summaryrefslogtreecommitdiffstats
path: root/drivers/watchdog/octeon-wdt-main.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/watchdog/octeon-wdt-main.c')
-rw-r--r--drivers/watchdog/octeon-wdt-main.c610
1 files changed, 610 insertions, 0 deletions
diff --git a/drivers/watchdog/octeon-wdt-main.c b/drivers/watchdog/octeon-wdt-main.c
new file mode 100644
index 000000000..fde9e739b
--- /dev/null
+++ b/drivers/watchdog/octeon-wdt-main.c
@@ -0,0 +1,610 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Octeon Watchdog driver
+ *
+ * Copyright (C) 2007-2017 Cavium, Inc.
+ *
+ * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
+ *
+ * Some parts derived from wdt.c
+ *
+ * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
+ * All Rights Reserved.
+ *
+ * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
+ * warranty for any of this software. This material is provided
+ * "AS-IS" and at no charge.
+ *
+ * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
+ *
+ * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
+ * For most systems this is less than 10 seconds, so to allow for
+ * software to request longer watchdog heartbeats, we maintain software
+ * counters to count multiples of the base rate. If the system locks
+ * up in such a manner that we can not run the software counters, the
+ * only result is a watchdog reset sooner than was requested. But
+ * that is OK, because in this case userspace would likely not be able
+ * to do anything anyhow.
+ *
+ * The hardware watchdog interval we call the period. The OCTEON
+ * watchdog goes through several stages, after the first period an
+ * irq is asserted, then if it is not reset, after the next period NMI
+ * is asserted, then after an additional period a chip wide soft reset.
+ * So for the software counters, we reset watchdog after each period
+ * and decrement the counter. But for the last two periods we need to
+ * let the watchdog progress to the NMI stage so we disable the irq
+ * and let it proceed. Once in the NMI, we print the register state
+ * to the serial port and then wait for the reset.
+ *
+ * A watchdog is maintained for each CPU in the system, that way if
+ * one CPU suffers a lockup, we also get a register dump and reset.
+ * The userspace ping resets the watchdog on all CPUs.
+ *
+ * Before userspace opens the watchdog device, we still run the
+ * watchdogs to catch any lockups that may be kernel related.
+ *
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/interrupt.h>
+#include <linux/watchdog.h>
+#include <linux/cpumask.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/cpu.h>
+#include <linux/irq.h>
+
+#include <asm/mipsregs.h>
+#include <asm/uasm.h>
+
+#include <asm/octeon/octeon.h>
+#include <asm/octeon/cvmx-boot-vector.h>
+#include <asm/octeon/cvmx-ciu2-defs.h>
+#include <asm/octeon/cvmx-rst-defs.h>
+
+/* Watchdog interrupt major block number (8 MSBs of intsn) */
+#define WD_BLOCK_NUMBER 0x01
+
+static int divisor;
+
+/* The count needed to achieve timeout_sec. */
+static unsigned int timeout_cnt;
+
+/* The maximum period supported. */
+static unsigned int max_timeout_sec;
+
+/* The current period. */
+static unsigned int timeout_sec;
+
+/* Set to non-zero when userspace countdown mode active */
+static bool do_countdown;
+static unsigned int countdown_reset;
+static unsigned int per_cpu_countdown[NR_CPUS];
+
+static cpumask_t irq_enabled_cpus;
+
+#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
+
+#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
+
+static int heartbeat = WD_TIMO;
+module_param(heartbeat, int, 0444);
+MODULE_PARM_DESC(heartbeat,
+ "Watchdog heartbeat in seconds. (0 < heartbeat, default="
+ __MODULE_STRING(WD_TIMO) ")");
+
+static bool nowayout = WATCHDOG_NOWAYOUT;
+module_param(nowayout, bool, 0444);
+MODULE_PARM_DESC(nowayout,
+ "Watchdog cannot be stopped once started (default="
+ __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
+
+static int disable;
+module_param(disable, int, 0444);
+MODULE_PARM_DESC(disable,
+ "Disable the watchdog entirely (default=0)");
+
+static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
+
+void octeon_wdt_nmi_stage2(void);
+
+static int cpu2core(int cpu)
+{
+#ifdef CONFIG_SMP
+ return cpu_logical_map(cpu) & 0x3f;
+#else
+ return cvmx_get_core_num();
+#endif
+}
+
+/**
+ * Poke the watchdog when an interrupt is received
+ *
