diff options
Diffstat (limited to 'kernel/kexec_core.c')
-rw-r--r-- | kernel/kexec_core.c | 1222 |
1 files changed, 1222 insertions, 0 deletions
diff --git a/kernel/kexec_core.c b/kernel/kexec_core.c new file mode 100644 index 000000000..3a37fc62d --- /dev/null +++ b/kernel/kexec_core.c @@ -0,0 +1,1222 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * kexec.c - kexec system call core code. + * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/capability.h> +#include <linux/mm.h> +#include <linux/file.h> +#include <linux/slab.h> +#include <linux/fs.h> +#include <linux/kexec.h> +#include <linux/mutex.h> +#include <linux/list.h> +#include <linux/highmem.h> +#include <linux/syscalls.h> +#include <linux/reboot.h> +#include <linux/ioport.h> +#include <linux/hardirq.h> +#include <linux/elf.h> +#include <linux/elfcore.h> +#include <linux/utsname.h> +#include <linux/numa.h> +#include <linux/suspend.h> +#include <linux/device.h> +#include <linux/freezer.h> +#include <linux/pm.h> +#include <linux/cpu.h> +#include <linux/uaccess.h> +#include <linux/io.h> +#include <linux/console.h> +#include <linux/vmalloc.h> +#include <linux/swap.h> +#include <linux/syscore_ops.h> +#include <linux/compiler.h> +#include <linux/hugetlb.h> +#include <linux/objtool.h> + +#include <asm/page.h> +#include <asm/sections.h> + +#include <crypto/hash.h> +#include <crypto/sha.h> +#include "kexec_internal.h" + +atomic_t __kexec_lock = ATOMIC_INIT(0); + +/* Per cpu memory for storing cpu states in case of system crash. */ +note_buf_t __percpu *crash_notes; + +/* Flag to indicate we are going to kexec a new kernel */ +bool kexec_in_progress = false; + + +/* Location of the reserved area for the crash kernel */ +struct resource crashk_res = { + .name = "Crash kernel", + .start = 0, + .end = 0, + .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, + .desc = IORES_DESC_CRASH_KERNEL +}; +struct resource crashk_low_res = { + .name = "Crash kernel", + .start = 0, + .end = 0, + .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, + .desc = IORES_DESC_CRASH_KERNEL +}; + +int kexec_should_crash(struct task_struct *p) +{ + /* + * If crash_kexec_post_notifiers is enabled, don't run + * crash_kexec() here yet, which must be run after panic + * notifiers in panic(). + */ + if (crash_kexec_post_notifiers) + return 0; + /* + * There are 4 panic() calls in do_exit() path, each of which + * corresponds to each of these 4 conditions. + */ + if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) + return 1; + return 0; +} + +int kexec_crash_loaded(void) +{ + return !!kexec_crash_image; +} +EXPORT_SYMBOL_GPL(kexec_crash_loaded); + +/* + * When kexec transitions to the new kernel there is a one-to-one + * mapping between physical and virtual addresses. On processors + * where you can disable the MMU this is trivial, and easy. For + * others it is still a simple predictable page table to setup. + * + * In that environment kexec copies the new kernel to its final + * resting place. This means I can only support memory whose + * physical address can fit in an unsigned long. In particular + * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. + * If the assembly stub has more restrictive requirements + * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be + * defined more restrictively in <asm/kexec.h>. + * + * The code for the transition from the current kernel to the + * new kernel is placed in the control_code_buffer, whose size + * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single + * page of memory is necessary, but some architectures require more. + * Because this memory must be identity mapped in the transition from + * virtual to physical addresses it must live in the range + * 0 - TASK_SIZE, as only the user space mappings are arbitrarily + * modifiable. + * + * The assembly stub in the control code buffer is passed a linked list + * of descriptor pages detailing the source pages of the new kernel, + * and