summaryrefslogtreecommitdiffstats
path: root/drivers/soc/qcom/cpr.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/soc/qcom/cpr.c1792
1 files changed, 1792 insertions, 0 deletions
diff --git a/drivers/soc/qcom/cpr.c b/drivers/soc/qcom/cpr.c
new file mode 100644
index 000000000..fac0414c3
--- /dev/null
+++ b/drivers/soc/qcom/cpr.c
@@ -0,0 +1,1792 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
+ * Copyright (c) 2019, Linaro Limited
+ */
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/debugfs.h>
+#include <linux/string.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_domain.h>
+#include <linux/pm_opp.h>
+#include <linux/interrupt.h>
+#include <linux/regmap.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regulator/consumer.h>
+#include <linux/clk.h>
+#include <linux/nvmem-consumer.h>
+
+/* Register Offsets for RB-CPR and Bit Definitions */
+
+/* RBCPR Version Register */
+#define REG_RBCPR_VERSION 0
+#define RBCPR_VER_2 0x02
+#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
+
+/* RBCPR Gate Count and Target Registers */
+#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
+
+#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
+#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
+#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
+#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
+
+/* RBCPR Timer Control */
+#define REG_RBCPR_TIMER_INTERVAL 0x44
+#define REG_RBIF_TIMER_ADJUST 0x4c
+
+#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
+#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
+#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
+#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
+#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
+
+/* RBCPR Config Register */
+#define REG_RBIF_LIMIT 0x48
+#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
+#define RBIF_LIMIT_CEILING_SHIFT 6
+#define RBIF_LIMIT_FLOOR_BITS 6
+#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
+
+#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
+#define RBIF_LIMIT_FLOOR_DEFAULT 0
+
+#define REG_RBIF_SW_VLEVEL 0x94
+#define RBIF_SW_VLEVEL_DEFAULT 0x20
+
+#define REG_RBCPR_STEP_QUOT 0x80
+#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
+#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
+
+/* RBCPR Control Register */
+#define REG_RBCPR_CTL 0x90
+
+#define RBCPR_CTL_LOOP_EN BIT(0)
+#define RBCPR_CTL_TIMER_EN BIT(3)
+#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
+#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
+#define RBCPR_CTL_COUNT_MODE BIT(10)
+#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
+#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
+#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
+#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
+
+/* RBCPR Ack/Nack Response */
+#define REG_RBIF_CONT_ACK_CMD 0x98
+#define REG_RBIF_CONT_NACK_CMD 0x9c
+
+/* RBCPR Result status Register */
+#define REG_RBCPR_RESULT_0 0xa0
+
+#define RBCPR_RESULT0_BUSY_SHIFT 19
+#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
+#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
+#define RBCPR_RESULT0_ERROR_SHIFT 6
+#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
+#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
+#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
+#define RBCPR_RESULT0_STEP_UP_SHIFT 1
+
+/* RBCPR Interrupt Control Register */
+#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
+#define REG_RBIF_IRQ_CLEAR 0x110
+#define REG_RBIF_IRQ_STATUS 0x114
+
+#define CPR_INT_DONE BIT(0)
+#define CPR_INT_MIN BIT(1)
+#define CPR_INT_DOWN BIT(2)
+#define CPR_INT_MID BIT(3)
+#define CPR_INT_UP BIT(4)
+#define CPR_INT_MAX BIT(5)
+#define CPR_INT_CLAMP BIT(6)
+#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
+ CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
+#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
+
+#define CPR_NUM_RING_OSC 8
+
+/* CPR eFuse parameters */
+#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
+
+#define CPR_FUSE_MIN_QUOT_DIFF 50
+
+#define FUSE_REVISION_UNKNOWN (-1)
+
+enum voltage_change_dir {
+ NO_CHANGE,
+ DOWN,
+ UP,
+};
+
+struct cpr_fuse {
+ char *ring_osc;
+ char *init_voltage;
+ char *quotient;
+ char *quotient_offset;
+};
+
+struct fuse_corner_data {
+ int ref_uV;
+ int max_uV;
+ int min_uV;
+ int max_volt_scale;
+ int max_quot_scale;
+ /* fuse quot */
+ int quot_offset;
+ int quot_scale;
+ int quot_adjust;
+ /* fuse quot_offset */
+ int quot_offset_scale;
+ int quot_offset_adjust;
+};
+
+struct cpr_fuses {
+ int init_voltage_step;
+ int init_voltage_width;
+ struct fuse_corner_data *fuse_corner_data;
+};
+
+struct corner_data {
+ unsigned int fuse_corner;
+ unsigned long freq;
+};
+
+struct cpr_desc {
+ unsigned int num_fuse_corners;
+ int min_diff_quot;
+ int *step_quot;
+
+ unsigned int timer_delay_us;
+ unsigned int timer_cons_up;
+ unsigned int timer_cons_down;
+ unsigned int up_threshold;
+ unsigned int down_threshold;
+ unsigned int idle_clocks;
+ unsigned int gcnt_us;
+ unsigned int vdd_apc_step_up_limit;
+ unsigned int vdd_apc_step_down_limit;
+ unsigned int clamp_timer_interval;
+
+ struct cpr_fuses cpr_fuses;
+ bool reduce_to_fuse_uV;
+ bool reduce_to_corner_uV;
+};
+
+struct acc_desc {
+ unsigned int enable_reg;
+ u32 enable_mask;
+
+ struct reg_sequence *config;
+ struct reg_sequence *settings;
+ int num_regs_per_fuse;
+};
+
+struct cpr_acc_desc {
+ const struct cpr_desc *cpr_desc;
+ const struct acc_desc *acc_desc;
+};
+
+struct fuse_corner {
+ int min_uV;
+ int max_uV;
+ int uV;
+ int quot;
+ int step_quot;
+ const struct reg_sequence *accs;
+ int num_accs;
+ unsigned long max_freq;
+ u8 ring_osc_idx;
+};
+
+struct corner {
+ int min_uV;
+ int max_uV;
+ int uV;
+ int last_uV;
+ int quot_adjust;
+ u32 save_ctl;
+ u32 save_irq;
+ unsigned long freq;
+ struct fuse_corner *fuse_corner;
+};
+
+struct cpr_drv {
+ unsigned int num_corners;
+ unsigned int ref_clk_khz;
+
+ struct generic_pm_domain pd;
+ struct device *dev;
+ struct device *attached_cpu_dev;
+ struct mutex lock;
+ void __iomem *base;
+ struct corner *corner;
+ struct regulator *vdd_apc;
+ struct clk *cpu_clk;
+ struct regmap *tcsr;
+ bool loop_disabled;
+ u32 gcnt;
+ unsigned long flags;
+
+ struct fuse_corner *fuse_corners;
+ struct corner *corners;
+
+ const struct cpr_desc *desc;
