = 1; + + /* + * Measure SCSI clock frequency for chips + * it may vary from assumed one. + */ + if (np->features & FE_VARCLK) + sym_getclock(np, np->multiplier); + + /* + * Divisor to be used for async (timer pre-scaler). + */ + i = np->clock_divn - 1; + while (--i >= 0) { + if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { + ++i; + break; + } + } + np->rv_scntl3 = i+1; + + /* + * The C1010 uses hardwired divisors for async. + * So, we just throw away, the async. divisor.:-) + */ + if (np->features & FE_C10) + np->rv_scntl3 = 0; + + /* + * Minimum synchronous period factor supported by the chip. + * Btw, 'period' is in tenths of nanoseconds. + */ + period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; + + if (period <= 250) np->minsync = 10; + else if (period <= 303) np->minsync = 11; + else if (period <= 500) np->minsync = 12; + else np->minsync = (period + 40 - 1) / 40; + + /* + * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). + */ + if (np->minsync < 25 && + !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) + np->minsync = 25; + else if (np->minsync < 12 && + !(np->features & (FE_ULTRA2|FE_ULTRA3))) + np->minsync = 12; + + /* + * Maximum synchronous period factor supported by the chip. + */ + period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz); + np->maxsync = period > 2540 ? 254 : period / 10; + + /* + * If chip is a C1010, guess the sync limits in DT mode. + */ + if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { + if (np->clock_khz == 160000) { + np->minsync_dt = 9; + np->maxsync_dt = 50; + np->maxoffs_dt = nvram->type ? 62 : 31; + } + } + + /* + * 64 bit addressing (895A/896/1010) ? + */ + if (np->features & FE_DAC) { + if (!use_dac(np)) + np->rv_ccntl1 |= (DDAC); + else if (SYM_CONF_DMA_ADDRESSING_MODE == 1) + np->rv_ccntl1 |= (XTIMOD | EXTIBMV); + else if (SYM_CONF_DMA_ADDRESSING_MODE == 2) + np->rv_ccntl1 |= (0 | EXTIBMV); + } + + /* + * Phase mismatch handled by SCRIPTS (895A/896/1010) ? + */ + if (np->features & FE_NOPM) + np->rv_ccntl0 |= (ENPMJ); + + /* + * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. + * In dual channel mode, contention occurs if internal cycles + * are used. Disable internal cycles. + */ + if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && + pdev->revision < 0x1) + np->rv_ccntl0 |= DILS; + + /* + * Select burst length (dwords) + */ + burst_max = SYM_SETUP_BURST_ORDER; + if (burst_max == 255) + burst_max = burst_code(np->sv_dmode, np->sv_ctest4, + np->sv_ctest5); + if (burst_max > 7) + burst_max = 7; + if (burst_max > np->maxburst) + burst_max = np->maxburst; + + /* + * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. + * This chip and the 860 Rev 1 may wrongly use PCI cache line + * based transactions on LOAD/STORE instructions. So we have + * to prevent these chips from using such PCI transactions in + * this driver. The generic ncr driver that does not use + * LOAD/STORE instructions does not need this work-around. + */ + if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 && + pdev->revision >= 0x10 && pdev->revision <= 0x11) || + (pdev->device == PCI_DEVICE_ID_NCR_53C860 && + pdev->revision <= 0x1)) + np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); + + /* + * Select all supported special features. + * If we are using on-board RAM for scripts, prefetch (PFEN) + * does not help, but burst op fetch (BOF) does. + * Disabling PFEN makes sure BOF will be used. + */ + if (np->features & FE_ERL) + np->rv_dmode |= ERL; /* Enable Read Line */ + if (np->features & FE_BOF) + np->rv_dmode |= BOF; /* Burst Opcode Fetch */ + if (np->features & FE_ERMP) + np->rv_dmode |= ERMP; /* Enable Read Multiple */ +#if 1 + if ((np->features & FE_PFEN) && !np->ram_ba) +#else + if (np->features & FE_PFEN) +#endif + np->rv_dcntl |= PFEN; /* Prefetch Enable */ + if (np->features & FE_CLSE) + np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ + if (np->features & FE_WRIE) + np->rv_ctest3 |= WRIE; /* Write and Invalidate */ + if (np->features & FE_DFS) + np->rv_ctest5 |= DFS; /* Dma Fifo Size */ + + /* + * Select some other + */ + np->rv_ctest4 |= MPEE; /* Master parity checking */ + np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ + + /* + * Get parity checking, host ID and verbose mode from NVRAM + */ + np->myaddr = 255; + np->scsi_mode = 0; + sym_nvram_setup_host(shost, np, nvram); + + /* + * Get SCSI addr of host adapter (set by bios?). + */ + if (np->myaddr == 255) { + np->myaddr = INB(np, nc_scid) & 0x07; + if (!np->myaddr) + np->myaddr = SYM_SETUP_HOST_ID; + } + + /* + * Prepare initial io register bits for burst length + */ + sym_init_burst(np, burst_max); + + sym_set_bus_mode(np, nvram); + + /* + * Set LED support from SCRIPTS. + * Ignore this feature for boards known to use a + * specific GPIO wiring and for the 895A, 896 + * and 1010 that drive the LED directly. + */ + if ((SYM_SETUP_SCSI_LED || + (nvram->type == SYM_SYMBIOS_NVRAM || + (nvram->type == SYM_TEKRAM_NVRAM && + pdev->device == PCI_DEVICE_ID_NCR_53C895))) && + !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) + np->features |= FE_LED0; + + /* + * Set irq mode. + */ + switch(SYM_SETUP_IRQ_MODE & 3) { + case 2: + np->rv_dcntl |= IRQM; + break; + case 1: + np->rv_dcntl |= (np->sv_dcntl & IRQM); + break; + default: + break; + } + + /* + * Configure targets according to driver setup. + * If NVRAM present get targets setup from NVRAM. + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + struct sym_tcb *tp = &np->target[i]; + + tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + tp->usrtags = SYM_SETUP_MAX_TAG; + tp->usr_width = np->maxwide; + tp->usr_period = 9; + + sym_nvram_setup_target(tp, i, nvram); + + if (!tp->usrtags) + tp->usrflags &= ~SYM_TAGS_ENABLED; + } + + /* + * Let user know about the settings. + */ + printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), + sym_nvram_type(nvram), np->myaddr, + (np->features & FE_ULTRA3) ? 80 : + (np->features & FE_ULTRA2) ? 40 : + (np->features & FE_ULTRA) ? 20 : 10, + sym_scsi_bus_mode(np->scsi_mode), + (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); + /* + * Tell him more on demand. + */ + if (sym_verbose) { + printf("%s: %s IRQ line driver%s\n", + sym_name(np), + np->rv_dcntl & IRQM ? "totem pole" : "open drain", + np->ram_ba ? ", using on-chip SRAM" : ""); + printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); + if (np->features & FE_NOPM) + printf("%s: handling phase mismatch from SCRIPTS.\n", + sym_name(np)); + } + /* + * And still more. + */ + if (sym_verbose >= 2) { + printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, + np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); + + printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " + "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", + sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, + np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); + } + + return 0; +} + +/* + * Test the pci bus snoop logic :-( + * + * Has to be called with interrupts disabled. + */ +#ifdef CONFIG_SCSI_SYM53C8XX_MMIO +static int sym_regtest(struct sym_hcb *np) +{ + register volatile u32 data; + /* + * chip registers may NOT be cached. + * write 0xffffffff to a read only register area, + * and try to read it back. + */ + data = 0xffffffff; + OUTL(np, nc_dstat, data); + data = INL(np, nc_dstat); +#if 1 + if (data == 0xffffffff) { +#else + if ((data & 0xe2f0fffd) != 0x02000080) { +#endif + printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", + (unsigned) data); + return 0x10; + } + return 0; +} +#else +static inline int sym_regtest(struct sym_hcb *np) +{ + return 0; +} +#endif + +static int sym_snooptest(struct sym_hcb *np) +{ + u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; + int i, err; + + err = sym_regtest(np); + if (err) + return err; +restart_test: + /* + * Enable Master Parity Checking as we intend + * to enable it for normal operations. + */ + OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); + /* + * init + */ + pc = SCRIPTZ_BA(np, snooptest); + host_wr = 1; + sym_wr = 2; + /* + * Set memory and register. + */ + np->scratch = cpu_to_scr(host_wr); + OUTL(np, nc_temp, sym_wr); + /* + * Start script (exchange values) + */ + OUTL(np, nc_dsa, np->hcb_ba); + OUTL_DSP(np, pc); + /* + * Wait 'til done (with timeout) + */ + for (i=0; i<SYM_SNOOP_TIMEOUT; i++) + if (INB(np, nc_istat) & (INTF|SIP|DIP)) + break; + if (i>=SYM_SNOOP_TIMEOUT) { + printf ("CACHE TEST FAILED: timeout.\n"); + return (0x20); + } + /* + * Check for fatal DMA errors. + */ + dstat = INB(np, nc_dstat); +#if 1 /* Band aiding for broken hardwares that fail PCI parity */ + if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { + printf ("%s: PCI DATA PARITY ERROR DETECTED - " + "DISABLING MASTER DATA PARITY CHECKING.\n", + sym_name(np)); + np->rv_ctest4 &= ~MPEE; + goto restart_test; + } +#endif + if (dstat & (MDPE|BF|IID)) { + printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); + return (0x80); + } + /* + * Save termination position. + */ + pc = INL(np, nc_dsp); + /* + * Read memory and register. + */ + host_rd = scr_to_cpu(np->scratch); + sym_rd = INL(np, nc_scratcha); + sym_bk = INL(np, nc_temp); + /* + * Check termination position. + */ + if (pc != SCRIPTZ_BA(np, snoopend)+8) { + printf ("CACHE TEST FAILED: script execution failed.\n"); + printf ("start=%08lx, pc=%08lx, end=%08lx\n", + (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, + (u_long) SCRIPTZ_BA(np, snoopend) +8); + return (0x40); + } + /* + * Show results. + */ + if (host_wr != sym_rd) { + printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", + (int) host_wr, (int) sym_rd); + err |= 1; + } + if (host_rd != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", + (int) sym_wr, (int) host_rd); + err |= 2; + } + if (sym_bk != sym_wr) { + printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", + (int) sym_wr, (int) sym_bk); + err |= 4; + } + + return err; +} + +/* + * log message for real hard errors + * + * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). + * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. + * + * exception register: + * ds: dstat + * si: sist + * + * SCSI bus lines: + * so: control lines as driven by chip. + * si: control lines as seen by chip. + * sd: scsi data lines as seen by chip. + * + * wide/fastmode: + * sx: sxfer (see the manual) + * s3: scntl3 (see the manual) + * s4: scntl4 (see the manual) + * + * current script command: + * dsp: script address (relative to start of script). + * dbc: first word of script command. + * + * First 24 register of the chip: + * r0..rf + */ +static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat) +{ + struct sym_hcb *np = sym_get_hcb(shost); + u32 dsp; + int script_ofs; + int script_size; + char *script_name; + u_char *script_base; + int i; + + dsp = INL(np, nc_dsp); + + if (dsp > np->scripta_ba && + dsp <= np->scripta_ba + np->scripta_sz) { + script_ofs = dsp - np->scripta_ba; + script_size = np->scripta_sz; + script_base = (u_char *) np->scripta0; + script_name = "scripta"; + } + else if (np->scriptb_ba < dsp && + dsp <= np->scriptb_ba + np->scriptb_sz) { + script_ofs = dsp - np->scriptb_ba; + script_size = np->scriptb_sz; + script_base = (u_char *) np->scriptb0; + script_name = "scriptb"; + } else { + script_ofs = dsp; + script_size = 0; + script_base = NULL; + script_name = "mem"; + } + + printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", + sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, + (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), + (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), + (unsigned)INB(np, nc_scntl3), + (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, + script_name, script_ofs, (unsigned)INL(np, nc_dbc)); + + if (((script_ofs & 3) == 0) && + (unsigned)script_ofs < script_size) { + printf ("%s: script cmd = %08x\n", sym_name(np), + scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); + } + + printf("%s: regdump:", sym_name(np)); + for (i = 0; i < 24; i++) + printf(" %02x", (unsigned)INB_OFF(np, i)); + printf(".\n"); + + /* + * PCI BUS error. + */ + if (dstat & (MDPE|BF)) + sym_log_bus_error(shost); +} + +void sym_dump_registers(struct Scsi_Host *shost) +{ + struct sym_hcb *np = sym_get_hcb(shost); + u_short sist; + u_char dstat; + + sist = INW(np, nc_sist); + dstat = INB(np, nc_dstat); + sym_log_hard_error(shost, sist, dstat); +} + +static struct sym_chip sym_dev_table[] = { + {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, + FE_ERL} + , +#ifdef SYM_DEBUG_GENERIC_SUPPORT + {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, + FE_BOF} + , +#else + {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, + FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} + , +#endif + {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, + FE_BOF|FE_ERL} + , + {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, + FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} + , + {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, + FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} + , + {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, + FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} + , + {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , + {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , + {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , + {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, + FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DIFF|FE_VARCLK} + , +#ifdef SYM_DEBUG_GENERIC_SUPPORT + {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| + FE_RAM|FE_LCKFRQ} + , +#else + {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_LCKFRQ} + , +#endif + {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} + , + {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| + FE_C10} + , + {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, + FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| + FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| + FE_C10|FE_U3EN} + , + {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, + FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| + FE_RAM|FE_IO256|FE_LEDC} +}; + +#define sym_num_devs (ARRAY_SIZE(sym_dev_table)) + +/* + * Look up the chip table. + * + * Return a pointer to the chip entry if found, + * zero otherwise. + */ +struct sym_chip * +sym_lookup_chip_table (u_short device_id, u_char revision) +{ + struct sym_chip *chip; + int i; + + for (i = 0; i < sym_num_devs; i++) { + chip = &sym_dev_table[i]; + if (device_id != chip->device_id) + continue; + if (revision > chip->revision_id) + continue; + return chip; + } + + return NULL; +} + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 +/* + * Lookup the 64 bit DMA segments map. + * This is only used if the direct mapping + * has been unsuccessful. + */ +int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) +{ + int i; + + if (!use_dac(np)) + goto weird; + + /* Look up existing mappings */ + for (i = SYM_DMAP_SIZE-1; i > 0; i--) { + if (h == np->dmap_bah[i]) + return i; + } + /* If direct mapping is free, get it */ + if (!np->dmap_bah[s]) + goto new; + /* Collision -> lookup free mappings */ + for (s = SYM_DMAP_SIZE-1; s > 0; s--) { + if (!np->dmap_bah[s]) + goto new; + } +weird: + panic("sym: ran out of 64 bit DMA segment registers"); + return -1; +new: + np->dmap_bah[s] = h; + np->dmap_dirty = 1; + return s; +} + +/* + * Update IO registers scratch C..R so they will be + * in sync. with queued CCB expectations. + */ +static void sym_update_dmap_regs(struct sym_hcb *np) +{ + int o, i; + + if (!np->dmap_dirty) + return; + o = offsetof(struct sym_reg, nc_scrx[0]); + for (i = 0; i < SYM_DMAP_SIZE; i++) { + OUTL_OFF(np, o, np->dmap_bah[i]); + o += 4; + } + np->dmap_dirty = 0; +} +#endif + +/* Enforce all the fiddly SPI rules and the chip limitations */ +static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, + struct sym_trans *goal) +{ + if (!spi_support_wide(starget)) + goal->width = 0; + + if (!spi_support_sync(starget)) { + goal->iu = 0; + goal->dt = 0; + goal->qas = 0; + goal->offset = 0; + return; + } + + if (spi_support_dt(starget)) { + if (spi_support_dt_only(starget)) + goal->dt = 1; + + if (goal->offset == 0) + goal->dt = 0; + } else { + goal->dt = 0; + } + + /* Some targets fail to properly negotiate DT in SE mode */ + if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) + goal->dt = 0; + + if (goal->dt) { + /* all DT transfers must be wide */ + goal->width = 1; + if (goal->offset > np->maxoffs_dt) + goal->offset = np->maxoffs_dt; + if (goal->period < np->minsync_dt) + goal->period = np->minsync_dt; + if (goal->period > np->maxsync_dt) + goal->period = np->maxsync_dt; + } else { + goal->iu = goal->qas = 0; + if (goal->offset > np->maxoffs) + goal->offset = np->maxoffs; + if (goal->period < np->minsync) + goal->period = np->minsync; + if (goal->period > np->maxsync) + goal->period = np->maxsync; + } +} + +/* + * Prepare the next negotiation message if needed. + * + * Fill in the part of message buffer that contains the + * negotiation and the nego_status field of the CCB. + * Returns the size of the message in bytes. + */ +static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) +{ + struct sym_tcb *tp = &np->target[cp->target]; + struct scsi_target *starget = tp->starget; + struct sym_trans *goal = &tp->tgoal; + int msglen = 0; + int nego; + + sym_check_goals(np, starget, goal); + + /* + * Many devices implement PPR in a buggy way, so only use it if we + * really want to. + */ + if (goal->renego == NS_PPR || (goal->offset && + (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) { + nego = NS_PPR; + } else if (goal->renego == NS_WIDE || goal->width) { + nego = NS_WIDE; + } else if (goal->renego == NS_SYNC || goal->offset) { + nego = NS_SYNC; + } else { + goal->check_nego = 0; + nego = 0; + } + + switch (nego) { + case NS_SYNC: + msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, + goal->offset); + break; + case NS_WIDE: + msglen += spi_populate_width_msg(msgptr + msglen, goal->width); + break; + case NS_PPR: + msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, + goal->offset, goal->width, + (goal->iu ? PPR_OPT_IU : 0) | + (goal->dt ? PPR_OPT_DT : 0) | + (goal->qas ? PPR_OPT_QAS : 0)); + break; + } + + cp->nego_status = nego; + + if (nego) { + tp->nego_cp = cp; /* Keep track a nego will be performed */ + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, cp->target, + nego == NS_SYNC ? "sync msgout" : + nego == NS_WIDE ? "wide msgout" : + "ppr msgout", msgptr); + } + } + + return msglen; +} + +/* + * Insert a job into the start queue. + */ +void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) +{ + u_short qidx; + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If the previously queued CCB is not yet done, + * set the IARB hint. The SCRIPTS will go with IARB + * for this job when starting the previous one. + * We leave devices a chance to win arbitration by + * not using more than 'iarb_max' consecutive + * immediate arbitrations. + */ + if (np->last_cp && np->iarb_count < np->iarb_max) { + np->last_cp->host_flags |= HF_HINT_IARB; + ++np->iarb_count; + } + else + np->iarb_count = 0; + np->last_cp = cp; +#endif + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * Make SCRIPTS aware of the 64 bit DMA + * segment registers not being up-to-date. + */ + if (np->dmap_dirty) + cp->host_xflags |= HX_DMAP_DIRTY; +#endif + + /* + * Insert first the idle task and then our job. + * The MBs should ensure proper ordering. + */ + qidx = np->squeueput + 2; + if (qidx >= MAX_QUEUE*2) qidx = 0; + + np->squeue [qidx] = cpu_to_scr(np->idletask_ba); + MEMORY_WRITE_BARRIER(); + np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); + + np->squeueput = qidx; + + if (DEBUG_FLAGS & DEBUG_QUEUE) + scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n", + np->squeueput); + + /* + * Script processor may be waiting for reselect. + * Wake it up. + */ + MEMORY_WRITE_BARRIER(); + OUTB(np, nc_istat, SIGP|np->istat_sem); +} + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING +/* + * Start next ready-to-start CCBs. + */ +void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + + /* + * Paranoia, as usual. :-) + */ + assert(!lp->started_tags || !lp->started_no_tag); + + /* + * Try to start as many commands as asked by caller. + * Prevent from having both tagged and untagged + * commands queued to the device at the same time. + */ + while (maxn--) { + qp = sym_remque_head(&lp->waiting_ccbq); + if (!qp) + break; + cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); + if (cp->tag != NO_TAG) { + if (lp->started_no_tag || + lp->started_tags >= lp->started_max) { + sym_insque_head(qp, &lp->waiting_ccbq); + break; + } + lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_tag)); + ++lp->started_tags; + } else { + if (lp->started_no_tag || lp->started_tags) { + sym_insque_head(qp, &lp->waiting_ccbq); + break; + } + lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); + ++lp->started_no_tag; + } + cp->started = 1; + sym_insque_tail(qp, &lp->started_ccbq); + sym_put_start_queue(np, cp); + } +} +#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ + +/* + * The chip may have completed jobs. Look at the DONE QUEUE. + * + * On paper, memory read barriers may be needed here to + * prevent out of order LOADs by the CPU from having + * prefetched stale data prior to DMA having occurred. + */ +static int sym_wakeup_done (struct sym_hcb *np) +{ + struct sym_ccb *cp; + int i, n; + u32 dsa; + + n = 0; + i = np->dqueueget; + + /* MEMORY_READ_BARRIER(); */ + while (1) { + dsa = scr_to_cpu(np->dqueue[i]); + if (!dsa) + break; + np->dqueue[i] = 0; + if ((i = i+2) >= MAX_QUEUE*2) + i = 0; + + cp = sym_ccb_from_dsa(np, dsa); + if (cp) { + MEMORY_READ_BARRIER(); + sym_complete_ok (np, cp); + ++n; + } + else + printf ("%s: bad DSA (%x) in done queue.