summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/ordered-data.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--fs/btrfs/ordered-data.c961
1 files changed, 961 insertions, 0 deletions
diff --git a/fs/btrfs/ordered-data.c b/fs/btrfs/ordered-data.c
new file mode 100644
index 000000000..87bac9ecd
--- /dev/null
+++ b/fs/btrfs/ordered-data.c
@@ -0,0 +1,961 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ */
+
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/writeback.h>
+#include <linux/sched/mm.h>
+#include "misc.h"
+#include "ctree.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "extent_io.h"
+#include "disk-io.h"
+#include "compression.h"
+#include "delalloc-space.h"
+#include "qgroup.h"
+
+static struct kmem_cache *btrfs_ordered_extent_cache;
+
+static u64 entry_end(struct btrfs_ordered_extent *entry)
+{
+ if (entry->file_offset + entry->num_bytes < entry->file_offset)
+ return (u64)-1;
+ return entry->file_offset + entry->num_bytes;
+}
+
+/* returns NULL if the insertion worked, or it returns the node it did find
+ * in the tree
+ */
+static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
+ struct rb_node *node)
+{
+ struct rb_node **p = &root->rb_node;
+ struct rb_node *parent = NULL;
+ struct btrfs_ordered_extent *entry;
+
+ while (*p) {
+ parent = *p;
+ entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
+
+ if (file_offset < entry->file_offset)
+ p = &(*p)->rb_left;
+ else if (file_offset >= entry_end(entry))
+ p = &(*p)->rb_right;
+ else
+ return parent;
+ }
+
+ rb_link_node(node, parent, p);
+ rb_insert_color(node, root);
+ return NULL;
+}
+
+/*
+ * look for a given offset in the tree, and if it can't be found return the
+ * first lesser offset
+ */
+static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
+ struct rb_node **prev_ret)
+{
+ struct rb_node *n = root->rb_node;
+ struct rb_node *prev = NULL;
+ struct rb_node *test;
+ struct btrfs_ordered_extent *entry;
+ struct btrfs_ordered_extent *prev_entry = NULL;
+
+ while (n) {
+ entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
+ prev = n;
+ prev_entry = entry;
+
+ if (file_offset < entry->file_offset)
+ n = n->rb_left;
+ else if (file_offset >= entry_end(entry))
+ n = n->rb_right;
+ else
+ return n;
+ }
+ if (!prev_ret)
+ return NULL;
+
+ while (prev && file_offset >= entry_end(prev_entry)) {
+ test = rb_next(prev);
+ if (!test)
+ break;
+ prev_entry = rb_entry(test, struct btrfs_ordered_extent,
+ rb_node);
+ if (file_offset < entry_end(prev_entry))
+ break;
+
+ prev = test;
+ }
+ if (prev)
+ prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
+ rb_node);
+ while (prev && file_offset < entry_end(prev_entry)) {
+ test = rb_prev(prev);
+ if (!test)
+ break;
+ prev_entry = rb_entry(test, struct btrfs_ordered_extent,
+ rb_node);
+ prev = test;
+ }
+ *prev_ret = prev;
+ return NULL;
+}
+
+/*
+ * helper to check if a given offset is inside a given entry
+ */
+static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
+{
+ if (file_offset < entry->file_offset ||
+ entry->file_offset + entry->num_bytes <= file_offset)
+ return 0;
+ return 1;
+}
+
+static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
+ u64 len)
+{
+ if (file_offset + len <= entry->file_offset ||
+ entry->file_offset + entry->num_bytes <= file_offset)
+ return 0;
+ return 1;
+}
+
+/*
+ * look find the first ordered struct that has this offset, otherwise
+ * the first one less than this offset
+ */
+static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
+ u64 file_offset)
+{
+ struct rb_root *root = &tree->tree;
+ struct rb_node *prev = NULL;
+ struct rb_node *ret;
+ struct btrfs_ordered_extent *entry;
+
+ if (tree->last) {
+ entry = rb_entry(tree->last, struct btrfs_ordered_extent,
+ rb_node);
+ if (offset_in_entry(entry, file_offset))
+ return tree->last;
+ }
+ ret = __tree_search(root, file_offset, &prev);
+ if (!ret)
+ ret = prev;
+ if (ret)
+ tree->last = ret;
+ return ret;
+}
+
+/*
+ * Allocate and add a new ordered_extent into the per-inode tree.