+ const struct acc_desc *acc_desc;
+ const struct cpr_fuse *cpr_fuses;
+
+ struct dentry *debugfs;
+};
+
+static bool cpr_is_allowed(struct cpr_drv *drv)
+{
+ return !drv->loop_disabled;
+}
+
+static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
+{
+ writel_relaxed(value, drv->base + offset);
+}
+
+static u32 cpr_read(struct cpr_drv *drv, u32 offset)
+{
+ return readl_relaxed(drv->base + offset);
+}
+
+static void
+cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
+{
+ u32 val;
+
+ val = readl_relaxed(drv->base + offset);
+ val &= ~mask;
+ val |= value & mask;
+ writel_relaxed(val, drv->base + offset);
+}
+
+static void cpr_irq_clr(struct cpr_drv *drv)
+{
+ cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
+}
+
+static void cpr_irq_clr_nack(struct cpr_drv *drv)
+{
+ cpr_irq_clr(drv);
+ cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+}
+
+static void cpr_irq_clr_ack(struct cpr_drv *drv)
+{
+ cpr_irq_clr(drv);
+ cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+}
+
+static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
+{
+ cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
+}
+
+static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
+{
+ cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
+}
+
+static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
+{
+ u32 val, mask;
+ const struct cpr_desc *desc = drv->desc;
+
+ /* Program Consecutive Up & Down */
+ val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+ val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+ mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
+ cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
+ cpr_masked_write(drv, REG_RBCPR_CTL,
+ RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+ RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
+ corner->save_ctl);
+ cpr_irq_set(drv, corner->save_irq);
+
+ if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
+ val = RBCPR_CTL_LOOP_EN;
+ else
+ val = 0;
+ cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
+}
+
+static void cpr_ctl_disable(struct cpr_drv *drv)
+{
+ cpr_irq_set(drv, 0);
+ cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
+ RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
+ cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
+ RBIF_TIMER_ADJ_CONS_UP_MASK |
+ RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
+ cpr_irq_clr(drv);
+ cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
+ cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
+ cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
+}
+
+static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
+{
+ u32 reg_val;
+
+ reg_val = cpr_read(drv, REG_RBCPR_CTL);
+ return reg_val & RBCPR_CTL_LOOP_EN;
+}
+
+static bool cpr_ctl_is_busy(struct cpr_drv *drv)
+{
+ u32 reg_val;
+
+ reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
+ return reg_val & RBCPR_RESULT0_BUSY_MASK;
+}
+
+static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
+{
+ corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
+ corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
+}
+
+static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
+{
+ u32 gcnt, ctl, irq, ro_sel, step_quot;
+ struct fuse_corner *fuse = corner->fuse_corner;
+ const struct cpr_desc *desc = drv->desc;
+ int i;
+
+ ro_sel = fuse->ring_osc_idx;
+ gcnt = drv->gcnt;
+ gcnt |= fuse->quot - corner->quot_adjust;
+
+ /* Program the step quotient and idle clocks */
+ step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
+ step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
+ cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
+
+ /* Clear the target quotient value and gate count of all ROs */
+ for (i = 0; i < CPR_NUM_RING_OSC; i++)
+ cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+ cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
+ ctl = corner->save_ctl;
+ cpr_write(drv, REG_RBCPR_CTL, ctl);
+ irq = corner->save_irq;
+ cpr_irq_set(drv, irq);
+ dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
+ ctl, irq);
+}
+
+static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
+ struct fuse_corner *end)
+{
+ if (f == end)
+ return;
+
+ if (f < end) {
+ for (f += 1; f <= end; f++)
+ regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+ } else {
+ for (f -= 1; f >= end; f--)
+ regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
+ }
+}
+
+static int cpr_pre_voltage(struct cpr_drv *drv,
+ struct fuse_corner *fuse_corner,
+ enum voltage_change_dir dir)
+{
+ struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+ if (drv->tcsr && dir == DOWN)
+ cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+ return 0;
+}
+
+static int cpr_post_voltage(struct cpr_drv *drv,
+ struct fuse_corner *fuse_corner,
+ enum voltage_change_dir dir)
+{
+ struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
+
+ if (drv->tcsr && dir == UP)
+ cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
+
+ return 0;
+}
+
+static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
+ int new_uV, enum voltage_change_dir dir)
+{
+ int ret;
+ struct fuse_corner *fuse_corner = corner->fuse_corner;
+
+ ret = cpr_pre_voltage(drv, fuse_corner, dir);
+ if (ret)
+ return ret;
+
+ ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
+ if (ret) {
+ dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
+ new_uV);
+ return ret;
+ }
+
+ ret = cpr_post_voltage(drv, fuse_corner, dir);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
+{
+ return drv->corner ? drv->corner - drv->corners + 1 : 0;
+}
+
+static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
+{
+ u32 val, error_steps, reg_mask;
+ int last_uV, new_uV, step_uV, ret;
+ struct corner *corner;
+ const struct cpr_desc *desc = drv->desc;
+
+ if (dir != UP && dir != DOWN)
+ return 0;
+
+ step_uV = regulator_get_linear_step(drv->vdd_apc);
+ if (!step_uV)
+ return -EINVAL;
+
+ corner = drv->corner;
+
+ val = cpr_read(drv, REG_RBCPR_RESULT_0);
+
+ error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
+ error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
+ last_uV = corner->last_uV;
+
+ if (dir == UP) {
+ if (desc->clamp_timer_interval &&
+ error_steps < desc->up_threshold) {
+ /*
+ * Handle the case where another measurement started
+ * after the interrupt was triggered due to a core
+ * exiting from power collapse.