\n", + sym_name(np), (u_int) dsa); + } + np->dqueueget = i; + + return n; +} + +/* + * Complete all CCBs queued to the COMP queue. + * + * These CCBs are assumed: + * - Not to be referenced either by devices or + * SCRIPTS-related queues and datas. + * - To have to be completed with an error condition + * or requeued. + * + * The device queue freeze count is incremented + * for each CCB that does not prevent this. + * This function is called when all CCBs involved + * in error handling/recovery have been reaped. + */ +static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + + while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { + struct scsi_cmnd *cmd; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + /* Leave quiet CCBs waiting for resources */ + if (cp->host_status == HS_WAIT) + continue; + cmd = cp->cmd; + if (cam_status) + sym_set_cam_status(cmd, cam_status); +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { + struct sym_tcb *tp = &np->target[cp->target]; + struct sym_lcb *lp = sym_lp(tp, cp->lun); + if (lp) { + sym_remque(&cp->link2_ccbq); + sym_insque_tail(&cp->link2_ccbq, + &lp->waiting_ccbq); + if (cp->started) { + if (cp->tag != NO_TAG) + --lp->started_tags; + else + --lp->started_no_tag; + } + } + cp->started = 0; + continue; + } +#endif + sym_free_ccb(np, cp); + sym_xpt_done(np, cmd); + } +} + +/* + * Complete all active CCBs with error. + * Used on CHIP/SCSI RESET. + */ +static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) +{ + /* + * Move all active CCBs to the COMP queue + * and flush this queue. + */ + sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); + sym_que_init(&np->busy_ccbq); + sym_flush_comp_queue(np, cam_status); +} + +/* + * Start chip. + * + * 'reason' means: + * 0: initialisation. + * 1: SCSI BUS RESET delivered or received. + * 2: SCSI BUS MODE changed. + */ +void sym_start_up(struct Scsi_Host *shost, int reason) +{ + struct sym_data *sym_data = shost_priv(shost); + struct pci_dev *pdev = sym_data->pdev; + struct sym_hcb *np = sym_data->ncb; + int i; + u32 phys; + + /* + * Reset chip if asked, otherwise just clear fifos. + */ + if (reason == 1) + sym_soft_reset(np); + else { + OUTB(np, nc_stest3, TE|CSF); + OUTONB(np, nc_ctest3, CLF); + } + + /* + * Clear Start Queue + */ + phys = np->squeue_ba; + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->squeue[i] = cpu_to_scr(np->idletask_ba); + np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->squeueput = 0; + + /* + * Clear Done Queue + */ + phys = np->dqueue_ba; + for (i = 0; i < MAX_QUEUE*2; i += 2) { + np->dqueue[i] = 0; + np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); + } + np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); + + /* + * Start at first entry. + */ + np->dqueueget = 0; + + /* + * Install patches in scripts. + * This also let point to first position the start + * and done queue pointers used from SCRIPTS. + */ + np->fw_patch(shost); + + /* + * Wakeup all pending jobs. + */ + sym_flush_busy_queue(np, DID_RESET); + + /* + * Init chip. + */ + OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ + INB(np, nc_mbox1); + udelay(2000); /* The 895 needs time for the bus mode to settle */ + + OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); + /* full arb., ena parity, par->ATN */ + OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ + + sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ + + OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ + OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */ + OUTB(np, nc_istat , SIGP ); /* Signal Process */ + OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ + OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ + + OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ + OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ + OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ + + /* Extended Sreq/Sack filtering not supported on the C10 */ + if (np->features & FE_C10) + OUTB(np, nc_stest2, np->rv_stest2); + else + OUTB(np, nc_stest2, EXT|np->rv_stest2); + + OUTB(np, nc_stest3, TE); /* TolerANT enable */ + OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ + + /* + * For now, disable AIP generation on C1010-66. + */ + if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66) + OUTB(np, nc_aipcntl1, DISAIP); + + /* + * C10101 rev. 0 errata. + * Errant SGE's when in narrow. Write bits 4 & 5 of + * STEST1 register to disable SGE. We probably should do + * that from SCRIPTS for each selection/reselection, but + * I just don't want. :) + */ + if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && + pdev->revision < 1) + OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); + + /* + * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. + * Disable overlapped arbitration for some dual function devices, + * regardless revision id (kind of post-chip-design feature. ;-)) + */ + if (pdev->device == PCI_DEVICE_ID_NCR_53C875) + OUTB(np, nc_ctest0, (1<<5)); + else if (pdev->device == PCI_DEVICE_ID_NCR_53C896) + np->rv_ccntl0 |= DPR; + + /* + * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing + * and/or hardware phase mismatch, since only such chips + * seem to support those IO registers. + */ + if (np->features & (FE_DAC|FE_NOPM)) { + OUTB(np, nc_ccntl0, np->rv_ccntl0); + OUTB(np, nc_ccntl1, np->rv_ccntl1); + } + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * Set up scratch C and DRS IO registers to map the 32 bit + * DMA address range our data structures are located in. + */ + if (use_dac(np)) { + np->dmap_bah[0] = 0; /* ??? */ + OUTL(np, nc_scrx[0], np->dmap_bah[0]); + OUTL(np, nc_drs, np->dmap_bah[0]); + } +#endif + + /* + * If phase mismatch handled by scripts (895A/896/1010), + * set PM jump addresses. + */ + if (np->features & FE_NOPM) { + OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); + OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); + } + + /* + * Enable GPIO0 pin for writing if LED support from SCRIPTS. + * Also set GPIO5 and clear GPIO6 if hardware LED control. + */ + if (np->features & FE_LED0) + OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); + else if (np->features & FE_LEDC) + OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); + + /* + * enable ints + */ + OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); + OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); + + /* + * For 895/6 enable SBMC interrupt and save current SCSI bus mode. + * Try to eat the spurious SBMC interrupt that may occur when + * we reset the chip but not the SCSI BUS (at initialization). + */ + if (np->features & (FE_ULTRA2|FE_ULTRA3)) { + OUTONW(np, nc_sien, SBMC); + if (reason == 0) { + INB(np, nc_mbox1); + mdelay(100); + INW(np, nc_sist); + } + np->scsi_mode = INB(np, nc_stest4) & SMODE; + } + + /* + * Fill in target structure. + * Reinitialize usrsync. + * Reinitialize usrwide. + * Prepare sync negotiation according to actual SCSI bus mode. + */ + for (i=0;i<SYM_CONF_MAX_TARGET;i++) { + struct sym_tcb *tp = &np->target[i]; + + tp->to_reset = 0; + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + if (tp->lun0p) + tp->lun0p->to_clear = 0; + if (tp->lunmp) { + int ln; + + for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++) + if (tp->lunmp[ln]) + tp->lunmp[ln]->to_clear = 0; + } + } + + /* + * Download SCSI SCRIPTS to on-chip RAM if present, + * and start script processor. + * We do the download preferently from the CPU. + * For platforms that may not support PCI memory mapping, + * we use simple SCRIPTS that performs MEMORY MOVEs. + */ + phys = SCRIPTA_BA(np, init); + if (np->ram_ba) { + if (sym_verbose >= 2) + printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); + memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); + if (np->features & FE_RAM8K) { + memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); + phys = scr_to_cpu(np->scr_ram_seg); + OUTL(np, nc_mmws, phys); + OUTL(np, nc_mmrs, phys); + OUTL(np, nc_sfs, phys); + phys = SCRIPTB_BA(np, start64); + } + } + + np->istat_sem = 0; + + OUTL(np, nc_dsa, np->hcb_ba); + OUTL_DSP(np, phys); + + /* + * Notify the XPT about the RESET condition. + */ + if (reason != 0) + sym_xpt_async_bus_reset(np); +} + +/* + * Switch trans mode for current job and its target. + */ +static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + SYM_QUEHEAD *qp; + u_char sval, wval, uval; + struct sym_tcb *tp = &np->target[target]; + + assert(target == (INB(np, nc_sdid) & 0x0f)); + + sval = tp->head.sval; + wval = tp->head.wval; + uval = tp->head.uval; + +#if 0 + printf("XXXX sval=%x wval=%x uval=%x (%x)\n", + sval, wval, uval, np->rv_scntl3); +#endif + /* + * Set the offset. + */ + if (!(np->features & FE_C10)) + sval = (sval & ~0x1f) | ofs; + else + sval = (sval & ~0x3f) | ofs; + + /* + * Set the sync divisor and extra clock factor. + */ + if (ofs != 0) { + wval = (wval & ~0x70) | ((div+1) << 4); + if (!(np->features & FE_C10)) + sval = (sval & ~0xe0) | (fak << 5); + else { + uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); + if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); + if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); + } + } + + /* + * Set the bus width. + */ + wval = wval & ~EWS; + if (wide != 0) + wval |= EWS; + + /* + * Set misc. ultra enable bits. + */ + if (np->features & FE_C10) { + uval = uval & ~(U3EN|AIPCKEN); + if (opts) { + assert(np->features & FE_U3EN); + uval |= U3EN; + } + } else { + wval = wval & ~ULTRA; + if (per <= 12) wval |= ULTRA; + } + + /* + * Stop there if sync parameters are unchanged. + */ + if (tp->head.sval == sval && + tp->head.wval == wval && + tp->head.uval == uval) + return; + tp->head.sval = sval; + tp->head.wval = wval; + tp->head.uval = uval; + + /* + * Disable extended Sreq/Sack filtering if per < 50. + * Not supported on the C1010. + */ + if (per < 50 && !(np->features & FE_C10)) + OUTOFFB(np, nc_stest2, EXT); + + /* + * set actual value and sync_status + */ + OUTB(np, nc_sxfer, tp->head.sval); + OUTB(np, nc_scntl3, tp->head.wval); + + if (np->features & FE_C10) { + OUTB(np, nc_scntl4, tp->head.uval); + } + + /* + * patch ALL busy ccbs of this target. + */ + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + struct sym_ccb *cp; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->target != target) + continue; + cp->phys.select.sel_scntl3 = tp->head.wval; + cp->phys.select.sel_sxfer = tp->head.sval; + if (np->features & FE_C10) { + cp->phys.select.sel_scntl4 = tp->head.uval; + } + } +} + +static void sym_announce_transfer_rate(struct sym_tcb *tp) +{ + struct scsi_target *starget = tp->starget; + + if (tp->tprint.period != spi_period(starget) || + tp->tprint.offset != spi_offset(starget) || + tp->tprint.width != spi_width(starget) || + tp->tprint.iu != spi_iu(starget) || + tp->tprint.dt != spi_dt(starget) || + tp->tprint.qas != spi_qas(starget) || + !tp->tprint.check_nego) { + tp->tprint.period = spi_period(starget); + tp->tprint.offset = spi_offset(starget); + tp->tprint.width = spi_width(starget); + tp->tprint.iu = spi_iu(starget); + tp->tprint.dt = spi_dt(starget); + tp->tprint.qas = spi_qas(starget); + tp->tprint.check_nego = 1; + + spi_display_xfer_agreement(starget); + } +} + +/* + * We received a WDTR. + * Let everything be aware of the changes. + */ +static void sym_setwide(struct sym_hcb *np, int target, u_char wide) +{ + struct sym_tcb *tp = &np->target[target]; + struct scsi_target *starget = tp->starget; + + sym_settrans(np, target, 0, 0, 0, wide, 0, 0); + + if (wide) + tp->tgoal.renego = NS_WIDE; + else + tp->tgoal.renego = 0; + tp->tgoal.check_nego = 0; + tp->tgoal.width = wide; + spi_offset(starget) = 0; + spi_period(starget) = 0; + spi_width(starget) = wide; + spi_iu(starget) = 0; + spi_dt(starget) = 0; + spi_qas(starget) = 0; + + if (sym_verbose >= 3) + sym_announce_transfer_rate(tp); +} + +/* + * We received a SDTR. + * Let everything be aware of the changes. + */ +static void +sym_setsync(struct sym_hcb *np, int target, + u_char ofs, u_char per, u_char div, u_char fak) +{ + struct sym_tcb *tp = &np->target[target]; + struct scsi_target *starget = tp->starget; + u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; + + sym_settrans(np, target, 0, ofs, per, wide, div, fak); + + if (wide) + tp->tgoal.renego = NS_WIDE; + else if (ofs) + tp->tgoal.renego = NS_SYNC; + else + tp->tgoal.renego = 0; + spi_period(starget) = per; + spi_offset(starget) = ofs; + spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; + + if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { + tp->tgoal.period = per; + tp->tgoal.offset = ofs; + tp->tgoal.check_nego = 0; + } + + sym_announce_transfer_rate(tp); +} + +/* + * We received a PPR. + * Let everything be aware of the changes. + */ +static void +sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, + u_char per, u_char wide, u_char div, u_char fak) +{ + struct sym_tcb *tp = &np->target[target]; + struct scsi_target *starget = tp->starget; + + sym_settrans(np, target, opts, ofs, per, wide, div, fak); + + if (wide || ofs) + tp->tgoal.renego = NS_PPR; + else + tp->tgoal.renego = 0; + spi_width(starget) = tp->tgoal.width = wide; + spi_period(starget) = tp->tgoal.period = per; + spi_offset(starget) = tp->tgoal.offset = ofs; + spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); + spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); + spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); + tp->tgoal.check_nego = 0; + + sym_announce_transfer_rate(tp); +} + +/* + * generic recovery from scsi interrupt + * + * The doc says that when the chip gets an SCSI interrupt, + * it tries to stop in an orderly fashion, by completing + * an instruction fetch that had started or by flushing + * the DMA fifo for a write to memory that was executing. + * Such a fashion is not enough to know if the instruction + * that was just before the current DSP value has been + * executed or not. + * + * There are some small SCRIPTS sections that deal with + * the start queue and the done queue that may break any + * assomption from the C code if we are interrupted + * inside, so we reset if this happens. Btw, since these + * SCRIPTS sections are executed while the SCRIPTS hasn't + * started SCSI operations, it is very unlikely to happen. + * + * All the driver data structures are supposed to be + * allocated from the same 4 GB memory window, so there + * is a 1 to 1 relationship between DSA and driver data + * structures. Since we are careful :) to invalidate the + * DSA when we complete a command or when the SCRIPTS + * pushes a DSA into a queue, we can trust it when it + * points to a CCB. + */ +static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) +{ + u32 dsp = INL(np, nc_dsp); + u32 dsa = INL(np, nc_dsa); + struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); + + /* + * If we haven't been interrupted inside the SCRIPTS + * critical pathes, we can safely restart the SCRIPTS + * and trust the DSA value if it matches a CCB. + */ + if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && + dsp < SCRIPTA_BA(np, getjob_end) + 1)) && + (!(dsp > SCRIPTA_BA(np, ungetjob) && + dsp < SCRIPTA_BA(np, reselect) + 1)) && + (!(dsp > SCRIPTB_BA(np, sel_for_abort) && + dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && + (!(dsp > SCRIPTA_BA(np, done) && + dsp < SCRIPTA_BA(np, done_end) + 1))) { + OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ + /* + * If we have a CCB, let the SCRIPTS call us back for + * the handling of the error with SCRATCHA filled with + * STARTPOS. This way, we will be able to freeze the + * device queue and requeue awaiting IOs. + */ + if (cp) { + cp->host_status = hsts; + OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); + } + /* + * Otherwise just restart the SCRIPTS. + */ + else { + OUTL(np, nc_dsa, 0xffffff); + OUTL_DSP(np, SCRIPTA_BA(np, start)); + } + } + else + goto reset_all; + + return; + +reset_all: + sym_start_reset(np); +} + +/* + * chip exception handler for selection timeout + */ +static void sym_int_sto (struct sym_hcb *np) +{ + u32 dsp = INL(np, nc_dsp); + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); + + if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) + sym_recover_scsi_int(np, HS_SEL_TIMEOUT); + else + sym_start_reset(np); +} + +/* + * chip exception handler for unexpected disconnect + */ +static void sym_int_udc (struct sym_hcb *np) +{ + printf ("%s: unexpected disconnect\n", sym_name(np)); + sym_recover_scsi_int(np, HS_UNEXPECTED); +} + +/* + * chip exception handler for SCSI bus mode change + * + * spi2-r12 11.2.3 says a transceiver mode change must + * generate a reset event and a device that detects a reset + * event shall initiate a hard reset. It says also that a + * device that detects a mode change shall set data transfer + * mode to eight bit asynchronous, etc... + * So, just reinitializing all except chip should be enough. + */ +static void sym_int_sbmc(struct Scsi_Host *shost) +{ + struct sym_hcb *np = sym_get_hcb(shost); + u_char scsi_mode = INB(np, nc_stest4) & SMODE; + + /* + * Notify user. + */ + printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), + sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); + + /* + * Should suspend command processing for a few seconds and + * reinitialize all except the chip. + */ + sym_start_up(shost, 2); +} + +/* + * chip exception handler for SCSI parity error. + * + * When the chip detects a SCSI parity error and is + * currently executing a (CH)MOV instruction, it does + * not interrupt immediately, but tries to finish the + * transfer of the current scatter entry before + * interrupting. The following situations may occur: + * + * - The complete scatter entry has been transferred + * without the device having changed phase. + * The chip will then interrupt with the DSP pointing + * to the instruction that follows the MOV. + * + * - A phase mismatch occurs before the MOV finished + * and phase errors are to be handled by the C code. + * The chip will then interrupt with both PAR and MA + * conditions set. + * + * - A phase mismatch occurs before the MOV finished and + * phase errors are to be handled by SCRIPTS. + * The chip will load the DSP with the phase mismatch + * JUMP address and interrupt the host processor. + */ +static void sym_int_par (struct sym_hcb *np, u_short sist) +{ + u_char hsts = INB(np, HS_PRT); + u32 dsp = INL(np, nc_dsp); + u32 dbc = INL(np, nc_dbc); + u32 dsa = INL(np, nc_dsa); + u_char sbcl = INB(np, nc_sbcl); + u_char cmd = dbc >> 24; + int phase = cmd & 7; + struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); + + if (printk_ratelimit()) + printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", + sym_name(np), hsts, dbc, sbcl); + + /* + * Check that the chip is connected to the SCSI BUS. + */ + if (!(INB(np, nc_scntl1) & ISCON)) { + sym_recover_scsi_int(np, HS_UNEXPECTED); + return; + } + + /* + * If the nexus is not clearly identified, reset the bus. + * We will try to do better later. + */ + if (!cp) + goto reset_all; + + /* + * Check instruction was a MOV, direction was INPUT and + * ATN is asserted. + */ + if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) + goto reset_all; + + /* + * Keep track of the parity error. + */ + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_PARITY_ERR; + + /* + * Prepare the message to send to the device. + */ + np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; + + /* + * If the old phase was DATA IN phase, we have to deal with + * the 3 situations described above. + * For other input phases (MSG IN and STATUS), the device + * must resend the whole thing that failed parity checking + * or signal error. So, jumping to dispatcher should be OK. + */ + if (phase == 1 || phase == 5) { + /* Phase mismatch handled by SCRIPTS */ + if (dsp == SCRIPTB_BA(np, pm_handle)) + OUTL_DSP(np, dsp); + /* Phase mismatch handled by the C code */ + else if (sist & MA) + sym_int_ma (np); + /* No phase mismatch occurred */ + else { + sym_set_script_dp (np, cp, dsp); + OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); + } + } + else if (phase == 7) /* We definitely cannot handle parity errors */ +#if 1 /* in message-in phase due to the relection */ + goto reset_all; /* path and various message anticipations. */ +#else + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); +#endif + else + OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); + return; + +reset_all: + sym_start_reset(np); + return; +} + +/* + * chip exception handler for phase errors. + * + * We have to construct a new transfer descriptor, + * to transfer the rest of the current block. + */ +static void sym_int_ma (struct sym_hcb *np) +{ + u32 dbc; + u32 rest; + u32 dsp; + u32 dsa; + u32 nxtdsp; + u32 *vdsp; + u32 oadr, olen; + u32 *tblp; + u32 newcmd; + u_int delta; + u_char cmd; + u_char hflags, hflags0; + struct sym_pmc *pm; + struct sym_ccb *cp; + + dsp = INL(np, nc_dsp); + dbc = INL(np, nc_dbc); + dsa = INL(np, nc_dsa); + + cmd = dbc >> 24; + rest = dbc & 0xffffff; + delta = 0; + + /* + * locate matching cp if any. + */ + cp = sym_ccb_from_dsa(np, dsa); + + /* + * Donnot take into account dma fifo and various buffers in + * INPUT phase since the chip flushes everything before + * raising the MA interrupt for interrupted INPUT phases. + * For DATA IN phase, we will check for the SWIDE later. + */ + if ((cmd & 7) != 1 && (cmd & 7) != 5) { + u_char ss0, ss2; + + if (np->features & FE_DFBC) + delta = INW(np, nc_dfbc); + else { + u32 dfifo; + + /* + * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. + */ + dfifo = INL(np, nc_dfifo); + + /* + * Calculate remaining bytes in DMA fifo. + * (CTEST5 = dfifo >> 16) + */ + if (dfifo & (DFS << 16)) + delta = ((((dfifo >> 8) & 0x300) | + (dfifo & 0xff)) - rest) & 0x3ff; + else + delta = ((dfifo & 0xff) - rest) & 0x7f; + } + + /* + * The data in the dma fifo has not been transferred to + * the target -> add the amount to the rest + * and clear the data. + * Check the sstat2 register in case of wide transfer. + */ + rest += delta; + ss0 = INB(np, nc_sstat0); + if (ss0 & OLF) rest++; + if (!(np->features & FE_C10)) + if (ss0 & ORF) rest++; + if (cp && (cp->phys.select.sel_scntl3 & EWS)) { + ss2 = INB(np, nc_sstat2); + if (ss2 & OLF1) rest++; + if (!(np->features & FE_C10)) + if (ss2 & ORF1) rest++; + } + + /* + * Clear fifos. + */ + OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ + OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ + } + + /* + * log the information + */ + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) + printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, + (unsigned) rest, (unsigned) delta); + + /* + * try to find the interrupted script command, + * and the address at which to continue. + */ + vdsp = NULL; + nxtdsp = 0; + if (dsp > np->scripta_ba && + dsp <= np->scripta_ba + np->scripta_sz) { + vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); + nxtdsp = dsp; + } + else if (dsp > np->scriptb_ba && + dsp <= np->scriptb_ba + np->scriptb_sz) { + vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); + nxtdsp = dsp; + } + + /* + * log the information + */ + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", + cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); + } + + if (!vdsp) { + printf ("%s: interrupted SCRIPT address not found.\n", + sym_name (np)); + goto reset_all; + } + + if (!cp) { + printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", + sym_name (np)); + goto reset_all; + } + + /* + * get old startaddress and old length. + */ + oadr = scr_to_cpu(vdsp[1]); + + if (cmd & 0x10) { /* Table indirect */ + tblp = (u32 *) ((char*) &cp->phys + oadr); + olen = scr_to_cpu(tblp[0]); + oadr = scr_to_cpu(tblp[1]); + } else { + tblp = (u32 *) 0; + olen = scr_to_cpu(vdsp[0]) & 0xffffff; + } + + if (DEBUG_FLAGS & DEBUG_PHASE) { + printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", + (unsigned) (scr_to_cpu(vdsp[0]) >> 24), + tblp, + (unsigned) olen, + (unsigned) oadr); + } + + /* + * check cmd against assumed interrupted script command. + * If dt data phase, the MOVE instruction hasn't bit 4 of + * the phase. + */ + if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { + sym_print_addr(cp->cmd, + "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", + cmd, scr_to_cpu(vdsp[0]) >> 24); + + goto reset_all; + } + + /* + * if old phase not dataphase, leave here. + */ + if (cmd & 2) { + sym_print_addr(cp->cmd, + "phase change %x-%x %d@%08x resid=%d.