+ * @cpl:
+ * @dev_id:
+ *
+ * Returns
+ */
+static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
+{
+ int cpu = raw_smp_processor_id();
+ unsigned int core = cpu2core(cpu);
+ int node = cpu_to_node(cpu);
+
+ if (do_countdown) {
+ if (per_cpu_countdown[cpu] > 0) {
+ /* We're alive, poke the watchdog */
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
+ per_cpu_countdown[cpu]--;
+ } else {
+ /* Bad news, you are about to reboot. */
+ disable_irq_nosync(cpl);
+ cpumask_clear_cpu(cpu, &irq_enabled_cpus);
+ }
+ } else {
+ /* Not open, just ping away... */
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
+ }
+ return IRQ_HANDLED;
+}
+
+/* From setup.c */
+extern int prom_putchar(char c);
+
+/**
+ * Write a string to the uart
+ *
+ * @str: String to write
+ */
+static void octeon_wdt_write_string(const char *str)
+{
+ /* Just loop writing one byte at a time */
+ while (*str)
+ prom_putchar(*str++);
+}
+
+/**
+ * Write a hex number out of the uart
+ *
+ * @value: Number to display
+ * @digits: Number of digits to print (1 to 16)
+ */
+static void octeon_wdt_write_hex(u64 value, int digits)
+{
+ int d;
+ int v;
+
+ for (d = 0; d < digits; d++) {
+ v = (value >> ((digits - d - 1) * 4)) & 0xf;
+ if (v >= 10)
+ prom_putchar('a' + v - 10);
+ else
+ prom_putchar('0' + v);
+ }
+}
+
+static const char reg_name[][3] = {
+ "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
+ "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
+};
+
+/**
+ * NMI stage 3 handler. NMIs are handled in the following manner:
+ * 1) The first NMI handler enables CVMSEG and transfers from
+ * the bootbus region into normal memory. It is careful to not
+ * destroy any registers.
+ * 2) The second stage handler uses CVMSEG to save the registers
+ * and create a stack for C code. It then calls the third level
+ * handler with one argument, a pointer to the register values.
+ * 3) The third, and final, level handler is the following C
+ * function that prints out some useful infomration.
+ *
+ * @reg: Pointer to register state before the NMI
+ */
+void octeon_wdt_nmi_stage3(u64 reg[32])
+{
+ u64 i;
+
+ unsigned int coreid = cvmx_get_core_num();
+ /*
+ * Save status and cause early to get them before any changes
+ * might happen.
+ */
+ u64 cp0_cause = read_c0_cause();
+ u64 cp0_status = read_c0_status();
+ u64 cp0_error_epc = read_c0_errorepc();
+ u64 cp0_epc = read_c0_epc();
+
+ /* Delay so output from all cores output is not jumbled together. */
+ udelay(85000 * coreid);
+
+ octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
+ octeon_wdt_write_hex(coreid, 2);
+ octeon_wdt_write_string(" ***\r\n");
+ for (i = 0; i < 32; i++) {
+ octeon_wdt_write_string("\t");
+ octeon_wdt_write_string(reg_name[i]);
+ octeon_wdt_write_string("\t0x");
+ octeon_wdt_write_hex(reg[i], 16);
+ if (i & 1)
+ octeon_wdt_write_string("\r\n");
+ }
+ octeon_wdt_write_string("\terr_epc\t0x");
+ octeon_wdt_write_hex(cp0_error_epc, 16);
+
+ octeon_wdt_write_string("\tepc\t0x");
+ octeon_wdt_write_hex(cp0_epc, 16);
+ octeon_wdt_write_string("\r\n");
+
+ octeon_wdt_write_string("\tstatus\t0x");
+ octeon_wdt_write_hex(cp0_status, 16);
+ octeon_wdt_write_string("\tcause\t0x");
+ octeon_wdt_write_hex(cp0_cause, 16);
+ octeon_wdt_write_string("\r\n");
+
+ /* The CIU register is different for each Octeon model. */
+ if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
+ octeon_wdt_write_string("\tsrc_wd\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
+ octeon_wdt_write_string("\ten_wd\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
+ octeon_wdt_write_string("\r\n");
+ octeon_wdt_write_string("\tsrc_rml\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
+ octeon_wdt_write_string("\ten_rml\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
+ octeon_wdt_write_string("\r\n");
+ octeon_wdt_write_string("\tsum\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
+ octeon_wdt_write_string("\r\n");
+ } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
+ octeon_wdt_write_string("\tsum0\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
+ octeon_wdt_write_string("\ten0\t0x");
+ octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
+ octeon_wdt_write_string("\r\n");
+ }
+
+ octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
+
+ /*
+ * G-30204: We must trigger a soft reset before watchdog
+ * does an incomplete job of doing it.
