summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-pxa2xx-dma.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/spi/spi-pxa2xx-dma.c252
1 files changed, 252 insertions, 0 deletions
diff --git a/drivers/spi/spi-pxa2xx-dma.c b/drivers/spi/spi-pxa2xx-dma.c
new file mode 100644
index 000000000..37567bc7a
--- /dev/null
+++ b/drivers/spi/spi-pxa2xx-dma.c
@@ -0,0 +1,252 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * PXA2xx SPI DMA engine support.
+ *
+ * Copyright (C) 2013, Intel Corporation
+ * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
+ */
+
+#include <linux/device.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/pxa2xx_ssp.h>
+#include <linux/scatterlist.h>
+#include <linux/sizes.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/pxa2xx_spi.h>
+
+#include "spi-pxa2xx.h"
+
+static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
+ bool error)
+{
+ struct spi_message *msg = drv_data->controller->cur_msg;
+
+ /*
+ * It is possible that one CPU is handling ROR interrupt and other
+ * just gets DMA completion. Calling pump_transfers() twice for the
+ * same transfer leads to problems thus we prevent concurrent calls
+ * by using ->dma_running.
+ */
+ if (atomic_dec_and_test(&drv_data->dma_running)) {
+ /*
+ * If the other CPU is still handling the ROR interrupt we
+ * might not know about the error yet. So we re-check the
+ * ROR bit here before we clear the status register.
+ */
+ if (!error) {
+ u32 status = pxa2xx_spi_read(drv_data, SSSR)
+ & drv_data->mask_sr;
+ error = status & SSSR_ROR;
+ }
+
+ /* Clear status & disable interrupts */
+ pxa2xx_spi_write(drv_data, SSCR1,
+ pxa2xx_spi_read(drv_data, SSCR1)
+ & ~drv_data->dma_cr1);
+ write_SSSR_CS(drv_data, drv_data->clear_sr);
+ if (!pxa25x_ssp_comp(drv_data))
+ pxa2xx_spi_write(drv_data, SSTO, 0);
+
+ if (error) {
+ /* In case we got an error we disable the SSP now */
+ pxa2xx_spi_write(drv_data, SSCR0,
+ pxa2xx_spi_read(drv_data, SSCR0)
+ & ~SSCR0_SSE);
+ msg->status = -EIO;
+ }
+
+ spi_finalize_current_transfer(drv_data->controller);
+ }
+}
+
+static void pxa2xx_spi_dma_callback(void *data)
+{
+ pxa2xx_spi_dma_transfer_complete(data, false);
+}
+
+static struct dma_async_tx_descriptor *
+pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
+ enum dma_transfer_direction dir,
+ struct spi_transfer *xfer)
+{
+ struct chip_data *chip =
+ spi_get_ctldata(drv_data->controller->cur_msg->spi);
+ enum dma_slave_buswidth width;
+ struct dma_slave_config cfg;
+ struct dma_chan *chan;
+ struct sg_table *sgt;
+ int ret;
+
+ switch (drv_data->n_bytes) {
+ case 1:
+ width = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ break;
+ case 2:
+ width = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ break;
+ default:
+ width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ break;
+ }
+
+ memset(&cfg, 0, sizeof(cfg));
+ cfg.direction = dir;
+
+ if (dir == DMA_MEM_TO_DEV) {
+ cfg.dst_addr = drv_data->ssdr_physical;
+ cfg.dst_addr_width = width;
+ cfg.dst_maxburst = chip->dma_burst_size;
+
+ sgt = &xfer->tx_sg;
+ chan = drv_data->controller->dma_tx;
+ } else {
+ cfg.src_addr = drv_data->ssdr_physical;
+ cfg.src_addr_width = width;
+ cfg.src_maxburst = chip->dma_burst_size;
+
+ sgt = &xfer->rx_sg;
+ chan = drv_data->controller->dma_rx;
+ }
+
+ ret = dmaengine_slave_config(chan, &cfg);
+ if (ret) {
+ dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
+ return NULL;
+ }
+
+ return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+}
+
+irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
+{
+ u32 status;
+
+ status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
+ if (status & SSSR_ROR) {
+ dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
+
+ dmaengine_terminate_async(drv_data->controller->dma_rx);
+ dmaengine_terminate_async(drv_data->controller->dma_tx);
+
+ pxa2xx_spi_dma_transfer_complete(drv_data, true);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
+ struct spi_transfer *xfer)
+{
+ struct dma_async_tx_descriptor *tx_desc, *rx_desc;
+ int err;
+
+ tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
+ if (!tx_desc) {
+ dev_err(&drv_data->pdev->dev,
+ "failed to get DMA TX descriptor\n");
+ err = -EBUSY;
+ goto err_tx;
+ }
+
+ rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
+ if (!rx_desc) {
+ dev_err(&drv_data->pdev->dev,
+ "failed to get DMA RX descriptor\n");
+ err = -EBUSY;
+ goto err_rx;
+ }
+
+ /* We are ready when RX completes */
+ rx_desc->callback = pxa2xx_spi_dma_callback;
+ rx_desc->callback_param = drv_data;
+
+ dmaengine_submit(rx_desc);
+ dmaengine_submit(tx_desc);
+ return 0;
+
+err_rx:
+ dmaengine_terminate_async(drv_data->controller->dma_tx);
+err_tx:
+ return err;
+}
+
+void pxa2xx_spi_dma_start(struct driver_data *drv_data)
+{
+ dma_async_issue_pending(drv_data->controller->dma_rx);
+ dma_async_issue_pending(drv_data->controller->dma_tx);
+
+ atomic_set(&drv_data->dma_running, 1);
+}
+
+void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
+{
+ atomic_set(&drv_data->dma_running, 0);
+ dmaengine_terminate_sync(drv_data->controller->dma_rx);
+ dmaengine_terminate_sync(drv_data->controller->dma_tx);
+}
+
+int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
+{
+ struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
+ struct device *dev = &drv_data->pdev->dev;
+ struct spi_controller *controller = drv_data->controller;
+ dma_cap_mask_t mask;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ controller->dma_tx = dma_request_slave_channel_compat(mask,
+ pdata->dma_filter, pdata->tx_param, dev, "tx");
+ if (!controller->dma_tx)
+ return -ENODEV;
+
+ controller->dma_rx = dma_request_slave_channel_compat(mask,
+ pdata->dma_filter, pdata->rx_param, dev, "rx");
+ if (!controller->dma_rx) {
+ dma_release_channel(controller->dma_tx);
+ controller->dma_tx = NULL;
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+void pxa2xx_spi_dma_release(struct driver_data *drv_data)
+{
+ struct spi_controller *controller = drv_data->controller;
+
+ if (controller->dma_rx) {
+ dmaengine_terminate_sync(controller->dma_rx);
+ dma_release_channel(controller->dma_rx);
+ controller->dma_rx = NULL;
+ }
+ if (controller->dma_tx) {
+ dmaengine_terminate_sync(controller->dma_tx);
+ dma_release_channel(controller->dma_tx);
+ controller->dma_tx = NULL;
+ }
+}
+
+int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
+ struct spi_device *spi,
+ u8 bits_per_word, u32 *burst_code,
+ u32 *threshold)
+{
+ struct pxa2xx_spi_chip *chip_info = spi->controller_data;
+ struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
+ u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
+
+ /*
+ * If the DMA burst size is given in chip_info we use that,
+ * otherwise we use the default. Also we use the default FIFO
+ * thresholds for now.
+ */
+ *burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
+ *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
+ | SSCR1_TxTresh(TX_THRESH_DFLT);
+
+ return 0;
+}