the destination addresses of those source pages. As this data + * structure is not used in the context of the current OS, it must + * be self-contained. + * + * The code has been made to work with highmem pages and will use a + * destination page in its final resting place (if it happens + * to allocate it). The end product of this is that most of the + * physical address space, and most of RAM can be used. + * + * Future directions include: + * - allocating a page table with the control code buffer identity + * mapped, to simplify machine_kexec and make kexec_on_panic more + * reliable. + */ + +/* + * KIMAGE_NO_DEST is an impossible destination address..., for + * allocating pages whose destination address we do not care about. + */ +#define KIMAGE_NO_DEST (-1UL) +#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) + +static struct page *kimage_alloc_page(struct kimage *image, + gfp_t gfp_mask, + unsigned long dest); + +int sanity_check_segment_list(struct kimage *image) +{ + int i; + unsigned long nr_segments = image->nr_segments; + unsigned long total_pages = 0; + unsigned long nr_pages = totalram_pages(); + + /* + * Verify we have good destination addresses. The caller is + * responsible for making certain we don't attempt to load + * the new image into invalid or reserved areas of RAM. This + * just verifies it is an address we can use. + * + * Since the kernel does everything in page size chunks ensure + * the destination addresses are page aligned. Too many + * special cases crop of when we don't do this. The most + * insidious is getting overlapping destination addresses + * simply because addresses are changed to page size + * granularity. + */ + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + if (mstart > mend) + return -EADDRNOTAVAIL; + if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) + return -EADDRNOTAVAIL; + if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) + return -EADDRNOTAVAIL; + } + + /* Verify our destination addresses do not overlap. + * If we alloed overlapping destination addresses + * through very weird things can happen with no + * easy explanation as one segment stops on another. + */ + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + unsigned long j; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + for (j = 0; j < i; j++) { + unsigned long pstart, pend; + + pstart = image->segment[j].mem; + pend = pstart + image->segment[j].memsz; + /* Do the segments overlap ? */ + if ((mend > pstart) && (mstart < pend)) + return -EINVAL; + } + } + + /* Ensure our buffer sizes are strictly less than + * our memory sizes. This should always be the case, + * and it is easier to check up front than to be surprised + * later on. + */ + for (i = 0; i < nr_segments; i++) { + if (image->segment[i].bufsz > image->segment[i].memsz) + return -EINVAL; + } + + /* + * Verify that no more than half of memory will be consumed. If the + * request from userspace is too large, a large amount of time will be + * wasted allocating pages, which can cause a soft lockup. + */ + for (i = 0; i < nr_segments; i++) { + if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) + return -EINVAL; + + total_pages += PAGE_COUNT(image->segment[i].memsz); + } + + if (total_pages > nr_pages / 2) + return -EINVAL; + + /* + * Verify we have good destination addresses. Normally + * the caller is responsible for making certain we don't + * attempt to load the new image into invalid or reserved + * areas of RAM. But crash kernels are preloaded into a + * reserved area of ram. We must ensure the addresses + * are in the reserved area otherwise preloading the + * kernel could corrupt things. + */ + + if (image->type == KEXEC_TYPE_CRASH) { + for (i = 0; i < nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz - 1; + /* Ensure we are within the crash kernel limits */ + if ((mstart < phys_to_boot_phys(crashk_res.start)) || + (mend > phys_to_boot_phys(crashk_res.end))) + return -EADDRNOTAVAIL; + } + } + + return 0; +} + +struct kimage *do_kimage_alloc_init(void) +{ + struct kimage *image; + + /* Allocate a controlling structure */ + image = kzalloc(sizeof(*image), GFP_KERNEL); + if (!image) + return NULL; + + image->head = 0; + image->entry = &image->head; + image->last_entry = &image->head; + image->control_page = ~0; /* By default this does not apply */ + image->type = KEXEC_TYPE_DEFAULT; + + /* Initialize the list of control pages */ + INIT_LIST_HEAD(&image->control_pages); + + /* Initialize the list of destination pages */ + INIT_LIST_HEAD(&image->dest_pages); + + /* Initialize the list of unusable pages */ + INIT_LIST_HEAD(&image->unusable_pages); + + return image; +} + +int kimage_is_destination_range(struct kimage *image, + unsigned long start, + unsigned long end) +{ + unsigned long i; + + for (i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz; + if ((end > mstart) && (start < mend)) + return 1; + } + + return 0; +} + +static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) +{ + struct page *pages; + + if (fatal_signal_pending(current)) + return NULL; + pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); + if (pages) { + unsigned int count, i; + + pages->mapping = NULL; + set_page_private(pages, order); + count = 1 << order; + for (i = 0; i < count; i++) + SetPageReserved(pages + i); + + arch_kexec_post_alloc_pages(page_address(pages), count, + gfp_mask); + + if (gfp_mask & __GFP_ZERO) + for (i = 0; i < count; i++) + clear_highpage(pages + i); + } + + return pages; +} + +static void kimage_free_pages(struct page *page) +{ + unsigned int order, count, i; + + order = page_private(page); + count = 1 << order; + + arch_kexec_pre_free_pages(page_address(page), count); + + for (i = 0; i < count; i++) + ClearPageReserved(page + i); + __free_pages(page, order); +} + +void kimage_free_page_list(struct list_head *list) +{ + struct page *page, *next; + + list_for_each_entry_safe(page, next, list, lru) { + list_del(&page->lru); + kimage_free_pages(page); + } +} + +static struct page *kimage_alloc_normal_control_pages(struct kimage *image, + unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * At worst this runs in O(N) of the image size. + */ + struct list_head extra_pages; + struct page *pages; + unsigned int count; + + count = 1 << order; + INIT_LIST_HEAD(&extra_pages); + + /* Loop while I can allocate a page and the page allocated + * is a destination page. + */ + do { + unsigned long pfn, epfn, addr, eaddr; + + pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); + if (!pages) + break; + pfn = page_to_boot_pfn(pages); + epfn = pfn + count; + addr = pfn << PAGE_SHIFT; + eaddr = epfn << PAGE_SHIFT; + if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || + kimage_is_destination_range(image, addr, eaddr)) { + list_add(&pages->lru, &extra_pages); + pages = NULL; + } + } while (!pages); + + if (pages) { + /* Remember the allocated page... */ + list_add(&pages->lru, &image->control_pages); + + /* Because the page is already in it's destination + * location we will never allocate another page at + * that address. Therefore kimage_alloc_pages + * will not return it (again) and we don't need + * to give it an entry in image->segment[]. + */ + } + /* Deal with the destination pages I have inadvertently allocated. + * + * Ideally I would convert multi-page allocations into single + * page allocations, and add everything to image->dest_pages. + * + * For now it is simpler to just free the pages. + */ + kimage_free_page_list(&extra_pages); + + return pages; +} + +static struct page *kimage_alloc_crash_control_pages(struct kimage *image, + unsigned int order) +{ + /* Control pages are special, they are the intermediaries + * that are needed while we copy the rest of the pages + * to their final resting place. As such they must + * not conflict with either the destination addresses + * or memory the kernel is already using. + * + * Control pages