diff options
Diffstat (limited to '')
-rw-r--r-- | fs/btrfs/scrub.c | 4118 |
1 files changed, 4118 insertions, 0 deletions
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c new file mode 100644 index 000000000..715a0329b --- /dev/null +++ b/fs/btrfs/scrub.c @@ -0,0 +1,4118 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2011, 2012 STRATO. All rights reserved. + */ + +#include <linux/blkdev.h> +#include <linux/ratelimit.h> +#include <linux/sched/mm.h> +#include <crypto/hash.h> +#include "ctree.h" +#include "discard.h" +#include "volumes.h" +#include "disk-io.h" +#include "ordered-data.h" +#include "transaction.h" +#include "backref.h" +#include "extent_io.h" +#include "dev-replace.h" +#include "check-integrity.h" +#include "rcu-string.h" +#include "raid56.h" +#include "block-group.h" + +/* + * This is only the first step towards a full-features scrub. It reads all + * extent and super block and verifies the checksums. In case a bad checksum + * is found or the extent cannot be read, good data will be written back if + * any can be found. + * + * Future enhancements: + * - In case an unrepairable extent is encountered, track which files are + * affected and report them + * - track and record media errors, throw out bad devices + * - add a mode to also read unallocated space + */ + +struct scrub_block; +struct scrub_ctx; + +/* + * the following three values only influence the performance. + * The last one configures the number of parallel and outstanding I/O + * operations. The first two values configure an upper limit for the number + * of (dynamically allocated) pages that are added to a bio. + */ +#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */ +#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */ +#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */ + +/* + * the following value times PAGE_SIZE needs to be large enough to match the + * largest node/leaf/sector size that shall be supported. + * Values larger than BTRFS_STRIPE_LEN are not supported. + */ +#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */ + +struct scrub_recover { + refcount_t refs; + struct btrfs_bio *bbio; + u64 map_length; +}; + +struct scrub_page { + struct scrub_block *sblock; + struct page *page; + struct btrfs_device *dev; + struct list_head list; + u64 flags; /* extent flags */ + u64 generation; + u64 logical; + u64 physical; + u64 physical_for_dev_replace; + atomic_t refs; + struct { + unsigned int mirror_num:8; + unsigned int have_csum:1; + unsigned int io_error:1; + }; + u8 csum[BTRFS_CSUM_SIZE]; + + struct scrub_recover *recover; +}; + +struct scrub_bio { + int index; + struct scrub_ctx *sctx; + struct btrfs_device *dev; + struct bio *bio; + blk_status_t status; + u64 logical; + u64 physical; +#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO + struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO]; +#else + struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO]; +#endif + int page_count; + int next_free; + struct btrfs_work work; +}; + +struct scrub_block { + struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK]; + int page_count; + atomic_t outstanding_pages; + refcount_t refs; /* free mem on transition to zero */ + struct scrub_ctx *sctx; + struct scrub_parity *sparity; + struct { + unsigned int header_error:1; + unsigned int checksum_error:1; + unsigned int no_io_error_seen:1; + unsigned int generation_error:1; /* also sets header_error */ + + /* The following is for the data used to check parity */ + /* It is for the data with checksum */ + unsigned int data_corrected:1; + }; + struct btrfs_work work; +}; + +/* Used for the chunks with parity stripe such RAID5/6 */ +struct scrub_parity { + struct scrub_ctx *sctx; + + struct btrfs_device *scrub_dev; + + u64 logic_start; + + u64 logic_end; + + int nsectors; + + u64 stripe_len; + + refcount_t refs; + + struct list_head spages; + + /* Work of parity check and repair */ + struct btrfs_work work; + + /* Mark the parity blocks which have data */ + unsigned long *dbitmap; + + /* + * Mark the parity blocks which have data, but errors happen when + * read data or check data + */ + unsigned long *ebitmap; + + unsigned long bitmap[]; +}; + +struct scrub_ctx { + struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; + struct btrfs_fs_info *fs_info; + int first_free; + int curr; + atomic_t bios_in_flight; + atomic_t workers_pending; + spinlock_t list_lock; + wait_queue_head_t list_wait; + u16 csum_size; + struct list_head csum_list; + atomic_t cancel_req; + int readonly; + int pages_per_rd_bio; + + int is_dev_replace; + + struct scrub_bio *wr_curr_bio; + struct mutex wr_lock; + int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ + struct btrfs_device *wr_tgtdev; + bool flush_all_writes; + + /* + * statistics + */ + struct btrfs_scrub_progress stat; + spinlock_t stat_lock; + + /* + * Use a ref counter to avoid use-after-free issues. Scrub workers + * decrement bios_in_flight and workers_pending and then do a wakeup + * on the list_wait wait queue. We must ensure the main scrub task + * doesn't free the scrub context before or while the workers are + * doing the wakeup() call. + */ + refcount_t refs; +}; + +struct scrub_warning { + struct btrfs_path *path; + u64 extent_item_size; + const char *errstr; + u64 physical; + u64 logical; + struct btrfs_device *dev; +}; + +struct full_stripe_lock { + struct rb_node node; + u64 logical; + u64 refs; + struct mutex mutex; +}; + +static void scrub_pending_bio_inc(struct scrub_ctx *sctx); +static void scrub_pending_bio_dec(struct scrub_ctx *sctx); +static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); +static int scrub_setup_recheck_block(struct scrub_block *original_sblock, + struct scrub_block *sblocks_for_recheck); +static void scrub_recheck_block(struct btrfs_fs_info *fs_info, + struct scrub_block *sblock, + int retry_failed_mirror); +static void scrub_recheck_block_checksum(struct scrub_block *sblock); +static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good); +static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good, + int page_num, int force_write); +static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); +static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, + int page_num); +static int scrub_checksum_data(struct scrub_block *sblock); +static int scrub_checksum_tree_block(struct scrub_block *sblock); +static int scrub_checksum_super(struct scrub_block *sblock); +static void scrub_block_get(struct scrub_block *sblock); +static void scrub_block_put(struct scrub_block *sblock); +static void scrub_page_get(struct scrub_page *spage); +static void scrub_page_put(struct scrub_page *spage); +static void scrub_parity_get(struct scrub_parity *sparity); +static void scrub_parity_put(struct scrub_parity *sparity); +static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, + struct scrub_page *spage); +static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, + u64 physical, struct btrfs_device *dev, u64 flags, + u64 gen, int mirror_num, u8 *csum, int force, + u64 physical_for_dev_replace); +static void scrub_bio_end_io(struct bio *bio); +static void scrub_bio_end_io_worker(struct btrfs_work *work); +static void scrub_block_complete(struct scrub_block *sblock); +static void scrub_remap_extent(struct btrfs_fs_info *fs_info, + u64 extent_logical, u64 extent_len, + u64 *extent_physical, + struct btrfs_device **extent_dev, + int *extent_mirror_num); +static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, + struct scrub_page *spage); +static void scrub_wr_submit(struct scrub_ctx *sctx); +static void scrub_wr_bio_end_io(struct bio *bio); +static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); +static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); +static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); +static void scrub_put_ctx(struct scrub_ctx *sctx); + +static inline int scrub_is_page_on_raid56(struct scrub_page *page) +{ + return page->recover && + (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); +} + +static void scrub_pending_bio_inc(struct scrub_ctx *sctx) +{ + refcount_inc(&sctx->refs); + atomic_inc(&sctx->bios_in_flight); +} + +static void scrub_pending_bio_dec(struct scrub_ctx *sctx) +{ + atomic_dec(&sctx->bios_in_flight); + wake_up(&sctx->list_wait); + scrub_put_ctx(sctx); +} + +static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) +{ + while (atomic_read(&fs_info->scrub_pause_req)) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + atomic_read(&fs_info->scrub_pause_req) == 0); + mutex_lock(&fs_info->scrub_lock); + } +} + +static void scrub_pause_on(struct btrfs_fs_info *fs_info) +{ + atomic_inc(&fs_info->scrubs_paused); + wake_up(&fs_info->scrub_pause_wait); +} + +static void scrub_pause_off(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->scrub_lock); + __scrub_blocked_if_needed(fs_info); + atomic_dec(&fs_info->scrubs_paused); + mutex_unlock(&fs_info->scrub_lock); + + wake_up(&fs_info->scrub_pause_wait); +} + +static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) +{ + scrub_pause_on(fs_info); + scrub_pause_off(fs_info); +} + +/* + * Insert new full stripe lock into full stripe locks tree + * + * Return pointer to existing or newly inserted full_stripe_lock structure if + * everything works well. + * Return ERR_PTR(-ENOMEM) if we failed to allocate memory + * + * NOTE: caller must hold full_stripe_locks_root->lock before calling this + * function + */ +static struct full_stripe_lock *insert_full_stripe_lock( + struct btrfs_full_stripe_locks_tree *locks_root, + u64 fstripe_logical) +{ + struct rb_node **p; + struct rb_node *parent = NULL; + struct full_stripe_lock *entry; + struct full_stripe_lock *ret; + + lockdep_assert_held(&locks_root->lock); + + p = &locks_root->root.rb_node; + while (*p) { + parent = *p; + entry = rb_entry(parent, struct full_stripe_lock, node); + if (fstripe_logical < entry->logical) { + p = &(*p)->rb_left; + } else if (fstripe_logical > entry->logical) { + p = &(*p)->rb_right; + } else { + entry->refs++; + return entry; + } + } + + /* + * Insert new lock. + */ + ret = kmalloc(sizeof(*ret), GFP_KERNEL); + if (!ret) + return ERR_PTR(-ENOMEM); + ret->logical = fstripe_logical; + ret->refs = 1; + mutex_init(&ret->mutex); + + rb_link_node(&ret->node, parent, p); + rb_insert_color(&ret->node, &locks_root->root); + return ret; +} + +/* + * Search for a full stripe lock of a block group + * + * Return pointer to existing full stripe lock if found + * Return NULL if not found + */ +static struct full_stripe_lock *search_full_stripe_lock( + struct btrfs_full_stripe_locks_tree *locks_root, + u64 fstripe_logical) +{ + struct rb_node *node; + struct full_stripe_lock *entry; + + lockdep_assert_held(&locks_root->lock); + + node = locks_root->root.rb_node; + while (node) { + entry = rb_entry(node, struct full_stripe_lock, node); + if (fstripe_logical < entry->logical) + node = node->rb_left; + else if (fstripe_logical > entry->logical) + node = node->rb_right; + else + return entry; + } + return NULL; +} + +/* + * Helper to get full stripe logical from a normal bytenr. + * + * Caller must ensure @cache is a RAID56 block group. + */ +static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) +{ + u64 ret; + + /* + * Due to chunk item size limit, full stripe length should not be + * larger than U32_MAX. Just a sanity check here. + */ + WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); + + /* + * round_down() can only handle power of 2, while RAID56 full + * stripe length can be 64KiB * n, so we need to manually round down. + */ + ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * + cache->full_stripe_len + cache->start; + return ret; +} + +/* + * Lock a full stripe to avoid concurrency of recovery and read + * + * It's only used for profiles with parities (RAID5/6), for other profiles it + * does nothing. + * + * Return 0 if we locked full stripe covering @bytenr, with a mutex held. + * So caller must call unlock_full_stripe() at the same context. + * + * Return <0 if encounters error. + */ +static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, + bool *locked_ret) +{ + struct btrfs_block_group *bg_cache; + struct btrfs_full_stripe_locks_tree *locks_root; + struct full_stripe_lock *existing; + u64 fstripe_start; + int ret = 0; + + *locked_ret = false; + bg_cache = btrfs_lookup_block_group(fs_info, bytenr); + if (!bg_cache) { + ASSERT(0); + return -ENOENT; + } + + /* Profiles not based on parity don't need full stripe lock */ + if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) + goto out; + locks_root = &bg_cache->full_stripe_locks_root; + + fstripe_start = get_full_stripe_logical(bg_cache, bytenr); + + /* Now insert the full stripe lock */ + mutex_lock(&locks_root->lock); + existing = insert_full_stripe_lock(locks_root, fstripe_start); + mutex_unlock(&locks_root->lock); + if (IS_ERR(existing)) { + ret = PTR_ERR(existing); + goto out; + } + mutex_lock(&existing->mutex); + *locked_ret = true; +out: + btrfs_put_block_group(bg_cache); + return ret; +} + +/* + * Unlock a full stripe. + * + * NOTE: Caller must ensure it's the same context calling corresponding + * lock_full_stripe(). + * + * Return 0 if we unlock full stripe without problem. + * Return <0 for error + */ +static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, + bool locked) +{ + struct btrfs_block_group *bg_cache; + struct btrfs_full_stripe_locks_tree *locks_root; + struct full_stripe_lock *fstripe_lock; + u64 fstripe_start; + bool freeit = false; + int