+ *
+ * The tree is given a single reference on the ordered extent that was
+ * inserted.
+ */
+static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
+ u64 disk_bytenr, u64 num_bytes,
+ u64 disk_num_bytes, int type, int dio,
+ int compress_type)
+{
+ struct btrfs_root *root = inode->root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry;
+ int ret;
+
+ if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
+ /* For nocow write, we can release the qgroup rsv right now */
+ ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
+ if (ret < 0)
+ return ret;
+ ret = 0;
+ } else {
+ /*
+ * The ordered extent has reserved qgroup space, release now
+ * and pass the reserved number for qgroup_record to free.
+ */
+ ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
+ if (ret < 0)
+ return ret;
+ }
+ entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
+ if (!entry)
+ return -ENOMEM;
+
+ entry->file_offset = file_offset;
+ entry->disk_bytenr = disk_bytenr;
+ entry->num_bytes = num_bytes;
+ entry->disk_num_bytes = disk_num_bytes;
+ entry->bytes_left = num_bytes;
+ entry->inode = igrab(&inode->vfs_inode);
+ entry->compress_type = compress_type;
+ entry->truncated_len = (u64)-1;
+ entry->qgroup_rsv = ret;
+ if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
+ set_bit(type, &entry->flags);
+
+ if (dio) {
+ percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
+ fs_info->delalloc_batch);
+ set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
+ }
+
+ /* one ref for the tree */
+ refcount_set(&entry->refs, 1);
+ init_waitqueue_head(&entry->wait);
+ INIT_LIST_HEAD(&entry->list);
+ INIT_LIST_HEAD(&entry->log_list);
+ INIT_LIST_HEAD(&entry->root_extent_list);
+ INIT_LIST_HEAD(&entry->work_list);
+ init_completion(&entry->completion);
+
+ trace_btrfs_ordered_extent_add(inode, entry);
+
+ spin_lock_irq(&tree->lock);
+ node = tree_insert(&tree->tree, file_offset,
+ &entry->rb_node);
+ if (node)
+ btrfs_panic(fs_info, -EEXIST,
+ "inconsistency in ordered tree at offset %llu",
+ file_offset);
+ spin_unlock_irq(&tree->lock);
+
+ spin_lock(&root->ordered_extent_lock);
+ list_add_tail(&entry->root_extent_list,
+ &root->ordered_extents);
+ root->nr_ordered_extents++;
+ if (root->nr_ordered_extents == 1) {
+ spin_lock(&fs_info->ordered_root_lock);
+ BUG_ON(!list_empty(&root->ordered_root));
+ list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
+ spin_unlock(&fs_info->ordered_root_lock);
+ }
+ spin_unlock(&root->ordered_extent_lock);
+
+ /*
+ * We don't need the count_max_extents here, we can assume that all of
+ * that work has been done at higher layers, so this is truly the
+ * smallest the extent is going to get.
+ */
+ spin_lock(&inode->lock);
+ btrfs_mod_outstanding_extents(inode, 1);
+ spin_unlock(&inode->lock);
+
+ return 0;
+}
+
+int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
+ u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
+ int type)
+{
+ return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
+ num_bytes, disk_num_bytes, type, 0,
+ BTRFS_COMPRESS_NONE);
+}
+
+int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
+ u64 disk_bytenr, u64 num_bytes,
+ u64 disk_num_bytes, int type)
+{
+ return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
+ num_bytes, disk_num_bytes, type, 1,
+ BTRFS_COMPRESS_NONE);
+}
+
+int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
+ u64 disk_bytenr, u64 num_bytes,
+ u64 disk_num_bytes, int type,
+ int compress_type)
+{
+ return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
+ num_bytes, disk_num_bytes, type, 0,
+ compress_type);
+}
+
+/*
+ * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
+ * when an ordered extent is finished. If the list covers more than one
+ * ordered extent, it is split across multiples.