+ */
+ error_steps = max(desc->up_threshold,
+ desc->vdd_apc_step_up_limit);
+ }
+
+ if (last_uV >= corner->max_uV) {
+ cpr_irq_clr_nack(drv);
+
+ /* Maximize the UP threshold */
+ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+ reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ val = reg_mask;
+ cpr_ctl_modify(drv, reg_mask, val);
+
+ /* Disable UP interrupt */
+ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
+
+ return 0;
+ }
+
+ if (error_steps > desc->vdd_apc_step_up_limit)
+ error_steps = desc->vdd_apc_step_up_limit;
+
+ /* Calculate new voltage */
+ new_uV = last_uV + error_steps * step_uV;
+ new_uV = min(new_uV, corner->max_uV);
+
+ dev_dbg(drv->dev,
+ "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
+ new_uV, last_uV, cpr_get_cur_perf_state(drv));
+ } else {
+ if (desc->clamp_timer_interval &&
+ error_steps < desc->down_threshold) {
+ /*
+ * Handle the case where another measurement started
+ * after the interrupt was triggered due to a core
+ * exiting from power collapse.
+ */
+ error_steps = max(desc->down_threshold,
+ desc->vdd_apc_step_down_limit);
+ }
+
+ if (last_uV <= corner->min_uV) {
+ cpr_irq_clr_nack(drv);
+
+ /* Enable auto nack down */
+ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+ val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+
+ cpr_ctl_modify(drv, reg_mask, val);
+
+ /* Disable DOWN interrupt */
+ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
+
+ return 0;
+ }
+
+ if (error_steps > desc->vdd_apc_step_down_limit)
+ error_steps = desc->vdd_apc_step_down_limit;
+
+ /* Calculate new voltage */
+ new_uV = last_uV - error_steps * step_uV;
+ new_uV = max(new_uV, corner->min_uV);
+
+ dev_dbg(drv->dev,
+ "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
+ new_uV, last_uV, cpr_get_cur_perf_state(drv));
+ }
+
+ ret = cpr_scale_voltage(drv, corner, new_uV, dir);
+ if (ret) {
+ cpr_irq_clr_nack(drv);
+ return ret;
+ }
+ drv->corner->last_uV = new_uV;
+
+ if (dir == UP) {
+ /* Disable auto nack down */
+ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
+ val = 0;
+ } else {
+ /* Restore default threshold for UP */
+ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
+ reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ val = desc->up_threshold;
+ val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ }
+
+ cpr_ctl_modify(drv, reg_mask, val);
+
+ /* Re-enable default interrupts */
+ cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+ /* Ack */
+ cpr_irq_clr_ack(drv);
+
+ return 0;
+}
+
+static irqreturn_t cpr_irq_handler(int irq, void *dev)
+{
+ struct cpr_drv *drv = dev;
+ const struct cpr_desc *desc = drv->desc;
+ irqreturn_t ret = IRQ_HANDLED;
+ u32 val;
+
+ mutex_lock(&drv->lock);
+
+ val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+ if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
+ val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+
+ dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
+
+ if (!cpr_ctl_is_enabled(drv)) {
+ dev_dbg(drv->dev, "CPR is disabled\n");
+ ret = IRQ_NONE;
+ } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
+ dev_dbg(drv->dev, "CPR measurement is not ready\n");
+ } else if (!cpr_is_allowed(drv)) {
+ val = cpr_read(drv, REG_RBCPR_CTL);
+ dev_err_ratelimited(drv->dev,
+ "Interrupt broken? RBCPR_CTL = %#02x\n",
+ val);
+ ret = IRQ_NONE;
+ } else {
+ /*
+ * Following sequence of handling is as per each IRQ's
+ * priority
+ */
+ if (val & CPR_INT_UP) {
+ cpr_scale(drv, UP);
+ } else if (val & CPR_INT_DOWN) {
+ cpr_scale(drv, DOWN);
+ } else if (val & CPR_INT_MIN) {
+ cpr_irq_clr_nack(drv);
+ } else if (val & CPR_INT_MAX) {
+ cpr_irq_clr_nack(drv);
+ } else if (val & CPR_INT_MID) {
+ /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
+ dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
+ } else {
+ dev_dbg(drv->dev,
+ "IRQ occurred for unknown flag (%#08x)\n", val);
+ }
+
+ /* Save register values for the corner */
+ cpr_corner_save(drv, drv->corner);
+ }
+
+ mutex_unlock(&drv->lock);
+
+ return ret;
+}
+
+static int cpr_enable(struct cpr_drv *drv)
+{
+ int ret;
+
+ ret = regulator_enable(drv->vdd_apc);
+ if (ret)
+ return ret;
+
+ mutex_lock(&drv->lock);
+
+ if (cpr_is_allowed(drv) && drv->corner) {
+ cpr_irq_clr(drv);
+ cpr_corner_restore(drv, drv->corner);
+ cpr_ctl_enable(drv, drv->corner);
+ }
+
+ mutex_unlock(&drv->lock);
+
+ return 0;
+}
+
+static int cpr_disable(struct cpr_drv *drv)
+{
+ mutex_lock(&drv->lock);
+
+ if (cpr_is_allowed(drv)) {
+ cpr_ctl_disable(drv);
+ cpr_irq_clr(drv);
+ }
+
+ mutex_unlock(&drv->lock);
+
+ return regulator_disable(drv->vdd_apc);
+}
+
+static int cpr_config(struct cpr_drv *drv)
+{
+ int i;
+ u32 val, gcnt;
+ struct corner *corner;
+ const struct cpr_desc *desc = drv->desc;
+
+ /* Disable interrupt and CPR */
+ cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
+ cpr_write(drv, REG_RBCPR_CTL, 0);
+
+ /* Program the default HW ceiling, floor and vlevel */
+ val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
+ << RBIF_LIMIT_CEILING_SHIFT;
+ val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
+ cpr_write(drv, REG_RBIF_LIMIT, val);
+ cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
+
+ /*
+ * Clear the target quotient value and gate count of all
+ * ring oscillators
+ */
+ for (i = 0; i < CPR_NUM_RING_OSC; i++)
+ cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
+
+ /* Init and save gcnt */
+ gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
+ gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
+ gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
+ drv->gcnt = gcnt;
+
+ /* Program the delay count for the timer */
+ val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
+ cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
+ dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
+ desc->timer_delay_us);
+
+ /* Program Consecutive Up & Down */
+ val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
+ val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
+ val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
+ cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
+
+ /* Program the control register */
+ val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
+ val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
+ val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
+ val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
+ cpr_write(drv, REG_RBCPR_CTL, val);
+
+ for (i = 0; i < drv->num_corners; i++) {
+ corner = &drv->corners[i];
+ corner->save_ctl = val;
+ corner->save_irq = CPR_INT_DEFAULT;
+ }
+
+ cpr_irq_set(drv, CPR_INT_DEFAULT);
+
+ val = cpr_read(drv, REG_RBCPR_VERSION);
+ if (val <= RBCPR_VER_2)
+ drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
+
+ return 0;
+}
+
+static int cpr_set_performance_state(struct generic_pm_domain *domain,
+ unsigned int state)
+{
+ struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+ struct corner *corner, *end;
+ enum voltage_change_dir dir;
+ int ret = 0, new_uV;
+
+ mutex_lock(&drv->lock);
+
+ dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
+ __func__, state, cpr_get_cur_perf_state(drv));
+
+ /*
+ * Determine new corner we're going to.