\n", + cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, + (unsigned)oadr, (unsigned)rest); + goto unexpected_phase; + } + + /* + * Choose the correct PM save area. + * + * Look at the PM_SAVE SCRIPT if you want to understand + * this stuff. The equivalent code is implemented in + * SCRIPTS for the 895A, 896 and 1010 that are able to + * handle PM from the SCRIPTS processor. + */ + hflags0 = INB(np, HF_PRT); + hflags = hflags0; + + if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { + if (hflags & HF_IN_PM0) + nxtdsp = scr_to_cpu(cp->phys.pm0.ret); + else if (hflags & HF_IN_PM1) + nxtdsp = scr_to_cpu(cp->phys.pm1.ret); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + } + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + newcmd = SCRIPTA_BA(np, pm0_data); + } + else { + pm = &cp->phys.pm1; + newcmd = SCRIPTA_BA(np, pm1_data); + } + + hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); + if (hflags != hflags0) + OUTB(np, HF_PRT, hflags); + + /* + * fillin the phase mismatch context + */ + pm->sg.addr = cpu_to_scr(oadr + olen - rest); + pm->sg.size = cpu_to_scr(rest); + pm->ret = cpu_to_scr(nxtdsp); + + /* + * If we have a SWIDE, + * - prepare the address to write the SWIDE from SCRIPTS, + * - compute the SCRIPTS address to restart from, + * - move current data pointer context by one byte. + */ + nxtdsp = SCRIPTA_BA(np, dispatch); + if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && + (INB(np, nc_scntl2) & WSR)) { + u32 tmp; + + /* + * Set up the table indirect for the MOVE + * of the residual byte and adjust the data + * pointer context. + */ + tmp = scr_to_cpu(pm->sg.addr); + cp->phys.wresid.addr = cpu_to_scr(tmp); + pm->sg.addr = cpu_to_scr(tmp + 1); + tmp = scr_to_cpu(pm->sg.size); + cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); + pm->sg.size = cpu_to_scr(tmp - 1); + + /* + * If only the residual byte is to be moved, + * no PM context is needed. + */ + if ((tmp&0xffffff) == 1) + newcmd = pm->ret; + + /* + * Prepare the address of SCRIPTS that will + * move the residual byte to memory. + */ + nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); + } + + if (DEBUG_FLAGS & DEBUG_PHASE) { + sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", + hflags0, hflags, newcmd, + (unsigned)scr_to_cpu(pm->sg.addr), + (unsigned)scr_to_cpu(pm->sg.size), + (unsigned)scr_to_cpu(pm->ret)); + } + + /* + * Restart the SCRIPTS processor. + */ + sym_set_script_dp (np, cp, newcmd); + OUTL_DSP(np, nxtdsp); + return; + + /* + * Unexpected phase changes that occurs when the current phase + * is not a DATA IN or DATA OUT phase are due to error conditions. + * Such event may only happen when the SCRIPTS is using a + * multibyte SCSI MOVE. + * + * Phase change Some possible cause + * + * COMMAND --> MSG IN SCSI parity error detected by target. + * COMMAND --> STATUS Bad command or refused by target. + * MSG OUT --> MSG IN Message rejected by target. + * MSG OUT --> COMMAND Bogus target that discards extended + * negotiation messages. + * + * The code below does not care of the new phase and so + * trusts the target. Why to annoy it ? + * If the interrupted phase is COMMAND phase, we restart at + * dispatcher. + * If a target does not get all the messages after selection, + * the code assumes blindly that the target discards extended + * messages and clears the negotiation status. + * If the target does not want all our response to negotiation, + * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids + * bloat for such a should_not_happen situation). + * In all other situation, we reset the BUS. + * Are these assumptions reasonable ? (Wait and see ...) + */ +unexpected_phase: + dsp -= 8; + nxtdsp = 0; + + switch (cmd & 7) { + case 2: /* COMMAND phase */ + nxtdsp = SCRIPTA_BA(np, dispatch); + break; +#if 0 + case 3: /* STATUS phase */ + nxtdsp = SCRIPTA_BA(np, dispatch); + break; +#endif + case 6: /* MSG OUT phase */ + /* + * If the device may want to use untagged when we want + * tagged, we prepare an IDENTIFY without disc. granted, + * since we will not be able to handle reselect. + * Otherwise, we just don't care. + */ + if (dsp == SCRIPTA_BA(np, send_ident)) { + if (cp->tag != NO_TAG && olen - rest <= 3) { + cp->host_status = HS_BUSY; + np->msgout[0] = IDENTIFY(0, cp->lun); + nxtdsp = SCRIPTB_BA(np, ident_break_atn); + } + else + nxtdsp = SCRIPTB_BA(np, ident_break); + } + else if (dsp == SCRIPTB_BA(np, send_wdtr) || + dsp == SCRIPTB_BA(np, send_sdtr) || + dsp == SCRIPTB_BA(np, send_ppr)) { + nxtdsp = SCRIPTB_BA(np, nego_bad_phase); + if (dsp == SCRIPTB_BA(np, send_ppr)) { + struct scsi_device *dev = cp->cmd->device; + dev->ppr = 0; + } + } + break; +#if 0 + case 7: /* MSG IN phase */ + nxtdsp = SCRIPTA_BA(np, clrack); + break; +#endif + } + + if (nxtdsp) { + OUTL_DSP(np, nxtdsp); + return; + } + +reset_all: + sym_start_reset(np); +} + +/* + * chip interrupt handler + * + * In normal situations, interrupt conditions occur one at + * a time. But when something bad happens on the SCSI BUS, + * the chip may raise several interrupt flags before + * stopping and interrupting the CPU. The additionnal + * interrupt flags are stacked in some extra registers + * after the SIP and/or DIP flag has been raised in the + * ISTAT. After the CPU has read the interrupt condition + * flag from SIST or DSTAT, the chip unstacks the other + * interrupt flags and sets the corresponding bits in + * SIST or DSTAT. Since the chip starts stacking once the + * SIP or DIP flag is set, there is a small window of time + * where the stacking does not occur. + * + * Typically, multiple interrupt conditions may happen in + * the following situations: + * + * - SCSI parity error + Phase mismatch (PAR|MA) + * When an parity error is detected in input phase + * and the device switches to msg-in phase inside a + * block MOV. + * - SCSI parity error + Unexpected disconnect (PAR|UDC) + * When a stupid device does not want to handle the + * recovery of an SCSI parity error. + * - Some combinations of STO, PAR, UDC, ... + * When using non compliant SCSI stuff, when user is + * doing non compliant hot tampering on the BUS, when + * something really bad happens to a device, etc ... + * + * The heuristic suggested by SYMBIOS to handle + * multiple interrupts is to try unstacking all + * interrupts conditions and to handle them on some + * priority based on error severity. + * This will work when the unstacking has been + * successful, but we cannot be 100 % sure of that, + * since the CPU may have been faster to unstack than + * the chip is able to stack. Hmmm ... But it seems that + * such a situation is very unlikely to happen. + * + * If this happen, for example STO caught by the CPU + * then UDC happenning before the CPU have restarted + * the SCRIPTS, the driver may wrongly complete the + * same command on UDC, since the SCRIPTS didn't restart + * and the DSA still points to the same command. + * We avoid this situation by setting the DSA to an + * invalid value when the CCB is completed and before + * restarting the SCRIPTS. + * + * Another issue is that we need some section of our + * recovery procedures to be somehow uninterruptible but + * the SCRIPTS processor does not provides such a + * feature. For this reason, we handle recovery preferently + * from the C code and check against some SCRIPTS critical + * sections from the C code. + * + * Hopefully, the interrupt handling of the driver is now + * able to resist to weird BUS error conditions, but donnot + * ask me for any guarantee that it will never fail. :-) + * Use at your own decision and risk. + */ + +irqreturn_t sym_interrupt(struct Scsi_Host *shost) +{ + struct sym_data *sym_data = shost_priv(shost); + struct sym_hcb *np = sym_data->ncb; + struct pci_dev *pdev = sym_data->pdev; + u_char istat, istatc; + u_char dstat; + u_short sist; + + /* + * interrupt on the fly ? + * (SCRIPTS may still be running) + * + * A `dummy read' is needed to ensure that the + * clear of the INTF flag reaches the device + * and that posted writes are flushed to memory + * before the scanning of the DONE queue. + * Note that SCRIPTS also (dummy) read to memory + * prior to deliver the INTF interrupt condition. + */ + istat = INB(np, nc_istat); + if (istat & INTF) { + OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); + istat |= INB(np, nc_istat); /* DUMMY READ */ + if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); + sym_wakeup_done(np); + } + + if (!(istat & (SIP|DIP))) + return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE; + +#if 0 /* We should never get this one */ + if (istat & CABRT) + OUTB(np, nc_istat, CABRT); +#endif + + /* + * PAR and MA interrupts may occur at the same time, + * and we need to know of both in order to handle + * this situation properly. We try to unstack SCSI + * interrupts for that reason. BTW, I dislike a LOT + * such a loop inside the interrupt routine. + * Even if DMA interrupt stacking is very unlikely to + * happen, we also try unstacking these ones, since + * this has no performance impact. + */ + sist = 0; + dstat = 0; + istatc = istat; + do { + if (istatc & SIP) + sist |= INW(np, nc_sist); + if (istatc & DIP) + dstat |= INB(np, nc_dstat); + istatc = INB(np, nc_istat); + istat |= istatc; + + /* Prevent deadlock waiting on a condition that may + * never clear. */ + if (unlikely(sist == 0xffff && dstat == 0xff)) { + if (pci_channel_offline(pdev)) + return IRQ_NONE; + } + } while (istatc & (SIP|DIP)); + + if (DEBUG_FLAGS & DEBUG_TINY) + printf ("<%d|%x:%x|%x:%x>", + (int)INB(np, nc_scr0), + dstat,sist, + (unsigned)INL(np, nc_dsp), + (unsigned)INL(np, nc_dbc)); + /* + * On paper, a memory read barrier may be needed here to + * prevent out of order LOADs by the CPU from having + * prefetched stale data prior to DMA having occurred. + * And since we are paranoid ... :) + */ + MEMORY_READ_BARRIER(); + + /* + * First, interrupts we want to service cleanly. + * + * Phase mismatch (MA) is the most frequent interrupt + * for chip earlier than the 896 and so we have to service + * it as quickly as possible. + * A SCSI parity error (PAR) may be combined with a phase + * mismatch condition (MA). + * Programmed interrupts (SIR) are used to call the C code + * from SCRIPTS. + * The single step interrupt (SSI) is not used in this + * driver. + */ + if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & PAR) sym_int_par (np, sist); + else if (sist & MA) sym_int_ma (np); + else if (dstat & SIR) sym_int_sir(np); + else if (dstat & SSI) OUTONB_STD(); + else goto unknown_int; + return IRQ_HANDLED; + } + + /* + * Now, interrupts that donnot happen in normal + * situations and that we may need to recover from. + * + * On SCSI RESET (RST), we reset everything. + * On SCSI BUS MODE CHANGE (SBMC), we complete all + * active CCBs with RESET status, prepare all devices + * for negotiating again and restart the SCRIPTS. + * On STO and UDC, we complete the CCB with the corres- + * ponding status and restart the SCRIPTS. + */ + if (sist & RST) { + printf("%s: SCSI BUS reset detected.\n", sym_name(np)); + sym_start_up(shost, 1); + return IRQ_HANDLED; + } + + OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ + OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ + + if (!(sist & (GEN|HTH|SGE)) && + !(dstat & (MDPE|BF|ABRT|IID))) { + if (sist & SBMC) sym_int_sbmc(shost); + else if (sist & STO) sym_int_sto (np); + else if (sist & UDC) sym_int_udc (np); + else goto unknown_int; + return IRQ_HANDLED; + } + + /* + * Now, interrupts we are not able to recover cleanly. + * + * Log message for hard errors. + * Reset everything. + */ + + sym_log_hard_error(shost, sist, dstat); + + if ((sist & (GEN|HTH|SGE)) || + (dstat & (MDPE|BF|ABRT|IID))) { + sym_start_reset(np); + return IRQ_HANDLED; + } + +unknown_int: + /* + * We just miss the cause of the interrupt. :( + * Print a message. The timeout will do the real work. + */ + printf( "%s: unknown interrupt(s) ignored, " + "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", + sym_name(np), istat, dstat, sist); + return IRQ_NONE; +} + +/* + * Dequeue from the START queue all CCBs that match + * a given target/lun/task condition (-1 means all), + * and move them from the BUSY queue to the COMP queue + * with DID_SOFT_ERROR status condition. + * This function is used during error handling/recovery. + * It is called with SCRIPTS not running. + */ +static int +sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) +{ + int j; + struct sym_ccb *cp; + + /* + * Make sure the starting index is within range. + */ + assert((i >= 0) && (i < 2*MAX_QUEUE)); + + /* + * Walk until end of START queue and dequeue every job + * that matches the target/lun/task condition. + */ + j = i; + while (i != np->squeueput) { + cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); + assert(cp); +#ifdef SYM_CONF_IARB_SUPPORT + /* Forget hints for IARB, they may be no longer relevant */ + cp->host_flags &= ~HF_HINT_IARB; +#endif + if ((target == -1 || cp->target == target) && + (lun == -1 || cp->lun == lun) && + (task == -1 || cp->tag == task)) { +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); +#else + sym_set_cam_status(cp->cmd, DID_REQUEUE); +#endif + sym_remque(&cp->link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + } + else { + if (i != j) + np->squeue[j] = np->squeue[i]; + if ((j += 2) >= MAX_QUEUE*2) j = 0; + } + if ((i += 2) >= MAX_QUEUE*2) i = 0; + } + if (i != j) /* Copy back the idle task if needed */ + np->squeue[j] = np->squeue[i]; + np->squeueput = j; /* Update our current start queue pointer */ + + return (i - j) / 2; +} + +/* + * chip handler for bad SCSI status condition + * + * In case of bad SCSI status, we unqueue all the tasks + * currently queued to the controller but not yet started + * and then restart the SCRIPTS processor immediately. + * + * QUEUE FULL and BUSY conditions are handled the same way. + * Basically all the not yet started tasks are requeued in + * device queue and the queue is frozen until a completion. + * + * For CHECK CONDITION and COMMAND TERMINATED status, we use + * the CCB of the failed command to prepare a REQUEST SENSE + * SCSI command and queue it to the controller queue. + * + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) +{ + u32 startp; + u_char s_status = cp->ssss_status; + u_char h_flags = cp->host_flags; + int msglen; + int i; + + /* + * Compute the index of the next job to start from SCRIPTS. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + + /* + * The last CCB queued used for IARB hint may be + * no longer relevant. Forget it. + */ +#ifdef SYM_CONF_IARB_SUPPORT + if (np->last_cp) + np->last_cp = 0; +#endif + + /* + * Now deal with the SCSI status. + */ + switch(s_status) { + case S_BUSY: + case S_QUEUE_FULL: + if (sym_verbose >= 2) { + sym_print_addr(cp->cmd, "%s\n", + s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); + } + fallthrough; + default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ + sym_complete_error (np, cp); + break; + case S_TERMINATED: + case S_CHECK_COND: + /* + * If we get an SCSI error when requesting sense, give up. + */ + if (h_flags & HF_SENSE) { + sym_complete_error (np, cp); + break; + } + + /* + * Dequeue all queued CCBs for that device not yet started, + * and restart the SCRIPTS processor immediately. + */ + sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + OUTL_DSP(np, SCRIPTA_BA(np, start)); + + /* + * Save some info of the actual IO. + * Compute the data residual. + */ + cp->sv_scsi_status = cp->ssss_status; + cp->sv_xerr_status = cp->xerr_status; + cp->sv_resid = sym_compute_residual(np, cp); + + /* + * Prepare all needed data structures for + * requesting sense data. + */ + + cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); + msglen = 1; + + /* + * If we are currently using anything different from + * async. 8 bit data transfers with that target, + * start a negotiation, since the device may want + * to report us a UNIT ATTENTION condition due to + * a cause we currently ignore, and we donnot want + * to be stuck with WIDE and/or SYNC data transfer. + * + * cp->nego_status is filled by sym_prepare_nego(). + */ + cp->nego_status = 0; + msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); + /* + * Message table indirect structure. + */ + cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * sense command + */ + cp->phys.cmd.addr = CCB_BA(cp, sensecmd); + cp->phys.cmd.size = cpu_to_scr(6); + + /* + * patch requested size into sense command + */ + cp->sensecmd[0] = REQUEST_SENSE; + cp->sensecmd[1] = 0; + if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) + cp->sensecmd[1] = cp->lun << 5; + cp->sensecmd[4] = SYM_SNS_BBUF_LEN; + cp->data_len = SYM_SNS_BBUF_LEN; + + /* + * sense data + */ + memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); + cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); + cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); + + /* + * requeue the command. + */ + startp = SCRIPTB_BA(np, sdata_in); + + cp->phys.head.savep = cpu_to_scr(startp); + cp->phys.head.lastp = cpu_to_scr(startp); + cp->startp = cpu_to_scr(startp); + cp->goalp = cpu_to_scr(startp + 16); + + cp->host_xflags = 0; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->host_flags = (HF_SENSE|HF_DATA_IN); + cp->xerr_status = 0; + cp->extra_bytes = 0; + + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); + + /* + * Requeue the command. + */ + sym_put_start_queue(np, cp); + + /* + * Give back to upper layer everything we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + } +} + +/* + * After a device has accepted some management message + * as BUS DEVICE RESET, ABORT TASK, etc ..., or when + * a device signals a UNIT ATTENTION condition, some + * tasks are thrown away by the device. We are required + * to reflect that on our tasks list since the device + * will never complete these tasks. + * + * This function move from the BUSY queue to the COMP + * queue all disconnected CCBs for a given target that + * match the following criteria: + * - lun=-1 means any logical UNIT otherwise a given one. + * - task=-1 means any task, otherwise a given one. + */ +int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) +{ + SYM_QUEHEAD qtmp, *qp; + int i = 0; + struct sym_ccb *cp; + + /* + * Move the entire BUSY queue to our temporary queue. + */ + sym_que_init(&qtmp); + sym_que_splice(&np->busy_ccbq, &qtmp); + sym_que_init(&np->busy_ccbq); + + /* + * Put all CCBs that matches our criteria into + * the COMP queue and put back other ones into + * the BUSY queue. + */ + while ((qp = sym_remque_head(&qtmp)) != NULL) { + struct scsi_cmnd *cmd; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + cmd = cp->cmd; + if (cp->host_status != HS_DISCONNECT || + cp->target != target || + (lun != -1 && cp->lun != lun) || + (task != -1 && + (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); + continue; + } + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); + + /* Preserve the software timeout condition */ + if (sym_get_cam_status(cmd) != DID_TIME_OUT) + sym_set_cam_status(cmd, cam_status); + ++i; +#if 0 +printf("XXXX TASK @%p CLEARED\n", cp); +#endif + } + return i; +} + +/* + * chip handler for TASKS recovery + * + * We cannot safely abort a command, while the SCRIPTS + * processor is running, since we just would be in race + * with it. + * + * As long as we have tasks to abort, we keep the SEM + * bit set in the ISTAT. When this bit is set, the + * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) + * each time it enters the scheduler. + * + * If we have to reset a target, clear tasks of a unit, + * or to perform the abort of a disconnected job, we + * restart the SCRIPTS for selecting the target. Once + * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). + * If it loses arbitration, the SCRIPTS will interrupt again + * the next time it will enter its scheduler, and so on ... + * + * On SIR_TARGET_SELECTED, we scan for the more + * appropriate thing to do: + * + * - If nothing, we just sent a M_ABORT message to the + * target to get rid of the useless SCSI bus ownership. + * According to the specs, no tasks shall be affected. + * - If the target is to be reset, we send it a M_RESET + * message. + * - If a logical UNIT is to be cleared , we send the + * IDENTIFY(lun) + M_ABORT. + * - If an untagged task is to be aborted, we send the + * IDENTIFY(lun) + M_ABORT. + * - If a tagged task is to be aborted, we send the + * IDENTIFY(lun) + task attributes + M_ABORT_TAG. + * + * Once our 'kiss of death' :) message has been accepted + * by the target, the SCRIPTS interrupts again + * (SIR_ABORT_SENT). On this interrupt, we complete + * all the CCBs that should have been aborted by the + * target according to our message. + */ +static void sym_sir_task_recovery(struct sym_hcb *np, int num) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ + struct scsi_target *starget; + int target=-1, lun=-1, task; + int i, k; + + switch(num) { + /* + * The SCRIPTS processor stopped before starting + * the next command in order to allow us to perform + * some task recovery. + */ + case SIR_SCRIPT_STOPPED: + /* + * Do we have any target to reset or unit to clear ? + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + tp = &np->target[i]; + if (tp->to_reset || + (tp->lun0p && tp->lun0p->to_clear)) { + target = i; + break; + } + if (!tp->lunmp) + continue; + for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + target = i; + break; + } + } + if (target != -1) + break; + } + + /* + * If not, walk the busy queue for any + * disconnected CCB to be aborted. + */ + if (target == -1) { + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->to_abort) { + target = cp->target; + break; + } + } + } + + /* + * If some target is to be selected, + * prepare and start the selection. + */ + if (target != -1) { + tp = &np->target[target]; + np->abrt_sel.sel_id = target; + np->abrt_sel.sel_scntl3 = tp->head.wval; + np->abrt_sel.sel_sxfer = tp->head.sval; + OUTL(np, nc_dsa, np->hcb_ba); + OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); + return; + } + + /* + * Now look for a CCB to abort that haven't started yet. + * Btw, the SCRIPTS processor is still stopped, so + * we are not in race. + */ + i = 0; + cp = NULL; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_BUSY && + cp->host_status != HS_NEGOTIATE) + continue; + if (!cp->to_abort) + continue; +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If we are using IMMEDIATE ARBITRATION, we donnot + * want to cancel the last queued CCB, since the + * SCRIPTS may have anticipated the selection. + */ + if (cp == np->last_cp) { + cp->to_abort = 0; + continue; + } +#endif + i = 1; /* Means we have found some */ + break; + } + if (!i) { + /* + * We are done, so we donnot need + * to synchronize with the SCRIPTS anylonger. + * Remove the SEM flag from the ISTAT. + */ + np->istat_sem = 0; + OUTB(np, nc_istat, SIGP); + break; + } + /* + * Compute index of next position in the start + * queue the SCRIPTS intends to start and dequeue + * all CCBs for that device that haven't been started. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); + + /* + * Make sure at least our IO to abort has been dequeued. + */ +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); +#else + sym_remque(&cp->link_ccbq); + sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); +#endif + /* + * Keep track in cam status of the reason of the abort. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cmd, DID_TIME_OUT); + else + sym_set_cam_status(cp->cmd, DID_ABORT); + + /* + * Complete with error everything that we have dequeued. + */ + sym_flush_comp_queue(np, 0); + break; + /* + * The SCRIPTS processor has selected a target + * we may have some manual recovery to perform for. + */ + case SIR_TARGET_SELECTED: + target = INB(np, nc_sdid) & 0xf; + tp = &np->target[target]; + + np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); + + /* + * If the target is to be reset, prepare a + * M_RESET message and clear the to_reset flag + * since we donnot expect this operation to fail. + */ + if (tp->to_reset) { + np->abrt_msg[0] = M_RESET; + np->abrt_tbl.size = 1; + tp->to_reset = 0; + break; + } + + /* + * Otherwise, look for some logical unit to be cleared. + */ + if (tp->lun0p && tp->lun0p->to_clear) + lun = 0; + else if (tp->lunmp) { + for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { + if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { + lun = k; + break; + } + } + } + + /* + * If a logical unit is to be cleared, prepare + * an IDENTIFY(lun) + ABORT MESSAGE. + */ + if (lun != -1) { + struct sym_lcb *lp = sym_lp(tp, lun); + lp->to_clear = 0; /* We don't expect to fail here */ + np->abrt_msg[0] = IDENTIFY(0, lun); + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + break; + } + + /* + * Otherwise, look for some disconnected job to + * abort for this target. + */ + i = 0; + cp = NULL; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp->host_status != HS_DISCONNECT) + continue; + if (cp->target != target) + continue; + if (!cp->to_abort) + continue; + i = 1; /* Means we have some */ + break; + } + + /* + * If we have none, probably since the device has + * completed the command before we won abitration, + * send a M_ABORT message without IDENTIFY. + * According to the specs, the device must just + * disconnect the BUS and not abort any task. + */ + if (!i) { + np->abrt_msg[0] = M_ABORT; + np->abrt_tbl.size = 1; + break; + } + + /* + * We have some task to abort. + * Set the IDENTIFY(lun) + */ + np->abrt_msg[0] = IDENTIFY(0, cp->lun); + + /* + * If we want to abort an untagged command, we + * will send a IDENTIFY + M_ABORT. + * Otherwise (tagged command), we will send + * a IDENTITFY + task attributes + ABORT TAG. + */ + if (cp->tag == NO_TAG) { + np->abrt_msg[1] = M_ABORT; + np->abrt_tbl.size = 2; + } else { + np->abrt_msg[1] = cp->scsi_smsg[1]; + np->abrt_msg[2] = cp->scsi_smsg[2]; + np->abrt_msg[3] = M_ABORT_TAG; + np->abrt_tbl.size = 4; + } + /* + * Keep track of software timeout condition, since the + * peripheral driver may not count retries on abort + * conditions not due to timeout. + */ + if (cp->to_abort == 2) + sym_set_cam_status(cp->cmd, DID_TIME_OUT); + cp->to_abort = 0; /* We donnot expect to fail here */ + break; + + /* + * The target has accepted our message and switched + * to BUS FREE phase as we expected. + */ + case SIR_ABORT_SENT: + target = INB(np, nc_sdid) & 0xf; + tp = &np->target[target]; + starget = tp->starget; + + /* + ** If we didn't abort anything, leave here. + */ + if (np->abrt_msg[0] == M_ABORT) + break; + + /* + * If we sent a M_RESET, then a hardware reset has + * been performed by the target. + * - Reset everything to async 8 bit + * - Tell ourself to negotiate next time :-) + * - Prepare to clear all disconnected CCBs for + * this target from our task list (lun=task=-1) + */ + lun = -1; + task = -1; + if (np->abrt_msg[0] == M_RESET) { + tp->head.sval = 0; + tp->head.wval = np->rv_scntl3; + tp->head.uval = 0; + spi_period(starget) = 0; + spi_offset(starget) = 0; + spi_width(starget) = 0; + spi_iu(starget) = 0; + spi_dt(starget) = 0; + spi_qas(starget) = 0; + tp->tgoal.check_nego = 1; + tp->tgoal.renego = 0; + } + + /* + * Otherwise, check for the LUN and TASK(s) + * concerned by the cancelation. + * If it is not ABORT_TAG then it is CLEAR_QUEUE + * or an ABORT message :-) + */ + else { + lun = np->abrt_msg[0] & 0x3f; + if (np->abrt_msg[1] == M_ABORT_TAG) + task = np->abrt_msg[2]; + } + + /* + * Complete all the CCBs the device should have + * aborted due to our 'kiss of death' message. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + sym_dequeue_from_squeue(np, i, target, lun, -1); + sym_clear_tasks(np, DID_ABORT, target, lun, task); + sym_flush_comp_queue(np, 0); + + /* + * If we sent a BDR, make upper layer aware of that. + */ + if (np->abrt_msg[0] == M_RESET) + starget_printk(KERN_NOTICE, starget, + "has been reset\n"); + break; + } + + /* + * Print to the log the message we intend to send. + */ + if (num == SIR_TARGET_SELECTED) { + dev_info(&tp->starget->dev, "control msgout:"); + sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); + np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); + } + + /* + * Let the SCRIPTS processor continue. + */ + OUTONB_STD(); +} + +/* + * Gerard's alchemy:) that deals with with the data + * pointer for both MDP and the residual calculation. + * + * I didn't want to bloat the code by more than 200 + * lines for the handling of both MDP and the residual. + * This has been achieved by using a data pointer + * representation consisting in an index in the data + * array (dp_sg) and a negative offset (dp_ofs) that + * have the following meaning: + * + * - dp_sg = SYM_CONF_MAX_SG + * we are at the end of the data script. + * - dp_sg < SYM_CONF_MAX_SG + * dp_sg points to the next entry of the scatter array + * we want to transfer. + * - dp_ofs < 0 + * dp_ofs represents the residual of bytes of the + * previous entry scatter entry we will send first. + * - dp_ofs = 0 + * no residual to send first. + * + * The function sym_evaluate_dp() accepts an arbitray + * offset (basically from the MDP message) and returns + * the corresponding values of dp_sg and dp_ofs. + */ + +static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) +{ + u32 dp_scr; + int dp_ofs, dp_sg, dp_sgmin; + int tmp; + struct sym_pmc *pm; + + /* + * Compute the resulted data pointer in term of a script + * address within some DATA script and a signed byte offset. + */ + dp_scr = scr; + dp_ofs = *ofs; + if (dp_scr == SCRIPTA_BA(np, pm0_data)) + pm = &cp->phys.pm0; + else if (dp_scr == SCRIPTA_BA(np, pm1_data)) + pm = &cp->phys.pm1; + else + pm = NULL; + + if (pm) { + dp_scr = scr_to_cpu(pm->ret); + dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; + } + + /* + * If we are auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + *ofs = dp_ofs; + return 0; + } + + /* + * Deduce the index of the sg entry. + * Keep track of the index of the first valid entry. + * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the + * end of the data. + */ + tmp = scr_to_cpu(cp->goalp); + dp_sg = SYM_CONF_MAX_SG; + if (dp_scr != tmp) + dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); + dp_sgmin = SYM_CONF_MAX_SG - cp->segments; + + /* + * Move to the sg entry the data pointer belongs to. + * + * If we are inside the data area, we expect result to be: + * + * Either, + * dp_ofs = 0 and dp_sg is the index of the sg entry + * the data pointer belongs to (or the end of the data) + * Or, + * dp_ofs < 0 and dp_sg is the index of the sg entry + * the data pointer belongs to + 1. + */ + if (dp_ofs < 0) { + int n; + while (dp_sg > dp_sgmin) { + --dp_sg; + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + n = dp_ofs + (tmp & 0xffffff); + if (n > 0) { + ++dp_sg; + break; + } + dp_ofs = n; + } + } + else if (dp_ofs > 0) { + while (dp_sg < SYM_CONF_MAX_SG) { + tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + dp_ofs -= (tmp & 0xffffff); + ++dp_sg; + if (dp_ofs <= 0) + break; + } + } + + /* + * Make sure the data pointer is inside the data area. + * If not, return some error. + */ + if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) + goto out_err; + else if (dp_sg > SYM_CONF_MAX_SG || + (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) + goto out_err; + + /* + * Save the extreme pointer if needed. + */ + if (dp_sg > cp->ext_sg || + (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { + cp->ext_sg = dp_sg; + cp->ext_ofs = dp_ofs; + } + + /* + * Return data. + */ + *ofs = dp_ofs; + return dp_sg; + +out_err: + return -1; +} + +/* + * chip handler for MODIFY DATA POINTER MESSAGE + * + * We also call this function on IGNORE WIDE RESIDUE + * messages that do not match a SWIDE full condition. + * Btw, we assume in that situation that such a message + * is equivalent to a MODIFY DATA POINTER (offset=-1). + */ + +static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) +{ + int dp_ofs = ofs; + u32 dp_scr = sym_get_script_dp (np, cp); + u32 dp_ret; + u32 tmp; + u_char hflags; + int dp_sg; + struct sym_pmc *pm; + + /* + * Not supported for auto-sense. + */ + if (cp->host_flags & HF_SENSE) + goto out_reject; + + /* + * Apply our alchemy:) (see comments in sym_evaluate_dp()), + * to the resulted data pointer. + */ + dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); + if (dp_sg < 0) + goto out_reject; + + /* + * And our alchemy:) allows to easily calculate the data + * script address we want to return for the next data phase. + */ + dp_ret = cpu_to_scr(cp->goalp); + dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); + + /* + * If offset / scatter entry is zero we donnot need + * a context for the new current data pointer. + */ + if (dp_ofs == 0) { + dp_scr = dp_ret; + goto out_ok; + } + + /* + * Get a context for the new current data pointer. + */ + hflags = INB(np, HF_PRT); + + if (hflags & HF_DP_SAVED) + hflags ^= HF_ACT_PM; + + if (!(hflags & HF_ACT_PM)) { + pm = &cp->phys.pm0; + dp_scr = SCRIPTA_BA(np, pm0_data); + } + else { + pm = &cp->phys.pm1; + dp_scr = SCRIPTA_BA(np, pm1_data); + } + + hflags &= ~(HF_DP_SAVED); + + OUTB(np, HF_PRT, hflags); + + /* + * Set up the new current data pointer. + * ofs < 0 there, and for the next data phase, we + * want to transfer part of the data of the sg entry + * corresponding to index dp_sg-1 prior to returning + * to the main data script. + */ + pm->ret = cpu_to_scr(dp_ret); + tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); + tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; + pm->sg.addr = cpu_to_scr(tmp); + pm->sg.size = cpu_to_scr(-dp_ofs); + +out_ok: + sym_set_script_dp (np, cp, dp_scr); + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; + +out_reject: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + + +/* + * chip calculation of the data residual. + * + * As I used to say, the requirement of data residual + * in SCSI is broken, useless and cannot be achieved + * without huge complexity. + * But most OSes and even the official CAM require it. + * When stupidity happens to be so widely spread inside + * a community, it gets hard to convince. + * + * Anyway, I don't care, since I am not going to use + * any software that considers this data residual as + * a relevant information. :) + */ + +int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) +{ + int dp_sg, resid = 0; + int dp_ofs = 0; + + /* + * Check for some data lost or just thrown away. + * We are not required to be quite accurate in this + * situation. Btw, if we are odd for output and the + * device claims some more data, it may well happen + * than our residual be zero. :-) + */ + if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { + if (cp->xerr_status & XE_EXTRA_DATA) + resid -= cp->extra_bytes; + if (cp->xerr_status & XE_SODL_UNRUN) + ++resid; + if (cp->xerr_status & XE_SWIDE_OVRUN) + --resid; + } + + /* + * If all data has been transferred, + * there is no residual. + */ + if (cp->phys.head.lastp == cp->goalp) + return resid; + + /* + * If no data transfer occurs, or if the data + * pointer is weird, return full residual. + */ + if (cp->startp == cp->phys.head.lastp || + sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), + &dp_ofs) < 0) { + return cp->data_len - cp->odd_byte_adjustment; + } + + /* + * If we were auto-sensing, then we are done. + */ + if (cp->host_flags & HF_SENSE) { + return -dp_ofs; + } + + /* + * We are now full comfortable in the computation + * of the data residual (2's complement). + */ + resid = -cp->ext_ofs; + for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { + u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); + resid += (tmp & 0xffffff); + } + + resid -= cp->odd_byte_adjustment; + + /* + * Hopefully, the result is not too wrong. + */ + return resid; +} + +/* + * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. + * + * When we try to negotiate, we append the negotiation message + * to the identify and (maybe) simple tag message. + * The host status field is set to HS_NEGOTIATE to mark this + * situation. + * + * If the target doesn't answer this message immediately + * (as required by the standard), the SIR_NEGO_FAILED interrupt + * will be raised eventually. + * The handler removes the HS_NEGOTIATE status, and sets the + * negotiated value to the default (async / nowide). + * + * If we receive a matching answer immediately, we check it + * for validity, and set the values. + * + * If we receive a Reject message immediately, we assume the + * negotiation has failed, and fall back to standard values. + * + * If we receive a negotiation message while not in HS_NEGOTIATE + * state, it's a target initiated negotiation. We prepare a + * (hopefully) valid answer, set our parameters, and send back + * this answer to the target. + * + * If the target doesn't fetch the answer (no message out phase), + * we assume the negotiation has failed, and fall back to default + * settings (SIR_NEGO_PROTO interrupt). + * + * When we set the values, we adjust them in all ccbs belonging + * to this target, in the controller's register, and in the "phys" + * field of the controller's struct sym_hcb. + */ + +/* + * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. + */ +static int +sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) +{ + int target = cp->target; + u_char chg, ofs, per, fak, div; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "sync msgin", np->msgin); + } + + /* + * Get requested values. + */ + chg = 0; + per = np->msgin[3]; + ofs = np->msgin[4]; + + /* + * Check values against our limits. + */ + if (ofs) { + if (ofs > np->maxoffs) + {chg = 1; ofs = np->maxoffs;} + } + + if (ofs) { + if (per < np->minsync) + {chg = 1; per = np->minsync;} + } + + /* + * Get new chip synchronous parameters value. + */ + div = fak = 0; + if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) + goto reject_it; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_addr(cp->cmd, + "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", + ofs, per, div, fak, chg); + } + + /* + * If it was an answer we want to change, + * then it isn't acceptable. Reject it. + */ + if (!req && chg) + goto reject_it; + + /* + * Apply new values. + */ + sym_setsync (np, target, ofs, per, div, fak); + + /* + * It was an answer. We are done. + */ + if (!req) + return 0; + + /* + * It was a request. Prepare an answer message. + */ + spi_populate_sync_msg(np->msgout, per, ofs); + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "sync msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + return 0; + +reject_it: + sym_setsync (np, target, 0, 0, 0, 0); + return -1; +} + +static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + int req = 1; + int result; + + /* + * Request or answer ? + */ + if (INB(np, HS_PRT) == HS_NEGOTIATE) { + OUTB(np, HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_SYNC) + goto reject_it; + req = 0; + } + + /* + * Check and apply new values. + */ + result = sym_sync_nego_check(np, req, cp); + if (result) /* Not acceptable, reject it */ + goto reject_it; + if (req) { /* Was a request, send response. */ + cp->nego_status = NS_SYNC; + OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); + } + else /* Was a response, we are done. */ + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; + +reject_it: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + +/* + * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. + */ +static int +sym_ppr_nego_check(struct sym_hcb *np, int req, int target) +{ + struct sym_tcb *tp = &np->target[target]; + unsigned char fak, div; + int dt, chg = 0; + + unsigned char per = np->msgin[3]; + unsigned char ofs = np->msgin[5]; + unsigned char wide = np->msgin[6]; + unsigned char opts = np->msgin[7] & PPR_OPT_MASK; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "ppr msgin", np->msgin); + } + + /* + * Check values against our limits. + */ + if (wide > np->maxwide) { + chg = 1; + wide = np->maxwide; + } + if (!wide || !(np->features & FE_U3EN)) + opts = 0; + + if (opts != (np->msgin[7] & PPR_OPT_MASK)) + chg = 1; + + dt = opts & PPR_OPT_DT; + + if (ofs) { + unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; + if (ofs > maxoffs) { + chg = 1; + ofs = maxoffs; + } + } + + if (ofs) { + unsigned char minsync = dt ? np->minsync_dt : np->minsync; + if (per < minsync) { + chg = 1; + per = minsync; + } + } + + /* + * Get new chip synchronous parameters value. + */ + div = fak = 0; + if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) + goto reject_it; + + /* + * If it was an answer we want to change, + * then it isn't acceptable. Reject it. + */ + if (!req && chg) + goto reject_it; + + /* + * Apply new values. + */ + sym_setpprot(np, target, opts, ofs, per, wide, div, fak); + + /* + * It was an answer. We are done. + */ + if (!req) + return 0; + + /* + * It was a request. Prepare an answer message. + */ + spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "ppr msgout", np->msgout); + } + + np->msgin [0] = M_NOOP; + + return 0; + +reject_it: + sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); + /* + * If it is a device response that should result in + * ST, we may want to try a legacy negotiation later. + */ + if (!req && !opts) { + tp->tgoal.period = per; + tp->tgoal.offset = ofs; + tp->tgoal.width = wide; + tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; + tp->tgoal.check_nego = 1; + } + return -1; +} + +static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + int req = 1; + int result; + + /* + * Request or answer ? + */ + if (INB(np, HS_PRT) == HS_NEGOTIATE) { + OUTB(np, HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_PPR) + goto reject_it; + req = 0; + } + + /* + * Check and apply new values. + */ + result = sym_ppr_nego_check(np, req, cp->target); + if (result) /* Not acceptable, reject it */ + goto reject_it; + if (req) { /* Was a request, send response. */ + cp->nego_status = NS_PPR; + OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); + } + else /* Was a response, we are done. */ + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; + +reject_it: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + +/* + * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. + */ +static int +sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) +{ + int target = cp->target; + u_char chg, wide; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "wide msgin", np->msgin); + } + + /* + * Get requested values. + */ + chg = 0; + wide = np->msgin[3]; + + /* + * Check values against our limits. + */ + if (wide > np->maxwide) { + chg = 1; + wide = np->maxwide; + } + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", + wide, chg); + } + + /* + * If it was an answer we want to change, + * then it isn't acceptable. Reject it. + */ + if (!req && chg) + goto reject_it; + + /* + * Apply new values. + */ + sym_setwide (np, target, wide); + + /* + * It was an answer. We are done. + */ + if (!req) + return 0; + + /* + * It was a request. Prepare an answer message. + */ + spi_populate_width_msg(np->msgout, wide); + + np->msgin [0] = M_NOOP; + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, target, "wide msgout", np->msgout); + } + + return 0; + +reject_it: + return -1; +} + +static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + int req = 1; + int result; + + /* + * Request or answer ? + */ + if (INB(np, HS_PRT) == HS_NEGOTIATE) { + OUTB(np, HS_PRT, HS_BUSY); + if (cp->nego_status && cp->nego_status != NS_WIDE) + goto reject_it; + req = 0; + } + + /* + * Check and apply new values. + */ + result = sym_wide_nego_check(np, req, cp); + if (result) /* Not acceptable, reject it */ + goto reject_it; + if (req) { /* Was a request, send response. */ + cp->nego_status = NS_WIDE; + OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); + } else { /* Was a response. */ + /* + * Negotiate for SYNC immediately after WIDE response. + * This allows to negotiate for both WIDE and SYNC on + * a single SCSI command (Suggested by Justin Gibbs). + */ + if (tp->tgoal.offset) { + spi_populate_sync_msg(np->msgout, tp->tgoal.period, + tp->tgoal.offset); + + if (DEBUG_FLAGS & DEBUG_NEGO) { + sym_print_nego_msg(np, cp->target, + "sync msgout", np->msgout); + } + + cp->nego_status = NS_SYNC; + OUTB(np, HS_PRT, HS_NEGOTIATE); + OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); + return; + } else + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + } + + return; + +reject_it: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); +} + +/* + * Reset DT, SYNC or WIDE to default settings. + * + * Called when a negotiation does not succeed either + * on rejection or on protocol error. + * + * A target that understands a PPR message should never + * reject it, and messing with it is very unlikely. + * So, if a PPR makes problems, we may just want to + * try a legacy negotiation later. + */ +static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + switch (cp->nego_status) { + case NS_PPR: +#if 0 + sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); +#else + if (tp->tgoal.period < np->minsync) + tp->tgoal.period = np->minsync; + if (tp->tgoal.offset > np->maxoffs) + tp->tgoal.offset = np->maxoffs; + tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; + tp->tgoal.check_nego = 1; +#endif + break; + case NS_SYNC: + sym_setsync (np, cp->target, 0, 0, 0, 0); + break; + case NS_WIDE: + sym_setwide (np, cp->target, 0); + break; + } + np->msgin [0] = M_NOOP; + np->msgout[0] = M_NOOP; + cp->nego_status = 0; +} + +/* + * chip handler for MESSAGE REJECT received in response to + * PPR, WIDE or SYNCHRONOUS negotiation. + */ +static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) +{ + sym_nego_default(np, tp, cp); + OUTB(np, HS_PRT, HS_BUSY); +} + +#define sym_printk(lvl, tp, cp, fmt, v...) do { \ + if (cp) \ + scmd_printk(lvl, cp->cmd, fmt, ##v); \ + else \ + starget_printk(lvl, tp->starget, fmt, ##v); \ +} while (0) + +/* + * chip exception handler for programmed interrupts. + */ +static void sym_int_sir(struct sym_hcb *np) +{ + u_char num = INB(np, nc_dsps); + u32 dsa = INL(np, nc_dsa); + struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); + u_char target = INB(np, nc_sdid) & 0x0f; + struct sym_tcb *tp = &np->target[target]; + int tmp; + + if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); + + switch (num) { +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + /* + * SCRIPTS tell us that we may have to update + * 64 bit DMA segment registers. + */ + case SIR_DMAP_DIRTY: + sym_update_dmap_regs(np); + goto out; +#endif + /* + * Command has been completed with error condition + * or has been auto-sensed. + */ + case SIR_COMPLETE_ERROR: + sym_complete_error(np, cp); + return; + /* + * The C code is currently trying to recover from something. + * Typically, user want to abort some command. + */ + case SIR_SCRIPT_STOPPED: + case SIR_TARGET_SELECTED: + case SIR_ABORT_SENT: + sym_sir_task_recovery(np, num); + return; + /* + * The device didn't go to MSG OUT phase after having + * been selected with ATN. We do not want to handle that. + */ + case SIR_SEL_ATN_NO_MSG_OUT: + sym_printk(KERN_WARNING, tp, cp, + "No MSG OUT phase after selection with ATN\n"); + goto out_stuck; + /* + * The device didn't switch to MSG IN phase after + * having reselected the initiator. + */ + case SIR_RESEL_NO_MSG_IN: + sym_printk(KERN_WARNING, tp, cp, + "No MSG IN phase after reselection\n"); + goto out_stuck; + /* + * After reselection, the device sent a message that wasn't + * an IDENTIFY. + */ + case SIR_RESEL_NO_IDENTIFY: + sym_printk(KERN_WARNING, tp, cp, + "No IDENTIFY after reselection\n"); + goto out_stuck; + /* + * The device reselected a LUN we do not know about. + */ + case SIR_RESEL_BAD_LUN: + np->msgout[0] = M_RESET; + goto out; + /* + * The device reselected for an untagged nexus and we + * haven't any. + */ + case SIR_RESEL_BAD_I_T_L: + np->msgout[0] = M_ABORT; + goto out; + /* + * The device reselected for a tagged nexus that we do not have. + */ + case SIR_RESEL_BAD_I_T_L_Q: + np->msgout[0] = M_ABORT_TAG; + goto out; + /* + * The SCRIPTS let us know that the device has grabbed + * our message and will abort the job. + */ + case SIR_RESEL_ABORTED: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + sym_printk(KERN_WARNING, tp, cp, + "message %x sent on bad reselection\n", np->lastmsg); + goto out; + /* + * The SCRIPTS let us know that a message has been + * successfully sent to the device. + */ + case SIR_MSG_OUT_DONE: + np->lastmsg = np->msgout[0]; + np->msgout[0] = M_NOOP; + /* Should we really care of that */ + if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { + if (cp) { + cp->xerr_status &= ~XE_PARITY_ERR; + if (!cp->xerr_status) + OUTOFFB(np, HF_PRT, HF_EXT_ERR); + } + } + goto out; + /* + * The device didn't send a GOOD SCSI status. + * We may have some work to do prior to allow + * the SCRIPTS processor to continue. + */ + case SIR_BAD_SCSI_STATUS: + if (!cp) + goto out; + sym_sir_bad_scsi_status(np, num, cp); + return; + /* + * We are asked by the SCRIPTS to prepare a + * REJECT message. + */ + case SIR_REJECT_TO_SEND: + sym_print_msg(cp, "M_REJECT to send for ", np->msgin); + np->msgout[0] = M_REJECT; + goto out; + /* + * We have been ODD at the end of a DATA IN + * transfer and the device didn't send a + * IGNORE WIDE RESIDUE message. + * It is a data overrun condition. + */ + case SIR_SWIDE_OVERRUN: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SWIDE_OVRUN; + } + goto out; + /* + * We have been ODD at the end of a DATA OUT + * transfer. + * It is a data underrun condition. + */ + case SIR_SODL_UNDERRUN: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_SODL_UNRUN; + } + goto out; + /* + * The device wants us to tranfer more data than + * expected or in the wrong direction. + * The number of extra bytes is in scratcha. + * It is a data overrun condition. + */ + case SIR_DATA_OVERRUN: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_EXTRA_DATA; + cp->extra_bytes += INL(np, nc_scratcha); + } + goto out; + /* + * The device switched to an illegal phase (4/5). + */ + case SIR_BAD_PHASE: + if (cp) { + OUTONB(np, HF_PRT, HF_EXT_ERR); + cp->xerr_status |= XE_BAD_PHASE; + } + goto out; + /* + * We received a message. + */ + case SIR_MSG_RECEIVED: + if (!cp) + goto out_stuck; + switch (np->msgin [0]) { + /* + * We received an extended message. + * We handle MODIFY DATA POINTER, SDTR, WDTR + * and reject all other extended messages. + */ + case M_EXTENDED: + switch (np->msgin [2]) { + case M_X_MODIFY_DP: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp, "extended msg ", + np->msgin); + tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + + (np->msgin[5]<<8) + (np->msgin[6]); + sym_modify_dp(np, tp, cp, tmp); + return; + case M_X_SYNC_REQ: + sym_sync_nego(np, tp, cp); + return; + case M_X_PPR_REQ: + sym_ppr_nego(np, tp, cp); + return; + case M_X_WIDE_REQ: + sym_wide_nego(np, tp, cp); + return; + default: + goto out_reject; + } + break; + /* + * We received a 1/2 byte message not handled from SCRIPTS. + * We are only expecting MESSAGE REJECT and IGNORE WIDE + * RESIDUE messages that haven't been anticipated by + * SCRIPTS on SWIDE full condition. Unanticipated IGNORE + * WIDE RESIDUE messages are aliased as MODIFY DP (-1). + */ + case M_IGN_RESIDUE: + if (DEBUG_FLAGS & DEBUG_POINTER) + sym_print_msg(cp, "1 or 2 byte ", np->msgin); + if (cp->host_flags & HF_SENSE) + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + else + sym_modify_dp(np, tp, cp, -1); + return; + case M_REJECT: + if (INB(np, HS_PRT) == HS_NEGOTIATE) + sym_nego_rejected(np, tp, cp); + else { + sym_print_addr(cp->cmd, + "M_REJECT received (%x:%x).