+ */
+void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
+ struct btrfs_ordered_sum *sum)
+{
+ struct btrfs_ordered_inode_tree *tree;
+
+ tree = &BTRFS_I(entry->inode)->ordered_tree;
+ spin_lock_irq(&tree->lock);
+ list_add_tail(&sum->list, &entry->list);
+ spin_unlock_irq(&tree->lock);
+}
+
+/*
+ * this is used to account for finished IO across a given range
+ * of the file. The IO may span ordered extents. If
+ * a given ordered_extent is completely done, 1 is returned, otherwise
+ * 0.
+ *
+ * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
+ * to make sure this function only returns 1 once for a given ordered extent.
+ *
+ * file_offset is updated to one byte past the range that is recorded as
+ * complete. This allows you to walk forward in the file.
+ */
+int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
+ struct btrfs_ordered_extent **cached,
+ u64 *file_offset, u64 io_size, int uptodate)
+{
+ struct btrfs_fs_info *fs_info = inode->root->fs_info;
+ struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+ int ret;
+ unsigned long flags;
+ u64 dec_end;
+ u64 dec_start;
+ u64 to_dec;
+
+ spin_lock_irqsave(&tree->lock, flags);
+ node = tree_search(tree, *file_offset);
+ if (!node) {
+ ret = 1;
+ goto out;
+ }
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (!offset_in_entry(entry, *file_offset)) {
+ ret = 1;
+ goto out;
+ }
+
+ dec_start = max(*file_offset, entry->file_offset);
+ dec_end = min(*file_offset + io_size,
+ entry->file_offset + entry->num_bytes);
+ *file_offset = dec_end;
+ if (dec_start > dec_end) {
+ btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
+ dec_start, dec_end);
+ }
+ to_dec = dec_end - dec_start;
+ if (to_dec > entry->bytes_left) {
+ btrfs_crit(fs_info,
+ "bad ordered accounting left %llu size %llu",
+ entry->bytes_left, to_dec);
+ }
+ entry->bytes_left -= to_dec;
+ if (!uptodate)
+ set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
+
+ if (entry->bytes_left == 0) {
+ ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
+ /* test_and_set_bit implies a barrier */
+ cond_wake_up_nomb(&entry->wait);
+ } else {
+ ret = 1;
+ }
+out:
+ if (!ret && cached && entry) {
+ *cached = entry;
+ refcount_inc(&entry->refs);
+ }
+ spin_unlock_irqrestore(&tree->lock, flags);
+ return ret == 0;
+}
+
+/*
+ * this is used to account for finished IO across a given range
+ * of the file. The IO should not span ordered extents. If
+ * a given ordered_extent is completely done, 1 is returned, otherwise
+ * 0.
+ *
+ * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
+ * to make sure this function only returns 1 once for a given ordered extent.