+ * Remove one since lowest performance state is 1.
+ */
+ corner = drv->corners + state - 1;
+ end = &drv->corners[drv->num_corners - 1];
+ if (corner > end || corner < drv->corners) {
+ ret = -EINVAL;
+ goto unlock;
+ }
+
+ /* Determine direction */
+ if (drv->corner > corner)
+ dir = DOWN;
+ else if (drv->corner < corner)
+ dir = UP;
+ else
+ dir = NO_CHANGE;
+
+ if (cpr_is_allowed(drv))
+ new_uV = corner->last_uV;
+ else
+ new_uV = corner->uV;
+
+ if (cpr_is_allowed(drv))
+ cpr_ctl_disable(drv);
+
+ ret = cpr_scale_voltage(drv, corner, new_uV, dir);
+ if (ret)
+ goto unlock;
+
+ if (cpr_is_allowed(drv)) {
+ cpr_irq_clr(drv);
+ if (drv->corner != corner)
+ cpr_corner_restore(drv, corner);
+ cpr_ctl_enable(drv, corner);
+ }
+
+ drv->corner = corner;
+
+unlock:
+ mutex_unlock(&drv->lock);
+
+ return ret;
+}
+
+static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
+{
+ struct nvmem_cell *cell;
+ ssize_t len;
+ char *ret;
+ int i;
+
+ *data = 0;
+
+ cell = nvmem_cell_get(dev, cname);
+ if (IS_ERR(cell)) {
+ if (PTR_ERR(cell) != -EPROBE_DEFER)
+ dev_err(dev, "undefined cell %s\n", cname);
+ return PTR_ERR(cell);
+ }
+
+ ret = nvmem_cell_read(cell, &len);
+ nvmem_cell_put(cell);
+ if (IS_ERR(ret)) {
+ dev_err(dev, "can't read cell %s\n", cname);
+ return PTR_ERR(ret);
+ }
+
+ for (i = 0; i < len; i++)
+ *data |= ret[i] << (8 * i);
+
+ kfree(ret);
+ dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
+
+ return 0;
+}
+
+static int
+cpr_populate_ring_osc_idx(struct cpr_drv *drv)
+{
+ struct fuse_corner *fuse = drv->fuse_corners;
+ struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
+ const struct cpr_fuse *fuses = drv->cpr_fuses;
+ u32 data;
+ int ret;
+
+ for (; fuse < end; fuse++, fuses++) {
+ ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
+ &data);
+ if (ret)
+ return ret;
+ fuse->ring_osc_idx = data;
+ }
+
+ return 0;
+}
+
+static int cpr_read_fuse_uV(const struct cpr_desc *desc,
+ const struct fuse_corner_data *fdata,
+ const char *init_v_efuse,
+ int step_volt,
+ struct cpr_drv *drv)
+{
+ int step_size_uV, steps, uV;
+ u32 bits = 0;
+ int ret;
+
+ ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
+ if (ret)
+ return ret;
+
+ steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
+ /* Not two's complement.. instead highest bit is sign bit */
+ if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
+ steps = -steps;
+
+ step_size_uV = desc->cpr_fuses.init_voltage_step;
+
+ uV = fdata->ref_uV + steps * step_size_uV;
+ return DIV_ROUND_UP(uV, step_volt) * step_volt;
+}
+
+static int cpr_fuse_corner_init(struct cpr_drv *drv)
+{
+ const struct cpr_desc *desc = drv->desc;
+ const struct cpr_fuse *fuses = drv->cpr_fuses;
+ const struct acc_desc *acc_desc = drv->acc_desc;
+ int i;
+ unsigned int step_volt;
+ struct fuse_corner_data *fdata;
+ struct fuse_corner *fuse, *end;
+ int uV;
+ const struct reg_sequence *accs;
+ int ret;
+
+ accs = acc_desc->settings;
+
+ step_volt = regulator_get_linear_step(drv->vdd_apc);
+ if (!step_volt)
+ return -EINVAL;
+
+ /* Populate fuse_corner members */
+ fuse = drv->fuse_corners;
+ end = &fuse[desc->num_fuse_corners - 1];
+ fdata = desc->cpr_fuses.fuse_corner_data;
+
+ for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
+ /*
+ * Update SoC voltages: platforms might choose a different
+ * regulators than the one used to characterize the algorithms
+ * (ie, init_voltage_step).
+ */
+ fdata->min_uV = roundup(fdata->min_uV, step_volt);
+ fdata->max_uV = roundup(fdata->max_uV, step_volt);
+
+ /* Populate uV */
+ uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
+ step_volt, drv);
+ if (uV < 0)
+ return uV;
+
+ fuse->min_uV = fdata->min_uV;
+ fuse->max_uV = fdata->max_uV;
+ fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
+
+ if (fuse == end) {
+ /*
+ * Allow the highest fuse corner's PVS voltage to
+ * define the ceiling voltage for that corner in order
+ * to support SoC's in which variable ceiling values
+ * are required.
+ */
+ end->max_uV = max(end->max_uV, end->uV);
+ }
+
+ /* Populate target quotient by scaling */
+ ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
+ if (ret)
+ return ret;
+
+ fuse->quot *= fdata->quot_scale;
+ fuse->quot += fdata->quot_offset;
+ fuse->quot += fdata->quot_adjust;
+ fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
+
+ /* Populate acc settings */
+ fuse->accs = accs;
+ fuse->num_accs = acc_desc->num_regs_per_fuse;
+ accs += acc_desc->num_regs_per_fuse;
+ }
+
+ /*
+ * Restrict all fuse corner PVS voltages based upon per corner
+ * ceiling and floor voltages.