+ */
+ if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
+ u64 scr;
+ unsigned int node = cvmx_get_node_num();
+ unsigned int lcore = cvmx_get_local_core_num();
+ union cvmx_ciu_wdogx ciu_wdog;
+
+ /*
+ * Wait for other cores to print out information, but
+ * not too long. Do the soft reset before watchdog
+ * can trigger it.
+ */
+ do {
+ ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
+ } while (ciu_wdog.s.cnt > 0x10000);
+
+ scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
+ scr |= 1 << 11; /* Indicate watchdog in bit 11 */
+ cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
+ cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
+ }
+}
+
+static int octeon_wdt_cpu_to_irq(int cpu)
+{
+ unsigned int coreid;
+ int node;
+ int irq;
+
+ coreid = cpu2core(cpu);
+ node = cpu_to_node(cpu);
+
+ if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
+ struct irq_domain *domain;
+ int hwirq;
+
+ domain = octeon_irq_get_block_domain(node,
+ WD_BLOCK_NUMBER);
+ hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
+ irq = irq_find_mapping(domain, hwirq);
+ } else {
+ irq = OCTEON_IRQ_WDOG0 + coreid;
+ }
+ return irq;
+}
+
+static int octeon_wdt_cpu_pre_down(unsigned int cpu)
+{
+ unsigned int core;
+ int node;
+ union cvmx_ciu_wdogx ciu_wdog;
+
+ core = cpu2core(cpu);
+
+ node = cpu_to_node(cpu);
+
+ /* Poke the watchdog to clear out its state */
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
+
+ /* Disable the hardware. */
+ ciu_wdog.u64 = 0;
+ cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
+
+ free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
+ return 0;
+}
+
+static int octeon_wdt_cpu_online(unsigned int cpu)
+{
+ unsigned int core;
+ unsigned int irq;
+ union cvmx_ciu_wdogx ciu_wdog;
+ int node;
+ struct irq_domain *domain;
+ int hwirq;
+
+ core = cpu2core(cpu);
+ node = cpu_to_node(cpu);
+
+ octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
+
+ /* Disable it before doing anything with the interrupts. */
+ ciu_wdog.u64 = 0;
+ cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
+
+ per_cpu_countdown[cpu] = countdown_reset;
+
+ if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
+ /* Must get the domain for the watchdog block */
+ domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
+
+ /* Get a irq for the wd intsn (hardware interrupt) */
+ hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
+ irq = irq_create_mapping(domain, hwirq);
+ irqd_set_trigger_type(irq_get_irq_data(irq),
+ IRQ_TYPE_EDGE_RISING);
+ } else
+ irq = OCTEON_IRQ_WDOG0 + core;
+
+ if (request_irq(irq, octeon_wdt_poke_irq,
+ IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
+ panic("octeon_wdt: Couldn't obtain irq %d", irq);
+
+ /* Must set the irq affinity here */
+ if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
+ cpumask_t mask;
+
+ cpumask_clear(&mask);
+ cpumask_set_cpu(cpu, &mask);
+ irq_set_affinity(irq, &mask);
+ }
+
+ cpumask_set_cpu(cpu, &irq_enabled_cpus);
+
+ /* Poke the watchdog to clear out its state */
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
+
+ /* Finally enable the watchdog now that all handlers are installed */
+ ciu_wdog.u64 = 0;
+ ciu_wdog.s.len = timeout_cnt;
+ ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
+ cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
+
+ return 0;
+}
+
+static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
+{
+ int cpu;
+ int coreid;
+ int node;
+
+ if (disable)
+ return 0;
+
+ for_each_online_cpu(cpu) {
+ coreid = cpu2core(cpu);
+ node = cpu_to_node(cpu);
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
+ per_cpu_countdown[cpu] = countdown_reset;
+ if ((countdown_reset || !do_countdown) &&
+ !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
+ /* We have to enable the irq */
+ enable_irq(octeon_wdt_cpu_to_irq(cpu));
+ cpumask_set_cpu(cpu, &irq_enabled_cpus);
+ }
+ }
+ return 0;
+}
+
+static void octeon_wdt_calc_parameters(int t)
+{
+ unsigned int periods;
+
+ timeout_sec = max_timeout_sec;
+
+
+ /*
+ * Find the largest interrupt period, that can evenly divide
+ * the requested heartbeat time.