+ */
+int btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
+ struct btrfs_ordered_extent **cached,
+ u64 file_offset, u64 io_size, int uptodate)
+{
+ struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+ unsigned long flags;
+ int ret;
+
+ spin_lock_irqsave(&tree->lock, flags);
+ if (cached && *cached) {
+ entry = *cached;
+ goto have_entry;
+ }
+
+ node = tree_search(tree, file_offset);
+ if (!node) {
+ ret = 1;
+ goto out;
+ }
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+have_entry:
+ if (!offset_in_entry(entry, file_offset)) {
+ ret = 1;
+ goto out;
+ }
+
+ if (io_size > entry->bytes_left) {
+ btrfs_crit(inode->root->fs_info,
+ "bad ordered accounting left %llu size %llu",
+ entry->bytes_left, io_size);
+ }
+ entry->bytes_left -= io_size;
+ if (!uptodate)
+ set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
+
+ if (entry->bytes_left == 0) {
+ ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
+ /* test_and_set_bit implies a barrier */
+ cond_wake_up_nomb(&entry->wait);
+ } else {
+ ret = 1;
+ }
+out:
+ if (!ret && cached && entry) {
+ *cached = entry;
+ refcount_inc(&entry->refs);
+ }
+ spin_unlock_irqrestore(&tree->lock, flags);
+ return ret == 0;
+}
+
+/*
+ * used to drop a reference on an ordered extent. This will free
+ * the extent if the last reference is dropped
+ */
+void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
+{
+ struct list_head *cur;
+ struct btrfs_ordered_sum *sum;
+
+ trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
+
+ if (refcount_dec_and_test(&entry->refs)) {
+ ASSERT(list_empty(&entry->root_extent_list));
+ ASSERT(list_empty(&entry->log_list));
+ ASSERT(RB_EMPTY_NODE(&entry->rb_node));
+ if (entry->inode)
+ btrfs_add_delayed_iput(entry->inode);
+ while (!list_empty(&entry->list)) {
+ cur = entry->list.next;
+ sum = list_entry(cur, struct btrfs_ordered_sum, list);
+ list_del(&sum->list);
+ kvfree(sum);
+ }
+ kmem_cache_free(btrfs_ordered_extent_cache, entry);
+ }
+}
+
+/*
+ * remove an ordered extent from the tree. No references are dropped
+ * and waiters are woken up.
+ */
+void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
+ struct btrfs_ordered_extent *entry)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct btrfs_root *root = btrfs_inode->root;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct rb_node *node;
+ bool pending;
+
+ /* This is paired with btrfs_add_ordered_extent. */
+ spin_lock(&btrfs_inode->lock);
+ btrfs_mod_outstanding_extents(btrfs_inode, -1);
+ spin_unlock(&btrfs_inode->lock);
+ if (root != fs_info->tree_root)
+ btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
+ false);
+
+ if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
+ percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
+ fs_info->delalloc_batch);
+
+ tree = &btrfs_inode->ordered_tree;
+ spin_lock_irq(&tree->lock);
+ node = &entry->rb_node;
+ rb_erase(node, &tree->tree);
+ RB_CLEAR_NODE(node);
+ if (tree->last == node)
+ tree->last = NULL;
+ set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
+ pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
+ spin_unlock_irq(&tree->lock);
+
+ /*
+ * The current running transaction is waiting on us, we need to let it
+ * know that we're complete and wake it up.
+ */
+ if (pending) {
+ struct btrfs_transaction *trans;
+
+ /*
+ * The checks for trans are just a formality, it should be set,
+ * but if it isn't we don't want to deref/assert under the spin
+ * lock, so be nice and check if trans is set, but ASSERT() so
+ * if it isn't set a developer will notice.
+ */
+ spin_lock(&fs_info->trans_lock);
+ trans = fs_info->running_transaction;
+ if (trans)
+ refcount_inc(&trans->use_count);
+ spin_unlock(&fs_info->trans_lock);
+
+ ASSERT(trans);
+ if (trans) {
+ if (atomic_dec_and_test(&trans->pending_ordered))
+ wake_up(&trans->pending_wait);
+ btrfs_put_transaction(trans);
+ }
+ }
+
+ spin_lock(&root->ordered_extent_lock);
+ list_del_init(&entry->root_extent_list);
+ root->nr_ordered_extents--;
+
+ trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
+
+ if (!root->nr_ordered_extents) {
+ spin_lock(&fs_info->ordered_root_lock);
+ BUG_ON(list_empty(&root->ordered_root));
+ list_del_init(&root->ordered_root);
+ spin_unlock(&fs_info->ordered_root_lock);
+ }
+ spin_unlock(&root->ordered_extent_lock);
+ wake_up(&entry->wait);
+}
+
+static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
+{
+ struct btrfs_ordered_extent *ordered;
+
+ ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
+ btrfs_start_ordered_extent(ordered, 1);
+ complete(&ordered->completion);
+}
+
+/*
+ * wait for all the ordered extents in a root. This is done when balancing
+ * space between drives.