\n", + scr_to_cpu(np->lastmsg), np->msgout[0]); + } + goto out_clrack; + break; + default: + goto out_reject; + } + break; + /* + * We received an unknown message. + * Ignore all MSG IN phases and reject it. + */ + case SIR_MSG_WEIRD: + sym_print_msg(cp, "WEIRD message received", np->msgin); + OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); + return; + /* + * Negotiation failed. + * Target does not send us the reply. + * Remove the HS_NEGOTIATE status. + */ + case SIR_NEGO_FAILED: + OUTB(np, HS_PRT, HS_BUSY); + /* + * Negotiation failed. + * Target does not want answer message. + */ + fallthrough; + case SIR_NEGO_PROTO: + sym_nego_default(np, tp, cp); + goto out; + } + +out: + OUTONB_STD(); + return; +out_reject: + OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); + return; +out_clrack: + OUTL_DSP(np, SCRIPTA_BA(np, clrack)); + return; +out_stuck: + return; +} + +/* + * Acquire a control block + */ +struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) +{ + u_char tn = cmd->device->id; + u_char ln = cmd->device->lun; + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = sym_lp(tp, ln); + u_short tag = NO_TAG; + SYM_QUEHEAD *qp; + struct sym_ccb *cp = NULL; + + /* + * Look for a free CCB + */ + if (sym_que_empty(&np->free_ccbq)) + sym_alloc_ccb(np); + qp = sym_remque_head(&np->free_ccbq); + if (!qp) + goto out; + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + + { + /* + * If we have been asked for a tagged command. + */ + if (tag_order) { + /* + * Debugging purpose. + */ +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp->busy_itl != 0) + goto out_free; +#endif + /* + * Allocate resources for tags if not yet. + */ + if (!lp->cb_tags) { + sym_alloc_lcb_tags(np, tn, ln); + if (!lp->cb_tags) + goto out_free; + } + /* + * Get a tag for this SCSI IO and set up + * the CCB bus address for reselection, + * and count it for this LUN. + * Toggle reselect path to tagged. + */ + if (lp->busy_itlq < SYM_CONF_MAX_TASK) { + tag = lp->cb_tags[lp->ia_tag]; + if (++lp->ia_tag == SYM_CONF_MAX_TASK) + lp->ia_tag = 0; + ++lp->busy_itlq; +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_tag)); +#endif +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + cp->tags_si = lp->tags_si; + ++lp->tags_sum[cp->tags_si]; + ++lp->tags_since; +#endif + } + else + goto out_free; + } + /* + * This command will not be tagged. + * If we already have either a tagged or untagged + * one, refuse to overlap this untagged one. + */ + else { + /* + * Debugging purpose. + */ +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp->busy_itl != 0 || lp->busy_itlq != 0) + goto out_free; +#endif + /* + * Count this nexus for this LUN. + * Set up the CCB bus address for reselection. + * Toggle reselect path to untagged. + */ + ++lp->busy_itl; +#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp->busy_itl == 1) { + lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); + lp->head.resel_sa = + cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); + } + else + goto out_free; +#endif + } + } + /* + * Put the CCB into the busy queue. + */ + sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp) { + sym_remque(&cp->link2_ccbq); + sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); + } + +#endif + cp->to_abort = 0; + cp->odd_byte_adjustment = 0; + cp->tag = tag; + cp->order = tag_order; + cp->target = tn; + cp->lun = ln; + + if (DEBUG_FLAGS & DEBUG_TAGS) { + sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); + } + +out: + return cp; +out_free: + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + return NULL; +} + +/* + * Release one control block + */ +void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) +{ + struct sym_tcb *tp = &np->target[cp->target]; + struct sym_lcb *lp = sym_lp(tp, cp->lun); + + if (DEBUG_FLAGS & DEBUG_TAGS) { + sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", + cp, cp->tag); + } + + /* + * If LCB available, + */ + if (lp) { + /* + * If tagged, release the tag, set the relect path + */ + if (cp->tag != NO_TAG) { +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + --lp->tags_sum[cp->tags_si]; +#endif + /* + * Free the tag value. + */ + lp->cb_tags[lp->if_tag] = cp->tag; + if (++lp->if_tag == SYM_CONF_MAX_TASK) + lp->if_tag = 0; + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); + --lp->busy_itlq; + } else { /* Untagged */ + /* + * Make the reselect path invalid, + * and uncount this CCB. + */ + lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); + --lp->busy_itl; + } + /* + * If no JOB active, make the LUN reselect path invalid. + */ + if (lp->busy_itlq == 0 && lp->busy_itl == 0) + lp->head.resel_sa = + cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); + } + + /* + * We donnot queue more than 1 ccb per target + * with negotiation at any time. If this ccb was + * used for negotiation, clear this info in the tcb. + */ + if (cp == tp->nego_cp) + tp->nego_cp = NULL; + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If we just complete the last queued CCB, + * clear this info that is no longer relevant. + */ + if (cp == np->last_cp) + np->last_cp = 0; +#endif + + /* + * Make this CCB available. + */ + cp->cmd = NULL; + cp->host_status = HS_IDLE; + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (lp) { + sym_remque(&cp->link2_ccbq); + sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); + if (cp->started) { + if (cp->tag != NO_TAG) + --lp->started_tags; + else + --lp->started_no_tag; + } + } + cp->started = 0; +#endif +} + +/* + * Allocate a CCB from memory and initialize its fixed part. + */ +static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) +{ + struct sym_ccb *cp = NULL; + int hcode; + + /* + * Prevent from allocating more CCBs than we can + * queue to the controller. + */ + if (np->actccbs >= SYM_CONF_MAX_START) + return NULL; + + /* + * Allocate memory for this CCB. + */ + cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); + if (!cp) + goto out_free; + + /* + * Count it. + */ + np->actccbs++; + + /* + * Compute the bus address of this ccb. + */ + cp->ccb_ba = vtobus(cp); + + /* + * Insert this ccb into the hashed list. + */ + hcode = CCB_HASH_CODE(cp->ccb_ba); + cp->link_ccbh = np->ccbh[hcode]; + np->ccbh[hcode] = cp; + + /* + * Initialyze the start and restart actions. + */ + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + + /* + * Initilialyze some other fields. + */ + cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); + + /* + * Chain into free ccb queue. + */ + sym_insque_head(&cp->link_ccbq, &np->free_ccbq); + + /* + * Chain into optionnal lists. + */ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); +#endif + return cp; +out_free: + if (cp) + sym_mfree_dma(cp, sizeof(*cp), "CCB"); + return NULL; +} + +/* + * Look up a CCB from a DSA value. + */ +static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) +{ + int hcode; + struct sym_ccb *cp; + + hcode = CCB_HASH_CODE(dsa); + cp = np->ccbh[hcode]; + while (cp) { + if (cp->ccb_ba == dsa) + break; + cp = cp->link_ccbh; + } + + return cp; +} + +/* + * Target control block initialisation. + * Nothing important to do at the moment. + */ +static void sym_init_tcb (struct sym_hcb *np, u_char tn) +{ +#if 0 /* Hmmm... this checking looks paranoid. */ + /* + * Check some alignments required by the chip. + */ + assert (((offsetof(struct sym_reg, nc_sxfer) ^ + offsetof(struct sym_tcb, head.sval)) &3) == 0); + assert (((offsetof(struct sym_reg, nc_scntl3) ^ + offsetof(struct sym_tcb, head.wval)) &3) == 0); +#endif +} + +/* + * Lun control block allocation and initialization. + */ +struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) +{ + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = NULL; + + /* + * Initialize the target control block if not yet. + */ + sym_init_tcb (np, tn); + + /* + * Allocate the LCB bus address array. + * Compute the bus address of this table. + */ + if (ln && !tp->luntbl) { + tp->luntbl = sym_calloc_dma(256, "LUNTBL"); + if (!tp->luntbl) + goto fail; + memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); + tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); + } + + /* + * Allocate the table of pointers for LUN(s) > 0, if needed. + */ + if (ln && !tp->lunmp) { + tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), + GFP_ATOMIC); + if (!tp->lunmp) + goto fail; + } + + /* + * Allocate the lcb. + * Make it available to the chip. + */ + lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); + if (!lp) + goto fail; + if (ln) { + tp->lunmp[ln] = lp; + tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); + } + else { + tp->lun0p = lp; + tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); + } + tp->nlcb++; + + /* + * Let the itl task point to error handling. + */ + lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); + + /* + * Set the reselect pattern to our default. :) + */ + lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); + + /* + * Set user capabilities. + */ + lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Initialize device queueing. + */ + sym_que_init(&lp->waiting_ccbq); + sym_que_init(&lp->started_ccbq); + lp->started_max = SYM_CONF_MAX_TASK; + lp->started_limit = SYM_CONF_MAX_TASK; +#endif + +fail: + return lp; +} + +/* + * Allocate LCB resources for tagged command queuing. + */ +static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) +{ + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = sym_lp(tp, ln); + int i; + + /* + * Allocate the task table and and the tag allocation + * circular buffer. We want both or none. + */ + lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + if (!lp->itlq_tbl) + goto fail; + lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); + if (!lp->cb_tags) { + sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + lp->itlq_tbl = NULL; + goto fail; + } + + /* + * Initialize the task table with invalid entries. + */ + memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK); + + /* + * Fill up the tag buffer with tag numbers. + */ + for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) + lp->cb_tags[i] = i; + + /* + * Make the task table available to SCRIPTS, + * And accept tagged commands now. + */ + lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); + + return; +fail: + return; +} + +/* + * Lun control block deallocation. Returns the number of valid remaining LCBs + * for the target. + */ +int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln) +{ + struct sym_tcb *tp = &np->target[tn]; + struct sym_lcb *lp = sym_lp(tp, ln); + + tp->nlcb--; + + if (ln) { + if (!tp->nlcb) { + kfree(tp->lunmp); + sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); + tp->lunmp = NULL; + tp->luntbl = NULL; + tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); + } else { + tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa)); + tp->lunmp[ln] = NULL; + } + } else { + tp->lun0p = NULL; + tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); + } + + if (lp->itlq_tbl) { + sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); + kfree(lp->cb_tags); + } + + sym_mfree_dma(lp, sizeof(*lp), "LCB"); + + return tp->nlcb; +} + +/* + * Queue a SCSI IO to the controller. + */ +int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) +{ + struct scsi_device *sdev = cmd->device; + struct sym_tcb *tp; + struct sym_lcb *lp; + u_char *msgptr; + u_int msglen; + int can_disconnect; + + /* + * Keep track of the IO in our CCB. + */ + cp->cmd = cmd; + + /* + * Retrieve the target descriptor. + */ + tp = &np->target[cp->target]; + + /* + * Retrieve the lun descriptor. + */ + lp = sym_lp(tp, sdev->lun); + + can_disconnect = (cp->tag != NO_TAG) || + (lp && (lp->curr_flags & SYM_DISC_ENABLED)); + + msgptr = cp->scsi_smsg; + msglen = 0; + msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); + + /* + * Build the tag message if present. + */ + if (cp->tag != NO_TAG) { + u_char order = cp->order; + + switch(order) { + case M_ORDERED_TAG: + break; + case M_HEAD_TAG: + break; + default: + order = M_SIMPLE_TAG; + } +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + /* + * Avoid too much reordering of SCSI commands. + * The algorithm tries to prevent completion of any + * tagged command from being delayed against more + * than 3 times the max number of queued commands. + */ + if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { + lp->tags_si = !(lp->tags_si); + if (lp->tags_sum[lp->tags_si]) { + order = M_ORDERED_TAG; + if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { + sym_print_addr(cmd, + "ordered tag forced.\n"); + } + } + lp->tags_since = 0; + } +#endif + msgptr[msglen++] = order; + + /* + * For less than 128 tags, actual tags are numbered + * 1,3,5,..2*MAXTAGS+1,since we may have to deal + * with devices that have problems with #TAG 0 or too + * great #TAG numbers. For more tags (up to 256), + * we use directly our tag number. + */ +#if SYM_CONF_MAX_TASK > (512/4) + msgptr[msglen++] = cp->tag; +#else + msgptr[msglen++] = (cp->tag << 1) + 1; +#endif + } + + /* + * Build a negotiation message if needed. + * (nego_status is filled by sym_prepare_nego()) + * + * Always negotiate on INQUIRY and REQUEST SENSE. + * + */ + cp->nego_status = 0; + if ((tp->tgoal.check_nego || + cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) && + !tp->nego_cp && lp) { + msglen += sym_prepare_nego(np, cp, msgptr + msglen); + } + + /* + * Startqueue + */ + cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); + cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); + + /* + * select + */ + cp->phys.select.sel_id = cp->target; + cp->phys.select.sel_scntl3 = tp->head.wval; + cp->phys.select.sel_sxfer = tp->head.sval; + cp->phys.select.sel_scntl4 = tp->head.uval; + + /* + * message + */ + cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); + cp->phys.smsg.size = cpu_to_scr(msglen); + + /* + * status + */ + cp->host_xflags = 0; + cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; + cp->ssss_status = S_ILLEGAL; + cp->xerr_status = 0; + cp->host_flags = 0; + cp->extra_bytes = 0; + + /* + * extreme data pointer. + * shall be positive, so -1 is lower than lowest.:) + */ + cp->ext_sg = -1; + cp->ext_ofs = 0; + + /* + * Build the CDB and DATA descriptor block + * and start the IO. + */ + return sym_setup_data_and_start(np, cmd, cp); +} + +/* + * Reset a SCSI target (all LUNs of this target). + */ +int sym_reset_scsi_target(struct sym_hcb *np, int target) +{ + struct sym_tcb *tp; + + if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) + return -1; + + tp = &np->target[target]; + tp->to_reset = 1; + + np->istat_sem = SEM; + OUTB(np, nc_istat, SIGP|SEM); + + return 0; +} + +/* + * Abort a SCSI IO. + */ +static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) +{ + /* + * Check that the IO is active. + */ + if (!cp || !cp->host_status || cp->host_status == HS_WAIT) + return -1; + + /* + * If a previous abort didn't succeed in time, + * perform a BUS reset. + */ + if (cp->to_abort) { + sym_reset_scsi_bus(np, 1); + return 0; + } + + /* + * Mark the CCB for abort and allow time for. + */ + cp->to_abort = timed_out ? 2 : 1; + + /* + * Tell the SCRIPTS processor to stop and synchronize with us. + */ + np->istat_sem = SEM; + OUTB(np, nc_istat, SIGP|SEM); + return 0; +} + +int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) +{ + struct sym_ccb *cp; + SYM_QUEHEAD *qp; + + /* + * Look up our CCB control block. + */ + cp = NULL; + FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { + struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); + if (cp2->cmd == cmd) { + cp = cp2; + break; + } + } + + return sym_abort_ccb(np, cp, timed_out); +} + +/* + * Complete execution of a SCSI command with extended + * error, SCSI status error, or having been auto-sensed. + * + * The SCRIPTS processor is not running there, so we + * can safely access IO registers and remove JOBs from + * the START queue. + * SCRATCHA is assumed to have been loaded with STARTPOS + * before the SCRIPTS called the C code. + */ +void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) +{ + struct scsi_device *sdev; + struct scsi_cmnd *cmd; +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + struct sym_tcb *tp; + struct sym_lcb *lp; +#endif + int resid; + int i; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cmd) + return; + + cmd = cp->cmd; + sdev = cmd->device; + if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { + dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, + cp->host_status, cp->ssss_status, cp->host_flags); + } + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Get target and lun pointers. + */ + tp = &np->target[cp->target]; + lp = sym_lp(tp, sdev->lun); +#endif + + /* + * Check for extended errors. + */ + if (cp->xerr_status) { + if (sym_verbose) + sym_print_xerr(cmd, cp->xerr_status); + if (cp->host_status == HS_COMPLETE) + cp->host_status = HS_COMP_ERR; + } + + /* + * Calculate the residual. + */ + resid = sym_compute_residual(np, cp); + + if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ + resid = 0; /* throw them away. :) */ + cp->sv_resid = 0; + } +#ifdef DEBUG_2_0_X +if (resid) + printf("XXXX RESID= %d - 0x%x\n", resid, resid); +#endif + + /* + * Dequeue all queued CCBs for that device + * not yet started by SCRIPTS. + */ + i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; + i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); + + /* + * Restart the SCRIPTS processor. + */ + OUTL_DSP(np, SCRIPTA_BA(np, start)); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + if (cp->host_status == HS_COMPLETE && + cp->ssss_status == S_QUEUE_FULL) { + if (!lp || lp->started_tags - i < 2) + goto weirdness; + /* + * Decrease queue depth as needed. + */ + lp->started_max = lp->started_tags - i - 1; + lp->num_sgood = 0; + + if (sym_verbose >= 2) { + sym_print_addr(cmd, " queue depth is now %d\n", + lp->started_max); + } + + /* + * Repair the CCB. + */ + cp->host_status = HS_BUSY; + cp->ssss_status = S_ILLEGAL; + + /* + * Let's requeue it to device. + */ + sym_set_cam_status(cmd, DID_SOFT_ERROR); + goto finish; + } +weirdness: +#endif + /* + * Build result in CAM ccb. + */ + sym_set_cam_result_error(np, cp, resid); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING +finish: +#endif + /* + * Add this one to the COMP queue. + */ + sym_remque(&cp->link_ccbq); + sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); + + /* + * Complete all those commands with either error + * or requeue condition. + */ + sym_flush_comp_queue(np, 0); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Donnot start more than 1 command after an error. + */ + sym_start_next_ccbs(np, lp, 1); +#endif +} + +/* + * Complete execution of a successful SCSI command. + * + * Only successful commands go to the DONE queue, + * since we need to have the SCRIPTS processor + * stopped on any error condition. + * The SCRIPTS processor is running while we are + * completing successful commands. + */ +void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) +{ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + struct sym_tcb *tp; + struct sym_lcb *lp; +#endif + struct scsi_cmnd *cmd; + int resid; + + /* + * Paranoid check. :) + */ + if (!cp || !cp->cmd) + return; + assert (cp->host_status == HS_COMPLETE); + + /* + * Get user command. + */ + cmd = cp->cmd; + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Get target and lun pointers. + */ + tp = &np->target[cp->target]; + lp = sym_lp(tp, cp->lun); +#endif + + /* + * If all data have been transferred, given than no + * extended error did occur, there is no residual. + */ + resid = 0; + if (cp->phys.head.lastp != cp->goalp) + resid = sym_compute_residual(np, cp); + + /* + * Wrong transfer residuals may be worse than just always + * returning zero. User can disable this feature in + * sym53c8xx.h. Residual support is enabled by default. + */ + if (!SYM_SETUP_RESIDUAL_SUPPORT) + resid = 0; +#ifdef DEBUG_2_0_X +if (resid) + printf("XXXX RESID= %d - 0x%x\n", resid, resid); +#endif + + /* + * Build result in CAM ccb. + */ + sym_set_cam_result_ok(cp, cmd, resid); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * If max number of started ccbs had been reduced, + * increase it if 200 good status received. + */ + if (lp && lp->started_max < lp->started_limit) { + ++lp->num_sgood; + if (lp->num_sgood >= 200) { + lp->num_sgood = 0; + ++lp->started_max; + if (sym_verbose >= 2) { + sym_print_addr(cmd, " queue depth is now %d\n", + lp->started_max); + } + } + } +#endif + + /* + * Free our CCB. + */ + sym_free_ccb (np, cp); + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Requeue a couple of awaiting scsi commands. + */ + if (!sym_que_empty(&lp->waiting_ccbq)) + sym_start_next_ccbs(np, lp, 2); +#endif + /* + * Complete the command. + */ + sym_xpt_done(np, cmd); +} + +/* + * Soft-attach the controller. + */ +int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) +{ + struct sym_hcb *np = sym_get_hcb(shost); + int i; + + /* + * Get some info about the firmware. + */ + np->scripta_sz = fw->a_size; + np->scriptb_sz = fw->b_size; + np->scriptz_sz = fw->z_size; + np->fw_setup = fw->setup; + np->fw_patch = fw->patch; + np->fw_name = fw->name; + + /* + * Save setting of some IO registers, so we will + * be able to probe specific implementations. + */ + sym_save_initial_setting (np); + + /* + * Reset the chip now, since it has been reported + * that SCSI clock calibration may not work properly + * if the chip is currently active. + */ + sym_chip_reset(np); + + /* + * Prepare controller and devices settings, according + * to chip features, user set-up and driver set-up. + */ + sym_prepare_setting(shost, np, nvram); + + /* + * Check the PCI clock frequency. + * Must be performed after prepare_setting since it destroys + * STEST1 that is used to probe for the clock doubler. + */ + i = sym_getpciclock(np); + if (i > 37000 && !(np->features & FE_66MHZ)) + printf("%s: PCI BUS clock seems too high: %u KHz.