+ */
+ for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
+ if (fuse->uV > fuse->max_uV)
+ fuse->uV = fuse->max_uV;
+ else if (fuse->uV < fuse->min_uV)
+ fuse->uV = fuse->min_uV;
+
+ ret = regulator_is_supported_voltage(drv->vdd_apc,
+ fuse->min_uV,
+ fuse->min_uV);
+ if (!ret) {
+ dev_err(drv->dev,
+ "min uV: %d (fuse corner: %d) not supported by regulator\n",
+ fuse->min_uV, i);
+ return -EINVAL;
+ }
+
+ ret = regulator_is_supported_voltage(drv->vdd_apc,
+ fuse->max_uV,
+ fuse->max_uV);
+ if (!ret) {
+ dev_err(drv->dev,
+ "max uV: %d (fuse corner: %d) not supported by regulator\n",
+ fuse->max_uV, i);
+ return -EINVAL;
+ }
+
+ dev_dbg(drv->dev,
+ "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
+ i, fuse->min_uV, fuse->uV, fuse->max_uV,
+ fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
+ }
+
+ return 0;
+}
+
+static int cpr_calculate_scaling(const char *quot_offset,
+ struct cpr_drv *drv,
+ const struct fuse_corner_data *fdata,
+ const struct corner *corner)
+{
+ u32 quot_diff = 0;
+ unsigned long freq_diff;
+ int scaling;
+ const struct fuse_corner *fuse, *prev_fuse;
+ int ret;
+
+ fuse = corner->fuse_corner;
+ prev_fuse = fuse - 1;
+
+ if (quot_offset) {
+ ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
+ if (ret)
+ return ret;
+
+ quot_diff *= fdata->quot_offset_scale;
+ quot_diff += fdata->quot_offset_adjust;
+ } else {
+ quot_diff = fuse->quot - prev_fuse->quot;
+ }
+
+ freq_diff = fuse->max_freq - prev_fuse->max_freq;
+ freq_diff /= 1000000; /* Convert to MHz */
+ scaling = 1000 * quot_diff / freq_diff;
+ return min(scaling, fdata->max_quot_scale);
+}
+
+static int cpr_interpolate(const struct corner *corner, int step_volt,
+ const struct fuse_corner_data *fdata)
+{
+ unsigned long f_high, f_low, f_diff;
+ int uV_high, uV_low, uV;
+ u64 temp, temp_limit;
+ const struct fuse_corner *fuse, *prev_fuse;
+
+ fuse = corner->fuse_corner;
+ prev_fuse = fuse - 1;
+
+ f_high = fuse->max_freq;
+ f_low = prev_fuse->max_freq;
+ uV_high = fuse->uV;
+ uV_low = prev_fuse->uV;
+ f_diff = fuse->max_freq - corner->freq;
+
+ /*
+ * Don't interpolate in the wrong direction. This could happen
+ * if the adjusted fuse voltage overlaps with the previous fuse's
+ * adjusted voltage.
+ */
+ if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
+ return corner->uV;
+
+ temp = f_diff * (uV_high - uV_low);
+ temp = div64_ul(temp, f_high - f_low);
+
+ /*
+ * max_volt_scale has units of uV/MHz while freq values
+ * have units of Hz. Divide by 1000000 to convert to.
+ */
+ temp_limit = f_diff * fdata->max_volt_scale;
+ do_div(temp_limit, 1000000);
+
+ uV = uV_high - min(temp, temp_limit);
+ return roundup(uV, step_volt);
+}
+
+static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
+{
+ struct device_node *np;
+ unsigned int fuse_corner = 0;
+
+ np = dev_pm_opp_get_of_node(opp);
+ if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
+ pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
+ __func__);
+
+ of_node_put(np);
+
+ return fuse_corner;
+}
+
+static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
+ struct device *cpu_dev)
+{
+ u64 rate = 0;
+ struct device_node *ref_np;
+ struct device_node *desc_np;
+ struct device_node *child_np = NULL;
+ struct device_node *child_req_np = NULL;
+
+ desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
+ if (!desc_np)
+ return 0;
+
+ ref_np = dev_pm_opp_get_of_node(ref);
+ if (!ref_np)
+ goto out_ref;
+
+ do {
+ of_node_put(child_req_np);
+ child_np = of_get_next_available_child(desc_np, child_np);
+ child_req_np = of_parse_phandle(child_np, "required-opps", 0);
+ } while (child_np && child_req_np != ref_np);
+
+ if (child_np && child_req_np == ref_np)
+ of_property_read_u64(child_np, "opp-hz", &rate);
+
+ of_node_put(child_req_np);
+ of_node_put(child_np);
+ of_node_put(ref_np);
+out_ref:
+ of_node_put(desc_np);
+
+ return (unsigned long) rate;
+}
+
+static int cpr_corner_init(struct cpr_drv *drv)
+{
+ const struct cpr_desc *desc = drv->desc;
+ const struct cpr_fuse *fuses = drv->cpr_fuses;
+ int i, level, scaling = 0;
+ unsigned int fnum, fc;
+ const char *quot_offset;
+ struct fuse_corner *fuse, *prev_fuse;
+ struct corner *corner, *end;
+ struct corner_data *cdata;
+ const struct fuse_corner_data *fdata;
+ bool apply_scaling;
+ unsigned long freq_diff, freq_diff_mhz;
+ unsigned long freq;
+ int step_volt = regulator_get_linear_step(drv->vdd_apc);
+ struct dev_pm_opp *opp;
+
+ if (!step_volt)
+ return -EINVAL;
+
+ corner = drv->corners;
+ end = &corner[drv->num_corners - 1];
+
+ cdata = devm_kcalloc(drv->dev, drv->num_corners,
+ sizeof(struct corner_data),
+ GFP_KERNEL);
+ if (!cdata)
+ return -ENOMEM;
+
+ /*
+ * Store maximum frequency for each fuse corner based on the frequency
+ * plan
+ */
+ for (level = 1; level <= drv->num_corners; level++) {
+ opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
+ if (IS_ERR(opp))
+ return -EINVAL;
+ fc = cpr_get_fuse_corner(opp);
+ if (!fc) {
+ dev_pm_opp_put(opp);
+ return -EINVAL;
+ }
+ fnum = fc - 1;
+ freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
+ if (!freq) {
+ dev_pm_opp_put(opp);
+ return -EINVAL;
+ }
+ cdata[level - 1].fuse_corner = fnum;
+ cdata[level - 1].freq = freq;
+
+ fuse = &drv->fuse_corners[fnum];
+ dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
+ freq, dev_pm_opp_get_level(opp) - 1, fnum);
+ if (freq > fuse->max_freq)
+ fuse->max_freq = freq;
+ dev_pm_opp_put(opp);
+ }
+
+ /*
+ * Get the quotient adjustment scaling factor, according to:
+ *
+ * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
+ * / (freq(corner_N) - freq(corner_N-1)), max_factor)
+ *
+ * QUOT(corner_N): quotient read from fuse for fuse corner N
+ * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
+ * freq(corner_N): max frequency in MHz supported by fuse corner N
+ * freq(corner_N-1): max frequency in MHz supported by fuse corner
+ * (N - 1)
+ *
+ * Then walk through the corners mapped to each fuse corner
+ * and calculate the quotient adjustment for each one using the
+ * following formula:
+ *
+ * quot_adjust = (freq_max - freq_corner) * scaling / 1000
+ *
+ * freq_max: max frequency in MHz supported by the fuse corner
+ * freq_corner: frequency in MHz corresponding to the corner
+ * scaling: calculated from above equation
+ *
+ *
+ * + +
+ * | v |
+ * q | f c o | f c
+ * u | c l | c
+ * o | f t | f
+ * t | c a | c
+ * | c f g | c f
+ * | e |
+ * +--------------- +----------------
+ * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
+ * corner corner
+ *
+ * c = corner
+ * f = fuse corner
+ *
+ */
+ for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
+ fnum = cdata[i].fuse_corner;
+ fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
+ quot_offset = fuses[fnum].quotient_offset;
+ fuse = &drv->fuse_corners[fnum];
+ if (fnum)
+ prev_fuse = &drv->fuse_corners[fnum - 1];
+ else
+ prev_fuse = NULL;
+
+ corner->fuse_corner = fuse;
+ corner->freq = cdata[i].freq;
+ corner->uV = fuse->uV;
+
+ if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
+ scaling = cpr_calculate_scaling(quot_offset, drv,
+ fdata, corner);
+ if (scaling < 0)
+ return scaling;
+
+ apply_scaling = true;
+ } else if (corner->freq == fuse->max_freq) {
+ /* This is a fuse corner; don't scale anything */
+ apply_scaling = false;
+ }
+
+ if (apply_scaling) {
+ freq_diff = fuse->max_freq - corner->freq;
+ freq_diff_mhz = freq_diff / 1000000;
+ corner->quot_adjust = scaling * freq_diff_mhz / 1000;
+
+ corner->uV = cpr_interpolate(corner, step_volt, fdata);
+ }
+
+ corner->max_uV = fuse->max_uV;
+ corner->min_uV = fuse->min_uV;
+ corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
+ corner->last_uV = corner->uV;
+
+ /* Reduce the ceiling voltage if needed */
+ if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
+ corner->max_uV = corner->uV;
+ else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
+ corner->max_uV = max(corner->min_uV, fuse->uV);
+
+ dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
+ corner->min_uV, corner->uV, corner->max_uV,
+ fuse->quot - corner->quot_adjust);
+ }
+
+ return 0;
+}
+
+static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
+{
+ const struct cpr_desc *desc = drv->desc;
+ struct cpr_fuse *fuses;
+ int i;
+
+ fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
+ sizeof(struct cpr_fuse),
+ GFP_KERNEL);
+ if (!fuses)
+ return ERR_PTR(-ENOMEM);
+
+ for (i = 0; i < desc->num_fuse_corners; i++) {
+ char tbuf[32];
+
+ snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
+ fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
+ if (!fuses[i].ring_osc)
+ return ERR_PTR(-ENOMEM);
+
+ snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
+ fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
+ GFP_KERNEL);
+ if (!fuses[i].init_voltage)
+ return ERR_PTR(-ENOMEM);
+
+ snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
+ fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
+ if (!fuses[i].quotient)
+ return ERR_PTR(-ENOMEM);
+
+ snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
+ fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
+ GFP_KERNEL);
+ if (!fuses[i].quotient_offset)
+ return ERR_PTR(-ENOMEM);
+ }
+
+ return fuses;
+}
+
+static void cpr_set_loop_allowed(struct cpr_drv *drv)
+{
+ drv->loop_disabled = false;
+}
+
+static int cpr_init_parameters(struct cpr_drv *drv)
+{
+ const struct cpr_desc *desc = drv->desc;
+ struct clk *clk;
+
+ clk = clk_get(drv->dev, "ref");
+ if (IS_ERR(clk))
+ return PTR_ERR(clk);
+
+ drv->ref_clk_khz = clk_get_rate(clk) / 1000;
+ clk_put(clk);
+
+ if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
+ desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
+ desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
+ desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
+ desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
+ desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
+ return -EINVAL;
+
+ dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
+ desc->up_threshold, desc->down_threshold);
+
+ return 0;
+}
+
+static int cpr_find_initial_corner(struct cpr_drv *drv)
+{
+ unsigned long rate;
+ const struct corner *end;
+ struct corner *iter;
+ unsigned int i = 0;
+
+ if (!drv->cpu_clk) {
+ dev_err(drv->dev, "cannot get rate from NULL clk\n");
+ return -EINVAL;
+ }
+
+ end = &drv->corners[drv->num_corners - 1];
+ rate = clk_get_rate(drv->cpu_clk);
+
+ /*
+ * Some bootloaders set a CPU clock frequency that is not defined
+ * in the OPP table. When running at an unlisted frequency,
+ * cpufreq_online() will change to the OPP which has the lowest
+ * frequency, at or above the unlisted frequency.
+ * Since cpufreq_online() always "rounds up" in the case of an
+ * unlisted frequency, this function always "rounds down" in case
+ * of an unlisted frequency. That way, when cpufreq_online()
+ * triggers the first ever call to cpr_set_performance_state(),
+ * it will correctly determine the direction as UP.