+ */
+u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
+ const u64 range_start, const u64 range_len)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ LIST_HEAD(splice);
+ LIST_HEAD(skipped);
+ LIST_HEAD(works);
+ struct btrfs_ordered_extent *ordered, *next;
+ u64 count = 0;
+ const u64 range_end = range_start + range_len;
+
+ mutex_lock(&root->ordered_extent_mutex);
+ spin_lock(&root->ordered_extent_lock);
+ list_splice_init(&root->ordered_extents, &splice);
+ while (!list_empty(&splice) && nr) {
+ ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
+ root_extent_list);
+
+ if (range_end <= ordered->disk_bytenr ||
+ ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
+ list_move_tail(&ordered->root_extent_list, &skipped);
+ cond_resched_lock(&root->ordered_extent_lock);
+ continue;
+ }
+
+ list_move_tail(&ordered->root_extent_list,
+ &root->ordered_extents);
+ refcount_inc(&ordered->refs);
+ spin_unlock(&root->ordered_extent_lock);
+
+ btrfs_init_work(&ordered->flush_work,
+ btrfs_run_ordered_extent_work, NULL, NULL);
+ list_add_tail(&ordered->work_list, &works);
+ btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
+
+ cond_resched();
+ spin_lock(&root->ordered_extent_lock);
+ if (nr != U64_MAX)
+ nr--;
+ count++;
+ }
+ list_splice_tail(&skipped, &root->ordered_extents);
+ list_splice_tail(&splice, &root->ordered_extents);
+ spin_unlock(&root->ordered_extent_lock);
+
+ list_for_each_entry_safe(ordered, next, &works, work_list) {
+ list_del_init(&ordered->work_list);
+ wait_for_completion(&ordered->completion);
+ btrfs_put_ordered_extent(ordered);
+ cond_resched();
+ }
+ mutex_unlock(&root->ordered_extent_mutex);
+
+ return count;
+}
+
+void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
+ const u64 range_start, const u64 range_len)
+{
+ struct btrfs_root *root;
+ struct list_head splice;
+ u64 done;
+
+ INIT_LIST_HEAD(&splice);
+
+ mutex_lock(&fs_info->ordered_operations_mutex);
+ spin_lock(&fs_info->ordered_root_lock);
+ list_splice_init(&fs_info->ordered_roots, &splice);
+ while (!list_empty(&splice) && nr) {
+ root = list_first_entry(&splice, struct btrfs_root,
+ ordered_root);
+ root = btrfs_grab_root(root);
+ BUG_ON(!root);
+ list_move_tail(&root->ordered_root,
+ &fs_info->ordered_roots);
+ spin_unlock(&fs_info->ordered_root_lock);
+
+ done = btrfs_wait_ordered_extents(root, nr,
+ range_start, range_len);
+ btrfs_put_root(root);
+
+ spin_lock(&fs_info->ordered_root_lock);
+ if (nr != U64_MAX) {
+ nr -= done;
+ }
+ }
+ list_splice_tail(&splice, &fs_info->ordered_roots);
+ spin_unlock(&fs_info->ordered_root_lock);
+ mutex_unlock(&fs_info->ordered_operations_mutex);
+}
+
+/*
+ * Used to start IO or wait for a given ordered extent to finish.
+ *
+ * If wait is one, this effectively waits on page writeback for all the pages
+ * in the extent, and it waits on the io completion code to insert
+ * metadata into the btree corresponding to the extent
+ */
+void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
+{
+ u64 start = entry->file_offset;
+ u64 end = start + entry->num_bytes - 1;
+ struct btrfs_inode *inode = BTRFS_I(entry->inode);
+
+ trace_btrfs_ordered_extent_start(inode, entry);
+
+ /*
+ * pages in the range can be dirty, clean or writeback. We
+ * start IO on any dirty ones so the wait doesn't stall waiting
+ * for the flusher thread to find them
+ */
+ if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
+ filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
+ if (wait) {
+ wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
+ &entry->flags));
+ }
+}
+
+/*
+ * Used to wait on ordered extents across a large range of bytes.