\n", + sym_name(np), i); + + /* + * Allocate the start queue. + */ + np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); + if (!np->squeue) + goto attach_failed; + np->squeue_ba = vtobus(np->squeue); + + /* + * Allocate the done queue. + */ + np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); + if (!np->dqueue) + goto attach_failed; + np->dqueue_ba = vtobus(np->dqueue); + + /* + * Allocate the target bus address array. + */ + np->targtbl = sym_calloc_dma(256, "TARGTBL"); + if (!np->targtbl) + goto attach_failed; + np->targtbl_ba = vtobus(np->targtbl); + + /* + * Allocate SCRIPTS areas. + */ + np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); + np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); + np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); + if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) + goto attach_failed; + + /* + * Allocate the array of lists of CCBs hashed by DSA. + */ + np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(*np->ccbh), GFP_KERNEL); + if (!np->ccbh) + goto attach_failed; + + /* + * Initialyze the CCB free and busy queues. + */ + sym_que_init(&np->free_ccbq); + sym_que_init(&np->busy_ccbq); + sym_que_init(&np->comp_ccbq); + + /* + * Initialization for optional handling + * of device queueing. + */ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + sym_que_init(&np->dummy_ccbq); +#endif + /* + * Allocate some CCB. We need at least ONE. + */ + if (!sym_alloc_ccb(np)) + goto attach_failed; + + /* + * Calculate BUS addresses where we are going + * to load the SCRIPTS. + */ + np->scripta_ba = vtobus(np->scripta0); + np->scriptb_ba = vtobus(np->scriptb0); + np->scriptz_ba = vtobus(np->scriptz0); + + if (np->ram_ba) { + np->scripta_ba = np->ram_ba; + if (np->features & FE_RAM8K) { + np->scriptb_ba = np->scripta_ba + 4096; +#if 0 /* May get useful for 64 BIT PCI addressing */ + np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); +#endif + } + } + + /* + * Copy scripts to controller instance. + */ + memcpy(np->scripta0, fw->a_base, np->scripta_sz); + memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); + memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); + + /* + * Setup variable parts in scripts and compute + * scripts bus addresses used from the C code. + */ + np->fw_setup(np, fw); + + /* + * Bind SCRIPTS with physical addresses usable by the + * SCRIPTS processor (as seen from the BUS = BUS addresses). + */ + sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); + sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); + sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); + +#ifdef SYM_CONF_IARB_SUPPORT + /* + * If user wants IARB to be set when we win arbitration + * and have other jobs, compute the max number of consecutive + * settings of IARB hints before we leave devices a chance to + * arbitrate for reselection. + */ +#ifdef SYM_SETUP_IARB_MAX + np->iarb_max = SYM_SETUP_IARB_MAX; +#else + np->iarb_max = 4; +#endif +#endif + + /* + * Prepare the idle and invalid task actions. + */ + np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + np->idletask_ba = vtobus(&np->idletask); + + np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + np->notask_ba = vtobus(&np->notask); + + np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); + np->bad_itl_ba = vtobus(&np->bad_itl); + + np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); + np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); + np->bad_itlq_ba = vtobus(&np->bad_itlq); + + /* + * Allocate and prepare the lun JUMP table that is used + * for a target prior the probing of devices (bad lun table). + * A private table will be allocated for the target on the + * first INQUIRY response received. + */ + np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); + if (!np->badluntbl) + goto attach_failed; + + np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); + memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); + + /* + * Prepare the bus address array that contains the bus + * address of each target control block. + * For now, assume all logical units are wrong. :) + */ + for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { + np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); + np->target[i].head.luntbl_sa = + cpu_to_scr(vtobus(np->badluntbl)); + np->target[i].head.lun0_sa = + cpu_to_scr(vtobus(&np->badlun_sa)); + } + + /* + * Now check the cache handling of the pci chipset. + */ + if (sym_snooptest (np)) { + printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); + goto attach_failed; + } + + /* + * Sigh! we are done. + */ + return 0; + +attach_failed: + return -ENXIO; +} + +/* + * Free everything that has been allocated for this device. + */ +void sym_hcb_free(struct sym_hcb *np) +{ + SYM_QUEHEAD *qp; + struct sym_ccb *cp; + struct sym_tcb *tp; + int target; + + if (np->scriptz0) + sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); + if (np->scriptb0) + sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); + if (np->scripta0) + sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); + if (np->squeue) + sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); + if (np->dqueue) + sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); + + if (np->actccbs) { + while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { + cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); + sym_mfree_dma(cp, sizeof(*cp), "CCB"); + } + } + kfree(np->ccbh); + + if (np->badluntbl) + sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); + + for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { + tp = &np->target[target]; + if (tp->luntbl) + sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); +#if SYM_CONF_MAX_LUN > 1 + kfree(tp->lunmp); +#endif + } + if (np->targtbl) + sym_mfree_dma(np->targtbl, 256, "TARGTBL"); +} diff --git a/drivers/scsi/sym53c8xx_2/sym_hipd.h b/drivers/scsi/sym53c8xx_2/sym_hipd.h new file mode 100644 index 000000000..9231a2899 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_hipd.h @@ -0,0 +1,1213 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include <linux/gfp.h> + +#ifndef SYM_HIPD_H +#define SYM_HIPD_H + +/* + * Generic driver options. + * + * They may be defined in platform specific headers, if they + * are useful. + * + * SYM_OPT_HANDLE_DEVICE_QUEUEING + * When this option is set, the driver will use a queue per + * device and handle QUEUE FULL status requeuing internally. + * + * SYM_OPT_LIMIT_COMMAND_REORDERING + * When this option is set, the driver tries to limit tagged + * command reordering to some reasonable value. + * (set for Linux) + */ +#if 0 +#define SYM_OPT_HANDLE_DEVICE_QUEUEING +#define SYM_OPT_LIMIT_COMMAND_REORDERING +#endif + +/* + * Active debugging tags and verbosity. + * Both DEBUG_FLAGS and sym_verbose can be redefined + * by the platform specific code to something else. + */ +#define DEBUG_ALLOC (0x0001) +#define DEBUG_PHASE (0x0002) +#define DEBUG_POLL (0x0004) +#define DEBUG_QUEUE (0x0008) +#define DEBUG_RESULT (0x0010) +#define DEBUG_SCATTER (0x0020) +#define DEBUG_SCRIPT (0x0040) +#define DEBUG_TINY (0x0080) +#define DEBUG_TIMING (0x0100) +#define DEBUG_NEGO (0x0200) +#define DEBUG_TAGS (0x0400) +#define DEBUG_POINTER (0x0800) + +#ifndef DEBUG_FLAGS +#define DEBUG_FLAGS (0x0000) +#endif + +#ifndef sym_verbose +#define sym_verbose (np->verbose) +#endif + +/* + * These ones should have been already defined. + */ +#ifndef assert +#define assert(expression) { \ + if (!(expression)) { \ + (void)panic( \ + "assertion \"%s\" failed: file \"%s\", line %d\n", \ + #expression, \ + __FILE__, __LINE__); \ + } \ +} +#endif + +/* + * Number of tasks per device we want to handle. + */ +#if SYM_CONF_MAX_TAG_ORDER > 8 +#error "more than 256 tags per logical unit not allowed." +#endif +#define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) + +/* + * Donnot use more tasks that we can handle. + */ +#ifndef SYM_CONF_MAX_TAG +#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK +#endif +#if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK +#undef SYM_CONF_MAX_TAG +#define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK +#endif + +/* + * This one means 'NO TAG for this job' + */ +#define NO_TAG (256) + +/* + * Number of SCSI targets. + */ +#if SYM_CONF_MAX_TARGET > 16 +#error "more than 16 targets not allowed." +#endif + +/* + * Number of logical units per target. + */ +#if SYM_CONF_MAX_LUN > 64 +#error "more than 64 logical units per target not allowed." +#endif + +/* + * Asynchronous pre-scaler (ns). Shall be 40 for + * the SCSI timings to be compliant. + */ +#define SYM_CONF_MIN_ASYNC (40) + + +/* + * MEMORY ALLOCATOR. + */ + +#define SYM_MEM_WARN 1 /* Warn on failed operations */ + +#define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */ +#define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER) +#define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */ +/* + * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16. + * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized. + * (1 PAGE at a time is just fine). + */ +#define SYM_MEM_SHIFT 4 +#define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT) +#define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1) + +/* + * Number of entries in the START and DONE queues. + * + * We limit to 1 PAGE in order to succeed allocation of + * these queues. Each entry is 8 bytes long (2 DWORDS). + */ +#ifdef SYM_CONF_MAX_START +#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) +#else +#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) +#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) +#endif + +#if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8 +#undef SYM_CONF_MAX_QUEUE +#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8) +#undef SYM_CONF_MAX_START +#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) +#endif + +/* + * For this one, we want a short name :-) + */ +#define MAX_QUEUE SYM_CONF_MAX_QUEUE + +/* + * Common definitions for both bus space based and legacy IO methods. + */ + +#define INB_OFF(np, o) ioread8(np->s.ioaddr + (o)) +#define INW_OFF(np, o) ioread16(np->s.ioaddr + (o)) +#define INL_OFF(np, o) ioread32(np->s.ioaddr + (o)) + +#define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o)) +#define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o)) +#define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o)) + +#define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r)) +#define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r)) +#define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r)) + +#define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v)) +#define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v)) +#define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v)) + +#define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m)) +#define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m)) +#define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m)) +#define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m)) +#define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m)) +#define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m)) + +/* + * We normally want the chip to have a consistent view + * of driver internal data structures when we restart it. + * Thus these macros. + */ +#define OUTL_DSP(np, v) \ + do { \ + MEMORY_WRITE_BARRIER(); \ + OUTL(np, nc_dsp, (v)); \ + } while (0) + +#define OUTONB_STD() \ + do { \ + MEMORY_WRITE_BARRIER(); \ + OUTONB(np, nc_dcntl, (STD|NOCOM)); \ + } while (0) + +/* + * Command control block states. + */ +#define HS_IDLE (0) +#define HS_BUSY (1) +#define HS_NEGOTIATE (2) /* sync/wide data transfer*/ +#define HS_DISCONNECT (3) /* Disconnected by target */ +#define HS_WAIT (4) /* waiting for resource */ + +#define HS_DONEMASK (0x80) +#define HS_COMPLETE (4|HS_DONEMASK) +#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ +#define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ +#define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ + +/* + * Software Interrupt Codes + */ +#define SIR_BAD_SCSI_STATUS (1) +#define SIR_SEL_ATN_NO_MSG_OUT (2) +#define SIR_MSG_RECEIVED (3) +#define SIR_MSG_WEIRD (4) +#define SIR_NEGO_FAILED (5) +#define SIR_NEGO_PROTO (6) +#define SIR_SCRIPT_STOPPED (7) +#define SIR_REJECT_TO_SEND (8) +#define SIR_SWIDE_OVERRUN (9) +#define SIR_SODL_UNDERRUN (10) +#define SIR_RESEL_NO_MSG_IN (11) +#define SIR_RESEL_NO_IDENTIFY (12) +#define SIR_RESEL_BAD_LUN (13) +#define SIR_TARGET_SELECTED (14) +#define SIR_RESEL_BAD_I_T_L (15) +#define SIR_RESEL_BAD_I_T_L_Q (16) +#define SIR_ABORT_SENT (17) +#define SIR_RESEL_ABORTED (18) +#define SIR_MSG_OUT_DONE (19) +#define SIR_COMPLETE_ERROR (20) +#define SIR_DATA_OVERRUN (21) +#define SIR_BAD_PHASE (22) +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 +#define SIR_DMAP_DIRTY (23) +#define SIR_MAX (23) +#else +#define SIR_MAX (22) +#endif + +/* + * Extended error bit codes. + * xerr_status field of struct sym_ccb. + */ +#define XE_EXTRA_DATA (1) /* unexpected data phase */ +#define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ +#define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ +#define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ +#define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ + +/* + * Negotiation status. + * nego_status field of struct sym_ccb. + */ +#define NS_SYNC (1) +#define NS_WIDE (2) +#define NS_PPR (3) + +/* + * A CCB hashed table is used to retrieve CCB address + * from DSA value. + */ +#define CCB_HASH_SHIFT 8 +#define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) +#define CCB_HASH_MASK (CCB_HASH_SIZE-1) +#if 1 +#define CCB_HASH_CODE(dsa) \ + (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK) +#else +#define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) +#endif + +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 +/* + * We may want to use segment registers for 64 bit DMA. + * 16 segments registers -> up to 64 GB addressable. + */ +#define SYM_DMAP_SHIFT (4) +#define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT) +#define SYM_DMAP_MASK (SYM_DMAP_SIZE-1) +#endif + +/* + * Device flags. + */ +#define SYM_DISC_ENABLED (1) +#define SYM_TAGS_ENABLED (1<<1) +#define SYM_SCAN_BOOT_DISABLED (1<<2) +#define SYM_SCAN_LUNS_DISABLED (1<<3) + +/* + * Host adapter miscellaneous flags. + */ +#define SYM_AVOID_BUS_RESET (1) + +/* + * Misc. + */ +#define SYM_SNOOP_TIMEOUT (10000000) +#define BUS_8_BIT 0 +#define BUS_16_BIT 1 + +/* + * Gather negotiable parameters value + */ +struct sym_trans { + u8 period; + u8 offset; + unsigned int width:1; + unsigned int iu:1; + unsigned int dt:1; + unsigned int qas:1; + unsigned int check_nego:1; + unsigned int renego:2; +}; + +/* + * Global TCB HEADER. + * + * Due to lack of indirect addressing on earlier NCR chips, + * this substructure is copied from the TCB to a global + * address after selection. + * For SYMBIOS chips that support LOAD/STORE this copy is + * not needed and thus not performed. + */ +struct sym_tcbh { + /* + * Scripts bus addresses of LUN table accessed from scripts. + * LUN #0 is a special case, since multi-lun devices are rare, + * and we we want to speed-up the general case and not waste + * resources. + */ + u32 luntbl_sa; /* bus address of this table */ + u32 lun0_sa; /* bus address of LCB #0 */ + /* + * Actual SYNC/WIDE IO registers value for this target. + * 'sval', 'wval' and 'uval' are read from SCRIPTS and + * so have alignment constraints. + */ +/*0*/ u_char uval; /* -> SCNTL4 register */ +/*1*/ u_char sval; /* -> SXFER io register */ +/*2*/ u_char filler1; +/*3*/ u_char wval; /* -> SCNTL3 io register */ +}; + +/* + * Target Control Block + */ +struct sym_tcb { + /* + * TCB header. + * Assumed at offset 0. + */ +/*0*/ struct sym_tcbh head; + + /* + * LUN table used by the SCRIPTS processor. + * An array of bus addresses is used on reselection. + */ + u32 *luntbl; /* LCBs bus address table */ + int nlcb; /* Number of valid LCBs (including LUN #0) */ + + /* + * LUN table used by the C code. + */ + struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */ +#if SYM_CONF_MAX_LUN > 1 + struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */ +#endif + +#ifdef SYM_HAVE_STCB + /* + * O/S specific data structure. + */ + struct sym_stcb s; +#endif + + /* Transfer goal */ + struct sym_trans tgoal; + + /* Last printed transfer speed */ + struct sym_trans tprint; + + /* + * Keep track of the CCB used for the negotiation in order + * to ensure that only 1 negotiation is queued at a time. + */ + struct sym_ccb * nego_cp; /* CCB used for the nego */ + + /* + * Set when we want to reset the device. + */ + u_char to_reset; + + /* + * Other user settable limits and options. + * These limits are read from the NVRAM if present. + */ + unsigned char usrflags; + unsigned char usr_period; + unsigned char usr_width; + unsigned short usrtags; + struct scsi_target *starget; +}; + +/* + * Global LCB HEADER. + * + * Due to lack of indirect addressing on earlier NCR chips, + * this substructure is copied from the LCB to a global + * address after selection. + * For SYMBIOS chips that support LOAD/STORE this copy is + * not needed and thus not performed. + */ +struct sym_lcbh { + /* + * SCRIPTS address jumped by SCRIPTS on reselection. + * For not probed logical units, this address points to + * SCRIPTS that deal with bad LU handling (must be at + * offset zero of the LCB for that reason). + */ +/*0*/ u32 resel_sa; + + /* + * Task (bus address of a CCB) read from SCRIPTS that points + * to the unique ITL nexus allowed to be disconnected. + */ + u32 itl_task_sa; + + /* + * Task table bus address (read from SCRIPTS). + */ + u32 itlq_tbl_sa; +}; + +/* + * Logical Unit Control Block + */ +struct sym_lcb { + /* + * TCB header. + * Assumed at offset 0. + */ +/*0*/ struct sym_lcbh head; + + /* + * Task table read from SCRIPTS that contains pointers to + * ITLQ nexuses. The bus address read from SCRIPTS is + * inside the header. + */ + u32 *itlq_tbl; /* Kernel virtual address */ + + /* + * Busy CCBs management. + */ + u_short busy_itlq; /* Number of busy tagged CCBs */ + u_short busy_itl; /* Number of busy untagged CCBs */ + + /* + * Circular tag allocation buffer. + */ + u_short ia_tag; /* Tag allocation index */ + u_short if_tag; /* Tag release index */ + u_char *cb_tags; /* Circular tags buffer */ + + /* + * O/S specific data structure. + */ +#ifdef SYM_HAVE_SLCB + struct sym_slcb s; +#endif + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + /* + * Optionnaly the driver can handle device queueing, + * and requeues internally command to redo. + */ + SYM_QUEHEAD waiting_ccbq; + SYM_QUEHEAD started_ccbq; + int num_sgood; + u_short started_tags; + u_short started_no_tag; + u_short started_max; + u_short started_limit; +#endif + +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + /* + * Optionally the driver can try to prevent SCSI + * IOs from being reordered too much. + */ + u_char tags_si; /* Current index to tags sum */ + u_short tags_sum[2]; /* Tags sum counters */ + u_short tags_since; /* # of tags since last switch */ +#endif + + /* + * Set when we want to clear all tasks. + */ + u_char to_clear; + + /* + * Capabilities. + */ + u_char user_flags; + u_char curr_flags; +}; + +/* + * Action from SCRIPTS on a task. + * Is part of the CCB, but is also used separately to plug + * error handling action to perform from SCRIPTS. + */ +struct sym_actscr { + u32 start; /* Jumped by SCRIPTS after selection */ + u32 restart; /* Jumped by SCRIPTS on relection */ +}; + +/* + * Phase mismatch context. + * + * It is part of the CCB and is used as parameters for the + * DATA pointer. We need two contexts to handle correctly the + * SAVED DATA POINTER. + */ +struct sym_pmc { + struct sym_tblmove sg; /* Updated interrupted SG block */ + u32 ret; /* SCRIPT return address */ +}; + +/* + * LUN control block lookup. + * We use a direct pointer for LUN #0, and a table of + * pointers which is only allocated for devices that support + * LUN(s) > 0. + */ +#if SYM_CONF_MAX_LUN <= 1 +#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL +#else +#define sym_lp(tp, lun) \ + (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL +#endif + +/* + * Status are used by the host and the script processor. + * + * The last four bytes (status[4]) are copied to the + * scratchb register (declared as scr0..scr3) just after the + * select/reselect, and copied back just after disconnecting. + * Inside the script the XX_REG are used. + */ + +/* + * Last four bytes (script) + */ +#define HX_REG scr0 +#define HX_PRT nc_scr0 +#define HS_REG scr1 +#define HS_PRT nc_scr1 +#define SS_REG scr2 +#define SS_PRT nc_scr2 +#define HF_REG scr3 +#define HF_PRT nc_scr3 + +/* + * Last four bytes (host) + */ +#define host_xflags phys.head.status[0] +#define host_status phys.head.status[1] +#define ssss_status phys.head.status[2] +#define host_flags phys.head.status[3] + +/* + * Host flags + */ +#define HF_IN_PM0 1u +#define HF_IN_PM1 (1u<<1) +#define HF_ACT_PM (1u<<2) +#define HF_DP_SAVED (1u<<3) +#define HF_SENSE (1u<<4) +#define HF_EXT_ERR (1u<<5) +#define HF_DATA_IN (1u<<6) +#ifdef SYM_CONF_IARB_SUPPORT +#define HF_HINT_IARB (1u<<7) +#endif + +/* + * More host flags + */ +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 +#define HX_DMAP_DIRTY (1u<<7) +#endif + +/* + * Global CCB HEADER. + * + * Due to lack of indirect addressing on earlier NCR chips, + * this substructure is copied from the ccb to a global + * address after selection (or reselection) and copied back + * before disconnect. + * For SYMBIOS chips that support LOAD/STORE this copy is + * not needed and thus not performed. + */ + +struct sym_ccbh { + /* + * Start and restart SCRIPTS addresses (must be at 0). + */ +/*0*/ struct sym_actscr go; + + /* + * SCRIPTS jump address that deal with data pointers. + * 'savep' points to the position in the script responsible + * for the actual transfer of data. + * It's written on reception of a SAVE_DATA_POINTER message. + */ + u32 savep; /* Jump address to saved data pointer */ + u32 lastp; /* SCRIPTS address at end of data */ + + /* + * Status fields. + */ + u8 status[4]; +}; + +/* + * GET/SET the value of the data pointer used by SCRIPTS. + * + * We must distinguish between the LOAD/STORE-based SCRIPTS + * that use directly the header in the CCB, and the NCR-GENERIC + * SCRIPTS that use the copy of the header in the HCB. + */ +#if SYM_CONF_GENERIC_SUPPORT +#define sym_set_script_dp(np, cp, dp) \ + do { \ + if (np->features & FE_LDSTR) \ + cp->phys.head.lastp = cpu_to_scr(dp); \ + else \ + np->ccb_head.lastp = cpu_to_scr(dp); \ + } while (0) +#define sym_get_script_dp(np, cp) \ + scr_to_cpu((np->features & FE_LDSTR) ? \ + cp->phys.head.lastp : np->ccb_head.lastp) +#else +#define sym_set_script_dp(np, cp, dp) \ + do { \ + cp->phys.head.lastp = cpu_to_scr(dp); \ + } while (0) + +#define sym_get_script_dp(np, cp) (cp->phys.head.lastp) +#endif + +/* + * Data Structure Block + * + * During execution of a ccb by the script processor, the + * DSA (data structure address) register points to this + * substructure of the ccb. + */ +struct sym_dsb { + /* + * CCB header. + * Also assumed at offset 0 of the sym_ccb structure. + */ +/*0*/ struct sym_ccbh head; + + /* + * Phase mismatch contexts. + * We need two to handle correctly the SAVED DATA POINTER. + * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic + * for address calculation from SCRIPTS. + */ + struct sym_pmc pm0; + struct sym_pmc pm1; + + /* + * Table data for Script + */ + struct sym_tblsel select; + struct sym_tblmove smsg; + struct sym_tblmove smsg_ext; + struct sym_tblmove cmd; + struct sym_tblmove sense; + struct sym_tblmove wresid; + struct sym_tblmove data [SYM_CONF_MAX_SG]; +}; + +/* + * Our Command Control Block + */ +struct sym_ccb { + /* + * This is the data structure which is pointed by the DSA + * register when it is executed by the script processor. + * It must be the first entry. + */ + struct sym_dsb phys; + + /* + * Pointer to CAM ccb and related stuff. + */ + struct scsi_cmnd *cmd; /* CAM scsiio ccb */ + u8 cdb_buf[16]; /* Copy of CDB */ +#define SYM_SNS_BBUF_LEN 32 + u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */ + int data_len; /* Total data length */ + int segments; /* Number of SG segments */ + + u8 order; /* Tag type (if tagged command) */ + unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */ + + u_char nego_status; /* Negotiation status */ + u_char xerr_status; /* Extended error flags */ + u32 extra_bytes; /* Extraneous bytes transferred */ + + /* + * Message areas. + * We prepare a message to be sent after selection. + * We may use a second one if the command is rescheduled + * due to CHECK_CONDITION or COMMAND TERMINATED. + * Contents are IDENTIFY and SIMPLE_TAG. + * While negotiating sync or wide transfer, + * a SDTR or WDTR message is appended. + */ + u_char scsi_smsg [12]; + u_char scsi_smsg2[12]; + + /* + * Auto request sense related fields. + */ + u_char sensecmd[6]; /* Request Sense command */ + u_char sv_scsi_status; /* Saved SCSI status */ + u_char sv_xerr_status; /* Saved extended status */ + int sv_resid; /* Saved residual */ + + /* + * Other fields. + */ + u32 ccb_ba; /* BUS address of this CCB */ + u_short tag; /* Tag for this transfer */ + /* NO_TAG means no tag */ + u_char target; + u_char lun; + struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */ + SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */ + u32 startp; /* Initial data pointer */ + u32 goalp; /* Expected last data pointer */ + int ext_sg; /* Extreme data pointer, used */ + int ext_ofs; /* to calculate the residual. */ +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + SYM_QUEHEAD link2_ccbq; /* Link for device queueing */ + u_char started; /* CCB queued to the squeue */ +#endif + u_char to_abort; /* Want this IO to be aborted */ +#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING + u_char tags_si; /* Lun tags sum index (0,1) */ +#endif +}; + +#define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl)) + +typedef struct device *m_pool_ident_t; + +/* + * Host Control Block + */ +struct sym_hcb { + /* + * Global headers. + * Due to poorness of addressing capabilities, earlier + * chips (810, 815, 825) copy part of the data structures + * (CCB, TCB and LCB) in fixed areas. + */ +#if SYM_CONF_GENERIC_SUPPORT + struct sym_ccbh ccb_head; + struct sym_tcbh tcb_head; + struct sym_lcbh lcb_head; +#endif + /* + * Idle task and invalid task actions and + * their bus addresses. + */ + struct sym_actscr idletask, notask, bad_itl, bad_itlq; + u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; + + /* + * Dummy lun table to protect us against target + * returning bad lun number on reselection. + */ + u32 *badluntbl; /* Table physical address */ + u32 badlun_sa; /* SCRIPT handler BUS address */ + + /* + * Bus address of this host control block. + */ + u32 hcb_ba; + + /* + * Bit 32-63 of the on-chip RAM bus address in LE format. + * The START_RAM64 script loads the MMRS and