+ */
+ for (iter = drv->corners; iter <= end; iter++) {
+ if (iter->freq > rate)
+ break;
+ i++;
+ if (iter->freq == rate) {
+ drv->corner = iter;
+ break;
+ }
+ if (iter->freq < rate)
+ drv->corner = iter;
+ }
+
+ if (!drv->corner) {
+ dev_err(drv->dev, "boot up corner not found\n");
+ return -EINVAL;
+ }
+
+ dev_dbg(drv->dev, "boot up perf state: %u\n", i);
+
+ return 0;
+}
+
+static const struct cpr_desc qcs404_cpr_desc = {
+ .num_fuse_corners = 3,
+ .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
+ .step_quot = (int []){ 25, 25, 25, },
+ .timer_delay_us = 5000,
+ .timer_cons_up = 0,
+ .timer_cons_down = 2,
+ .up_threshold = 1,
+ .down_threshold = 3,
+ .idle_clocks = 15,
+ .gcnt_us = 1,
+ .vdd_apc_step_up_limit = 1,
+ .vdd_apc_step_down_limit = 1,
+ .cpr_fuses = {
+ .init_voltage_step = 8000,
+ .init_voltage_width = 6,
+ .fuse_corner_data = (struct fuse_corner_data[]){
+ /* fuse corner 0 */
+ {
+ .ref_uV = 1224000,
+ .max_uV = 1224000,
+ .min_uV = 1048000,
+ .max_volt_scale = 0,
+ .max_quot_scale = 0,
+ .quot_offset = 0,
+ .quot_scale = 1,
+ .quot_adjust = 0,
+ .quot_offset_scale = 5,
+ .quot_offset_adjust = 0,
+ },
+ /* fuse corner 1 */
+ {
+ .ref_uV = 1288000,
+ .max_uV = 1288000,
+ .min_uV = 1048000,
+ .max_volt_scale = 2000,
+ .max_quot_scale = 1400,
+ .quot_offset = 0,
+ .quot_scale = 1,
+ .quot_adjust = -20,
+ .quot_offset_scale = 5,
+ .quot_offset_adjust = 0,
+ },
+ /* fuse corner 2 */
+ {
+ .ref_uV = 1352000,
+ .max_uV = 1384000,
+ .min_uV = 1088000,
+ .max_volt_scale = 2000,
+ .max_quot_scale = 1400,
+ .quot_offset = 0,
+ .quot_scale = 1,
+ .quot_adjust = 0,
+ .quot_offset_scale = 5,
+ .quot_offset_adjust = 0,
+ },
+ },
+ },
+};
+
+static const struct acc_desc qcs404_acc_desc = {
+ .settings = (struct reg_sequence[]){
+ { 0xb120, 0x1041040 },
+ { 0xb124, 0x41 },
+ { 0xb120, 0x0 },
+ { 0xb124, 0x0 },
+ { 0xb120, 0x0 },
+ { 0xb124, 0x0 },
+ },
+ .config = (struct reg_sequence[]){
+ { 0xb138, 0xff },
+ { 0xb130, 0x5555 },
+ },
+ .num_regs_per_fuse = 2,
+};
+
+static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
+ .cpr_desc = &qcs404_cpr_desc,
+ .acc_desc = &qcs404_acc_desc,
+};
+
+static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
+ struct dev_pm_opp *opp)
+{
+ return dev_pm_opp_get_level(opp);
+}
+
+static int cpr_power_off(struct generic_pm_domain *domain)
+{
+ struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+
+ return cpr_disable(drv);
+}
+
+static int cpr_power_on(struct generic_pm_domain *domain)
+{
+ struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+
+ return cpr_enable(drv);
+}
+
+static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
+ struct device *dev)
+{
+ struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
+ const struct acc_desc *acc_desc = drv->acc_desc;
+ int ret = 0;
+
+ mutex_lock(&drv->lock);
+
+ dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
+
+ /*
+ * This driver only supports scaling voltage for a CPU cluster
+ * where all CPUs in the cluster share a single regulator.
+ * Therefore, save the struct device pointer only for the first
+ * CPU device that gets attached. There is no need to do any
+ * additional initialization when further CPUs get attached.
+ */
+ if (drv->attached_cpu_dev)
+ goto unlock;
+
+ /*
+ * cpr_scale_voltage() requires the direction (if we are changing
+ * to a higher or lower OPP). The first time
+ * cpr_set_performance_state() is called, there is no previous
+ * performance state defined. Therefore, we call
+ * cpr_find_initial_corner() that gets the CPU clock frequency
+ * set by the bootloader, so that we can determine the direction
+ * the first time cpr_set_performance_state() is called.
+ */
+ drv->cpu_clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(drv->cpu_clk)) {
+ ret = PTR_ERR(drv->cpu_clk);
+ if (ret != -EPROBE_DEFER)
+ dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
+ goto unlock;
+ }
+ drv->attached_cpu_dev = dev;
+
+ dev_dbg(drv->dev, "using cpu clk from: %s\n",
+ dev_name(drv->attached_cpu_dev));
+
+ /*
+ * Everything related to (virtual) corners has to be initialized
+ * here, when attaching to the power domain, since we need to know
+ * the maximum frequency for each fuse corner, and this is only
+ * available after the cpufreq driver has attached to us.
+ * The reason for this is that we need to know the highest
+ * frequency associated with each fuse corner.