+ */
+ while ((t % timeout_sec) != 0)
+ timeout_sec--;
+
+ periods = t / timeout_sec;
+
+ /*
+ * The last two periods are after the irq is disabled, and
+ * then to the nmi, so we subtract them off.
+ */
+
+ countdown_reset = periods > 2 ? periods - 2 : 0;
+ heartbeat = t;
+ timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
+}
+
+static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
+ unsigned int t)
+{
+ int cpu;
+ int coreid;
+ union cvmx_ciu_wdogx ciu_wdog;
+ int node;
+
+ if (t <= 0)
+ return -1;
+
+ octeon_wdt_calc_parameters(t);
+
+ if (disable)
+ return 0;
+
+ for_each_online_cpu(cpu) {
+ coreid = cpu2core(cpu);
+ node = cpu_to_node(cpu);
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
+ ciu_wdog.u64 = 0;
+ ciu_wdog.s.len = timeout_cnt;
+ ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
+ cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
+ cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
+ }
+ octeon_wdt_ping(wdog); /* Get the irqs back on. */
+ return 0;
+}
+
+static int octeon_wdt_start(struct watchdog_device *wdog)
+{
+ octeon_wdt_ping(wdog);
+ do_countdown = 1;
+ return 0;
+}
+
+static int octeon_wdt_stop(struct watchdog_device *wdog)
+{
+ do_countdown = 0;
+ octeon_wdt_ping(wdog);
+ return 0;
+}
+
+static const struct watchdog_info octeon_wdt_info = {
+ .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
+ .identity = "OCTEON",
+};
+
+static const struct watchdog_ops octeon_wdt_ops = {
+ .owner = THIS_MODULE,
+ .start = octeon_wdt_start,
+ .stop = octeon_wdt_stop,
+ .ping = octeon_wdt_ping,
+ .set_timeout = octeon_wdt_set_timeout,
+};
+
+static struct watchdog_device octeon_wdt = {
+ .info = &octeon_wdt_info,
+ .ops = &octeon_wdt_ops,
+};
+
+static enum cpuhp_state octeon_wdt_online;
+/**
+ * Module/ driver initialization.
+ *
+ * Returns Zero on success
+ */
+static int __init octeon_wdt_init(void)
+{
+ int ret;
+
+ octeon_wdt_bootvector = cvmx_boot_vector_get();
+ if (!octeon_wdt_bootvector) {
+ pr_err("Error: Cannot allocate boot vector.\n");
+ return -ENOMEM;
+ }
+
+ if (OCTEON_IS_MODEL(OCTEON_CN68XX))
+ divisor = 0x200;
+ else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
+ divisor = 0x400;
+ else
+ divisor = 0x100;
+
+ /*
+ * Watchdog time expiration length = The 16 bits of LEN
+ * represent the most significant bits of a 24 bit decrementer
+ * that decrements every divisor cycle.
+ *
+ * Try for a timeout of 5 sec, if that fails a smaller number
+ * of even seconds,
+ */
+ max_timeout_sec = 6;
+ do {
+ max_timeout_sec--;
+ timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
+ } while (timeout_cnt > 65535);
+
+ BUG_ON(timeout_cnt == 0);
+
+ octeon_wdt_calc_parameters(heartbeat);
+
+ pr_info("Initial granularity %d Sec\n", timeout_sec);
+
+ octeon_wdt.timeout = timeout_sec;
+ octeon_wdt.max_timeout = UINT_MAX;
+
+ watchdog_set_nowayout(&octeon_wdt, nowayout);
+
+ ret = watchdog_register_device(&octeon_wdt);
+ if (ret) {
+ pr_err("watchdog_register_device() failed: %d\n", ret);
+ return ret;
+ }
+
+ if (disable) {
+ pr_notice("disabled\n");
+ return 0;
+ }
+
+ cpumask_clear(&irq_enabled_cpus);
+
+ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
+ octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
+ if (ret < 0)
+ goto err;
+ octeon_wdt_online = ret;
+ return 0;
+err:
+ cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
+ watchdog_unregister_device(&octeon_wdt);
+ return ret;
+}
+
+/**
+ * Module / driver shutdown
+ */
+static void __exit octeon_wdt_cleanup(void)
+{
+ watchdog_unregister_device(&octeon_wdt);
+
+ if (disable)
+ return;
+
+ cpuhp_remove_state(octeon_wdt_online);
+
+ /*
+ * Disable the boot-bus memory, the code it points to is soon
+ * to go missing.
+ */
+ cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
+MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
+module_init(octeon_wdt_init);
+module_exit(octeon_wdt_cleanup);