are also the only pags we must allocate + * when loading a crash kernel. All of the other pages + * are specified by the segments and we just memcpy + * into them directly. + * + * The only case where we really need more than one of + * these are for architectures where we cannot disable + * the MMU and must instead generate an identity mapped + * page table for all of the memory. + * + * Given the low demand this implements a very simple + * allocator that finds the first hole of the appropriate + * size in the reserved memory region, and allocates all + * of the memory up to and including the hole. + */ + unsigned long hole_start, hole_end, size; + struct page *pages; + + pages = NULL; + size = (1 << order) << PAGE_SHIFT; + hole_start = (image->control_page + (size - 1)) & ~(size - 1); + hole_end = hole_start + size - 1; + while (hole_end <= crashk_res.end) { + unsigned long i; + + cond_resched(); + + if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) + break; + /* See if I overlap any of the segments */ + for (i = 0; i < image->nr_segments; i++) { + unsigned long mstart, mend; + + mstart = image->segment[i].mem; + mend = mstart + image->segment[i].memsz - 1; + if ((hole_end >= mstart) && (hole_start <= mend)) { + /* Advance the hole to the end of the segment */ + hole_start = (mend + (size - 1)) & ~(size - 1); + hole_end = hole_start + size - 1; + break; + } + } + /* If I don't overlap any segments I have found my hole! */ + if (i == image->nr_segments) { + pages = pfn_to_page(hole_start >> PAGE_SHIFT); + image->control_page = hole_end; + break; + } + } + + /* Ensure that these pages are decrypted if SME is enabled. */ + if (pages) + arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); + + return pages; +} + + +struct page *kimage_alloc_control_pages(struct kimage *image, + unsigned int order) +{ + struct page *pages = NULL; + + switch (image->type) { + case KEXEC_TYPE_DEFAULT: + pages = kimage_alloc_normal_control_pages(image, order); + break; + case KEXEC_TYPE_CRASH: + pages = kimage_alloc_crash_control_pages(image, order); + break; + } + + return pages; +} + +int kimage_crash_copy_vmcoreinfo(struct kimage *image) +{ + struct page *vmcoreinfo_page; + void *safecopy; + + if (image->type != KEXEC_TYPE_CRASH) + return 0; + + /* + * For kdump, allocate one vmcoreinfo safe copy from the + * crash memory. as we have arch_kexec_protect_crashkres() + * after kexec syscall, we naturally protect it from write + * (even read) access under kernel direct mapping. But on + * the other hand, we still need to operate it when crash + * happens to generate vmcoreinfo note, hereby we rely on + * vmap for this purpose. + */ + vmcoreinfo_page = kimage_alloc_control_pages(image, 0); + if (!vmcoreinfo_page) { + pr_warn("Could not allocate vmcoreinfo buffer\n"); + return -ENOMEM; + } + safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); + if (!safecopy) { + pr_warn("Could not vmap vmcoreinfo buffer\n"); + return -ENOMEM; + } + + image->vmcoreinfo_data_copy = safecopy; + crash_update_vmcoreinfo_safecopy(safecopy); + + return 0; +} + +static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) +{ + if (*image->entry != 0) + image->entry++; + + if (image->entry == image->last_entry) { + kimage_entry_t *ind_page; + struct page *page; + + page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); + if (!page) + return -ENOMEM; + + ind_page = page_address(page); + *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; + image->entry = ind_page; + image->last_entry = ind_page + + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); + } + *image->entry = entry; + image->entry++; + *image->entry = 0; + + return 0; +} + +static int kimage_set_destination(struct kimage *image, + unsigned long destination) +{ + int result; + + destination &= PAGE_MASK; + result = kimage_add_entry(image, destination | IND_DESTINATION); + + return result; +} + + +static int kimage_add_page(struct kimage *image, unsigned long page) +{ + int result; + + page &= PAGE_MASK; + result = kimage_add_entry(image, page | IND_SOURCE); + + return result; +} + + +static void kimage_free_extra_pages(struct kimage *image) +{ + /* Walk through and free any extra destination pages I may have */ + kimage_free_page_list(&image->dest_pages); + + /* Walk through and free any unusable pages I have cached */ + kimage_free_page_list(&image->unusable_pages); + +} + +int __weak machine_kexec_post_load(struct kimage *image) +{ + return 0; +} + +void kimage_terminate(struct kimage *image) +{ + if (*image->entry != 0) + image->entry++; + + *image->entry = IND_DONE; +} + +#define for_each_kimage_entry(image, ptr, entry) \ + for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ + ptr = (entry & IND_INDIRECTION) ? \ + boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) + +static void kimage_free_entry(kimage_entry_t entry) +{ + struct page *page; + + page = boot_pfn_to_page(entry >> PAGE_SHIFT); + kimage_free_pages(page); +} + +void kimage_free(struct kimage *image) +{ + kimage_entry_t *ptr, entry; + kimage_entry_t ind = 0; + + if (!image) + return; + + if (image->vmcoreinfo_data_copy) { + crash_update_vmcoreinfo_safecopy(NULL); + vunmap(image->vmcoreinfo_data_copy); + } + + kimage_free_extra_pages(image); + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_INDIRECTION) { + /* Free the previous indirection page */ + if (ind & IND_INDIRECTION) + kimage_free_entry(ind); + /* Save this indirection page until we are + * done with it. + */ + ind = entry; + } else if (entry & IND_SOURCE) + kimage_free_entry(entry); + } + /* Free the final indirection page */ + if (ind & IND_INDIRECTION) + kimage_free_entry(ind); + + /* Handle any machine specific cleanup */ + machine_kexec_cleanup(image); + + /* Free the kexec control pages... */ + kimage_free_page_list(&image->control_pages); + + /* + * Free up any temporary buffers allocated. This might hit if + * error occurred much later after buffer allocation. + */ + if (image->file_mode) + kimage_file_post_load_cleanup(image); + + kfree(image); +} + +static kimage_entry_t *kimage_dst_used(struct kimage *image, + unsigned long page) +{ + kimage_entry_t *ptr, entry; + unsigned long destination = 0; + + for_each_kimage_entry(image, ptr, entry) { + if (entry & IND_DESTINATION) + destination = entry & PAGE_MASK; + else if (entry & IND_SOURCE) { + if (page == destination) + return ptr; + destination += PAGE_SIZE; + } + } + + return NULL; +} + +static struct page *kimage_alloc_page(struct kimage *image, + gfp_t gfp_mask, + unsigned long destination) +{ + /* + * Here we implement safeguards to ensure that a source page + * is not copied to its destination page before the data on + * the destination page is no longer useful. + * + * To do this we maintain the invariant that a source page is + * either its own destination page, or it is not a + * destination page at all. + * + * That is slightly stronger than required, but the proof + * that no problems will not occur is trivial, and the + * implementation is simply to verify. + * + * When allocating all pages normally this algorithm will run + * in O(N) time, but in the worst case it will run in O(N^2) + * time. If the runtime is a problem the data structures can + * be fixed. + */ + struct page *page; + unsigned long addr; + + /* + * Walk through the list of destination pages, and see if I + * have a match. + */ + list_for_each_entry(page, &image->dest_pages, lru) { + addr = page_to_boot_pfn(page) << PAGE_SHIFT; + if (addr == destination) { + list_del(&page->lru); + return page; + } + } + page = NULL; + while (1) { + kimage_entry_t *old; + + /* Allocate a page, if we run out of memory give up */ + page = kimage_alloc_pages(gfp_mask, 0); + if (!page) + return NULL; + /* If the page cannot be used file it away */ + if (page_to_boot_pfn(page) > + (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { + list_add(&page->lru, &image->unusable_pages); + continue; + } + addr = page_to_boot_pfn(page) << PAGE_SHIFT; + + /* If it is the destination page we want use it */ + if (addr == destination) + break; + + /* If the page is not a destination page use it */ + if (!kimage_is_destination_range(image, addr, + addr + PAGE_SIZE)) + break; + + /* + * I know that the page is someones destination page. + * See if there is already a source page for this + * destination page. And if so swap the source pages. + */ + old = kimage_dst_used(image, addr); + if (old) { + /* If so move it */ + unsigned long old_addr; + struct page *old_page; + + old_addr = *old & PAGE_MASK; + old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); + copy_highpage(page, old_page); + *old = addr | (*old & ~PAGE_MASK); + + /* The old page I have found cannot be a + * destination page, so return it if it's + * gfp_flags honor the ones passed in. + */ + if (!(gfp_mask & __GFP_HIGHMEM) && + PageHighMem(old_page)) { + kimage_free_pages(old_page); + continue; + } + addr = old_addr; + page = old_page; + break; + } + /* Place the page on the destination list, to be used later */ + list_add(&page->lru, &image->dest_pages); + } + + return page; +} + +static int kimage_load_normal_segment(struct kimage *image, + struct kexec_segment *segment) +{ + unsigned long maddr; + size_t ubytes, mbytes; + int result; + unsigned char __user *buf = NULL; + unsigned char *kbuf = NULL; + + result = 0; + if (image->file_mode) + kbuf = segment->kbuf; + else + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + maddr = segment->mem; + + result = kimage_set_destination(image, maddr); + if (result < 0) + goto out; + + while (mbytes) { + struct page *page; + char *ptr; + size_t uchunk, mchunk; + + page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); + if (!page) { + result = -ENOMEM; + goto out; + } + result = kimage_add_page(image, page_to_boot_pfn(page) + << PAGE_SHIFT); + if (result < 0) + goto out; + + ptr = kmap(page); + /* Start with a clear page */ + clear_page(ptr); + ptr += maddr & ~PAGE_MASK; + mchunk = min_t(size_t, mbytes, + PAGE_SIZE - (maddr & ~PAGE_MASK)); + uchunk = min(ubytes, mchunk); + + /* For file based kexec, source pages are in kernel memory */ + if (image->file_mode) + memcpy(ptr, kbuf, uchunk); + else + result = copy_from_user(ptr, buf, uchunk); + kunmap(page); + if (result) { + result = -EFAULT; + goto out; + } + ubytes -= uchunk; + maddr += mchunk; + if (image->file_mode) + kbuf += mchunk; + else + buf += mchunk; + mbytes -= mchunk; + + cond_resched(); + } +out: + return result; +} + +static int kimage_load_crash_segment(struct kimage *image, + struct kexec_segment *segment) +{ + /* For crash dumps kernels we simply copy the data from + * user space to it's destination. + * We do things a page at a time for the sake of kmap. + */ + unsigned long maddr; + size_t ubytes, mbytes; + int result; + unsigned char __user *buf = NULL; + unsigned char *kbuf = NULL; + + result = 0; + if (image->file_mode) + kbuf = segment->kbuf; + else + buf = segment->buf; + ubytes = segment->bufsz; + mbytes = segment->memsz; + maddr = segment->mem; + while (mbytes) { + struct page *page; + char *ptr; + size_t uchunk, mchunk; + + page = boot_pfn_to_page(maddr >> PAGE_SHIFT); + if (!page) { + result = -ENOMEM; + goto out; + } + arch_kexec_post_alloc_pages(page_address(page), 1, 0); + ptr = kmap(page); + ptr += maddr & ~PAGE_MASK; + mchunk = min_t(size_t, mbytes, + PAGE_SIZE - (maddr & ~PAGE_MASK)); + uchunk = min(ubytes, mchunk); + if (mchunk > uchunk) { + /* Zero the trailing part of the page */ + memset(ptr + uchunk, 0, mchunk - uchunk); + } + + /* For file based kexec, source pages are in kernel memory */ + if (image->file_mode) + memcpy(ptr, kbuf, uchunk); + else + result = copy_from_user(ptr, buf, uchunk); + kexec_flush_icache_page(page); + kunmap(page); + arch_kexec_pre_free_pages(page_address(page), 1); + if (result) { + result = -EFAULT; + goto out; + } + ubytes -= uchunk; + maddr += mchunk; + if (image->file_mode) + kbuf += mchunk; + else + buf += mchunk; + mbytes -= mchunk; + + cond_resched(); + } +out: + return result; +} + +int kimage_load_segment(struct kimage *image, + struct kexec_segment *segment) +{ + int result = -ENOMEM; + + switch (image->type) { + case KEXEC_TYPE_DEFAULT: + result = kimage_load_normal_segment(image, segment); + break; + case KEXEC_TYPE_CRASH: + result = kimage_load_crash_segment(image, segment); + break; + } + + return result; +} + +struct kimage *kexec_image; +struct kimage *kexec_crash_image; +int kexec_load_disabled; + +/* + * No panic_cpu check version of crash_kexec(). This function is called + * only when panic_cpu holds the current CPU number; this is the only CPU + * which processes crash_kexec routines. + */ +void __noclone __crash_kexec(struct pt_regs *regs) +{ + /* Take the kexec_lock here to prevent sys_kexec_load + * running on one cpu from replacing the crash kernel + * we are using after a panic on a different cpu. + * + * If the crash kernel was not located in a fixed area + * of memory the xchg(&kexec_crash_image) would be + * sufficient. But since I reuse the memory... + */ + if (kexec_trylock()) { + if (kexec_crash_image) { + struct pt_regs fixed_regs; + + crash_setup_regs(&fixed_regs, regs); + crash_save_vmcoreinfo(); + machine_crash_shutdown(&fixed_regs); + machine_kexec(kexec_crash_image); + } + kexec_unlock(); + } +} +STACK_FRAME_NON_STANDARD(__crash_kexec); + +void crash_kexec(struct pt_regs *regs) +{ + int old_cpu, this_cpu; + + /* + * Only one CPU is allowed to execute the crash_kexec() code as with + * panic(). Otherwise parallel calls of panic() and crash_kexec() + * may stop each other. To exclude them, we use panic_cpu here too. + */ + this_cpu = raw_smp_processor_id(); + old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); + if (old_cpu == PANIC_CPU_INVALID) { + /* This is the 1st CPU which comes here, so go ahead. */ + printk_safe_flush_on_panic(); + __crash_kexec(regs); + + /* + * Reset panic_cpu to allow another panic()/crash_kexec() + * call. + */ + atomic_set(&panic_cpu, PANIC_CPU_INVALID); + } +} + +ssize_t crash_get_memory_size(void) +{ + ssize_t size = 0; + + if (!kexec_trylock()) + return -EBUSY; + + if (crashk_res.end != crashk_res.start) + size = resource_size(&crashk_res); + + kexec_unlock(); + return size; +} + +void __weak crash_free_reserved_phys_range(unsigned long begin, + unsigned long end) +{ + unsigned long addr; + + for (addr = begin; addr < end; addr += PAGE_SIZE) + free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); +} + +int crash_shrink_memory(unsigned long new_size) +{ + int ret = 0; + unsigned long start, end; + unsigned long old_size; + struct resource *ram_res; + + if (!kexec_trylock()) + return -EBUSY; + + if (kexec_crash_image) { + ret = -ENOENT; + goto unlock; + } + start = crashk_res.start; + end = crashk_res.end; + old_size = (end == 0) ? 0 : end - start + 1; + new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); + if (new_size >= old_size) { + ret = (new_size == old_size) ? 0 : -EINVAL; + goto unlock; + } + + ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); + if (!ram_res) { + ret = -ENOMEM; + goto unlock; + } + + end = start + new_size; + crash_free_reserved_phys_range(end, crashk_res.end); + + if ((start == end) && (crashk_res.parent != NULL)) + release_resource(&crashk_res); + + ram_res->start = end; + ram_res->end = crashk_res.end; + ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; + ram_res->name = "System RAM"; + + crashk_res.end = end - 1; + + insert_resource(&iomem_resource, ram_res); + +unlock: + kexec_unlock(); + return ret; +} + +void crash_save_cpu(struct pt_regs *regs, int cpu) +{ + struct elf_prstatus prstatus; + u32 *buf; + + if ((cpu < 0) || (cpu >= nr_cpu_ids)) + return; + + /* Using ELF notes here is opportunistic. + * I need a well defined structure format + * for the data I pass, and I need