ret = 0; + + /* If we didn't acquire full stripe lock, no need to continue */ + if (!locked) + return 0; + + bg_cache = btrfs_lookup_block_group(fs_info, bytenr); + if (!bg_cache) { + ASSERT(0); + return -ENOENT; + } + if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) + goto out; + + locks_root = &bg_cache->full_stripe_locks_root; + fstripe_start = get_full_stripe_logical(bg_cache, bytenr); + + mutex_lock(&locks_root->lock); + fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); + /* Unpaired unlock_full_stripe() detected */ + if (!fstripe_lock) { + WARN_ON(1); + ret = -ENOENT; + mutex_unlock(&locks_root->lock); + goto out; + } + + if (fstripe_lock->refs == 0) { + WARN_ON(1); + btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", + fstripe_lock->logical); + } else { + fstripe_lock->refs--; + } + + if (fstripe_lock->refs == 0) { + rb_erase(&fstripe_lock->node, &locks_root->root); + freeit = true; + } + mutex_unlock(&locks_root->lock); + + mutex_unlock(&fstripe_lock->mutex); + if (freeit) + kfree(fstripe_lock); +out: + btrfs_put_block_group(bg_cache); + return ret; +} + +static void scrub_free_csums(struct scrub_ctx *sctx) +{ + while (!list_empty(&sctx->csum_list)) { + struct btrfs_ordered_sum *sum; + sum = list_first_entry(&sctx->csum_list, + struct btrfs_ordered_sum, list); + list_del(&sum->list); + kfree(sum); + } +} + +static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) +{ + int i; + + if (!sctx) + return; + + /* this can happen when scrub is cancelled */ + if (sctx->curr != -1) { + struct scrub_bio *sbio = sctx->bios[sctx->curr]; + + for (i = 0; i < sbio->page_count; i++) { + WARN_ON(!sbio->pagev[i]->page); + scrub_block_put(sbio->pagev[i]->sblock); + } + bio_put(sbio->bio); + } + + for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { + struct scrub_bio *sbio = sctx->bios[i]; + + if (!sbio) + break; + kfree(sbio); + } + + kfree(sctx->wr_curr_bio); + scrub_free_csums(sctx); + kfree(sctx); +} + +static void scrub_put_ctx(struct scrub_ctx *sctx) +{ + if (refcount_dec_and_test(&sctx->refs)) + scrub_free_ctx(sctx); +} + +static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( + struct btrfs_fs_info *fs_info, int is_dev_replace) +{ + struct scrub_ctx *sctx; + int i; + + sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); + if (!sctx) + goto nomem; + refcount_set(&sctx->refs, 1); + sctx->is_dev_replace = is_dev_replace; + sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; + sctx->curr = -1; + sctx->fs_info = fs_info; + INIT_LIST_HEAD(&sctx->csum_list); + for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { + struct scrub_bio *sbio; + + sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); + if (!sbio) + goto nomem; + sctx->bios[i] = sbio; + + sbio->index = i; + sbio->sctx = sctx; + sbio->page_count = 0; + btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL, + NULL); + + if (i != SCRUB_BIOS_PER_SCTX - 1) + sctx->bios[i]->next_free = i + 1; + else + sctx->bios[i]->next_free = -1; + } + sctx->first_free = 0; + atomic_set(&sctx->bios_in_flight, 0); + atomic_set(&sctx->workers_pending, 0); + atomic_set(&sctx->cancel_req, 0); + sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); + + spin_lock_init(&sctx->list_lock); + spin_lock_init(&sctx->stat_lock); + init_waitqueue_head(&sctx->list_wait); + + WARN_ON(sctx->wr_curr_bio != NULL); + mutex_init(&sctx->wr_lock); + sctx->wr_curr_bio = NULL; + if (is_dev_replace) { + WARN_ON(!fs_info->dev_replace.tgtdev); + sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; + sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; + sctx->flush_all_writes = false; + } + + return sctx; + +nomem: + scrub_free_ctx(sctx); + return ERR_PTR(-ENOMEM); +} + +static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, + void *warn_ctx) +{ + u64 isize; + u32 nlink; + int ret; + int i; + unsigned nofs_flag; + struct extent_buffer *eb; + struct btrfs_inode_item *inode_item; + struct scrub_warning *swarn = warn_ctx; + struct btrfs_fs_info *fs_info = swarn->dev->fs_info; + struct inode_fs_paths *ipath = NULL; + struct btrfs_root *local_root; + struct btrfs_key key; + + local_root = btrfs_get_fs_root(fs_info, root, true); + if (IS_ERR(local_root)) { + ret = PTR_ERR(local_root); + goto err; + } + + /* + * this makes the path point to (inum INODE_ITEM ioff) + */ + key.objectid = inum; + key.type = BTRFS_INODE_ITEM_KEY; + key.offset = 0; + + ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); + if (ret) { + btrfs_put_root(local_root); + btrfs_release_path(swarn->path); + goto err; + } + + eb = swarn->path->nodes[0]; + inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], + struct btrfs_inode_item); + isize = btrfs_inode_size(eb, inode_item); + nlink = btrfs_inode_nlink(eb, inode_item); + btrfs_release_path(swarn->path); + + /* + * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub + * uses GFP_NOFS in this context, so we keep it consistent but it does + * not seem to be strictly necessary. + */ + nofs_flag = memalloc_nofs_save(); + ipath = init_ipath(4096, local_root, swarn->path); + memalloc_nofs_restore(nofs_flag); + if (IS_ERR(ipath)) { + btrfs_put_root(local_root); + ret = PTR_ERR(ipath); + ipath = NULL; + goto err; + } + ret = paths_from_inode(inum, ipath); + + if (ret < 0) + goto err; + + /* + * we deliberately ignore the bit ipath might have been too small to + * hold all of the paths here + */ + for (i = 0; i < ipath->fspath->elem_cnt; ++i) + btrfs_warn_in_rcu(fs_info, +"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", + swarn->errstr, swarn->logical, + rcu_str_deref(swarn->dev->name), + swarn->physical, + root, inum, offset, + min(isize - offset, (u64)PAGE_SIZE), nlink, + (char *)(unsigned long)ipath->fspath->val[i]); + + btrfs_put_root(local_root); + free_ipath(ipath); + return 0; + +err: + btrfs_warn_in_rcu(fs_info, + "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", + swarn->errstr, swarn->logical, + rcu_str_deref(swarn->dev->name), + swarn->physical, + root, inum, offset, ret); + + free_ipath(ipath); + return 0; +} + +static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) +{ + struct btrfs_device *dev; + struct btrfs_fs_info *fs_info; + struct btrfs_path *path; + struct btrfs_key found_key; + struct extent_buffer *eb; + struct btrfs_extent_item *ei; + struct scrub_warning swarn; + unsigned long ptr = 0; + u64 extent_item_pos; + u64 flags = 0; + u64 ref_root; + u32 item_size; + u8 ref_level = 0; + int ret; + + WARN_ON(sblock->page_count < 1); + dev = sblock->pagev[0]->dev; + fs_info = sblock->sctx->fs_info; + + path = btrfs_alloc_path(); + if (!path) + return; + + swarn.physical = sblock->pagev[0]->physical; + swarn.logical = sblock->pagev[0]->logical; + swarn.errstr = errstr; + swarn.dev = NULL; + + ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, + &flags); + if (ret < 0) + goto out; + + extent_item_pos = swarn.logical - found_key.objectid; + swarn.extent_item_size = found_key.offset; + + eb = path->nodes[0]; + ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); + item_size = btrfs_item_size_nr(eb, path->slots[0]); + + if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + do { + ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, + item_size, &ref_root, + &ref_level); + btrfs_warn_in_rcu(fs_info, +"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", + errstr, swarn.logical, + rcu_str_deref(dev->name), + swarn.physical, + ref_level ? "node" : "leaf", + ret < 0 ? -1 : ref_level, + ret < 0 ? -1 : ref_root); + } while (ret != 1); + btrfs_release_path(path); + } else { + btrfs_release_path(path); + swarn.path = path; + swarn.dev = dev; + iterate_extent_inodes(fs_info, found_key.objectid, + extent_item_pos, 1, + scrub_print_warning_inode, &swarn, false); + } + +out: + btrfs_free_path(path); +} + +static inline void scrub_get_recover(struct scrub_recover *recover) +{ + refcount_inc(&recover->refs); +} + +static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, + struct scrub_recover *recover) +{ + if (refcount_dec_and_test(&recover->refs)) { + btrfs_bio_counter_dec(fs_info); + btrfs_put_bbio(recover->bbio); + kfree(recover); + } +} + +/* + * scrub_handle_errored_block gets called when either verification of the + * pages failed or the bio failed to read, e.g. with EIO. In the latter + * case, this function handles all pages in the bio, even though only one + * may be bad. + * The goal of this function is to repair the errored block by using the + * contents of one of the mirrors. + */ +static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) +{ + struct scrub_ctx *sctx = sblock_to_check->sctx; + struct btrfs_device *dev; + struct btrfs_fs_info *fs_info; + u64 logical; + unsigned int failed_mirror_index; + unsigned int is_metadata; + unsigned int have_csum; + struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ + struct scrub_block *sblock_bad; + int ret; + int mirror_index; + int page_num; + int success; + bool full_stripe_locked; + unsigned int nofs_flag; + static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, + DEFAULT_RATELIMIT_BURST); + + BUG_ON(sblock_to_check->page_count < 1); + fs_info = sctx->fs_info; + if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { + /* + * if we find an error in a super block, we just report it. + * They will get written with the next transaction commit + * anyway + */ + spin_lock(&sctx->stat_lock); + ++sctx->stat.super_errors; + spin_unlock(&sctx->stat_lock); + return 0; + } + logical = sblock_to_check->pagev[0]->logical; + BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); + failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; + is_metadata = !(sblock_to_check->pagev[0]->flags & + BTRFS_EXTENT_FLAG_DATA); + have_csum = sblock_to_check->pagev[0]->have_csum; + dev = sblock_to_check->pagev[0]->dev; + + /* + * We must use GFP_NOFS because the scrub task might be waiting for a + * worker task executing this function and in turn a transaction commit + * might be waiting the scrub task to pause (which needs to wait for all + * the worker tasks to complete before pausing). + * We do allocations in the workers through insert_full_stripe_lock() + * and scrub_add_page_to_wr_bio(), which happens down the call chain of + * this function. + */ + nofs_flag = memalloc_nofs_save(); + /* + * For RAID5/6, race can happen for a different device scrub thread. + * For data corruption, Parity and Data threads will both try + * to recovery the data. + * Race can lead to doubly added csum error, or even unrecoverable + * error. + */ + ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); + if (ret < 0) { + memalloc_nofs_restore(nofs_flag); + spin_lock(&sctx->stat_lock); + if (ret == -ENOMEM) + sctx->stat.malloc_errors++; + sctx->stat.read_errors++; + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + return ret; + } + + /* + * read all mirrors one after the other. This includes to + * re-read the extent or metadata block that failed (that was + * the cause that this fixup code is called) another time, + * page by page this time in order to know which pages + * caused I/O errors and which ones are good (for all mirrors). + * It is the goal to handle the situation when more than one + * mirror contains I/O errors, but the errors do not + * overlap, i.e. the data can be repaired by selecting the + * pages from those mirrors without I/O error on the + * particular pages. One example (with blocks >= 2 * PAGE_SIZE) + * would be that mirror #1 has an I/O error on the first page, + * the second page is good, and mirror #2 has an I/O error on + * the second page, but the first page is good. + * Then the first page of the first mirror can be repaired by + * taking the first page of the second mirror, and the + * second page of the second mirror can be repaired by + * copying the contents of the 2nd page of the 1st mirror. + * One more note: if the pages of one mirror contain I/O + * errors, the checksum cannot be verified. In order to get + * the best data for repairing, the first attempt is to find + * a mirror without I/O errors and with a validated checksum. + * Only if this is not possible, the pages are picked from + * mirrors with I/O errors without considering the checksum. + * If the latter is the case, at the end, the checksum of the + * repaired area is verified in order to correctly maintain + * the statistics. + */ + + sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, + sizeof(*sblocks_for_recheck), GFP_KERNEL); + if (!sblocks_for_recheck) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + sctx->stat.read_errors++; + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); + goto out; + } + + /* setup the context, map the logical blocks and alloc the pages */ + ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); + if (ret) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors++; + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); + goto out; + } + BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); + sblock_bad = sblocks_for_recheck + failed_mirror_index; + + /* build and submit the bios for the failed mirror, check checksums */ + scrub_recheck_block(fs_info, sblock_bad, 1); + + if (!sblock_bad->header_error && !sblock_bad->checksum_error && + sblock_bad->no_io_error_seen) { + /* + * the error disappeared after reading page by page, or + * the area was part of a huge bio and other parts of the + * bio caused I/O errors, or the block layer merged several + * read requests into one and the error is caused by a + * different bio (usually one of the two