+ */
+int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
+{
+ int ret = 0;
+ int ret_wb = 0;
+ u64 end;
+ u64 orig_end;
+ struct btrfs_ordered_extent *ordered;
+
+ if (start + len < start) {
+ orig_end = INT_LIMIT(loff_t);
+ } else {
+ orig_end = start + len - 1;
+ if (orig_end > INT_LIMIT(loff_t))
+ orig_end = INT_LIMIT(loff_t);
+ }
+
+ /* start IO across the range first to instantiate any delalloc
+ * extents
+ */
+ ret = btrfs_fdatawrite_range(inode, start, orig_end);
+ if (ret)
+ return ret;
+
+ /*
+ * If we have a writeback error don't return immediately. Wait first
+ * for any ordered extents that haven't completed yet. This is to make
+ * sure no one can dirty the same page ranges and call writepages()
+ * before the ordered extents complete - to avoid failures (-EEXIST)
+ * when adding the new ordered extents to the ordered tree.
+ */
+ ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
+
+ end = orig_end;
+ while (1) {
+ ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
+ if (!ordered)
+ break;
+ if (ordered->file_offset > orig_end) {
+ btrfs_put_ordered_extent(ordered);
+ break;
+ }
+ if (ordered->file_offset + ordered->num_bytes <= start) {
+ btrfs_put_ordered_extent(ordered);
+ break;
+ }
+ btrfs_start_ordered_extent(ordered, 1);
+ end = ordered->file_offset;
+ /*
+ * If the ordered extent had an error save the error but don't
+ * exit without waiting first for all other ordered extents in
+ * the range to complete.
+ */
+ if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
+ ret = -EIO;
+ btrfs_put_ordered_extent(ordered);
+ if (end == 0 || end == start)
+ break;
+ end--;
+ }
+ return ret_wb ? ret_wb : ret;
+}
+
+/*
+ * find an ordered extent corresponding to file_offset. return NULL if
+ * nothing is found, otherwise take a reference on the extent and return it
+ */
+struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
+ u64 file_offset)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+
+ tree = &inode->ordered_tree;
+ spin_lock_irq(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node)
+ goto out;
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (!offset_in_entry(entry, file_offset))
+ entry = NULL;
+ if (entry)
+ refcount_inc(&entry->refs);
+out:
+ spin_unlock_irq(&tree->lock);
+ return entry;
+}
+
+/* Since the DIO code tries to lock a wide area we need to look for any ordered
+ * extents that exist in the range, rather than just the start of the range.
+ */
+struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
+ struct btrfs_inode *inode, u64 file_offset, u64 len)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+
+ tree = &inode->ordered_tree;
+ spin_lock_irq(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node) {
+ node = tree_search(tree, file_offset + len);
+ if (!node)
+ goto out;
+ }
+
+ while (1) {
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ if (range_overlaps(entry, file_offset, len))
+ break;
+
+ if (entry->file_offset >= file_offset + len) {
+ entry = NULL;
+ break;
+ }
+ entry = NULL;
+ node = rb_next(node);
+ if (!node)
+ break;
+ }
+out:
+ if (entry)
+ refcount_inc(&entry->refs);
+ spin_unlock_irq(&tree->lock);
+ return entry;
+}
+
+/*
+ * Adds all ordered extents to the given list. The list ends up sorted by the
+ * file_offset of the ordered extents.