tags + * on the data to indicate what information I have + * squirrelled away. ELF notes happen to provide + * all of that, so there is no need to invent something new. + */ + buf = (u32 *)per_cpu_ptr(crash_notes, cpu); + if (!buf) + return; + memset(&prstatus, 0, sizeof(prstatus)); + prstatus.pr_pid = current->pid; + elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); + buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, + &prstatus, sizeof(prstatus)); + final_note(buf); +} + +static int __init crash_notes_memory_init(void) +{ + /* Allocate memory for saving cpu registers. */ + size_t size, align; + + /* + * crash_notes could be allocated across 2 vmalloc pages when percpu + * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc + * pages are also on 2 continuous physical pages. In this case the + * 2nd part of crash_notes in 2nd page could be lost since only the + * starting address and size of crash_notes are exported through sysfs. + * Here round up the size of crash_notes to the nearest power of two + * and pass it to __alloc_percpu as align value. This can make sure + * crash_notes is allocated inside one physical page. + */ + size = sizeof(note_buf_t); + align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); + + /* + * Break compile if size is bigger than PAGE_SIZE since crash_notes + * definitely will be in 2 pages with that. + */ + BUILD_BUG_ON(size > PAGE_SIZE); + + crash_notes = __alloc_percpu(size, align); + if (!crash_notes) { + pr_warn("Memory allocation for saving cpu register states failed\n"); + return -ENOMEM; + } + return 0; +} +subsys_initcall(crash_notes_memory_init); + + +/* + * Move into place and start executing a preloaded standalone + * executable. If nothing was preloaded return an error. + */ +int kernel_kexec(void) +{ + int error = 0; + + if (!kexec_trylock()) + return -EBUSY; + if (!kexec_image) { + error = -EINVAL; + goto Unlock; + } + +#ifdef CONFIG_KEXEC_JUMP + if (kexec_image->preserve_context) { + pm_prepare_console(); + error = freeze_processes(); + if (error) { + error = -EBUSY; + goto Restore_console; + } + suspend_console(); + error = dpm_suspend_start(PMSG_FREEZE); + if (error) + goto Resume_console; + /* At this point, dpm_suspend_start() has been called, + * but *not* dpm_suspend_end(). We *must* call + * dpm_suspend_end() now. Otherwise, drivers for + * some devices (e.g. interrupt controllers) become + * desynchronized with the actual state of the + * hardware at resume time, and evil weirdness ensues. + */ + error = dpm_suspend_end(PMSG_FREEZE); + if (error) + goto Resume_devices; + error = suspend_disable_secondary_cpus(); + if (error) + goto Enable_cpus; + local_irq_disable(); + error = syscore_suspend(); + if (error) + goto Enable_irqs; + } else +#endif + { + kexec_in_progress = true; + kernel_restart_prepare(NULL); + migrate_to_reboot_cpu(); + + /* + * migrate_to_reboot_cpu() disables CPU hotplug assuming that + * no further code needs to use CPU hotplug (which is true in + * the reboot case). However, the kexec path depends on using + * CPU hotplug again; so re-enable it here. + */ + cpu_hotplug_enable(); + pr_notice("Starting new kernel\n"); + machine_shutdown(); + } + + machine_kexec(kexec_image); + +#ifdef CONFIG_KEXEC_JUMP + if (kexec_image->preserve_context) { + syscore_resume(); + Enable_irqs: + local_irq_enable(); + Enable_cpus: + suspend_enable_secondary_cpus(); + dpm_resume_start(PMSG_RESTORE); + Resume_devices: + dpm_resume_end(PMSG_RESTORE); + Resume_console: + resume_console(); + thaw_processes(); + Restore_console: + pm_restore_console(); + } +#endif + + Unlock: + kexec_unlock(); + return error; +} + +/* + * Protection mechanism for crashkernel reserved memory after + * the kdump kernel is loaded. + * + * Provide an empty default implementation here -- architecture + * code may override this + */ +void __weak arch_kexec_protect_crashkres(void) +{} + +void __weak arch_kexec_unprotect_crashkres(void) +{} |