latter cases is + * the cause) + */ + spin_lock(&sctx->stat_lock); + sctx->stat.unverified_errors++; + sblock_to_check->data_corrected = 1; + spin_unlock(&sctx->stat_lock); + + if (sctx->is_dev_replace) + scrub_write_block_to_dev_replace(sblock_bad); + goto out; + } + + if (!sblock_bad->no_io_error_seen) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors++; + spin_unlock(&sctx->stat_lock); + if (__ratelimit(&rs)) + scrub_print_warning("i/o error", sblock_to_check); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); + } else if (sblock_bad->checksum_error) { + spin_lock(&sctx->stat_lock); + sctx->stat.csum_errors++; + spin_unlock(&sctx->stat_lock); + if (__ratelimit(&rs)) + scrub_print_warning("checksum error", sblock_to_check); + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_CORRUPTION_ERRS); + } else if (sblock_bad->header_error) { + spin_lock(&sctx->stat_lock); + sctx->stat.verify_errors++; + spin_unlock(&sctx->stat_lock); + if (__ratelimit(&rs)) + scrub_print_warning("checksum/header error", + sblock_to_check); + if (sblock_bad->generation_error) + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_GENERATION_ERRS); + else + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_CORRUPTION_ERRS); + } + + if (sctx->readonly) { + ASSERT(!sctx->is_dev_replace); + goto out; + } + + /* + * now build and submit the bios for the other mirrors, check + * checksums. + * First try to pick the mirror which is completely without I/O + * errors and also does not have a checksum error. + * If one is found, and if a checksum is present, the full block + * that is known to contain an error is rewritten. Afterwards + * the block is known to be corrected. + * If a mirror is found which is completely correct, and no + * checksum is present, only those pages are rewritten that had + * an I/O error in the block to be repaired, since it cannot be + * determined, which copy of the other pages is better (and it + * could happen otherwise that a correct page would be + * overwritten by a bad one). + */ + for (mirror_index = 0; ;mirror_index++) { + struct scrub_block *sblock_other; + + if (mirror_index == failed_mirror_index) + continue; + + /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ + if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { + if (mirror_index >= BTRFS_MAX_MIRRORS) + break; + if (!sblocks_for_recheck[mirror_index].page_count) + break; + + sblock_other = sblocks_for_recheck + mirror_index; + } else { + struct scrub_recover *r = sblock_bad->pagev[0]->recover; + int max_allowed = r->bbio->num_stripes - + r->bbio->num_tgtdevs; + + if (mirror_index >= max_allowed) + break; + if (!sblocks_for_recheck[1].page_count) + break; + + ASSERT(failed_mirror_index == 0); + sblock_other = sblocks_for_recheck + 1; + sblock_other->pagev[0]->mirror_num = 1 + mirror_index; + } + + /* build and submit the bios, check checksums */ + scrub_recheck_block(fs_info, sblock_other, 0); + + if (!sblock_other->header_error && + !sblock_other->checksum_error && + sblock_other->no_io_error_seen) { + if (sctx->is_dev_replace) { + scrub_write_block_to_dev_replace(sblock_other); + goto corrected_error; + } else { + ret = scrub_repair_block_from_good_copy( + sblock_bad, sblock_other); + if (!ret) + goto corrected_error; + } + } + } + + if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) + goto did_not_correct_error; + + /* + * In case of I/O errors in the area that is supposed to be + * repaired, continue by picking good copies of those pages. + * Select the good pages from mirrors to rewrite bad pages from + * the area to fix. Afterwards verify the checksum of the block + * that is supposed to be repaired. This verification step is + * only done for the purpose of statistic counting and for the + * final scrub report, whether errors remain. + * A perfect algorithm could make use of the checksum and try + * all possible combinations of pages from the different mirrors + * until the checksum verification succeeds. For example, when + * the 2nd page of mirror #1 faces I/O errors, and the 2nd page + * of mirror #2 is readable but the final checksum test fails, + * then the 2nd page of mirror #3 could be tried, whether now + * the final checksum succeeds. But this would be a rare + * exception and is therefore not implemented. At least it is + * avoided that the good copy is overwritten. + * A more useful improvement would be to pick the sectors + * without I/O error based on sector sizes (512 bytes on legacy + * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one + * mirror could be repaired by taking 512 byte of a different + * mirror, even if other 512 byte sectors in the same PAGE_SIZE + * area are unreadable. + */ + success = 1; + for (page_num = 0; page_num < sblock_bad->page_count; + page_num++) { + struct scrub_page *page_bad = sblock_bad->pagev[page_num]; + struct scrub_block *sblock_other = NULL; + + /* skip no-io-error page in scrub */ + if (!page_bad->io_error && !sctx->is_dev_replace) + continue; + + if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { + /* + * In case of dev replace, if raid56 rebuild process + * didn't work out correct data, then copy the content + * in sblock_bad to make sure target device is identical + * to source device, instead of writing garbage data in + * sblock_for_recheck array to target device. + */ + sblock_other = NULL; + } else if (page_bad->io_error) { + /* try to find no-io-error page in mirrors */ + for (mirror_index = 0; + mirror_index < BTRFS_MAX_MIRRORS && + sblocks_for_recheck[mirror_index].page_count > 0; + mirror_index++) { + if (!sblocks_for_recheck[mirror_index]. + pagev[page_num]->io_error) { + sblock_other = sblocks_for_recheck + + mirror_index; + break; + } + } + if (!sblock_other) + success = 0; + } + + if (sctx->is_dev_replace) { + /* + * did not find a mirror to fetch the page + * from. scrub_write_page_to_dev_replace() + * handles this case (page->io_error), by + * filling the block with zeros before + * submitting the write request + */ + if (!sblock_other) + sblock_other = sblock_bad; + + if (scrub_write_page_to_dev_replace(sblock_other, + page_num) != 0) { + atomic64_inc( + &fs_info->dev_replace.num_write_errors); + success = 0; + } + } else if (sblock_other) { + ret = scrub_repair_page_from_good_copy(sblock_bad, + sblock_other, + page_num, 0); + if (0 == ret) + page_bad->io_error = 0; + else + success = 0; + } + } + + if (success && !sctx->is_dev_replace) { + if (is_metadata || have_csum) { + /* + * need to verify the checksum now that all + * sectors on disk are repaired (the write + * request for data to be repaired is on its way). + * Just be lazy and use scrub_recheck_block() + * which re-reads the data before the checksum + * is verified, but most likely the data comes out + * of the page cache. + */ + scrub_recheck_block(fs_info, sblock_bad, 1); + if (!sblock_bad->header_error && + !sblock_bad->checksum_error && + sblock_bad->no_io_error_seen) + goto corrected_error; + else + goto did_not_correct_error; + } else { +corrected_error: + spin_lock(&sctx->stat_lock); + sctx->stat.corrected_errors++; + sblock_to_check->data_corrected = 1; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "fixed up error at logical %llu on dev %s", + logical, rcu_str_deref(dev->name)); + } + } else { +did_not_correct_error: + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "unable to fixup (regular) error at logical %llu on dev %s", + logical, rcu_str_deref(dev->name)); + } + +out: + if (sblocks_for_recheck) { + for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; + mirror_index++) { + struct scrub_block *sblock = sblocks_for_recheck + + mirror_index; + struct scrub_recover *recover; + int page_index; + + for (page_index = 0; page_index < sblock->page_count; + page_index++) { + sblock->pagev[page_index]->sblock = NULL; + recover = sblock->pagev[page_index]->recover; + if (recover) { + scrub_put_recover(fs_info, recover); + sblock->pagev[page_index]->recover = + NULL; + } + scrub_page_put(sblock->pagev[page_index]); + } + } + kfree(sblocks_for_recheck); + } + + ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); + memalloc_nofs_restore(nofs_flag); + if (ret < 0) + return ret; + return 0; +} + +static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) +{ + if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) + return 2; + else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) + return 3; + else + return (int)bbio->num_stripes; +} + +static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, + u64 *raid_map, + u64 mapped_length, + int nstripes, int mirror, + int *stripe_index, + u64 *stripe_offset) +{ + int i; + + if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + /* RAID5/6 */ + for (i = 0; i < nstripes; i++) { + if (raid_map[i] == RAID6_Q_STRIPE || + raid_map[i] == RAID5_P_STRIPE) + continue; + + if (logical >= raid_map[i] && + logical < raid_map[i] + mapped_length) + break; + } + + *stripe_index = i; + *stripe_offset = logical - raid_map[i]; + } else { + /* The other RAID type */ + *stripe_index = mirror; + *stripe_offset = 0; + } +} + +static int scrub_setup_recheck_block(struct scrub_block *original_sblock, + struct scrub_block *sblocks_for_recheck) +{ + struct scrub_ctx *sctx = original_sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + u64 length = original_sblock->page_count * PAGE_SIZE; + u64 logical = original_sblock->pagev[0]->logical; + u64 generation = original_sblock->pagev[0]->generation; + u64 flags = original_sblock->pagev[0]->flags; + u64 have_csum = original_sblock->pagev[0]->have_csum; + struct scrub_recover *recover; + struct btrfs_bio *bbio; + u64 sublen; + u64 mapped_length; + u64 stripe_offset; + int stripe_index; + int page_index = 0; + int mirror_index; + int nmirrors; + int ret; + + /* + * note: the two members refs and outstanding_pages + * are not used (and not set) in the blocks that are used for + * the recheck procedure + */ + + while (length > 0) { + sublen = min_t(u64, length, PAGE_SIZE); + mapped_length = sublen; + bbio = NULL; + + /* + * with a length of PAGE_SIZE, each returned stripe + * represents one mirror + */ + btrfs_bio_counter_inc_blocked(fs_info); + ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, + logical, &mapped_length, &bbio); + if (ret || !bbio || mapped_length < sublen) { + btrfs_put_bbio(bbio); + btrfs_bio_counter_dec(fs_info); + return -EIO; + } + + recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); + if (!recover) { + btrfs_put_bbio(bbio); + btrfs_bio_counter_dec(fs_info); + return -ENOMEM; + } + + refcount_set(&recover->refs, 1); + recover->bbio = bbio; + recover->map_length = mapped_length; + + BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); + + nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); + + for (mirror_index = 0; mirror_index < nmirrors; + mirror_index++) { + struct scrub_block *sblock; + struct scrub_page *page; + + sblock = sblocks_for_recheck + mirror_index; + sblock->sctx = sctx; + + page = kzalloc(sizeof(*page), GFP_NOFS); + if (!page) { +leave_nomem: + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + scrub_put_recover(fs_info, recover); + return -ENOMEM; + } + scrub_page_get(page); + sblock->pagev[page_index] = page; + page->sblock = sblock; + page->flags = flags; + page->generation = generation; + page->logical = logical; + page->have_csum = have_csum; + if (have_csum) + memcpy(page->csum, + original_sblock->pagev[0]->csum, + sctx->csum_size); + + scrub_stripe_index_and_offset(logical, + bbio->map_type, + bbio->raid_map, + mapped_length, + bbio->num_stripes - + bbio->num_tgtdevs, + mirror_index, + &stripe_index, + &stripe_offset); + page->physical = bbio->stripes[stripe_index].physical + + stripe_offset; + page->dev = bbio->stripes[stripe_index].dev; + + BUG_ON(page_index >= original_sblock->page_count); + page->physical_for_dev_replace = + original_sblock->pagev[page_index]-> + physical_for_dev_replace; + /* for missing devices, dev->bdev is NULL */ + page->mirror_num = mirror_index + 1; + sblock->page_count++; + page->page = alloc_page(GFP_NOFS); + if (!page->page) + goto leave_nomem; + + scrub_get_recover(recover); + page->recover = recover; + } + scrub_put_recover(fs_info, recover); + length -= sublen; + logical += sublen; + page_index++; + } + + return 0; +} + +static void scrub_bio_wait_endio(struct bio *bio) +{ + complete(bio->bi_private); +} + +static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, + struct bio *bio, + struct scrub_page *page) +{ + DECLARE_COMPLETION_ONSTACK(done); + int ret; + int mirror_num; + + bio->bi_iter.bi_sector = page->logical >> 9; + bio->bi_private = &done; + bio->bi_end_io = scrub_bio_wait_endio; + + mirror_num = page->sblock->pagev[0]->mirror_num; + ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, + page->recover->map_length, + mirror_num, 0); + if (ret) + return ret; + + wait_for_completion_io(&done); + return blk_status_to_errno(bio->bi_status); +} + +static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, + struct scrub_block *sblock) +{ + struct scrub_page *first_page = sblock->pagev[0]; + struct bio *bio; + int page_num; + + /* All pages in sblock belong to the same stripe on the same device. */ + ASSERT(first_page->dev); + if (!first_page->dev->bdev) + goto out; + + bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); + bio_set_dev(bio, first_page->dev->bdev); + + for (page_num = 0; page_num < sblock->page_count; page_num++) { + struct scrub_page *page = sblock->pagev[page_num]; + + WARN_ON(!page->page); + bio_add_page(bio, page->page, PAGE_SIZE, 