+ */
+void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
+ struct list_head *list)
+{
+ struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
+ struct rb_node *n;
+
+ ASSERT(inode_is_locked(&inode->vfs_inode));
+
+ spin_lock_irq(&tree->lock);
+ for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
+ struct btrfs_ordered_extent *ordered;
+
+ ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
+
+ if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
+ continue;
+
+ ASSERT(list_empty(&ordered->log_list));
+ list_add_tail(&ordered->log_list, list);
+ refcount_inc(&ordered->refs);
+ }
+ spin_unlock_irq(&tree->lock);
+}
+
+/*
+ * lookup and return any extent before 'file_offset'. NULL is returned
+ * if none is found
+ */
+struct btrfs_ordered_extent *
+btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
+{
+ struct btrfs_ordered_inode_tree *tree;
+ struct rb_node *node;
+ struct btrfs_ordered_extent *entry = NULL;
+
+ tree = &inode->ordered_tree;
+ spin_lock_irq(&tree->lock);
+ node = tree_search(tree, file_offset);
+ if (!node)
+ goto out;
+
+ entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
+ refcount_inc(&entry->refs);
+out:
+ spin_unlock_irq(&tree->lock);
+ return entry;
+}
+
+/*
+ * search the ordered extents for one corresponding to 'offset' and
+ * try to find a checksum. This is used because we allow pages to
+ * be reclaimed before their checksum is actually put into the btree
+ */
+int btrfs_find_ordered_sum(struct btrfs_inode *inode, u64 offset,
+ u64 disk_bytenr, u8 *sum, int len)
+{
+ struct btrfs_fs_info *fs_info = inode->root->fs_info;
+ struct btrfs_ordered_sum *ordered_sum;
+ struct btrfs_ordered_extent *ordered;
+ struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
+ unsigned long num_sectors;
+ unsigned long i;
+ u32 sectorsize = btrfs_inode_sectorsize(inode);
+ const u8 blocksize_bits = inode->vfs_inode.i_sb->s_blocksize_bits;
+ const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
+ int index = 0;
+
+ ordered = btrfs_lookup_ordered_extent(inode, offset);
+ if (!ordered)
+ return 0;
+
+ spin_lock_irq(&tree->lock);
+ list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
+ if (disk_bytenr >= ordered_sum->bytenr &&
+ disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
+ i = (disk_bytenr - ordered_sum->bytenr) >> blocksize_bits;
+ num_sectors = ordered_sum->len >> blocksize_bits;
+ num_sectors = min_t(int, len - index, num_sectors - i);
+ memcpy(sum + index, ordered_sum->sums + i * csum_size,
+ num_sectors * csum_size);
+
+ index += (int)num_sectors * csum_size;
+ if (index == len)
+ goto out;
+ disk_bytenr += num_sectors * sectorsize;
+ }
+ }
+out:
+ spin_unlock_irq(&tree->lock);
+ btrfs_put_ordered_extent(ordered);
+ return index;
+}
+
+/*
+ * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
+ * ordered extents in it are run to completion.
+ *
+ * @inode: Inode whose ordered tree is to be searched
+ * @start: Beginning of range to flush
+ * @end: Last byte of range to lock
+ * @cached_state: If passed, will return the extent state responsible for the
+ * locked range. It's the caller's responsibility to free the cached state.
+ *
+ * This function always returns with the given range locked, ensuring after it's
+ * called no order extent can be pending.
+ */
+void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
+ u64 end,
+ struct extent_state **cached_state)
+{
+ struct btrfs_ordered_extent *ordered;
+ struct extent_state *cache = NULL;
+ struct extent_state **cachedp = &cache;
+
+ if (cached_state)
+ cachedp = cached_state;
+
+ while (1) {
+ lock_extent_bits(&inode->io_tree, start, end, cachedp);
+ ordered = btrfs_lookup_ordered_range(inode, start,
+ end - start + 1);
+ if (!ordered) {
+ /*
+ * If no external cached_state has been passed then
+ * decrement the extra ref taken for cachedp since we
+ * aren't exposing it outside of this function
+ */
+ if (!cached_state)
+ refcount_dec(&cache->refs);
+ break;
+ }
+ unlock_extent_cached(&inode->io_tree, start, end, cachedp);
+ btrfs_start_ordered_extent(ordered, 1);
+ btrfs_put_ordered_extent(ordered);
+ }
+}
+
+int __init ordered_data_init(void)
+{
+ btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
+ sizeof(struct btrfs_ordered_extent), 0,
+ SLAB_MEM_SPREAD,
+ NULL);
+ if (!btrfs_ordered_extent_cache)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void __cold ordered_data_exit(void)
+{
+ kmem_cache_destroy(btrfs_ordered_extent_cache);
+}