+ */
+ ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
+ if (ret < 0) {
+ dev_err(drv->dev, "could not get OPP count\n");
+ goto unlock;
+ }
+ drv->num_corners = ret;
+
+ if (drv->num_corners < 2) {
+ dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
+ ret = -EINVAL;
+ goto unlock;
+ }
+
+ drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
+ sizeof(*drv->corners),
+ GFP_KERNEL);
+ if (!drv->corners) {
+ ret = -ENOMEM;
+ goto unlock;
+ }
+
+ ret = cpr_corner_init(drv);
+ if (ret)
+ goto unlock;
+
+ cpr_set_loop_allowed(drv);
+
+ ret = cpr_init_parameters(drv);
+ if (ret)
+ goto unlock;
+
+ /* Configure CPR HW but keep it disabled */
+ ret = cpr_config(drv);
+ if (ret)
+ goto unlock;
+
+ ret = cpr_find_initial_corner(drv);
+ if (ret)
+ goto unlock;
+
+ if (acc_desc->config)
+ regmap_multi_reg_write(drv->tcsr, acc_desc->config,
+ acc_desc->num_regs_per_fuse);
+
+ /* Enable ACC if required */
+ if (acc_desc->enable_mask)
+ regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
+ acc_desc->enable_mask,
+ acc_desc->enable_mask);
+
+ dev_info(drv->dev, "driver initialized with %u OPPs\n",
+ drv->num_corners);
+
+unlock:
+ mutex_unlock(&drv->lock);
+
+ return ret;
+}
+
+static int cpr_debug_info_show(struct seq_file *s, void *unused)
+{
+ u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
+ u32 step_dn, step_up, error, error_lt0, busy;
+ struct cpr_drv *drv = s->private;
+ struct fuse_corner *fuse_corner;
+ struct corner *corner;
+
+ corner = drv->corner;
+ fuse_corner = corner->fuse_corner;
+
+ seq_printf(s, "corner, current_volt = %d uV\n",
+ corner->last_uV);
+
+ ro_sel = fuse_corner->ring_osc_idx;
+ gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
+ seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
+
+ ctl = cpr_read(drv, REG_RBCPR_CTL);
+ seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
+
+ irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
+ seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
+
+ reg = cpr_read(drv, REG_RBCPR_RESULT_0);
+ seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
+
+ step_dn = reg & 0x01;
+ step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
+ seq_printf(s, " [step_dn = %u", step_dn);
+
+ seq_printf(s, ", step_up = %u", step_up);
+
+ error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
+ & RBCPR_RESULT0_ERROR_STEPS_MASK;
+ seq_printf(s, ", error_steps = %u", error_steps);
+
+ error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
+ seq_printf(s, ", error = %u", error);
+
+ error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
+ seq_printf(s, ", error_lt_0 = %u", error_lt0);
+
+ busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
+ seq_printf(s, ", busy = %u]\n", busy);
+
+ return 0;
+}
+DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
+
+static void cpr_debugfs_init(struct cpr_drv *drv)
+{
+ drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
+
+ debugfs_create_file("debug_info", 0444, drv->debugfs,
+ drv, &cpr_debug_info_fops);
+}
+
+static int cpr_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct device *dev = &pdev->dev;
+ struct cpr_drv *drv;
+ int irq, ret;
+ const struct cpr_acc_desc *data;
+ struct device_node *np;
+ u32 cpr_rev = FUSE_REVISION_UNKNOWN;
+
+ data = of_device_get_match_data(dev);
+ if (!data || !data->cpr_desc || !data->acc_desc)
+ return -EINVAL;
+
+ drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
+ if (!drv)
+ return -ENOMEM;
+ drv->dev = dev;
+ drv->desc = data->cpr_desc;
+ drv->acc_desc = data->acc_desc;
+
+ drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
+ sizeof(*drv->fuse_corners),
+ GFP_KERNEL);
+ if (!drv->fuse_corners)
+ return -ENOMEM;
+
+ np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
+ if (!np)
+ return -ENODEV;
+
+ drv->tcsr = syscon_node_to_regmap(np);
+ of_node_put(np);
+ if (IS_ERR(drv->tcsr))
+ return PTR_ERR(drv->tcsr);
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ drv->base = devm_ioremap_resource(dev, res);
+ if (IS_ERR(drv->base))
+ return PTR_ERR(drv->base);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return -EINVAL;
+
+ drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
+ if (IS_ERR(drv->vdd_apc))
+ return PTR_ERR(drv->vdd_apc);
+
+ /*
+ * Initialize fuse corners, since it simply depends
+ * on data in efuses.
+ * Everything related to (virtual) corners has to be
+ * initialized after attaching to the power domain,
+ * since it depends on the CPU's OPP table.
+ */
+ ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
+ if (ret)
+ return ret;
+
+ drv->cpr_fuses = cpr_get_fuses(drv);
+ if (IS_ERR(drv->cpr_fuses))
+ return PTR_ERR(drv->cpr_fuses);
+
+ ret = cpr_populate_ring_osc_idx(drv);
+ if (ret)
+ return ret;
+
+ ret = cpr_fuse_corner_init(drv);
+ if (ret)
+ return ret;
+
+ mutex_init(&drv->lock);
+
+ ret = devm_request_threaded_irq(dev, irq, NULL,
+ cpr_irq_handler,
+ IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+ "cpr", drv);
+ if (ret)
+ return ret;
+
+ drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
+ GFP_KERNEL);
+ if (!drv->pd.name)
+ return -EINVAL;
+
+ drv->pd.power_off = cpr_power_off;
+ drv->pd.power_on = cpr_power_on;
+ drv->pd.set_performance_state = cpr_set_performance_state;
+ drv->pd.opp_to_performance_state = cpr_get_performance_state;
+ drv->pd.attach_dev = cpr_pd_attach_dev;
+
+ ret = pm_genpd_init(&drv->pd, NULL, true);
+ if (ret)
+ return ret;
+
+ ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
+ if (ret)
+ goto err_remove_genpd;
+
+ platform_set_drvdata(pdev, drv);
+ cpr_debugfs_init(drv);
+
+ return 0;
+
+err_remove_genpd:
+ pm_genpd_remove(&drv->pd);
+ return ret;
+}
+
+static int cpr_remove(struct platform_device *pdev)
+{
+ struct cpr_drv *drv = platform_get_drvdata(pdev);
+
+ if (cpr_is_allowed(drv)) {
+ cpr_ctl_disable(drv);
+ cpr_irq_set(drv, 0);
+ }
+
+ of_genpd_del_provider(pdev->dev.of_node);
+ pm_genpd_remove(&drv->pd);
+
+ debugfs_remove_recursive(drv->debugfs);
+
+ return 0;
+}
+
+static const struct of_device_id cpr_match_table[] = {
+ { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
+ { }
+};
+MODULE_DEVICE_TABLE(of, cpr_match_table);
+
+static struct platform_driver cpr_driver = {
+ .probe = cpr_probe,
+ .remove = cpr_remove,
+ .driver = {
+ .name = "qcom-cpr",
+ .of_match_table = cpr_match_table,
+ },
+};
+module_platform_driver(cpr_driver);
+
+MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
+MODULE_LICENSE("GPL v2");