0); + } + + if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { + bio_put(bio); + goto out; + } + + bio_put(bio); + + scrub_recheck_block_checksum(sblock); + + return; +out: + for (page_num = 0; page_num < sblock->page_count; page_num++) + sblock->pagev[page_num]->io_error = 1; + + sblock->no_io_error_seen = 0; +} + +/* + * this function will check the on disk data for checksum errors, header + * errors and read I/O errors. If any I/O errors happen, the exact pages + * which are errored are marked as being bad. The goal is to enable scrub + * to take those pages that are not errored from all the mirrors so that + * the pages that are errored in the just handled mirror can be repaired. + */ +static void scrub_recheck_block(struct btrfs_fs_info *fs_info, + struct scrub_block *sblock, + int retry_failed_mirror) +{ + int page_num; + + sblock->no_io_error_seen = 1; + + /* short cut for raid56 */ + if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) + return scrub_recheck_block_on_raid56(fs_info, sblock); + + for (page_num = 0; page_num < sblock->page_count; page_num++) { + struct bio *bio; + struct scrub_page *page = sblock->pagev[page_num]; + + if (page->dev->bdev == NULL) { + page->io_error = 1; + sblock->no_io_error_seen = 0; + continue; + } + + WARN_ON(!page->page); + bio = btrfs_io_bio_alloc(1); + bio_set_dev(bio, page->dev->bdev); + + bio_add_page(bio, page->page, PAGE_SIZE, 0); + bio->bi_iter.bi_sector = page->physical >> 9; + bio->bi_opf = REQ_OP_READ; + + if (btrfsic_submit_bio_wait(bio)) { + page->io_error = 1; + sblock->no_io_error_seen = 0; + } + + bio_put(bio); + } + + if (sblock->no_io_error_seen) + scrub_recheck_block_checksum(sblock); +} + +static inline int scrub_check_fsid(u8 fsid[], + struct scrub_page *spage) +{ + struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; + int ret; + + ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); + return !ret; +} + +static void scrub_recheck_block_checksum(struct scrub_block *sblock) +{ + sblock->header_error = 0; + sblock->checksum_error = 0; + sblock->generation_error = 0; + + if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) + scrub_checksum_data(sblock); + else + scrub_checksum_tree_block(sblock); +} + +static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good) +{ + int page_num; + int ret = 0; + + for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { + int ret_sub; + + ret_sub = scrub_repair_page_from_good_copy(sblock_bad, + sblock_good, + page_num, 1); + if (ret_sub) + ret = ret_sub; + } + + return ret; +} + +static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good, + int page_num, int force_write) +{ + struct scrub_page *page_bad = sblock_bad->pagev[page_num]; + struct scrub_page *page_good = sblock_good->pagev[page_num]; + struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; + + BUG_ON(page_bad->page == NULL); + BUG_ON(page_good->page == NULL); + if (force_write || sblock_bad->header_error || + sblock_bad->checksum_error || page_bad->io_error) { + struct bio *bio; + int ret; + + if (!page_bad->dev->bdev) { + btrfs_warn_rl(fs_info, + "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); + return -EIO; + } + + bio = btrfs_io_bio_alloc(1); + bio_set_dev(bio, page_bad->dev->bdev); + bio->bi_iter.bi_sector = page_bad->physical >> 9; + bio->bi_opf = REQ_OP_WRITE; + + ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); + if (PAGE_SIZE != ret) { + bio_put(bio); + return -EIO; + } + + if (btrfsic_submit_bio_wait(bio)) { + btrfs_dev_stat_inc_and_print(page_bad->dev, + BTRFS_DEV_STAT_WRITE_ERRS); + atomic64_inc(&fs_info->dev_replace.num_write_errors); + bio_put(bio); + return -EIO; + } + bio_put(bio); + } + + return 0; +} + +static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) +{ + struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; + int page_num; + + /* + * This block is used for the check of the parity on the source device, + * so the data needn't be written into the destination device. + */ + if (sblock->sparity) + return; + + for (page_num = 0; page_num < sblock->page_count; page_num++) { + int ret; + + ret = scrub_write_page_to_dev_replace(sblock, page_num); + if (ret) + atomic64_inc(&fs_info->dev_replace.num_write_errors); + } +} + +static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, + int page_num) +{ + struct scrub_page *spage = sblock->pagev[page_num]; + + BUG_ON(spage->page == NULL); + if (spage->io_error) + clear_page(page_address(spage->page)); + + return scrub_add_page_to_wr_bio(sblock->sctx, spage); +} + +static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, + struct scrub_page *spage) +{ + struct scrub_bio *sbio; + int ret; + + mutex_lock(&sctx->wr_lock); +again: + if (!sctx->wr_curr_bio) { + sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), + GFP_KERNEL); + if (!sctx->wr_curr_bio) { + mutex_unlock(&sctx->wr_lock); + return -ENOMEM; + } + sctx->wr_curr_bio->sctx = sctx; + sctx->wr_curr_bio->page_count = 0; + } + sbio = sctx->wr_curr_bio; + if (sbio->page_count == 0) { + struct bio *bio; + + sbio->physical = spage->physical_for_dev_replace; + sbio->logical = spage->logical; + sbio->dev = sctx->wr_tgtdev; + bio = sbio->bio; + if (!bio) { + bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); + sbio->bio = bio; + } + + bio->bi_private = sbio; + bio->bi_end_io = scrub_wr_bio_end_io; + bio_set_dev(bio, sbio->dev->bdev); + bio->bi_iter.bi_sector = sbio->physical >> 9; + bio->bi_opf = REQ_OP_WRITE; + sbio->status = 0; + } else if (sbio->physical + sbio->page_count * PAGE_SIZE != + spage->physical_for_dev_replace || + sbio->logical + sbio->page_count * PAGE_SIZE != + spage->logical) { + scrub_wr_submit(sctx); + goto again; + } + + ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); + if (ret != PAGE_SIZE) { + if (sbio->page_count < 1) { + bio_put(sbio->bio); + sbio->bio = NULL; + mutex_unlock(&sctx->wr_lock); + return -EIO; + } + scrub_wr_submit(sctx); + goto again; + } + + sbio->pagev[sbio->page_count] = spage; + scrub_page_get(spage); + sbio->page_count++; + if (sbio->page_count == sctx->pages_per_wr_bio) + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + return 0; +} + +static void scrub_wr_submit(struct scrub_ctx *sctx) +{ + struct scrub_bio *sbio; + + if (!sctx->wr_curr_bio) + return; + + sbio = sctx->wr_curr_bio; + sctx->wr_curr_bio = NULL; + WARN_ON(!sbio->bio->bi_disk); + scrub_pending_bio_inc(sctx); + /* process all writes in a single worker thread. Then the block layer + * orders the requests before sending them to the driver which + * doubled the write performance on spinning disks when measured + * with Linux 3.5 */ + btrfsic_submit_bio(sbio->bio); +} + +static void scrub_wr_bio_end_io(struct bio *bio) +{ + struct scrub_bio *sbio = bio->bi_private; + struct btrfs_fs_info *fs_info = sbio->dev->fs_info; + + sbio->status = bio->bi_status; + sbio->bio = bio; + + btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL); + btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); +} + +static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) +{ + struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); + struct scrub_ctx *sctx = sbio->sctx; + int i; + + WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); + if (sbio->status) { + struct btrfs_dev_replace *dev_replace = + &sbio->sctx->fs_info->dev_replace; + + for (i = 0; i < sbio->page_count; i++) { + struct scrub_page *spage = sbio->pagev[i]; + + spage->io_error = 1; + atomic64_inc(&dev_replace->num_write_errors); + } + } + + for (i = 0; i < sbio->page_count; i++) + scrub_page_put(sbio->pagev[i]); + + bio_put(sbio->bio); + kfree(sbio); + scrub_pending_bio_dec(sctx); +} + +static int scrub_checksum(struct scrub_block *sblock) +{ + u64 flags; + int ret; + + /* + * No need to initialize these stats currently, + * because this function only use return value + * instead of these stats value. + * + * Todo: + * always use stats + */ + sblock->header_error = 0; + sblock->generation_error = 0; + sblock->checksum_error = 0; + + WARN_ON(sblock->page_count < 1); + flags = sblock->pagev[0]->flags; + ret = 0; + if (flags & BTRFS_EXTENT_FLAG_DATA) + ret = scrub_checksum_data(sblock); + else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) + ret = scrub_checksum_tree_block(sblock); + else if (flags & BTRFS_EXTENT_FLAG_SUPER) + (void)scrub_checksum_super(sblock); + else + WARN_ON(1); + if (ret) + scrub_handle_errored_block(sblock); + + return ret; +} + +static int scrub_checksum_data(struct scrub_block *sblock) +{ + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); + u8 csum[BTRFS_CSUM_SIZE]; + struct scrub_page *spage; + char *kaddr; + + BUG_ON(sblock->page_count < 1); + spage = sblock->pagev[0]; + if (!spage->have_csum) + return 0; + + kaddr = page_address(spage->page); + + shash->tfm = fs_info->csum_shash; + crypto_shash_init(shash); + crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); + + if (memcmp(csum, spage->csum, sctx->csum_size)) + sblock->checksum_error = 1; + + return sblock->checksum_error; +} + +static int scrub_checksum_tree_block(struct scrub_block *sblock) +{ + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_header *h; + struct btrfs_fs_info *fs_info = sctx->fs_info; + SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); + u8 calculated_csum[BTRFS_CSUM_SIZE]; + u8 on_disk_csum[BTRFS_CSUM_SIZE]; + const int num_pages = sctx->fs_info->nodesize >> PAGE_SHIFT; + int i; + struct scrub_page *spage; + char *kaddr; + + BUG_ON(sblock->page_count < 1); + spage = sblock->pagev[0]; + kaddr = page_address(spage->page); + h = (struct btrfs_header *)kaddr; + memcpy(on_disk_csum, h->csum, sctx->csum_size); + + /* + * we don't use the getter functions here, as we + * a) don't have an extent buffer and + * b) the page is already kmapped + */ + if (spage->logical != btrfs_stack_header_bytenr(h)) + sblock->header_error = 1; + + if (spage->generation != btrfs_stack_header_generation(h)) { + sblock->header_error = 1; + sblock->generation_error = 1; + } + + if (!scrub_check_fsid(h->fsid, spage)) + sblock->header_error = 1; + + if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, + BTRFS_UUID_SIZE)) + sblock->header_error = 1; + + shash->tfm = fs_info->csum_shash; + crypto_shash_init(shash); + crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, + PAGE_SIZE - BTRFS_CSUM_SIZE); + + for (i = 1; i < num_pages; i++) { + kaddr = page_address(sblock->pagev[i]->page); + crypto_shash_update(shash, kaddr, PAGE_SIZE); + } + + crypto_shash_final(shash, calculated_csum); + if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) + sblock->checksum_error = 1; + + return sblock->header_error || sblock->checksum_error; +} + +static int scrub_checksum_super(struct scrub_block *sblock) +{ + struct btrfs_super_block *s; + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); + u8 calculated_csum[BTRFS_CSUM_SIZE]; + struct scrub_page *spage; + char *kaddr; + int fail_gen = 0; + int fail_cor = 0; + + BUG_ON(sblock->page_count < 1); + spage = sblock->pagev[0]; + kaddr = page_address(spage->page); + s = (struct btrfs_super_block *)kaddr; + + if (spage->logical != btrfs_super_bytenr(s)) + ++fail_cor; + + if (spage->generation != btrfs_super_generation(s)) + ++fail_gen; + + if (!scrub_check_fsid(s->fsid, spage)) + ++fail_cor; + + shash->tfm = fs_info->csum_shash; + crypto_shash_init(shash); + crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, + BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); + + if (memcmp(calculated_csum, s->csum, sctx->csum_size)) + ++fail_cor; + + if (fail_cor + fail_gen) { + /* + * if we find an error in a super block, we just report it. + * They will get written with the next transaction commit + * anyway + */ + spin_lock(&sctx->stat_lock); + ++sctx->stat.super_errors; + spin_unlock(&sctx->stat_lock); + if (fail_cor) + btrfs_dev_stat_inc_and_print(spage->dev, + BTRFS_DEV_STAT_CORRUPTION_ERRS); + else + btrfs_dev_stat_inc_and_print(spage->dev, + BTRFS_DEV_STAT_GENERATION_ERRS); + } + + return fail_cor + fail_gen; +} + +static void scrub_block_get(struct scrub_block *sblock) +{ + refcount_inc(&sblock->refs); +} + +static void scrub_block_put(struct scrub_block *sblock) +{ + if (refcount_dec_and_test(&sblock->refs)) { + int i; + + if (sblock->sparity) + scrub_parity_put(sblock->sparity); + + for (i = 0; i < sblock->page_count; i++) + scrub_page_put(sblock->pagev[i]); + kfree(sblock); + } +} + +static void scrub_page_get(struct scrub_page *spage) +{ + atomic_inc(&spage->refs); +} + +static void scrub_page_put(struct scrub_page *spage) +{ + if (atomic_dec_and_test(&spage->refs)) { + if (spage->page) + __free_page(spage->page); + kfree(spage); + } +} + +static void scrub_submit(struct scrub_ctx *sctx) +{ + struct scrub_bio *sbio; + + if (sctx->curr == -1) + return; + + sbio = sctx->bios[sctx->curr]; + sctx->curr = -1; + scrub_pending_bio_inc(sctx); + btrfsic_submit_bio(sbio->bio); +} + +static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, + struct scrub_page *spage) +{ + struct scrub_block *sblock = spage->sblock; + struct scrub_bio *sbio; + int ret; + +again: + /* + * grab a fresh bio or wait for one to become available + */ + while (sctx->curr == -1) { + spin_lock(&sctx->list_lock); + sctx->curr = sctx->first_free; + if (sctx->curr != -1) { + sctx->first_free = sctx->bios[sctx->curr]->next_free; + sctx->bios[sctx->curr]->next_free = -1; + sctx->bios[sctx->curr]->page_count = 0; + spin_unlock(&sctx->list_lock); + } else { + spin_unlock(&sctx->list_lock); + wait_event(sctx->list_wait, sctx->first_free != -1); + } + } + sbio = sctx->bios[sctx->curr]; + if (sbio->page_count == 0) { + struct bio *bio; + + sbio->physical = spage->physical; + sbio->logical = spage->logical; + sbio->dev = spage->dev; + bio = sbio->bio; + if (!bio) { + bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); + sbio->bio = bio; + } + + bio->bi_private = sbio; + bio->bi_end_io = scrub_bio_end_io; + bio_set_dev(bio, sbio->dev->bdev); + bio->bi_iter.bi_sector = sbio->physical >> 9; + bio->bi_opf = REQ_OP_READ; + sbio->status = 0; + } else if (sbio->physical + sbio->page_count * PAGE_SIZE != + spage->physical || + sbio->logical + sbio->page_count * PAGE_SIZE != + spage->logical || + sbio->dev != spage->dev) { + scrub_submit(sctx); + goto again; + } + + sbio->pagev[sbio->page_count] = spage; + ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); + if (ret != PAGE_SIZE) { + if (sbio->page_count < 1) { + bio_put(sbio->bio); + sbio->bio = NULL; + return -EIO; + } + scrub_submit(sctx); + goto again; + } + + scrub_block_get(sblock); /* one for the page added to the bio */ + atomic_inc(&sblock->outstanding_pages); + sbio->page_count++; + if (sbio->page_count == sctx->pages_per_rd_bio) + scrub_submit(sctx); + + return 0; +} + +static void scrub_missing_raid56_end_io(struct bio *bio) +{ + struct scrub_block *sblock = bio->bi_private; + struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; + + if (bio->bi_status) + sblock->no_io_error_seen = 0; + + bio_put(bio); + + btrfs_queue_work(fs_info->scrub_workers, &sblock->work); +} + +static void scrub_missing_raid56_worker(struct btrfs_work *work) +{ + struct scrub_block *sblock = container_of(work, struct scrub_block, work); + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + u64 logical; + struct btrfs_device *dev; + + logical = sblock->pagev[0]->logical; + dev = sblock->pagev[0]->dev; + + if (sblock->no_io_error_seen) + scrub_recheck_block_checksum(sblock); + + if (!sblock->no_io_error_seen) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "IO error rebuilding logical %llu for dev %s", + logical, rcu_str_deref(dev->name)); + } else if (sblock->header_error || sblock->checksum_error) { + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "failed to rebuild valid logical %llu for dev %s", + logical, rcu_str_deref(dev->name)); + } else { + scrub_write_block_to_dev_replace(sblock); + } + + if (sctx->is_dev_replace && sctx->flush_all_writes) { + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + } + + scrub_block_put(sblock); + scrub_pending_bio_dec(sctx); +} + +static void scrub_missing_raid56_pages(struct scrub_block *sblock) +{ + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + u64 length = sblock->page_count * PAGE_SIZE; + u64 logical = sblock->pagev[0]->logical; + struct btrfs_bio *bbio = NULL; + struct bio *bio; + struct btrfs_raid_bio *rbio; + int ret; + int i; + + btrfs_bio_counter_inc_blocked(fs_info); + ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, + &length, &bbio); + if (ret || !bbio || !bbio->raid_map) + goto bbio_out; + + if (WARN_ON(!sctx->is_dev_replace || + !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { + /* + * We shouldn't be scrubbing a missing device. Even for dev + * replace, we should only get here for RAID 5/6. We either + * managed to mount something with no mirrors remaining or + * there's a bug in scrub_remap_extent()/btrfs_map_block(). + */ + goto bbio_out; + } + + bio = btrfs_io_bio_alloc(0); + bio->bi_iter.bi_sector = logical >> 9; + bio->bi_private = sblock; + bio->bi_end_io = scrub_missing_raid56_end_io; + + rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); + if (!rbio) + goto rbio_out; + + for (i = 0; i < sblock->page_count; i++) { + struct scrub_page *spage = sblock->pagev[i]; + + raid56_add_scrub_pages(rbio, spage->page, spage->logical); + } + + btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL); + scrub_block_get(sblock); + scrub_pending_bio_inc(sctx); + raid56_submit_missing_rbio(rbio); + return; + +rbio_out: + bio_put(bio); +bbio_out: + btrfs_bio_counter_dec(fs_info); + btrfs_put_bbio(bbio); + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); +} + +static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, + u64 physical, struct btrfs_device *dev, u64 flags, + u64 gen, int mirror_num, u8 *csum, int force, + u64 physical_for_dev_replace) +{ + struct scrub_block *sblock; + int index; + + sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); + if (!sblock) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + return -ENOMEM; + } + + /* one ref inside this function, plus one for each page added to + * a bio later on */ + refcount_set(&sblock->refs, 1); + sblock->sctx = sctx; + sblock->no_io_error_seen = 1; + + for (index = 0; len > 0; index++) { + struct scrub_page *spage; + u64 l = min_t(u64, len, PAGE_SIZE); + + spage = kzalloc(sizeof(*spage), GFP_KERNEL); + if (!spage) { +leave_nomem: + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + scrub_block_put(sblock); + return -ENOMEM; + } + BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); + scrub_page_get(spage); + sblock->pagev[index] = spage; + spage->sblock = sblock; + spage->dev = dev; + spage->flags = flags; + spage->generation = gen; + spage->logical = logical; + spage->physical = physical; + spage->physical_for_dev_replace = physical_for_dev_replace; + spage->mirror_num = mirror_num; + if (csum) { + spage->have_csum = 1; + memcpy(spage->csum, csum, sctx->csum_size); + } else { + spage->have_csum = 0; + } + sblock->page_count++; + spage->page = alloc_page(GFP_KERNEL); + if (!spage->page) + goto leave_nomem; + len -= l; + logical += l; + physical += l; + physical_for_dev_replace += l; + } + + WARN_ON(sblock->page_count == 0); + if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { + /* + * This case should only be hit for RAID 5/6 device replace. See + * the comment in scrub_missing_raid56_pages() for details. + */ + scrub_missing_raid56_pages(sblock); + } else { + for (index = 0; index < sblock->page_count; index++) { + struct scrub_page *spage = sblock->pagev[index]; + int ret; + + ret = scrub_add_page_to_rd_bio(sctx, spage); + if (ret) { + scrub_block_put(sblock); + return ret; + } + } + + if (force) + scrub_submit(sctx); + } + + /* last one frees, either here or in bio completion for last page */ + scrub_block_put(sblock); + return 0; +} + +static void scrub_bio_end_io(struct bio *bio) +{ + struct scrub_bio *sbio = bio->bi_private; + struct btrfs_fs_info *fs_info = sbio->dev->fs_info; + + sbio->status = bio->bi_status; + sbio->bio = bio; + + btrfs_queue_work(fs_info->scrub_workers, &sbio->work); +} + +static void scrub_bio_end_io_worker(struct btrfs_work *work) +{ + struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); + struct scrub_ctx *sctx = sbio->sctx; + int i; + + BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); + if (sbio->status) { + for (i = 0; i < sbio->page_count; i++) { + struct scrub_page *spage = sbio->pagev[i]; + + spage->io_error = 1; + spage->sblock->no_io_error_seen = 0; + } + } + + /* now complete the scrub_block items that have all pages completed */ + for (i = 0; i < sbio->page_count; i++) { + struct scrub_page *spage = sbio->pagev[i]; + struct scrub_block *sblock = spage->sblock; + + if (atomic_dec_and_test(&sblock->outstanding_pages)) + scrub_block_complete(sblock); + scrub_block_put(sblock); + } + + bio_put(sbio->bio); + sbio->bio = NULL; + spin_lock(&sctx->list_lock); + sbio->next_free = sctx->first_free; + sctx->first_free = sbio->index; + spin_unlock(&sctx->list_lock); + + if (sctx->is_dev_replace && sctx->flush_all_writes) { + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + } + + scrub_pending_bio_dec(sctx); +} + +static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, + unsigned long *bitmap, + u64 start, u64 len) +{ + u64 offset; + u64 nsectors64; + u32 nsectors; + int sectorsize = sparity->sctx->fs_info->sectorsize; + + if (len >= sparity->stripe_len) { + bitmap_set(bitmap, 0, sparity->nsectors); + return; + } + + start -= sparity->logic_start; + start = div64_u64_rem(start, sparity->stripe_len, &offset); + offset = div_u64(offset, sectorsize); + nsectors64 = div_u64(len, sectorsize); + + ASSERT(nsectors64 < UINT_MAX); + nsectors = (u32)nsectors64; + + if (offset + nsectors <= sparity->nsectors) { + bitmap_set(bitmap, offset, nsectors); + return; + } + + bitmap_set(bitmap, offset, sparity->nsectors - offset); + bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); +} + +static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, + u64 start, u64 len) +{ + __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); +} + +static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, + u64 start, u64 len) +{ + __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); +} + +static void scrub_block_complete(struct scrub_block *sblock) +{ + int corrupted = 0; + + if (!sblock->no_io_error_seen) { + corrupted = 1; + scrub_handle_errored_block(sblock); + } else { + /* + * if has checksum error, write via repair mechanism in + * dev replace case, otherwise write here in dev replace + * case. + */ + corrupted = scrub_checksum(sblock); + if (!corrupted && sblock->sctx->is_dev_replace) + scrub_write_block_to_dev_replace(sblock); + } + + if (sblock->sparity && corrupted && !sblock->data_corrected) { + u64 start = sblock->pagev[0]->logical; + u64 end = sblock->pagev[sblock->page_count - 1]->logical + + PAGE_SIZE; + + scrub_parity_mark_sectors_error(sblock->sparity, + start, end - start); + } +} + +static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) +{ + struct btrfs_ordered_sum *sum = NULL; + unsigned long index; + unsigned long num_sectors; + + while (!list_empty(&sctx->csum_list)) { + sum = list_first_entry(&sctx->csum_list, + struct btrfs_ordered_sum, list); + if (sum->bytenr > logical) + return 0; + if (sum->bytenr + sum->len > logical) + break; + + ++sctx->stat.csum_discards; + list_del(&sum->list); + kfree(sum); + sum = NULL; + } + if (!sum) + return 0; + + index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); + ASSERT(index < UINT_MAX); + + num_sectors = sum->len / sctx->fs_info->sectorsize; + memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size); + if (index == num_sectors - 1) { + list_del(&sum->list); + kfree(sum); + } + return 1; +} + +/* scrub extent tries to collect up to 64 kB for each bio */ +static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, + u64 logical, u64 len, + u64 physical, struct btrfs_device *dev, u64 flags, + u64 gen, int mirror_num, u64 physical_for_dev_replace) +{ + int ret; + u8 csum[BTRFS_CSUM_SIZE]; + u32 blocksize; + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) + blocksize = map->stripe_len; + else + blocksize = sctx->fs_info->sectorsize; + spin_lock(&sctx->stat_lock); + sctx->stat.data_extents_scrubbed++; + sctx->stat.data_bytes_scrubbed += len; + spin_unlock(&sctx->stat_lock); + } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) + blocksize = map->stripe_len; + else + blocksize = sctx->fs_info->nodesize; + spin_lock(&sctx->stat_lock); + sctx->stat.tree_extents_scrubbed++; + sctx->stat.tree_bytes_scrubbed += len; + spin_unlock(&sctx->stat_lock); + } else { + blocksize = sctx->fs_info->sectorsize; + WARN_ON(1); + } + + while (len) { + u64 l = min_t(u64, len, blocksize); + int have_csum = 0; + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + /* push csums to sbio */ + have_csum = scrub_find_csum(sctx, logical, csum); + if (have_csum == 0) + ++sctx->stat.no_csum; + } + ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, + mirror_num, have_csum ? csum : NULL, 0, + physical_for_dev_replace); + if (ret) + return ret; + len -= l; + logical += l; + physical += l; + physical_for_dev_replace += l; + } + return 0; +} + +static int scrub_pages_for_parity(struct scrub_parity *sparity, + u64 logical, u64 len, + u64 physical, struct btrfs_device *dev, + u64 flags, u64 gen, int mirror_num, u8 *csum) +{ + struct scrub_ctx *sctx = sparity->sctx; + struct scrub_block *sblock; + int index; + + sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); + if (!sblock) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + return -ENOMEM; + } + + /* one ref inside this function, plus one for each page added to + * a bio later on */ + refcount_set(&sblock->refs, 1); + sblock->sctx = sctx; + sblock->no_io_error_seen = 1; + sblock->sparity = sparity; + scrub_parity_get(sparity); + + for (index = 0; len > 0; index++) { + struct scrub_page *spage; + u64 l = min_t(u64, len, PAGE_SIZE); + + spage = kzalloc(sizeof(*spage), GFP_KERNEL); + if (!spage) { +leave_nomem: + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + scrub_block_put(sblock); + return -ENOMEM; + } + BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); + /* For scrub block */ + scrub_page_get(spage); + sblock->pagev[index] = spage; + /* For scrub parity */ + scrub_page_get(spage); + list_add_tail(&spage->list, &sparity->spages); + spage->sblock = sblock; + spage->dev = dev; + spage->flags = flags; + spage->generation = gen; + spage->logical = logical; + spage->physical = physical; + spage->mirror_num = mirror_num; + if (csum) { + spage->have_csum = 1; + memcpy(spage->csum, csum, sctx->csum_size); + } else { + spage->have_csum = 0; + } + sblock->page_count++; + spage->page = alloc_page(GFP_KERNEL); + if (!spage->page) + goto leave_nomem; + len -= l; + logical += l; + physical += l; + } + + WARN_ON(sblock->page_count == 0); + for (index = 0; index < sblock->page_count; index++) { + struct