MMWS from this + * field. + */ + u32 scr_ram_seg; + + /* + * Initial value of some IO register bits. + * These values are assumed to have been set by BIOS, and may + * be used to probe adapter implementation differences. + */ + u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, + sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, + sv_stest1; + + /* + * Actual initial value of IO register bits used by the + * driver. They are loaded at initialisation according to + * features that are to be enabled/disabled. + */ + u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, + rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; + + /* + * Target data. + */ + struct sym_tcb target[SYM_CONF_MAX_TARGET]; + + /* + * Target control block bus address array used by the SCRIPT + * on reselection. + */ + u32 *targtbl; + u32 targtbl_ba; + + /* + * DMA pool handle for this HBA. + */ + m_pool_ident_t bus_dmat; + + /* + * O/S specific data structure + */ + struct sym_shcb s; + + /* + * Physical bus addresses of the chip. + */ + u32 mmio_ba; /* MMIO 32 bit BUS address */ + u32 ram_ba; /* RAM 32 bit BUS address */ + + /* + * SCRIPTS virtual and physical bus addresses. + * 'script' is loaded in the on-chip RAM if present. + * 'scripth' stays in main memory for all chips except the + * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. + */ + u_char *scripta0; /* Copy of scripts A, B, Z */ + u_char *scriptb0; + u_char *scriptz0; + u32 scripta_ba; /* Actual scripts A, B, Z */ + u32 scriptb_ba; /* 32 bit bus addresses. */ + u32 scriptz_ba; + u_short scripta_sz; /* Actual size of script A, B, Z*/ + u_short scriptb_sz; + u_short scriptz_sz; + + /* + * Bus addresses, setup and patch methods for + * the selected firmware. + */ + struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ + struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ + struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */ + void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw); + void (*fw_patch)(struct Scsi_Host *); + char *fw_name; + + /* + * General controller parameters and configuration. + */ + u_int features; /* Chip features map */ + u_char myaddr; /* SCSI id of the adapter */ + u_char maxburst; /* log base 2 of dwords burst */ + u_char maxwide; /* Maximum transfer width */ + u_char minsync; /* Min sync period factor (ST) */ + u_char maxsync; /* Max sync period factor (ST) */ + u_char maxoffs; /* Max scsi offset (ST) */ + u_char minsync_dt; /* Min sync period factor (DT) */ + u_char maxsync_dt; /* Max sync period factor (DT) */ + u_char maxoffs_dt; /* Max scsi offset (DT) */ + u_char multiplier; /* Clock multiplier (1,2,4) */ + u_char clock_divn; /* Number of clock divisors */ + u32 clock_khz; /* SCSI clock frequency in KHz */ + u32 pciclk_khz; /* Estimated PCI clock in KHz */ + /* + * Start queue management. + * It is filled up by the host processor and accessed by the + * SCRIPTS processor in order to start SCSI commands. + */ + volatile /* Prevent code optimizations */ + u32 *squeue; /* Start queue virtual address */ + u32 squeue_ba; /* Start queue BUS address */ + u_short squeueput; /* Next free slot of the queue */ + u_short actccbs; /* Number of allocated CCBs */ + + /* + * Command completion queue. + * It is the same size as the start queue to avoid overflow. + */ + u_short dqueueget; /* Next position to scan */ + volatile /* Prevent code optimizations */ + u32 *dqueue; /* Completion (done) queue */ + u32 dqueue_ba; /* Done queue BUS address */ + + /* + * Miscellaneous buffers accessed by the scripts-processor. + * They shall be DWORD aligned, because they may be read or + * written with a script command. + */ + u_char msgout[8]; /* Buffer for MESSAGE OUT */ + u_char msgin [8]; /* Buffer for MESSAGE IN */ + u32 lastmsg; /* Last SCSI message sent */ + u32 scratch; /* Scratch for SCSI receive */ + /* Also used for cache test */ + /* + * Miscellaneous configuration and status parameters. + */ + u_char usrflags; /* Miscellaneous user flags */ + u_char scsi_mode; /* Current SCSI BUS mode */ + u_char verbose; /* Verbosity for this controller*/ + + /* + * CCB lists and queue. + */ + struct sym_ccb **ccbh; /* CCBs hashed by DSA value */ + /* CCB_HASH_SIZE lists of CCBs */ + SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ + SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ + + /* + * During error handling and/or recovery, + * active CCBs that are to be completed with + * error or requeued are moved from the busy_ccbq + * to the comp_ccbq prior to completion. + */ + SYM_QUEHEAD comp_ccbq; + +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING + SYM_QUEHEAD dummy_ccbq; +#endif + + /* + * IMMEDIATE ARBITRATION (IARB) control. + * + * We keep track in 'last_cp' of the last CCB that has been + * queued to the SCRIPTS processor and clear 'last_cp' when + * this CCB completes. If last_cp is not zero at the moment + * we queue a new CCB, we set a flag in 'last_cp' that is + * used by the SCRIPTS as a hint for setting IARB. + * We donnot set more than 'iarb_max' consecutive hints for + * IARB in order to leave devices a chance to reselect. + * By the way, any non zero value of 'iarb_max' is unfair. :) + */ +#ifdef SYM_CONF_IARB_SUPPORT + u_short iarb_max; /* Max. # consecutive IARB hints*/ + u_short iarb_count; /* Actual # of these hints */ + struct sym_ccb * last_cp; +#endif + + /* + * Command abort handling. + * We need to synchronize tightly with the SCRIPTS + * processor in order to handle things correctly. + */ + u_char abrt_msg[4]; /* Message to send buffer */ + struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ + struct sym_tblsel abrt_sel; /* Sync params for selection */ + u_char istat_sem; /* Tells the chip to stop (SEM) */ + + /* + * 64 bit DMA handling. + */ +#if SYM_CONF_DMA_ADDRESSING_MODE != 0 + u_char use_dac; /* Use PCI DAC cycles */ +#if SYM_CONF_DMA_ADDRESSING_MODE == 2 + u_char dmap_dirty; /* Dma segments registers dirty */ + u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */ +#endif +#endif +}; + +#if SYM_CONF_DMA_ADDRESSING_MODE == 0 +#define use_dac(np) 0 +#define set_dac(np) do { } while (0) +#else +#define use_dac(np) (np)->use_dac +#define set_dac(np) (np)->use_dac = 1 +#endif + +#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) + + +/* + * FIRMWARES (sym_fw.c) + */ +struct sym_fw * sym_find_firmware(struct sym_chip *chip); +void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len); + +/* + * Driver methods called from O/S specific code. + */ +char *sym_driver_name(void); +void sym_print_xerr(struct scsi_cmnd *cmd, int x_status); +int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int); +struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision); +#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING +void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn); +#else +void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp); +#endif +void sym_start_up(struct Scsi_Host *, int reason); +irqreturn_t sym_interrupt(struct Scsi_Host *); +int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task); +struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order); +void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp); +struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln); +int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln); +int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp); +int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out); +int sym_reset_scsi_target(struct sym_hcb *np, int target); +void sym_hcb_free(struct sym_hcb *np); +int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram); + +/* + * Build a scatter/gather entry. + * + * For 64 bit systems, we use the 8 upper bits of the size field + * to provide bus address bits 32-39 to the SCRIPTS processor. + * This allows the 895A, 896, 1010 to address up to 1 TB of memory. + */ + +#if SYM_CONF_DMA_ADDRESSING_MODE == 0 +#define DMA_DAC_MASK DMA_BIT_MASK(32) +#define sym_build_sge(np, data, badd, len) \ +do { \ + (data)->addr = cpu_to_scr(badd); \ + (data)->size = cpu_to_scr(len); \ +} while (0) +#elif SYM_CONF_DMA_ADDRESSING_MODE == 1 +#define DMA_DAC_MASK DMA_BIT_MASK(40) +#define sym_build_sge(np, data, badd, len) \ +do { \ + (data)->addr = cpu_to_scr(badd); \ + (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \ +} while (0) +#elif SYM_CONF_DMA_ADDRESSING_MODE == 2 +#define DMA_DAC_MASK DMA_BIT_MASK(64) +int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s); +static inline void +sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len) +{ + u32 h = (badd>>32); + int s = (h&SYM_DMAP_MASK); + + if (h != np->dmap_bah[s]) + goto bad; +good: + (data)->addr = cpu_to_scr(badd); + (data)->size = cpu_to_scr((s<<24) + len); + return; +bad: + s = sym_lookup_dmap(np, h, s); + goto good; +} +#else +#error "Unsupported DMA addressing mode" +#endif + +/* + * MEMORY ALLOCATOR. + */ + +#define sym_get_mem_cluster() \ + (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER) +#define sym_free_mem_cluster(p) \ + free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER) + +/* + * Link between free memory chunks of a given size. + */ +typedef struct sym_m_link { + struct sym_m_link *next; +} *m_link_p; + +/* + * Virtual to bus physical translation for a given cluster. + * Such a structure is only useful with DMA abstraction. + */ +typedef struct sym_m_vtob { /* Virtual to Bus address translation */ + struct sym_m_vtob *next; + void *vaddr; /* Virtual address */ + dma_addr_t baddr; /* Bus physical address */ +} *m_vtob_p; + +/* Hash this stuff a bit to speed up translations */ +#define VTOB_HASH_SHIFT 5 +#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) +#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) +#define VTOB_HASH_CODE(m) \ + ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK) + +/* + * Memory pool of a given kind. + * Ideally, we want to use: + * 1) 1 pool for memory we donnot need to involve in DMA. + * 2) The same pool for controllers that require same DMA + * constraints and features. + * The OS specific m_pool_id_t thing and the sym_m_pool_match() + * method are expected to tell the driver about. + */ +typedef struct sym_m_pool { + m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */ + void * (*get_mem_cluster)(struct sym_m_pool *); +#ifdef SYM_MEM_FREE_UNUSED + void (*free_mem_cluster)(struct sym_m_pool *, void *); +#endif +#define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp) +#define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p) + int nump; + m_vtob_p vtob[VTOB_HASH_SIZE]; + struct sym_m_pool *next; + struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1]; +} *m_pool_p; + +/* + * Alloc, free and translate addresses to bus physical + * for DMAable memory. + */ +void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name); +void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name); +dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m); + +/* + * Verbs used by the driver code for DMAable memory handling. + * The _uvptv_ macro avoids a nasty warning about pointer to volatile + * being discarded. + */ +#define _uvptv_(p) ((void *)((u_long)(p))) + +#define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n) +#define _sym_mfree_dma(np, p, l, n) \ + __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n) +#define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n) +#define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n) +#define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p)) + +/* + * We have to provide the driver memory allocator with methods for + * it to maintain virtual to bus physical address translations. + */ + +#define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2) + +static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) +{ + void *vaddr = NULL; + dma_addr_t baddr = 0; + + vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr, + GFP_ATOMIC); + if (vaddr) { + vbp->vaddr = vaddr; + vbp->baddr = baddr; + } + return vaddr; +} + +static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) +{ + dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr, + vbp->baddr); +} + +#endif /* SYM_HIPD_H */ diff --git a/drivers/scsi/sym53c8xx_2/sym_malloc.c b/drivers/scsi/sym53c8xx_2/sym_malloc.c new file mode 100644 index 000000000..eb5c045c7 --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_malloc.c @@ -0,0 +1,365 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include "sym_glue.h" + +/* + * Simple power of two buddy-like generic allocator. + * Provides naturally aligned memory chunks. + * + * This simple code is not intended to be fast, but to + * provide power of 2 aligned memory allocations. + * Since the SCRIPTS processor only supplies 8 bit arithmetic, + * this allocator allows simple and fast address calculations + * from the SCRIPTS code. In addition, cache line alignment + * is guaranteed for power of 2 cache line size. + * + * This allocator has been developed for the Linux sym53c8xx + * driver, since this O/S does not provide naturally aligned + * allocations. + * It has the advantage of allowing the driver to use private + * pages of memory that will be useful if we ever need to deal + * with IO MMUs for PCI. + */ +static void *___sym_malloc(m_pool_p mp, int size) +{ + int i = 0; + int s = (1 << SYM_MEM_SHIFT); + int j; + void *a; + m_link_p h = mp->h; + + if (size > SYM_MEM_CLUSTER_SIZE) + return NULL; + + while (size > s) { + s <<= 1; + ++i; + } + + j = i; + while (!h[j].next) { + if (s == SYM_MEM_CLUSTER_SIZE) { + h[j].next = (m_link_p) M_GET_MEM_CLUSTER(); + if (h[j].next) + h[j].next->next = NULL; + break; + } + ++j; + s <<= 1; + } + a = h[j].next; + if (a) { + h[j].next = h[j].next->next; + while (j > i) { + j -= 1; + s >>= 1; + h[j].next = (m_link_p) (a+s); + h[j].next->next = NULL; + } + } +#ifdef DEBUG + printf("___sym_malloc(%d) = %p\n", size, (void *) a); +#endif + return a; +} + +/* + * Counter-part of the generic allocator. + */ +static void ___sym_mfree(m_pool_p mp, void *ptr, int size) +{ + int i = 0; + int s = (1 << SYM_MEM_SHIFT); + m_link_p q; + unsigned long a, b; + m_link_p h = mp->h; + +#ifdef DEBUG + printf("___sym_mfree(%p, %d)\n", ptr, size); +#endif + + if (size > SYM_MEM_CLUSTER_SIZE) + return; + + while (size > s) { + s <<= 1; + ++i; + } + + a = (unsigned long)ptr; + + while (1) { + if (s == SYM_MEM_CLUSTER_SIZE) { +#ifdef SYM_MEM_FREE_UNUSED + M_FREE_MEM_CLUSTER((void *)a); +#else + ((m_link_p) a)->next = h[i].next; + h[i].next = (m_link_p) a; +#endif + break; + } + b = a ^ s; + q = &h[i]; + while (q->next && q->next != (m_link_p) b) { + q = q->next; + } + if (!q->next) { + ((m_link_p) a)->next = h[i].next; + h[i].next = (m_link_p) a; + break; + } + q->next = q->next->next; + a = a & b; + s <<= 1; + ++i; + } +} + +/* + * Verbose and zeroing allocator that wrapps to the generic allocator. + */ +static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags) +{ + void *p; + + p = ___sym_malloc(mp, size); + + if (DEBUG_FLAGS & DEBUG_ALLOC) { + printf ("new %-10s[%4d] @%p.\n", name, size, p); + } + + if (p) + memset(p, 0, size); + else if (uflags & SYM_MEM_WARN) + printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size); + return p; +} +#define __sym_calloc(mp, s, n) __sym_calloc2(mp, s, n, SYM_MEM_WARN) + +/* + * Its counter-part. + */ +static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name) +{ + if (DEBUG_FLAGS & DEBUG_ALLOC) + printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr); + + ___sym_mfree(mp, ptr, size); +} + +/* + * Default memory pool we donnot need to involve in DMA. + * + * With DMA abstraction, we use functions (methods), to + * distinguish between non DMAable memory and DMAable memory. + */ +static void *___mp0_get_mem_cluster(m_pool_p mp) +{ + void *m = sym_get_mem_cluster(); + if (m) + ++mp->nump; + return m; +} + +#ifdef SYM_MEM_FREE_UNUSED +static void ___mp0_free_mem_cluster(m_pool_p mp, void *m) +{ + sym_free_mem_cluster(m); + --mp->nump; +} +#else +#define ___mp0_free_mem_cluster NULL +#endif + +static struct sym_m_pool mp0 = { + NULL, + ___mp0_get_mem_cluster, + ___mp0_free_mem_cluster +}; + +/* + * Methods that maintains DMAable pools according to user allocations. + * New pools are created on the fly when a new pool id is provided. + * They are deleted on the fly when they get emptied. + */ +/* Get a memory cluster that matches the DMA constraints of a given pool */ +static void * ___get_dma_mem_cluster(m_pool_p mp) +{ + m_vtob_p vbp; + void *vaddr; + + vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB"); + if (!vbp) + goto out_err; + + vaddr = sym_m_get_dma_mem_cluster(mp, vbp); + if (vaddr) { + int hc = VTOB_HASH_CODE(vaddr); + vbp->next = mp->vtob[hc]; + mp->vtob[hc] = vbp; + ++mp->nump; + } + return vaddr; +out_err: + return NULL; +} + +#ifdef SYM_MEM_FREE_UNUSED +/* Free a memory cluster and associated resources for DMA */ +static void ___free_dma_mem_cluster(m_pool_p mp, void *m) +{ + m_vtob_p *vbpp, vbp; + int hc = VTOB_HASH_CODE(m); + + vbpp = &mp->vtob[hc]; + while (*vbpp && (*vbpp)->vaddr != m) + vbpp = &(*vbpp)->next; + if (*vbpp) { + vbp = *vbpp; + *vbpp = (*vbpp)->next; + sym_m_free_dma_mem_cluster(mp, vbp); + __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB"); + --mp->nump; + } +} +#endif + +/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */ +static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat) +{ + m_pool_p mp; + for (mp = mp0.next; + mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat); + mp = mp->next); + return mp; +} + +/* Create a new memory DMAable pool (when fetch failed) */ +static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat) +{ + m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL"); + if (mp) { + mp->dev_dmat = dev_dmat; + mp->get_mem_cluster = ___get_dma_mem_cluster; +#ifdef SYM_MEM_FREE_UNUSED + mp->free_mem_cluster = ___free_dma_mem_cluster; +#endif + mp->next = mp0.next; + mp0.next = mp; + return mp; + } + return NULL; +} + +#ifdef SYM_MEM_FREE_UNUSED +/* Destroy a DMAable memory pool (when got emptied) */ +static void ___del_dma_pool(m_pool_p p) +{ + m_pool_p *pp = &mp0.next; + + while (*pp && *pp != p) + pp = &(*pp)->next; + if (*pp) { + *pp = (*pp)->next; + __sym_mfree(&mp0, p, sizeof(*p), "MPOOL"); + } +} +#endif + +/* This lock protects only the memory allocation/free. */ +static DEFINE_SPINLOCK(sym53c8xx_lock); + +/* + * Actual allocator for DMAable memory. + */ +void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name) +{ + unsigned long flags; + m_pool_p mp; + void *m = NULL; + + spin_lock_irqsave(&sym53c8xx_lock, flags); + mp = ___get_dma_pool(dev_dmat); + if (!mp) + mp = ___cre_dma_pool(dev_dmat); + if (!mp) + goto out; + m = __sym_calloc(mp, size, name); +#ifdef SYM_MEM_FREE_UNUSED + if (!mp->nump) + ___del_dma_pool(mp); +#endif + + out: + spin_unlock_irqrestore(&sym53c8xx_lock, flags); + return m; +} + +void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name) +{ + unsigned long flags; + m_pool_p mp; + + spin_lock_irqsave(&sym53c8xx_lock, flags); + mp = ___get_dma_pool(dev_dmat); + if (!mp) + goto out; + __sym_mfree(mp, m, size, name); +#ifdef SYM_MEM_FREE_UNUSED + if (!mp->nump) + ___del_dma_pool(mp); +#endif + out: + spin_unlock_irqrestore(&sym53c8xx_lock, flags); +} + +/* + * Actual virtual to bus physical address translator + * for 32 bit addressable DMAable memory. + */ +dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m) +{ + unsigned long flags; + m_pool_p mp; + int hc = VTOB_HASH_CODE(m); + m_vtob_p vp = NULL; + void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK); + dma_addr_t b; + + spin_lock_irqsave(&sym53c8xx_lock, flags); + mp = ___get_dma_pool(dev_dmat); + if (mp) { + vp = mp->vtob[hc]; + while (vp && vp->vaddr != a) + vp = vp->next; + } + if (!vp) + panic("sym: VTOBUS FAILED!\n"); + b = vp->baddr + (m - a); + spin_unlock_irqrestore(&sym53c8xx_lock, flags); + return b; +} diff --git a/drivers/scsi/sym53c8xx_2/sym_misc.h b/drivers/scsi/sym53c8xx_2/sym_misc.h new file mode 100644 index 000000000..ef419b7ec --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_misc.h @@ -0,0 +1,177 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#ifndef SYM_MISC_H +#define SYM_MISC_H + +/* + * A la VMS/CAM-3 queue management. + */ +typedef struct sym_quehead { + struct sym_quehead *flink; /* Forward pointer */ + struct sym_quehead *blink; /* Backward pointer */ +} SYM_QUEHEAD; + +#define sym_que_init(ptr) do { \ + (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ +} while (0) + +static inline struct sym_quehead *sym_que_first(struct sym_quehead *head) +{ + return (head->flink == head) ? 0 : head->flink; +} + +static inline struct sym_quehead *sym_que_last(struct sym_quehead *head) +{ + return (head->blink == head) ? 0 : head->blink; +} + +static inline void __sym_que_add(struct sym_quehead * new, + struct sym_quehead * blink, + struct sym_quehead * flink) +{ + flink->blink = new; + new->flink = flink; + new->blink = blink; + blink->flink = new; +} + +static inline void __sym_que_del(struct sym_quehead * blink, + struct sym_quehead * flink) +{ + flink->blink = blink; + blink->flink = flink; +} + +static inline int sym_que_empty(struct sym_quehead *head) +{ + return head->flink == head; +} + +static inline void sym_que_splice(struct sym_quehead *list, + struct sym_quehead *head) +{ + struct sym_quehead *first = list->flink; + + if (first != list) { + struct sym_quehead *last = list->blink; + struct sym_quehead *at = head->flink; + + first->blink = head; + head->flink = first; + + last->flink = at; + at->blink = last; + } +} + +static inline void sym_que_move(struct sym_quehead *orig, + struct sym_quehead *dest) +{ + struct sym_quehead *first, *last; + + first = orig->flink; + if (first != orig) { + first->blink = dest; + dest->flink = first; + last = orig->blink; + last->flink = dest; + dest->blink = last; + orig->flink = orig; + orig->blink = orig; + } else { + dest->flink = dest; + dest->blink = dest; + } +} + +#define sym_que_entry(ptr, type, member) container_of(ptr, type, member) + +#define sym_insque(new, pos) __sym_que_add(new, pos, (pos)->flink) + +#define sym_remque(el) __sym_que_del((el)->blink, (el)->flink) + +#define sym_insque_head(new, head) __sym_que_add(new, head, (head)->flink) + +static inline struct sym_quehead *sym_remque_head(struct sym_quehead *head) +{ + struct sym_quehead *elem = head->flink; + + if (elem != head) + __sym_que_del(head, elem->flink); + else + elem = NULL; + return elem; +} + +#define sym_insque_tail(new, head) __sym_que_add(new, (head)->blink, head) + +static inline struct sym_quehead *sym_remque_tail(struct sym_quehead *head) +{ + struct sym_quehead *elem = head->blink; + + if (elem != head) + __sym_que_del(elem->blink, head); + else + elem = 0; + return elem; +} + +/* + * This one may be useful. + */ +#define FOR_EACH_QUEUED_ELEMENT(head, qp) \ + for (qp = (head)->flink; qp != (head); qp = qp->flink) +/* + * FreeBSD does not offer our kind of queue in the CAM CCB. + * So, we have to cast. + */ +#define sym_qptr(p) ((struct sym_quehead *) (p)) + +/* + * Simple bitmap operations. + */ +#define sym_set_bit(p, n) (((u32 *)(p))[(n)>>5] |= (1<<((n)&0x1f))) +#define sym_clr_bit(p, n) (((u32 *)(p))[(n)>>5] &= ~(1<<((n)&0x1f))) +#define sym_is_bit(p, n) (((u32 *)(p))[(n)>>5] & (1<<((n)&0x1f))) + +/* + * The below round up/down macros are to be used with a constant + * as argument (sizeof(...) for example), for the compiler to + * optimize the whole thing. + */ +#define _U_(a,m) (a)<=(1<<m)?m: + +/* + * Round up logarithm to base 2 of a 16 bit constant. + */ +#define _LGRU16_(a) \ +( \ + _U_(a, 0)_U_(a, 1)_U_(a, 2)_U_(a, 3)_U_(a, 4)_U_(a, 5)_U_(a, 6)_U_(a, 7) \ + _U_(a, 8)_U_(a, 9)_U_(a,10)_U_(a,11)_U_(a,12)_U_(a,13)_U_(a,14)_U_(a,15) \ + 16) + +#endif /* SYM_MISC_H */ diff --git a/drivers/scsi/sym53c8xx_2/sym_nvram.c b/drivers/scsi/sym53c8xx_2/sym_nvram.c new file mode 100644 index 000000000..e13d5351f --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_nvram.c @@ -0,0 +1,767 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#include "sym_glue.h" +#include "sym_nvram.h" + +#ifdef SYM_CONF_DEBUG_NVRAM +static u_char Tekram_boot_delay[7] = {3, 5, 10, 20, 30, 60, 120}; +#endif + +/* + * Get host setup from NVRAM. + */ +void sym_nvram_setup_host(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) +{ + /* + * Get parity checking, host ID, verbose mode + * and miscellaneous host flags from NVRAM. + */ + switch (nvram->type) { + case SYM_SYMBIOS_NVRAM: + if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE)) + np->rv_scntl0 &= ~0x0a; + np->myaddr = nvram->data.Symbios.host_id & 0x0f; + if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS) + np->verbose += 1; + if (nvram->data.Symbios.flags1 & SYMBIOS_SCAN_HI_LO) + shost->reverse_ordering = 1; + if (nvram->data.Symbios.flags2 & SYMBIOS_AVOID_BUS_RESET) + np->usrflags |= SYM_AVOID_BUS_RESET; + break; + case SYM_TEKRAM_NVRAM: + np->myaddr = nvram->data.Tekram.host_id & 0x0f; + break; +#ifdef CONFIG_PARISC + case SYM_PARISC_PDC: + if (nvram->data.parisc.host_id != -1) + np->myaddr = nvram->data.parisc.host_id; + if (nvram->data.parisc.factor != -1) + np->minsync = nvram->data.parisc.factor; + if (nvram->data.parisc.width != -1) + np->maxwide = nvram->data.parisc.width; + switch (nvram->data.parisc.mode) { + case 0: np->scsi_mode = SMODE_SE; break; + case 1: np->scsi_mode = SMODE_HVD; break; + case 2: np->scsi_mode = SMODE_LVD; break; + default: break; + } +#endif + default: + break; + } +} + +/* + * Get target set-up from Symbios format NVRAM. + */ +static void +sym_Symbios_setup_target(struct sym_tcb *tp, int target, Symbios_nvram *nvram) +{ + Symbios_target *tn = &nvram->target[target]; + + if (!(tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)) + tp->usrtags = 0; + if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE)) + tp->usrflags &= ~SYM_DISC_ENABLED; + if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME)) + tp->usrflags |= SYM_SCAN_BOOT_DISABLED; + if (!(tn->flags & SYMBIOS_SCAN_LUNS)) + tp->usrflags |= SYM_SCAN_LUNS_DISABLED; + tp->usr_period = (tn->sync_period + 3) / 4; + tp->usr_width = (tn->bus_width == 0x8) ? 0 : 1; +} + +static const unsigned char Tekram_sync[16] = { + 25, 31, 37, 43, 50, 62, 75, 125, 12, 15, 18, 21, 6, 7, 9, 10 +}; + +/* + * Get target set-up from Tekram format NVRAM. + */ +static void +sym_Tekram_setup_target(struct sym_tcb *tp, int target, Tekram_nvram *nvram) +{ + struct Tekram_target *tn = &nvram->target[target]; + + if (tn->flags & TEKRAM_TAGGED_COMMANDS) { + tp->usrtags = 2 << nvram->max_tags_index; + } + + if (tn->flags & TEKRAM_DISCONNECT_ENABLE) + tp->usrflags |= SYM_DISC_ENABLED; + + if (tn->flags & TEKRAM_SYNC_NEGO) + tp->usr_period = Tekram_sync[tn->sync_index & 0xf]; + tp->usr_width = (tn->flags & TEKRAM_WIDE_NEGO) ? 1 : 0; +} + +/* + * Get target setup from NVRAM. + */ +void sym_nvram_setup_target(struct sym_tcb *tp, int target, struct sym_nvram *nvp) +{ + switch (nvp->type) { + case SYM_SYMBIOS_NVRAM: + sym_Symbios_setup_target(tp, target, &nvp->data.Symbios); + break; + case SYM_TEKRAM_NVRAM: + sym_Tekram_setup_target(tp, target, &nvp->data.Tekram); + break; + default: + break; + } +} + +#ifdef SYM_CONF_DEBUG_NVRAM +/* + * Dump Symbios format NVRAM for debugging purpose. + */ +static void sym_display_Symbios_nvram(struct sym_device *np, Symbios_nvram *nvram) +{ + int i; + + /* display Symbios nvram host data */ + printf("%s: HOST ID=%d%s%s%s%s%s%s\n", + sym_name(np), nvram->host_id & 0x0f, + (nvram->flags & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", + (nvram->flags & SYMBIOS_PARITY_ENABLE) ? " PARITY" :"", + (nvram->flags & SYMBIOS_VERBOSE_MSGS) ? " VERBOSE" :"", + (nvram->flags & SYMBIOS_CHS_MAPPING) ? " CHS_ALT" :"", + (nvram->flags2 & SYMBIOS_AVOID_BUS_RESET)?" NO_RESET" :"", + (nvram->flags1 & SYMBIOS_SCAN_HI_LO) ? " HI_LO" :""); + + /* display Symbios nvram drive data */ + for (i = 0 ; i < 15 ; i++) { + struct Symbios_target *tn = &nvram->target[i]; + printf("%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", + sym_name(np), i, + (tn->flags & SYMBIOS_DISCONNECT_ENABLE) ? " DISC" : "", + (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME) ? " SCAN_BOOT" : "", + (tn->flags & SYMBIOS_SCAN_LUNS) ? " SCAN_LUNS" : "", + (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED)? " TCQ" : "", + tn->bus_width, + tn->sync_period / 4, + tn->timeout); + } +} + +/* + * Dump TEKRAM format NVRAM for debugging purpose. + */ +static void sym_display_Tekram_nvram(struct sym_device *np, Tekram_nvram *nvram) +{ + int i, tags, boot_delay; + char *rem; + + /* display Tekram nvram host data */ + tags = 2 << nvram->max_tags_index; + boot_delay = 0; + if (nvram->boot_delay_index < 6) + boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; + switch ((nvram->flags & TEKRAM_REMOVABLE_FLAGS) >> 6) { + default: + case 0: rem = ""; break; + case 1: rem = " REMOVABLE=boot device"; break; + case 2: rem = " REMOVABLE=all"; break; + } + + printf("%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", + sym_name(np), nvram->host_id & 0x0f, + (nvram->flags1 & SYMBIOS_SCAM_ENABLE) ? " SCAM" :"", + (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES) ? " >2DRIVES":"", + (nvram->flags & TEKRAM_DRIVES_SUP_1GB) ? " >1GB" :"", + (nvram->flags & TEKRAM_RESET_ON_POWER_ON) ? " RESET" :"", + (nvram->flags & TEKRAM_ACTIVE_NEGATION) ? " ACT_NEG" :"", + (nvram->flags & TEKRAM_IMMEDIATE_SEEK) ? " IMM_SEEK" :"", + (nvram->flags & TEKRAM_SCAN_LUNS) ? " SCAN_LUNS" :"", + (nvram->flags1 & TEKRAM_F2_F6_ENABLED) ? " F2_F6" :"", + rem, boot_delay, tags); + + /* display Tekram nvram drive data */ + for (i = 0; i <= 15; i++) { + int sync, j; + struct Tekram_target *tn = &nvram->target[i]; + j = tn->sync_index & 0xf; + sync = Tekram_sync[j]; + printf("%s-%d:%s%s%s%s%s%s PERIOD=%d\n", + sym_name(np), i, + (tn->flags & TEKRAM_PARITY_CHECK) ? " PARITY" : "", + (tn->flags & TEKRAM_SYNC_NEGO) ? " SYNC" : "", + (tn->flags & TEKRAM_DISCONNECT_ENABLE) ? " DISC" : "", + (tn->flags & TEKRAM_START_CMD) ? " START" : "", + (tn->flags & TEKRAM_TAGGED_COMMANDS) ? " TCQ" : "", + (tn->flags & TEKRAM_WIDE_NEGO) ? " WIDE" : "", + sync); + } +} +#else +static void sym_display_Symbios_nvram(struct sym_device *np, Symbios_nvram *nvram) { (void)np; (void)nvram; } +static void sym_display_Tekram_nvram(struct sym_device *np, Tekram_nvram *nvram) { (void)np; (void)nvram; } +#endif /* SYM_CONF_DEBUG_NVRAM */ + + +/* + * 24C16 EEPROM reading. + * + * GPIO0 - data in/data out + * GPIO1 - clock + * Symbios NVRAM wiring now also used by Tekram. + */ + +#define SET_BIT 0 +#define CLR_BIT 1 +#define SET_CLK 2 +#define CLR_CLK 3 + +/* + * Set/clear data/clock bit in GPIO0 + */ +static void S24C16_set_bit(struct sym_device *np, u_char write_bit, u_char *gpreg, + int bit_mode) +{ + udelay(5); + switch (bit_mode) { + case SET_BIT: + *gpreg |= write_bit; + break; + case CLR_BIT: + *gpreg &= 0xfe; + break; + case SET_CLK: + *gpreg |= 0x02; + break; + case CLR_CLK: + *gpreg &= 0xfd; + break; + + } + OUTB(np, nc_gpreg, *gpreg); + INB(np, nc_mbox1); + udelay(5); +} + +/* + * Send START condition to NVRAM to wake it up. + */ +static void S24C16_start(struct sym_device *np, u_char *gpreg) +{ + S24C16_set_bit(np, 1, gpreg, SET_BIT); + S24C16_set_bit(np, 0, gpreg, SET_CLK); + S24C16_set_bit(np, 0, gpreg, CLR_BIT); + S24C16_set_bit(np, 0, gpreg, CLR_CLK); +} + +/* + * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! + */ +static void S24C16_stop(struct sym_device *np, u_char *gpreg) +{ + S24C16_set_bit(np, 0, gpreg, SET_CLK); + S24C16_set_bit(np, 1, gpreg, SET_BIT); +} + +/* + * Read or write a bit to the NVRAM, + * read if GPIO0 input else write if GPIO0 output + */ +static void S24C16_do_bit(struct sym_device *np, u_char *read_bit, u_char write_bit, + u_char *gpreg) +{ + S24C16_set_bit(np, write_bit, gpreg, SET_BIT); + S24C16_set_bit(np, 0, gpreg, SET_CLK); + if (read_bit) + *read_bit = INB(np, nc_gpreg); + S24C16_set_bit(np, 0, gpreg, CLR_CLK); + S24C16_set_bit(np, 0, gpreg, CLR_BIT); +} + +/* + * Output an ACK to the NVRAM after reading, + * change GPIO0 to output and when done back to an input + */ +static void S24C16_write_ack(struct sym_device *np, u_char write_bit, u_char *gpreg, + u_char *gpcntl) +{ + OUTB(np, nc_gpcntl, *gpcntl & 0xfe); + S24C16_do_bit(np, NULL, write_bit, gpreg); + OUTB(np, nc_gpcntl, *gpcntl); +} + +/* + * Input an ACK from NVRAM after writing, + * change GPIO0 to input and when done back to an output + */ +static void S24C16_read_ack(struct sym_device *np, u_char *read_bit, u_char *gpreg, + u_char *gpcntl) +{ + OUTB(np, nc_gpcntl, *gpcntl | 0x01); + S24C16_do_bit(np, read_bit, 1, gpreg); + OUTB(np, nc_gpcntl, *gpcntl); +} + +/* + * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, + * GPIO0 must already be set as an output + */ +static void S24C16_write_byte(struct sym_device *np, u_char *ack_data, u_char write_data, + u_char *gpreg, u_char *gpcntl) +{ + int x; + + for (x = 0; x < 8; x++) + S24C16_do_bit(np, NULL, (write_data >> (7 - x)) & 0x01, gpreg); + + S24C16_read_ack(np, ack_data, gpreg, gpcntl); +} + +/* + * READ a byte from the NVRAM and then send an ACK to say we have got it, + * GPIO0 must already be set as an input + */ +static void S24C16_read_byte(struct sym_device *np, u_char *read_data, u_char ack_data, + u_char *gpreg, u_char *gpcntl) +{ + int x; + u_char read_bit; + + *read_data = 0; + for (x = 0; x < 8; x++) { + S24C16_do_bit(np, &read_bit, 1, gpreg); + *read_data |= ((read_bit & 0x01) << (7 - x)); + } + + S24C16_write_ack(np, ack_data, gpreg, gpcntl); +} + +#ifdef SYM_CONF_NVRAM_WRITE_SUPPORT +/* + * Write 'len' bytes starting at 'offset'. + */ +static int sym_write_S24C16_nvram(struct sym_device *np, int offset, + u_char *data, int len) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + u_char ack_data; + int x; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB(np, nc_gpreg); + old_gpcntl = INB(np, nc_gpcntl); + gpcntl = old_gpcntl & 0x1c; + + /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ + OUTB(np, nc_gpreg, old_gpreg); + OUTB(np, nc_gpcntl, gpcntl); + + /* this is to set NVRAM into a known state with GPIO0/1 both low */ + gpreg = old_gpreg; + S24C16_set_bit(np, 0, &gpreg, CLR_CLK); + S24C16_set_bit(np, 0, &gpreg, CLR_BIT); + + /* now set NVRAM inactive with GPIO0/1 both high */ + S24C16_stop(np, &gpreg); + + /* NVRAM has to be written in segments of 16 bytes */ + for (x = 0; x < len ; x += 16) { + do { + S24C16_start(np, &gpreg); + S24C16_write_byte(np, &ack_data, + 0xa0 | (((offset+x) >> 7) & 0x0e), + &gpreg, &gpcntl); + } while (ack_data & 0x01); + + S24C16_write_byte(np, &ack_data, (offset+x) & 0xff, + &gpreg, &gpcntl); + + for (y = 0; y < 16; y++) + S24C16_write_byte(np, &ack_data, data[x+y], + &gpreg, &gpcntl); + S24C16_stop(np, &gpreg); + } + + /* return GPIO0/1 to original states after having accessed NVRAM */ + OUTB(np, nc_gpcntl, old_gpcntl); + OUTB(np, nc_gpreg, old_gpreg); + + return 0; +} +#endif /* SYM_CONF_NVRAM_WRITE_SUPPORT */ + +/* + * Read 'len' bytes starting at 'offset'. + */ +static int sym_read_S24C16_nvram(struct sym_device *np, int offset, u_char *data, int len) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + u_char ack_data; + int retv = 1; + int x; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB(np, nc_gpreg); + old_gpcntl = INB(np, nc_gpcntl); + gpcntl = old_gpcntl & 0x1c; + + /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ + OUTB(np, nc_gpreg, old_gpreg); + OUTB(np, nc_gpcntl, gpcntl); + + /* this is to set NVRAM into a known state with GPIO0/1 both low */ + gpreg = old_gpreg; + S24C16_set_bit(np, 0, &gpreg, CLR_CLK); + S24C16_set_bit(np, 0, &gpreg, CLR_BIT); + + /* now set NVRAM inactive with GPIO0/1 both high */ + S24C16_stop(np, &gpreg); + + /* activate NVRAM */ + S24C16_start(np, &gpreg); + + /* write device code and random address MSB */ + S24C16_write_byte(np, &ack_data, + 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* write random address LSB */ + S24C16_write_byte(np, &ack_data, + offset & 0xff, &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* regenerate START state to set up for reading */ + S24C16_start(np, &gpreg); + + /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ + S24C16_write_byte(np, &ack_data, + 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); + if (ack_data & 0x01) + goto out; + + /* now set up GPIO0 for inputting data */ + gpcntl |= 0x01; + OUTB(np, nc_gpcntl, gpcntl); + + /* input all requested data - only part of total NVRAM */ + for (x = 0; x < len; x++) + S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); + + /* finally put NVRAM back in inactive mode */ + gpcntl &= 0xfe; + OUTB(np, nc_gpcntl, gpcntl); + S24C16_stop(np, &gpreg); + retv = 0; +out: + /* return GPIO0/1 to original states after having accessed NVRAM */ + OUTB(np, nc_gpcntl, old_gpcntl); + OUTB(np, nc_gpreg, old_gpreg); + + return retv; +} + +#undef SET_BIT +#undef CLR_BIT +#undef SET_CLK +#undef CLR_CLK + +/* + * Try reading Symbios NVRAM. + * Return 0 if OK. + */ +static int sym_read_Symbios_nvram(struct sym_device *np, Symbios_nvram *nvram) +{ + static u_char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; + u_char *data = (u_char *) nvram; + int len = sizeof(*nvram); + u_short csum; + int x; + + /* probe the 24c16 and read the SYMBIOS 24c16 area */ + if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS, data, len)) + return 1; + + /* check valid NVRAM signature, verify byte count and checksum */ + if (nvram->type != 0 || + memcmp(nvram->trailer, Symbios_trailer, 6) || + nvram->byte_count != len - 12) + return 1; + + /* verify checksum */ + for (x = 6, csum = 0; x < len - 6; x++) + csum += data[x]; + if (csum != nvram->checksum) + return 1; + + return 0; +} + +/* + * 93C46 EEPROM reading. + * + * GPIO0 - data in + * GPIO1 - data out + * GPIO2 - clock + * GPIO4 - chip select + * + * Used by Tekram. + */ + +/* + * Pulse clock bit in GPIO0 + */ +static void T93C46_Clk(struct sym_device *np, u_char *gpreg) +{ + OUTB(np, nc_gpreg, *gpreg | 0x04); + INB(np, nc_mbox1); + udelay(2); + OUTB(np, nc_gpreg, *gpreg); +} + +/* + * Read bit from NVRAM + */ +static void T93C46_Read_Bit(struct sym_device *np, u_char *read_bit, u_char *gpreg) +{ + udelay(2); + T93C46_Clk(np, gpreg); + *read_bit = INB(np, nc_gpreg); +} + +/* + * Write bit to GPIO0 + */ +static void T93C46_Write_Bit(struct sym_device *np, u_char write_bit, u_char *gpreg) +{ + if (write_bit & 0x01) + *gpreg |= 0x02; + else + *gpreg &= 0xfd; + + *gpreg |= 0x10; + + OUTB(np, nc_gpreg, *gpreg); + INB(np, nc_mbox1); + udelay(2); + + T93C46_Clk(np, gpreg); +} + +/* + * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! + */ +static void T93C46_Stop(struct sym_device *np, u_char *gpreg) +{ + *gpreg &= 0xef; + OUTB(np, nc_gpreg, *gpreg); + INB(np, nc_mbox1); + udelay(2); + + T93C46_Clk(np, gpreg); +} + +/* + * Send read command and address to NVRAM + */ +static void T93C46_Send_Command(struct sym_device *np, u_short write_data, + u_char *read_bit, u_char *gpreg) +{ + int x; + + /* send 9 bits, start bit (1), command (2), address (6) */ + for (x = 0; x < 9; x++) + T93C46_Write_Bit(np, (u_char) (write_data >> (8 - x)), gpreg); + + *read_bit = INB(np, nc_gpreg); +} + +/* + * READ 2 bytes from the NVRAM + */ +static void T93C46_Read_Word(struct sym_device *np, + unsigned short *nvram_data, unsigned char *gpreg) +{ + int x; + u_char read_bit; + + *nvram_data = 0; + for (x = 0; x < 16; x++) { + T93C46_Read_Bit(np, &read_bit, gpreg); + + if (read_bit & 0x01) + *nvram_data |= (0x01 << (15 - x)); + else + *nvram_data &= ~(0x01 << (15 - x)); + } +} + +/* + * Read Tekram NvRAM data. + */ +static int T93C46_Read_Data(struct sym_device *np, unsigned short *data, + int len, unsigned char *gpreg) +{ + int x; + + for (x = 0; x < len; x++) { + unsigned char read_bit; + /* output read command and address */ + T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); + if (read_bit & 0x01) + return 1; /* Bad */ + T93C46_Read_Word(np, &data[x], gpreg); + T93C46_Stop(np, gpreg); + } + + return 0; +} + +/* + * Try reading 93C46 Tekram NVRAM. + */ +static int sym_read_T93C46_nvram(struct sym_device *np, Tekram_nvram *nvram) +{ + u_char gpcntl, gpreg; + u_char old_gpcntl, old_gpreg; + int retv; + + /* save current state of GPCNTL and GPREG */ + old_gpreg = INB(np, nc_gpreg); + old_gpcntl = INB(np, nc_gpcntl); + + /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, + 1/2/4 out */ + gpreg = old_gpreg & 0xe9; + OUTB(np, nc_gpreg, gpreg); + gpcntl = (old_gpcntl & 0xe9) | 0x09; + OUTB(np, nc_gpcntl, gpcntl); + + /* input all of NVRAM, 64 words */ + retv = T93C46_Read_Data(np, (u_short *) nvram, + sizeof(*nvram) / sizeof(short), &gpreg); + + /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ + OUTB(np, nc_gpcntl, old_gpcntl); + OUTB(np, nc_gpreg, old_gpreg); + + return retv; +} + +/* + * Try reading Tekram NVRAM. + * Return 0 if OK. + */ +static int sym_read_Tekram_nvram (struct sym_device *np, Tekram_nvram *nvram) +{ + u_char *data = (u_char *) nvram; + int len = sizeof(*nvram); + u_short csum; + int x; + + switch (np->pdev->device) { + case PCI_DEVICE_ID_NCR_53C885: + case PCI_DEVICE_ID_NCR_53C895: + case PCI_DEVICE_ID_NCR_53C896: + x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, + data, len); + break; + case PCI_DEVICE_ID_NCR_53C875: + x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS, + data, len); + if (!x) + break; + fallthrough; + default: + x = sym_read_T93C46_nvram(np, nvram); + break; + } + if (x) + return 1; + + /* verify checksum */ + for (x = 0, csum = 0; x < len - 1; x += 2) + csum += data[x] + (data[x+1] << 8); + if (csum != 0x1234) + return 1; + + return 0; +} + +#ifdef CONFIG_PARISC +/* + * Host firmware (PDC) keeps a table for altering SCSI capabilities. + * Many newer machines export one channel of 53c896 chip as SE, 50-pin HD. + * Also used for Multi-initiator SCSI clusters to set the SCSI Initiator ID. + */ +static int sym_read_parisc_pdc(struct sym_device *np, struct pdc_initiator *pdc) +{ + struct hardware_path hwpath; + get_pci_node_path(np->pdev, &hwpath); + if (!pdc_get_initiator(&hwpath, pdc)) + return 0; + + return SYM_PARISC_PDC; +} +#else +static inline int sym_read_parisc_pdc(struct sym_device *np, + struct pdc_initiator *x) +{ + return 0; +} +#endif + +/* + * Try reading Symbios or Tekram NVRAM + */ +int sym_read_nvram(struct sym_device *np, struct sym_nvram *nvp) +{ + if (!sym_read_Symbios_nvram(np, &nvp->data.Symbios)) { + nvp->type = SYM_SYMBIOS_NVRAM; + sym_display_Symbios_nvram(np, &nvp->data.Symbios); + } else if (!sym_read_Tekram_nvram(np, &nvp->data.Tekram)) { + nvp->type = SYM_TEKRAM_NVRAM; + sym_display_Tekram_nvram(np, &nvp->data.Tekram); + } else { + nvp->type = sym_read_parisc_pdc(np, &nvp->data.parisc); + } + return nvp->type; +} + +char *sym_nvram_type(struct sym_nvram *nvp) +{ + switch (nvp->type) { + case SYM_SYMBIOS_NVRAM: + return "Symbios NVRAM"; + case SYM_TEKRAM_NVRAM: + return "Tekram NVRAM"; + case SYM_PARISC_PDC: + return "PA-RISC Firmware"; + default: + return "No NVRAM"; + } +} diff --git a/drivers/scsi/sym53c8xx_2/sym_nvram.h b/drivers/scsi/sym53c8xx_2/sym_nvram.h new file mode 100644 index 000000000..d07da39cc --- /dev/null +++ b/drivers/scsi/sym53c8xx_2/sym_nvram.h @@ -0,0 +1,201 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family + * of PCI-SCSI IO processors. + * + * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> + * + * This driver is derived from the Linux sym53c8xx driver. + * Copyright (C) 1998-2000 Gerard Roudier + * + * The sym53c8xx driver is derived from the ncr53c8xx driver that had been + * a port of the FreeBSD ncr driver to Linux-1.2.13. + * + * The original ncr driver has been written for 386bsd and FreeBSD by + * Wolfgang Stanglmeier <wolf@cologne.de> + * Stefan Esser <se@mi.Uni-Koeln.de> + * Copyright (C) 1994 Wolfgang Stanglmeier + * + * Other major contributions: + * + * NVRAM detection and reading. + * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> + * + *----------------------------------------------------------------------------- + */ + +#ifndef SYM_NVRAM_H +#define SYM_NVRAM_H + +#include "sym53c8xx.h" + +/* + * Symbios NVRAM data format + */ +#define SYMBIOS_NVRAM_SIZE 368 +#define SYMBIOS_NVRAM_ADDRESS 0x100 + +struct Symbios_nvram { +/* Header 6 bytes */ + u_short type; /* 0x0000 */ + u_short byte_count; /* excluding header/trailer */ + u_short checksum; + +/* Controller set up 20 bytes */ + u_char v_major; /* 0x00 */ + u_char v_minor; /* 0x30 */ + u32 boot_crc; + u_short flags; +#define SYMBIOS_SCAM_ENABLE (1) +#define SYMBIOS_PARITY_ENABLE (1<<1) +#define SYMBIOS_VERBOSE_MSGS (1<<2) +#define SYMBIOS_CHS_MAPPING (1<<3) +#define SYMBIOS_NO_NVRAM (1<<3) /* ??? */ + u_short flags1; +#define SYMBIOS_SCAN_HI_LO (1) + u_short term_state; +#define SYMBIOS_TERM_CANT_PROGRAM (0) +#define SYMBIOS_TERM_ENABLED (1) +#define SYMBIOS_TERM_DISABLED (2) + u_short rmvbl_flags; +#define SYMBIOS_RMVBL_NO_SUPPORT (0) +#define SYMBIOS_RMVBL_BOOT_DEVICE (1) +#define SYMBIOS_RMVBL_MEDIA_INSTALLED (2) + u_char host_id; + u_char num_hba; /* 0x04 */ + u_char num_devices; /* 0x10 */ + u_char max_scam_devices; /* 0x04 */ + u_char num_valid_scam_devices; /* 0x00 */ + u_char flags2; +#define SYMBIOS_AVOID_BUS_RESET (1<<2) + +/* Boot order 14 bytes * 4 */ + struct Symbios_host{ + u_short type; /* 4:8xx / 0:nok */ + u_short device_id; /* PCI device id */ + u_short vendor_id; /* PCI vendor id */ + u_char bus_nr; /* PCI bus number */ + u_char device_fn; /* PCI device/function number << 3*/ + u_short word8; + u_short flags; +#define SYMBIOS_INIT_SCAN_AT_BOOT (1) + u_short io_port; /* PCI io_port address */ + } host[4]; + +/* Targets 8 bytes * 16 */ + struct Symbios_target { + u_char flags; +#define SYMBIOS_DISCONNECT_ENABLE (1) +#define SYMBIOS_SCAN_AT_BOOT_TIME (1<<1) +#define SYMBIOS_SCAN_LUNS (1<<2) +#define SYMBIOS_QUEUE_TAGS_ENABLED (1<<3) + u_char rsvd; + u_char bus_width; /* 0x08/0x10 */ + u_char sync_offset; + u_short sync_period; /* 4*period factor */ + u_short timeout; + } target[16]; +/* Scam table 8 bytes * 4 */ + struct Symbios_scam { + u_short id; + u_short method; +#define SYMBIOS_SCAM_DEFAULT_METHOD (0) +#define SYMBIOS_SCAM_DONT_ASSIGN (1) +#define SYMBIOS_SCAM_SET_SPECIFIC_ID (2) +#define SYMBIOS_SCAM_USE_ORDER_GIVEN (3) + u_short status; +#define SYMBIOS_SCAM_UNKNOWN (0) +#define SYMBIOS_SCAM_DEVICE_NOT_FOUND (1) +#define SYMBIOS_SCAM_ID_NOT_SET (2) +#define SYMBIOS_SCAM_ID_VALID (3) + u_char target_id; + u_char rsvd; + } scam[4]; + + u_char spare_devices[15*8]; + u_char trailer[6]; /* 0xfe 0xfe 0x00 0x00 0x00 0x00 */ +}; +typedef struct Symbios_nvram Symbios_nvram; +typedef struct Symbios_host Symbios_host; +typedef struct Symbios_target Symbios_target; +typedef struct Symbios_scam Symbios_scam; + +/* + * Tekram NvRAM data format. + */ +#define TEKRAM_NVRAM_SIZE 64 +#define TEKRAM_93C46_NVRAM_ADDRESS 0 +#define TEKRAM_24C16_NVRAM_ADDRESS 0x40 + +struct Tekram_nvram { + struct Tekram_target { + u_char flags; +#define TEKRAM_PARITY_CHECK (1) +#define TEKRAM_SYNC_NEGO (1<<1) +#define TEKRAM_DISCONNECT_ENABLE (1<<2) +#define TEKRAM_START_CMD (1<<3) +#define TEKRAM_TAGGED_COMMANDS (1<<4) +#define TEKRAM_WIDE_NEGO (1<<5) + u_char sync_index; + u_short word2; + } target[16]; + u_char host_id; + u_char flags; +#define TEKRAM_MORE_THAN_2_DRIVES (1) +#define TEKRAM_DRIVES_SUP_1GB (1<<1) +#define TEKRAM_RESET_ON_POWER_ON (1<<2) +#define TEKRAM_ACTIVE_NEGATION (1<<3) +#define TEKRAM_IMMEDIATE_SEEK (1<<4) +#define TEKRAM_SCAN_LUNS (1<<5) +#define TEKRAM_REMOVABLE_FLAGS (3<<6) /* 0: disable; */ + /* 1: boot device; 2:all */ + u_char boot_delay_index; + u_char max_tags_index; + u_short flags1; +#define TEKRAM_F2_F6_ENABLED (1) + u_short spare[29]; +}; +typedef struct Tekram_nvram Tekram_nvram; +typedef struct Tekram_target Tekram_target; + +#ifndef CONFIG_PARISC +struct pdc_initiator { int dummy; }; +#endif + +/* + * Union of supported NVRAM formats. + */ +struct sym_nvram { + int type; +#define SYM_SYMBIOS_NVRAM (1) +#define SYM_TEKRAM_NVRAM (2) +#define SYM_PARISC_PDC (3) +#if SYM_CONF_NVRAM_SUPPORT + union { + Symbios_nvram Symbios; + Tekram_nvram Tekram; + struct pdc_initiator parisc; + } data; +#endif +}; + +#if SYM_CONF_NVRAM_SUPPORT +void sym_nvram_setup_host(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram); +void sym_nvram_setup_target (struct sym_tcb *tp, int target, struct sym_nvram *nvp); +int sym_read_nvram (struct sym_device *np, struct sym_nvram *nvp); +char *sym_nvram_type(struct sym_nvram *nvp); +#else +static inline void sym_nvram_setup_host(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) { } +static inline void sym_nvram_setup_target(struct sym_tcb *tp, struct sym_nvram *nvram) { } +static inline int sym_read_nvram(struct sym_device *np, struct sym_nvram *nvp) +{ + nvp->type = 0; + return 0; +} +static inline char *sym_nvram_type(struct sym_nvram *nvp) +{ + return "No NVRAM"; +} +#endif + +#endif /* SYM_NVRAM_H */ |