scrub_page *spage = sblock->pagev[index]; + int ret; + + ret = scrub_add_page_to_rd_bio(sctx, spage); + if (ret) { + scrub_block_put(sblock); + return ret; + } + } + + /* last one frees, either here or in bio completion for last page */ + scrub_block_put(sblock); + return 0; +} + +static int scrub_extent_for_parity(struct scrub_parity *sparity, + u64 logical, u64 len, + u64 physical, struct btrfs_device *dev, + u64 flags, u64 gen, int mirror_num) +{ + struct scrub_ctx *sctx = sparity->sctx; + int ret; + u8 csum[BTRFS_CSUM_SIZE]; + u32 blocksize; + + if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { + scrub_parity_mark_sectors_error(sparity, logical, len); + return 0; + } + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + blocksize = sparity->stripe_len; + } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + blocksize = sparity->stripe_len; + } else { + blocksize = sctx->fs_info->sectorsize; + WARN_ON(1); + } + + while (len) { + u64 l = min_t(u64, len, blocksize); + int have_csum = 0; + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + /* push csums to sbio */ + have_csum = scrub_find_csum(sctx, logical, csum); + if (have_csum == 0) + goto skip; + } + ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, + flags, gen, mirror_num, + have_csum ? csum : NULL); + if (ret) + return ret; +skip: + len -= l; + logical += l; + physical += l; + } + return 0; +} + +/* + * Given a physical address, this will calculate it's + * logical offset. if this is a parity stripe, it will return + * the most left data stripe's logical offset. + * + * return 0 if it is a data stripe, 1 means parity stripe. + */ +static int get_raid56_logic_offset(u64 physical, int num, + struct map_lookup *map, u64 *offset, + u64 *stripe_start) +{ + int i; + int j = 0; + u64 stripe_nr; + u64 last_offset; + u32 stripe_index; + u32 rot; + const int data_stripes = nr_data_stripes(map); + + last_offset = (physical - map->stripes[num].physical) * data_stripes; + if (stripe_start) + *stripe_start = last_offset; + + *offset = last_offset; + for (i = 0; i < data_stripes; i++) { + *offset = last_offset + i * map->stripe_len; + + stripe_nr = div64_u64(*offset, map->stripe_len); + stripe_nr = div_u64(stripe_nr, data_stripes); + + /* Work out the disk rotation on this stripe-set */ + stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); + /* calculate which stripe this data locates */ + rot += i; + stripe_index = rot % map->num_stripes; + if (stripe_index == num) + return 0; + if (stripe_index < num) + j++; + } + *offset = last_offset + j * map->stripe_len; + return 1; +} + +static void scrub_free_parity(struct scrub_parity *sparity) +{ + struct scrub_ctx *sctx = sparity->sctx; + struct scrub_page *curr, *next; + int nbits; + + nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); + if (nbits) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors += nbits; + sctx->stat.uncorrectable_errors += nbits; + spin_unlock(&sctx->stat_lock); + } + + list_for_each_entry_safe(curr, next, &sparity->spages, list) { + list_del_init(&curr->list); + scrub_page_put(curr); + } + + kfree(sparity); +} + +static void scrub_parity_bio_endio_worker(struct btrfs_work *work) +{ + struct scrub_parity *sparity = container_of(work, struct scrub_parity, + work); + struct scrub_ctx *sctx = sparity->sctx; + + scrub_free_parity(sparity); + scrub_pending_bio_dec(sctx); +} + +static void scrub_parity_bio_endio(struct bio *bio) +{ + struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; + struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; + + if (bio->bi_status) + bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, + sparity->nsectors); + + bio_put(bio); + + btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL, + NULL); + btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); +} + +static void scrub_parity_check_and_repair(struct scrub_parity *sparity) +{ + struct scrub_ctx *sctx = sparity->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct bio *bio; + struct btrfs_raid_bio *rbio; + struct btrfs_bio *bbio = NULL; + u64 length; + int ret; + + if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, + sparity->nsectors)) + goto out; + + length = sparity->logic_end - sparity->logic_start; + + btrfs_bio_counter_inc_blocked(fs_info); + ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, + &length, &bbio); + if (ret || !bbio || !bbio->raid_map) + goto bbio_out; + + bio = btrfs_io_bio_alloc(0); + bio->bi_iter.bi_sector = sparity->logic_start >> 9; + bio->bi_private = sparity; + bio->bi_end_io = scrub_parity_bio_endio; + + rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, + length, sparity->scrub_dev, + sparity->dbitmap, + sparity->nsectors); + if (!rbio) + goto rbio_out; + + scrub_pending_bio_inc(sctx); + raid56_parity_submit_scrub_rbio(rbio); + return; + +rbio_out: + bio_put(bio); +bbio_out: + btrfs_bio_counter_dec(fs_info); + btrfs_put_bbio(bbio); + bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, + sparity->nsectors); + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); +out: + scrub_free_parity(sparity); +} + +static inline int scrub_calc_parity_bitmap_len(int nsectors) +{ + return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); +} + +static void scrub_parity_get(struct scrub_parity *sparity) +{ + refcount_inc(&sparity->refs); +} + +static void scrub_parity_put(struct scrub_parity *sparity) +{ + if (!refcount_dec_and_test(&sparity->refs)) + return; + + scrub_parity_check_and_repair(sparity); +} + +static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, + struct map_lookup *map, + struct btrfs_device *sdev, + struct btrfs_path *path, + u64 logic_start, + u64 logic_end) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_root *root = fs_info->extent_root; + struct btrfs_root *csum_root = fs_info->csum_root; + struct btrfs_extent_item *extent; + struct btrfs_bio *bbio = NULL; + u64 flags; + int ret; + int slot; + struct extent_buffer *l; + struct btrfs_key key; + u64 generation; + u64 extent_logical; + u64 extent_physical; + u64 extent_len; + u64 mapped_length; + struct btrfs_device *extent_dev; + struct scrub_parity *sparity; + int nsectors; + int bitmap_len; + int extent_mirror_num; + int stop_loop = 0; + + nsectors = div_u64(map->stripe_len, fs_info->sectorsize); + bitmap_len = scrub_calc_parity_bitmap_len(nsectors); + sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, + GFP_NOFS); + if (!sparity) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + return -ENOMEM; + } + + sparity->stripe_len = map->stripe_len; + sparity->nsectors = nsectors; + sparity->sctx = sctx; + sparity->scrub_dev = sdev; + sparity->logic_start = logic_start; + sparity->logic_end = logic_end; + refcount_set(&sparity->refs, 1); + INIT_LIST_HEAD(&sparity->spages); + sparity->dbitmap = sparity->bitmap; + sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; + + ret = 0; + while (logic_start < logic_end) { + if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) + key.type = BTRFS_METADATA_ITEM_KEY; + else + key.type = BTRFS_EXTENT_ITEM_KEY; + key.objectid = logic_start; + key.offset = (u64)-1; + + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + goto out; + + if (ret > 0) { + ret = btrfs_previous_extent_item(root, path, 0); + if (ret < 0) + goto out; + if (ret > 0) { + btrfs_release_path(path); + ret = btrfs_search_slot(NULL, root, &key, + path, 0, 0); + if (ret < 0) + goto out; + } + } + + stop_loop = 0; + while (1) { + u64 bytes; + + l = path->nodes[0]; + slot = path->slots[0]; + if (slot >= btrfs_header_nritems(l)) { + ret = btrfs_next_leaf(root, path); + if (ret == 0) + continue; + if (ret < 0) + goto out; + + stop_loop = 1; + break; + } + btrfs_item_key_to_cpu(l, &key, slot); + + if (key.type != BTRFS_EXTENT_ITEM_KEY && + key.type != BTRFS_METADATA_ITEM_KEY) + goto next; + + if (key.type == BTRFS_METADATA_ITEM_KEY) + bytes = fs_info->nodesize; + else + bytes = key.offset; + + if (key.objectid + bytes <= logic_start) + goto next; + + if (key.objectid >= logic_end) { + stop_loop = 1; + break; + } + + while (key.objectid >= logic_start + map->stripe_len) + logic_start += map->stripe_len; + + extent = btrfs_item_ptr(l, slot, + struct btrfs_extent_item); + flags = btrfs_extent_flags(l, extent); + generation = btrfs_extent_generation(l, extent); + + if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && + (key.objectid < logic_start || + key.objectid + bytes > + logic_start + map->stripe_len)) { + btrfs_err(fs_info, + "scrub: tree block %llu spanning stripes, ignored. logical=%llu", + key.objectid, logic_start); + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + goto next; + } +again: + extent_logical = key.objectid; + extent_len = bytes; + + if (extent_logical < logic_start) { + extent_len -= logic_start - extent_logical; + extent_logical = logic_start; + } + + if (extent_logical + extent_len > + logic_start + map->stripe_len) + extent_len = logic_start + map->stripe_len - + extent_logical; + + scrub_parity_mark_sectors_data(sparity, extent_logical, + extent_len); + + mapped_length = extent_len; + bbio = NULL; + ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, + extent_logical, &mapped_length, &bbio, + 0); + if (!ret) { + if (!bbio || mapped_length < extent_len) + ret = -EIO; + } + if (ret) { + btrfs_put_bbio(bbio); + goto out; + } + extent_physical = bbio->stripes[0].physical; + extent_mirror_num = bbio->mirror_num; + extent_dev = bbio->stripes[0].dev; + btrfs_put_bbio(bbio); + + ret = btrfs_lookup_csums_range(csum_root, + extent_logical, + extent_logical + extent_len - 1, + &sctx->csum_list, 1); + if (ret) + goto out; + + ret = scrub_extent_for_parity(sparity, extent_logical, + extent_len, + extent_physical, + extent_dev, flags, + generation, + extent_mirror_num); + + scrub_free_csums(sctx); + + if (ret) + goto out; + + if (extent_logical + extent_len < + key.objectid + bytes) { + logic_start += map->stripe_len; + + if (logic_start >= logic_end) { + stop_loop = 1; + break; + } + + if (logic_start < key.objectid + bytes) { + cond_resched(); + goto again; + } + } +next: + path->slots[0]++; + } + + btrfs_release_path(path); + + if (stop_loop) + break; + + logic_start += map->stripe_len; + } +out: + if (ret < 0) + scrub_parity_mark_sectors_error(sparity, logic_start, + logic_end - logic_start); + scrub_parity_put(sparity); + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + btrfs_release_path(path); + return ret < 0 ? ret : 0; +} + +static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, + struct map_lookup *map, + struct btrfs_device *scrub_dev, + int num, u64 base, u64 length, + struct btrfs_block_group *cache) +{ + struct btrfs_path *path, *ppath; + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_root *root = fs_info->extent_root; + struct btrfs_root *csum_root = fs_info->csum_root; + struct btrfs_extent_item *extent; + struct blk_plug plug; + u64 flags; + int ret; + int slot; + u64 nstripes; + struct extent_buffer *l; + u64 physical; + u64 logical; + u64 logic_end; + u64 physical_end; + u64 generation; + int mirror_num; + struct reada_control *reada1; + struct reada_control *reada2; + struct btrfs_key key; + struct btrfs_key key_end; + u64 increment = map->stripe_len; + u64 offset; + u64 extent_logical; + u64 extent_physical; + u64 extent_len; + u64 stripe_logical; + u64 stripe_end; + struct btrfs_device *extent_dev; + int extent_mirror_num; + int stop_loop = 0; + + physical = map->stripes[num].physical; + offset = 0; + nstripes = div64_u64(length, map->stripe_len); + if (map->type & BTRFS_BLOCK_GROUP_RAID0) { + offset = map->stripe_len * num; + increment = map->stripe_len * map->num_stripes; + mirror_num = 1; + } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { + int factor = map->num_stripes / map->sub_stripes; + offset = map->stripe_len * (num / map->sub_stripes); + increment = map->stripe_len * factor; + mirror_num = num % map->sub_stripes + 1; + } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { + increment = map->stripe_len; + mirror_num = num % map->num_stripes + 1; + } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { + increment = map->stripe_len; + mirror_num = num % map->num_stripes + 1; + } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + get_raid56_logic_offset(physical, num, map, &offset, NULL); + increment = map->stripe_len * nr_data_stripes(map); + mirror_num = 1; + } else { + increment = map->stripe_len; + mirror_num = 1; + } + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + ppath = btrfs_alloc_path(); + if (!ppath) { + btrfs_free_path(path); + return -ENOMEM; + } + + /* + * work on commit root. The related disk blocks are static as + * long as COW is applied. This means, it is save to rewrite + * them to repair disk errors without any race conditions + */ + path->search_commit_root = 1; + path->skip_locking = 1; + + ppath->search_commit_root = 1; + ppath->skip_locking = 1; + /* + * trigger the readahead for extent tree csum tree and wait for + * completion. During readahead, the scrub is officially paused + * to not hold off transaction commits + */ + logical = base + offset; + physical_end = physical + nstripes * map->stripe_len; + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + get_raid56_logic_offset(physical_end, num, + map, &logic_end, NULL); + logic_end += base; + } else { + logic_end = logical + increment * nstripes; + } + wait_event(sctx->list_wait, + atomic_read(&sctx->bios_in_flight) == 0); + scrub_blocked_if_needed(fs_info); + + /* FIXME it might be better to start readahead at commit root */ + key.objectid = logical; + key.type = BTRFS_EXTENT_ITEM_KEY; + key.offset = (u64)0; + key_end.objectid = logic_end; + key_end.type = BTRFS_METADATA_ITEM_KEY; + key_end.offset = (u64)-1; + reada1 = btrfs_reada_add(root, &key, &key_end); + + key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; + key.type = BTRFS_EXTENT_CSUM_KEY; + key.offset = logical; + key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; + key_end.type = BTRFS_EXTENT_CSUM_KEY; + key_end.offset = logic_end; + reada2 = btrfs_reada_add(csum_root, &key, &key_end); + + if (!IS_ERR(reada1)) + btrfs_reada_wait(reada1); + if (!IS_ERR(reada2)) + btrfs_reada_wait(reada2); + + + /* + * collect all data csums for the stripe to avoid seeking during + * the scrub. This might currently (crc32) end up to be about 1MB + */ + blk_start_plug(&plug); + + /* + * now find all extents for each stripe and scrub them + */ + ret = 0; + while (physical < physical_end) { + /* + * canceled? + */ + if (atomic_read(&fs_info->scrub_cancel_req) || + atomic_read(&sctx->cancel_req)) { + ret = -ECANCELED; + goto out; + } + /* + * check to see if we have to pause + */ + if (atomic_read(&fs_info->scrub_pause_req)) { + /* push queued extents */ + sctx->flush_all_writes = true; + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + wait_event(sctx->list_wait, + atomic_read(&sctx->bios_in_flight) == 0); + sctx->flush_all_writes = false; + scrub_blocked_if_needed(fs_info); + } + + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + ret = get_raid56_logic_offset(physical, num, map, + &logical, + &stripe_logical); + logical += base; + if (ret) { + /* it is parity strip */ + stripe_logical += base; + stripe_end = stripe_logical + increment; + ret = scrub_raid56_parity(sctx, map, scrub_dev, + ppath, stripe_logical, + stripe_end); + if (ret) + goto out; + goto skip; + } + } + + if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) + key.type = BTRFS_METADATA_ITEM_KEY; + else + key.type = BTRFS_EXTENT_ITEM_KEY; + key.objectid = logical; + key.offset = (u64)-1; + + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + goto out; + + if (ret > 0) { + ret = btrfs_previous_extent_item(root, path, 0); + if (ret < 0) + goto out; + if (ret > 0) { + /* there's no smaller item, so stick with the + * larger one */ + btrfs_release_path(path); + ret = btrfs_search_slot(NULL, root, &key, + path, 0, 0); + if (ret < 0) + goto out; + } + } + + stop_loop = 0; + while (1) { + u64 bytes; + + l = path->nodes[0]; + slot = path->slots[0]; + if (slot >= btrfs_header_nritems(l)) { + ret = btrfs_next_leaf(root, path); + if (ret == 0) + continue; + if (ret < 0) + goto out; + + stop_loop = 1; + break; + } + btrfs_item_key_to_cpu(l, &key, slot); + + if (key.type != BTRFS_EXTENT_ITEM_KEY && + key.type != BTRFS_METADATA_ITEM_KEY) + goto next; + + if (key.type == BTRFS_METADATA_ITEM_KEY) + bytes = fs_info->nodesize; + else + bytes = key.offset; + + if (key.objectid + bytes <= logical) + goto next; + + if (key.objectid >= logical + map->stripe_len) { + /* out of this device extent */ + if (key.objectid >= logic_end) + stop_loop = 1; + break; + } + + /* + * If our block group was removed in the meanwhile, just + * stop scrubbing since there is no point in continuing. + * Continuing would prevent reusing its device extents + * for new block groups for a long time. + */ + spin_lock(&cache->lock); + if (cache->removed) { + spin_unlock(&cache->lock); + ret = 0; + goto out; + } + spin_unlock(&cache->lock); + + extent = btrfs_item_ptr(l, slot, + struct btrfs_extent_item); + flags = btrfs_extent_flags(l, extent); + generation = btrfs_extent_generation(l, extent); + + if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && + (key.objectid < logical || + key.objectid + bytes > + logical + map->stripe_len)) { + btrfs_err(fs_info, + "scrub: tree block %llu spanning stripes, ignored. logical=%llu", + key.objectid, logical); + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + goto next; + } + +again: + extent_logical = key.objectid; + extent_len = bytes; + + /* + * trim extent to this stripe + */ + if (extent_logical < logical) { + extent_len -= logical - extent_logical; + extent_logical = logical; + } + if (extent_logical + extent_len > + logical + map->stripe_len) { + extent_len = logical + map->stripe_len - + extent_logical; + } + + extent_physical = extent_logical - logical + physical; + extent_dev = scrub_dev; + extent_mirror_num = mirror_num; + if (sctx->is_dev_replace) + scrub_remap_extent(fs_info, extent_logical, + extent_len, &extent_physical, + &extent_dev, + &extent_mirror_num); + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + ret = btrfs_lookup_csums_range(csum_root, + extent_logical, + extent_logical + extent_len - 1, + &sctx->csum_list, 1); + if (ret) + goto out; + } + + ret = scrub_extent(sctx, map, extent_logical, extent_len, + extent_physical, extent_dev, flags, + generation, extent_mirror_num, + extent_logical - logical + physical); + + scrub_free_csums(sctx); + + if (ret) + goto out; + + if (extent_logical + extent_len < + key.objectid + bytes) { + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + /* + * loop until we find next data stripe + * or we have finished all stripes. + */ +loop: + physical += map->stripe_len; + ret = get_raid56_logic_offset(physical, + num, map, &logical, + &stripe_logical); + logical += base; + + if (ret && physical < physical_end) { + stripe_logical += base; + stripe_end = stripe_logical + + increment; + ret = scrub_raid56_parity(sctx, + map, scrub_dev, ppath, + stripe_logical, + stripe_end); + if (ret) + goto out; + goto loop; + } + } else { + physical += map->stripe_len; + logical += increment; + } + if (logical < key.objectid + bytes) { + cond_resched(); + goto again; + } + + if (physical >= physical_end) { + stop_loop = 1; + break; + } + } +next: + path->slots[0]++; + } + btrfs_release_path(path); +skip: + logical += increment; + physical += map->stripe_len; + spin_lock(&sctx->stat_lock); + if (stop_loop) + sctx->stat.last_physical = map->stripes[num].physical + + length; + else + sctx->stat.last_physical = physical; + spin_unlock(&sctx->stat_lock); + if (stop_loop) + break; + } +out: + /* push queued extents */ + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + blk_finish_plug(&plug); + btrfs_free_path(path); + btrfs_free_path(ppath); + return ret < 0 ? ret : 0; +} + +static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, + struct btrfs_device *scrub_dev, + u64 chunk_offset, u64 length, + u64 dev_offset, + struct btrfs_block_group *cache) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct extent_map_tree *map_tree = &fs_info->mapping_tree; + struct map_lookup *map; + struct extent_map *em; + int i; + int ret = 0; + + read_lock(&map_tree->lock); + em = lookup_extent_mapping(map_tree, chunk_offset, 1); + read_unlock(&map_tree->lock); + + if (!em) { + /* + * Might have been an unused block group deleted by the cleaner + * kthread or relocation. + */ + spin_lock(&cache->lock); + if (!cache->removed) + ret = -EINVAL; + spin_unlock(&cache->lock); + + return ret; + } + + map = em->map_lookup; + if (em->start != chunk_offset) + goto out; + + if (em->len < length) + goto out; + + for (i = 0; i < map->num_stripes; ++i) { + if (map->stripes[i].dev->bdev == scrub_dev->bdev && + map->stripes[i].physical == dev_offset) { + ret = scrub_stripe(sctx, map, scrub_dev, i, + chunk_offset, length, cache); + if (ret) + goto out; + } + } +out: + free_extent_map(em); + + return ret; +} + +static noinline_for_stack +int scrub_enumerate_chunks(struct scrub_ctx *sctx, + struct btrfs_device *scrub_dev, u64 start, u64 end) +{ + struct btrfs_dev_extent *dev_extent = NULL; + struct btrfs_path *path; + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_root *root = fs_info->dev_root; + u64 length; + u64 chunk_offset; + int ret = 0; + int ro_set; + int slot; + struct extent_buffer *l; + struct btrfs_key key; + struct btrfs_key found_key; + struct btrfs_block_group *cache; + struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + path->reada = READA_FORWARD; + path->search_commit_root = 1; + path->skip_locking = 1; + + key.objectid = scrub_dev->devid; + key.offset = 0ull; + key.type = BTRFS_DEV_EXTENT_KEY; + + while (1) { + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + break; + if (ret > 0) { + if (path->slots[0] >= + btrfs_header_nritems(path->nodes[0])) { + ret = btrfs_next_leaf(root, path); + if (ret < 0) + break; + if (ret > 0) { + ret = 0; + break; + } + } else { + ret = 0; + } + } + + l = path->nodes[0]; + slot = path->slots[0]; + + btrfs_item_key_to_cpu(l, &found_key, slot); + + if (found_key.objectid != scrub_dev->devid) + break; + + if (found_key.type != BTRFS_DEV_EXTENT_KEY) + break; + + if (found_key.offset >= end) + break; + + if (found_key.offset < key.offset) + break; + + dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); + length = btrfs_dev_extent_length(l, dev_extent); + + if (found_key.offset + length <= start) + goto skip; + + chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); + + /* + * get a reference on the corresponding block group to prevent + * the chunk from going away while we scrub it + */ + cache = btrfs_lookup_block_group(fs_info, chunk_offset); + + /* some chunks are removed but not committed to disk yet, + * continue scrubbing */ + if (!cache) + goto skip; + + /* + * Make sure that while we are scrubbing the corresponding block + * group doesn't get its logical address and its device extents + * reused for another block group, which can possibly be of a + * different type and different profile. We do this to prevent + * false error detections and crashes due to bogus attempts to + * repair extents. + */ + spin_lock(&cache->lock); + if (cache->removed) { + spin_unlock(&cache->lock); + btrfs_put_block_group(cache); + goto skip; + } + btrfs_freeze_block_group(cache); + spin_unlock(&cache->lock); + + /* + * we need call btrfs_inc_block_group_ro() with scrubs_paused, + * to avoid deadlock caused by: + * btrfs_inc_block_group_ro() + * -> btrfs_wait_for_commit() + * -> btrfs_commit_transaction() + * -> btrfs_scrub_pause() + */ + scrub_pause_on(fs_info); + + /* + * Don't do chunk preallocation for scrub. + * + * This is especially important for SYSTEM bgs, or we can hit + * -EFBIG from btrfs_finish_chunk_alloc() like: + * 1. The only SYSTEM bg is marked RO. + * Since SYSTEM bg is small, that's pretty common. + * 2. New SYSTEM bg will be allocated + * Due to regular version will allocate new chunk. + * 3. New SYSTEM bg is empty and will get cleaned up + * Before cleanup really happens, it's marked RO again. + * 4. Empty SYSTEM bg get scrubbed + * We go back to 2. + * + * This can easily boost the amount of SYSTEM chunks if cleaner + * thread can't be triggered fast enough, and use up all space + * of btrfs_super_block::sys_chunk_array + * + * While for dev replace, we need to try our best to mark block + * group RO, to prevent race between: + * - Write duplication + * Contains latest data + * - Scrub copy + * Contains data from commit tree + * + * If target block group is not marked RO, nocow writes can + * be overwritten by scrub copy, causing data corruption. + * So for dev-replace, it's not allowed to continue if a block + * group is not RO. + */ + ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); + if (ret == 0) { + ro_set = 1; + } else if (ret == -ENOSPC && !sctx->is_dev_replace && + !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { + /* + * btrfs_inc_block_group_ro return -ENOSPC when it + * failed in creating new chunk for metadata. + * It is not a problem for scrub, because + * metadata are always cowed, and our scrub paused + * commit_transactions. + * + * For RAID56 chunks, we have to mark them read-only + * for scrub, as later we would use our own cache + * out of RAID56 realm. + * Thus we want the RAID56 bg to be marked RO to + * prevent RMW from screwing up out cache. + */ + ro_set = 0; + } else if (ret == -ETXTBSY) { + btrfs_warn(fs_info, + "skipping scrub of block group %llu due to active swapfile", + cache->start); + scrub_pause_off(fs_info); + ret = 0; + goto skip_unfreeze; + } else { + btrfs_warn(fs_info, + "failed setting block group ro: %d", ret); + btrfs_unfreeze_block_group(cache); + btrfs_put_block_group(cache); + scrub_pause_off(fs_info); + break; + } + + /* + * Now the target block is marked RO, wait for nocow writes to + * finish before dev-replace. + * COW is fine, as COW never overwrites extents in commit tree. + */ + if (sctx->is_dev_replace) { + btrfs_wait_nocow_writers(cache); + btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, + cache->length); + } + + scrub_pause_off(fs_info); + down_write(&dev_replace->rwsem); + dev_replace->cursor_right = found_key.offset + length; + dev_replace->cursor_left = found_key.offset; + dev_replace->item_needs_writeback = 1; + up_write(&dev_replace->rwsem); + + ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, + found_key.offset, cache); + + /* + * flush, submit all pending read and write bios, afterwards + * wait for them. + * Note that in the dev replace case, a read request causes + * write requests that are submitted in the read completion + * worker. Therefore in the current situation, it is required + * that all write requests are flushed, so that all read and + * write requests are really completed when bios_in_flight + * changes to 0. + */ + sctx->flush_all_writes = true; + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + wait_event(sctx->list_wait, + atomic_read(&sctx->bios_in_flight) == 0); + + scrub_pause_on(fs_info); + + /* + * must be called before we decrease @scrub_paused. + * make sure we don't block transaction commit while + * we are waiting pending workers finished. + */ + wait_event(sctx->list_wait, + atomic_read(&sctx->workers_pending) == 0); + sctx->flush_all_writes = false; + + scrub_pause_off(fs_info); + + down_write(&dev_replace->rwsem); + dev_replace->cursor_left = dev_replace->cursor_right; + dev_replace->item_needs_writeback = 1; + up_write(&dev_replace->rwsem); + + if (ro_set) + btrfs_dec_block_group_ro(cache); + + /* + * We might have prevented the cleaner kthread from deleting + * this block group if it was already unused because we raced + * and set it to RO mode first. So add it back to the unused + * list, otherwise it might not ever be deleted unless a manual + * balance is triggered or it becomes used and unused again. + */ + spin_lock(&cache->lock); + if (!cache->removed && !cache->ro && cache->reserved == 0 && + cache->used == 0) { + spin_unlock(&cache->lock); + if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) + btrfs_discard_queue_work(&fs_info->discard_ctl, + cache); + else + btrfs_mark_bg_unused(cache); + } else { + spin_unlock(&cache->lock); + } +skip_unfreeze: + btrfs_unfreeze_block_group(cache); + btrfs_put_block_group(cache); + if (ret) + break; + if (sctx->is_dev_replace && + atomic64_read(&dev_replace->num_write_errors) > 0) { + ret = -EIO; + break; + } + if (sctx->stat.malloc_errors > 0) { + ret = -ENOMEM; + break; + } +skip: + key.offset = found_key.offset + length; + btrfs_release_path(path); + } + + btrfs_free_path(path); + + return ret; +} + +static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, + struct btrfs_device *scrub_dev) +{ + int i; + u64 bytenr; + u64 gen; + int ret; + struct btrfs_fs_info *fs_info = sctx->fs_info; + + if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) + return -EROFS; + + /* Seed devices of a new filesystem has their own generation. */ + if (scrub_dev->fs_devices != fs_info->fs_devices) + gen = scrub_dev->generation; + else + gen = fs_info->last_trans_committed; + + for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { + bytenr = btrfs_sb_offset(i); + if (bytenr + BTRFS_SUPER_INFO_SIZE > + scrub_dev->commit_total_bytes) + break; + + ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, + scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, + NULL, 1, bytenr); + if (ret) + return ret; + } + wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); + + return 0; +} + +static void scrub_workers_put(struct btrfs_fs_info *fs_info) +{ + if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, + &fs_info->scrub_lock)) { + struct btrfs_workqueue *scrub_workers = NULL; + struct btrfs_workqueue *scrub_wr_comp = NULL; + struct btrfs_workqueue *scrub_parity = NULL; + + scrub_workers = fs_info->scrub_workers; + scrub_wr_comp = fs_info->scrub_wr_completion_workers; + scrub_parity = fs_info->scrub_parity_workers; + + fs_info->scrub_workers = NULL; + fs_info->scrub_wr_completion_workers = NULL; + fs_info->scrub_parity_workers = NULL; + mutex_unlock(&fs_info->scrub_lock); + + btrfs_destroy_workqueue(scrub_workers); + btrfs_destroy_workqueue(scrub_wr_comp); + btrfs_destroy_workqueue(scrub_parity); + } +} + +/* + * get a reference count on fs_info->scrub_workers. start worker if necessary + */ +static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, + int is_dev_replace) +{ + struct btrfs_workqueue *scrub_workers = NULL; + struct btrfs_workqueue *scrub_wr_comp = NULL; + struct btrfs_workqueue *scrub_parity = NULL; + unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; + int max_active = fs_info->thread_pool_size; + int ret = -ENOMEM; + + if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) + return 0; + + scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags, + is_dev_replace ? 1 : max_active, 4); + if (!scrub_workers) + goto fail_scrub_workers; + + scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, + max_active, 2); + if (!scrub_wr_comp) + goto fail_scrub_wr_completion_workers; + + scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags, + max_active, 2); + if (!scrub_parity) + goto fail_scrub_parity_workers; + + mutex_lock(&fs_info->scrub_lock); + if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { + ASSERT(fs_info->scrub_workers == NULL && + fs_info->scrub_wr_completion_workers == NULL && + fs_info->scrub_parity_workers == NULL); + fs_info->scrub_workers = scrub_workers; + fs_info->scrub_wr_completion_workers = scrub_wr_comp; + fs_info->scrub_parity_workers = scrub_parity; + refcount_set(&fs_info->scrub_workers_refcnt, 1); + mutex_unlock(&fs_info->scrub_lock); + return 0; + } + /* Other thread raced in and created the workers for us */ + refcount_inc(&fs_info->scrub_workers_refcnt); + mutex_unlock(&fs_info->scrub_lock); + + ret = 0; + btrfs_destroy_workqueue(scrub_parity); +fail_scrub_parity_workers: + btrfs_destroy_workqueue(scrub_wr_comp); +fail_scrub_wr_completion_workers: + btrfs_destroy_workqueue(scrub_workers); +fail_scrub_workers: + return ret; +} + +int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, + u64 end, struct btrfs_scrub_progress *progress, + int readonly, int is_dev_replace) +{ + struct scrub_ctx *sctx; + int ret; + struct btrfs_device *dev; + unsigned int nofs_flag; + bool need_commit = false; + + if (btrfs_fs_closing(fs_info)) + return -EAGAIN; + + if (fs_info->nodesize > BTRFS_STRIPE_LEN) { + /* + * in this case scrub is unable to calculate the checksum + * the way scrub is implemented. Do not handle this + * situation at all because it won't ever happen. + */ + btrfs_err(fs_info, + "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", + fs_info->nodesize, + BTRFS_STRIPE_LEN); + return -EINVAL; + } + + if (fs_info->sectorsize != PAGE_SIZE) { + /* not supported for data w/o checksums */ + btrfs_err_rl(fs_info, + "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", + fs_info->sectorsize, PAGE_SIZE); + return -EINVAL; + } + + if (fs_info->nodesize > + PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || + fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { + /* + * would exhaust the array bounds of pagev member in + * struct scrub_block + */ + btrfs_err(fs_info, + "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", + fs_info->nodesize, + SCRUB_MAX_PAGES_PER_BLOCK, + fs_info->sectorsize, + SCRUB_MAX_PAGES_PER_BLOCK); + return -EINVAL; + } + + /* Allocate outside of device_list_mutex */ + sctx = scrub_setup_ctx(fs_info, is_dev_replace); + if (IS_ERR(sctx)) + return PTR_ERR(sctx); + + ret = scrub_workers_get(fs_info, is_dev_replace); + if (ret) + goto out_free_ctx; + + mutex_lock(&fs_info->fs_devices->device_list_mutex); + dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); + if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && + !is_dev_replace)) { + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + ret = -ENODEV; + goto out; + } + + if (!is_dev_replace && !readonly && + !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + btrfs_err_in_rcu(fs_info, + "scrub on devid %llu: filesystem on %s is not writable", + devid, rcu_str_deref(dev->name)); + ret = -EROFS; + goto out; + } + + mutex_lock(&fs_info->scrub_lock); + if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || + test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { + mutex_unlock(&fs_info->scrub_lock); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + ret = -EIO; + goto out; + } + + down_read(&fs_info->dev_replace.rwsem); + if (dev->scrub_ctx || + (!is_dev_replace && + btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { + up_read(&fs_info->dev_replace.rwsem); + mutex_unlock(&fs_info->scrub_lock); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + ret = -EINPROGRESS; + goto out; + } + up_read(&fs_info->dev_replace.rwsem); + + sctx->readonly = readonly; + dev->scrub_ctx = sctx; + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + /* + * checking @scrub_pause_req here, we can avoid + * race between committing transaction and scrubbing. + */ + __scrub_blocked_if_needed(fs_info); + atomic_inc(&fs_info->scrubs_running); + mutex_unlock(&fs_info->scrub_lock); + + /* + * In order to avoid deadlock with reclaim when there is a transaction + * trying to pause scrub, make sure we use GFP_NOFS for all the + * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity() + * invoked by our callees. The pausing request is done when the + * transaction commit starts, and it blocks the transaction until scrub + * is paused (done at specific points at scrub_stripe() or right above + * before incrementing fs_info->scrubs_running). + */ + nofs_flag = memalloc_nofs_save(); + if (!is_dev_replace) { + u64 old_super_errors; + + spin_lock(&sctx->stat_lock); + old_super_errors = sctx->stat.super_errors; + spin_unlock(&sctx->stat_lock); + + btrfs_info(fs_info, "scrub: started on devid %llu", devid); + /* + * by holding device list mutex, we can + * kick off writing super in log tree sync. + */ + mutex_lock(&fs_info->fs_devices->device_list_mutex); + ret = scrub_supers(sctx, dev); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + spin_lock(&sctx->stat_lock); + /* + * Super block errors found, but we can not commit transaction + * at current context, since btrfs_commit_transaction() needs + * to pause the current running scrub (hold by ourselves). + */ + if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) + need_commit = true; + spin_unlock(&sctx->stat_lock); + } + + if (!ret) + ret = scrub_enumerate_chunks(sctx, dev, start, end); + memalloc_nofs_restore(nofs_flag); + + wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); + atomic_dec(&fs_info->scrubs_running); + wake_up(&fs_info->scrub_pause_wait); + + wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); + + if (progress) + memcpy(progress, &sctx->stat, sizeof(*progress)); + + if (!is_dev_replace) + btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", + ret ? "not finished" : "finished", devid, ret); + + mutex_lock(&fs_info->scrub_lock); + dev->scrub_ctx = NULL; + mutex_unlock(&fs_info->scrub_lock); + + scrub_workers_put(fs_info); + scrub_put_ctx(sctx); + + /* + * We found some super block errors before, now try to force a + * transaction commit, as scrub has finished. + */ + if (need_commit) { + struct btrfs_trans_handle *trans; + + trans = btrfs_start_transaction(fs_info->tree_root, 0); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + btrfs_err(fs_info, + "scrub: failed to start transaction to fix super block errors: %d", ret); + return ret; + } + ret = btrfs_commit_transaction(trans); + if (ret < 0) + btrfs_err(fs_info, + "scrub: failed to commit transaction to fix super block errors: %d", ret); + } + return ret; +out: + scrub_workers_put(fs_info); +out_free_ctx: + scrub_free_ctx(sctx); + + return ret; +} + +void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->scrub_lock); + atomic_inc(&fs_info->scrub_pause_req); + while (atomic_read(&fs_info->scrubs_paused) != + atomic_read(&fs_info->scrubs_running)) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + atomic_read(&fs_info->scrubs_paused) == + atomic_read(&fs_info->scrubs_running)); + mutex_lock(&fs_info->scrub_lock); + } + mutex_unlock(&fs_info->scrub_lock); +} + +void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) +{ + atomic_dec(&fs_info->scrub_pause_req); + wake_up(&fs_info->scrub_pause_wait); +} + +int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->scrub_lock); + if (!atomic_read(&fs_info->scrubs_running)) { + mutex_unlock(&fs_info->scrub_lock); + return -ENOTCONN; + } + + atomic_inc(&fs_info->scrub_cancel_req); + while (atomic_read(&fs_info->scrubs_running)) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + atomic_read(&fs_info->scrubs_running) == 0); + mutex_lock(&fs_info->scrub_lock); + } + atomic_dec(&fs_info->scrub_cancel_req); + mutex_unlock(&fs_info->scrub_lock); + + return 0; +} + +int btrfs_scrub_cancel_dev(struct btrfs_device *dev) +{ + struct btrfs_fs_info *fs_info = dev->fs_info; + struct scrub_ctx *sctx; + + mutex_lock(&fs_info->scrub_lock); + sctx = dev->scrub_ctx; + if (!sctx) { + mutex_unlock(&fs_info->scrub_lock); + return -ENOTCONN; + } + atomic_inc(&sctx->cancel_req); + while (dev->scrub_ctx) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + dev->scrub_ctx == NULL); + mutex_lock(&fs_info->scrub_lock); + } + mutex_unlock(&fs_info->scrub_lock); + + return 0; +} + +int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, + struct btrfs_scrub_progress *progress) +{ + struct btrfs_device *dev; + struct scrub_ctx *sctx = NULL; + + mutex_lock(&fs_info->fs_devices->device_list_mutex); + dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); + if (dev) + sctx = dev->scrub_ctx; + if (sctx) + memcpy(progress, &sctx->stat, sizeof(*progress)); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; +} + +static void scrub_remap_extent(struct btrfs_fs_info *fs_info, + u64 extent_logical, u64 extent_len, + u64 *extent_physical, + struct btrfs_device **extent_dev, + int *extent_mirror_num) +{ + u64 mapped_length; + struct btrfs_bio *bbio = NULL; + int ret; + + mapped_length = extent_len; + ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, + &mapped_length, &bbio, 0); + if (ret || !bbio || mapped_length < extent_len || + !bbio->stripes[0].dev->bdev) { + btrfs_put_bbio(bbio); + return; + } + + *extent_physical = bbio->stripes[0].physical; + *extent_mirror_num = bbio->mirror_num; + *extent_dev = bbio->stripes[0].dev; + btrfs_put_bbio(bbio); +} |